SlideShare une entreprise Scribd logo
1  sur  30
Télécharger pour lire hors ligne
APPLICATION NOTE
MULTIPLE EV CHARGING STATIONS
CREARA Energy Experts
July 2019
ECI Publication No Cu0263
Available from www.leonardo-energy.org
Publication No Cu0263
Issue Date: July 2019
Page i
Document Issue Control Sheet
Document Title: Application Note – Multiple EV Charging Stations
Publication No: Cu0263
Issue: 01
Release: Public
Content provider(s) CREARA Energy Experts
Author(s): Pedro Luis Espejo, José Ignacio Briano, Paolo Sonvilla
Editorial and language review Bruno De Wachter (editorial), Andrew Wilson (English language)
Content review: Angelo Baggini
Document History
Issue Date Purpose
1 July 2019 First publication, in the framework of the Good Practice Guide
2
3
Disclaimer
While this publication has been prepared with care, European Copper Institute and other contributors provide
no warranty with regards to the content and shall not be liable for any direct, incidental or consequential
damages that may result from the use of the information or the data contained.
Copyright© European Copper Institute.
Reproduction is authorized providing the material is unabridged and the source is acknowledged.
Publication No Cu0263
Issue Date: July 2019
Page ii
CONTENTS
Summary ........................................................................................................................................................ 1
Introduction.................................................................................................................................................... 2
Corporate approach........................................................................................................................................ 5
Multiple EV charging station installations..................................................................................................... 10
Load calculation....................................................................................................................................................12
Introduction............................................................................................................................................12
Modes 1 and 2........................................................................................................................................12
Mode 3 ...................................................................................................................................................13
Mode 4 ...................................................................................................................................................15
Safety standards ...................................................................................................................................................15
International and European safety standards........................................................................................15
Infrastructure requirements.................................................................................................................................16
International and European infrastructure requirements: overview.....................................................16
National regulation...............................................................................................................................................18
Case study: implementation of multiple EV charging stations at the offices of a large financial institution .. 19
General circumstances .........................................................................................................................................19
The proposed solution..........................................................................................................................................19
Project execution..................................................................................................................................................20
Main results..........................................................................................................................................................24
Conclusion .................................................................................................................................................... 26
References.................................................................................................................................................... 27
Publication No Cu0263
Issue Date: July 2019
Page 1
SUMMARY
The electric vehicle (EV) is here to stay. The number of EVs has increased steeply in recent years and this
evolution is expected to continue in the years ahead, particularly as a result of the EU’s commitment on the
decarbonisation of the economy.
This application note is intended as a guide for organizations who have decided to install charging stations for
their employees and/or customers. It describes the entire process from the moment of the decision to
implement charging points on their premises through to the operation and functioning of the stations,
illustrated by a real-world case study.
This document is organised as follows:
 Introduction outlining the current position on electric vehicles;
 Decision-making process for companies installing EV charging infrastructure and selecting a business
model;
 Installation process for multiple EV charging stations, including:
o General issues;
o Technical calculations of the load transfer in Modes 3 and 4;
o Safety standards and infrastructure requirements;
 Case study of a 48 EV charging station installation at the offices of a large financial institution, from
the initial request to charging point monitoring and economic outcome.
Publication No Cu0263
Issue Date: July 2019
Page 2
INTRODUCTION
The Plug-in Electric Vehicle (PEV) market has been steadily growing in recent years in Europe as illustrated by
Figure 1. Total new PEV registrations have increased every year since 2013, reaching a total of over 290,000 by
2017. Consequently, even though the EV share remains low, the proportion of these vehicles has more than
quadrupled in the market since 2013.
There are two main categories of plug-in EVs. Plug-in hybrid electric vehicles (PHEVs) have an internal
combustion engine in addition to their electric motor. Battery electric vehicles (BEV) have only an electric
motor.
Figure 1 – PEV market share in Europe.
The International Energy Agency anticipates two potential scenarios for EV market growth:
 The New Policies Scenario is the central scenario and incorporates the policies and measures put in
place by governments around the world;
 The EV30@30 campaign is an optimistic scenario consistent with the pledged ambition of EVI
countries (Canada, Chile, China, Finland, France, Germany, India, Japan, Mexico, the Netherlands,
New Zealand, Norway, Portugal, Sweden, the United Kingdom and the United States )
3
in the
EV30@30 Campaign Declaration.
BEV units are expected to grow considerably in number by 2030. Figure 2 shows a compound annual growth
rate of over 25% in the New Policies Scenario, with a total of more than 40 million of BEVs by 2030. In the
more optimistic EV30@30 campaign scenario, almost 130 million BEVs are expected in the same time horizon.
0
0.2
0.4
0.6
0.8
1
1.2
2013 2014 2015 2016 2017 2018
PHEV BEV
0.45
Total share of
EV in Europe
0.68 1.26 1.30 1.78 2.11
ShareinEurope
Note: From January to August, 2018
Source: EAFO; CREARA Analysis
Publication No Cu0263
Issue Date: July 2019
Page 3
Figure 2 – Expected growth in BEV numbers.
The increasing number of EVs leads to the urgent need for EV charging points.
Any EV can be charged through a normal domestic socket or through a dedicated EV charging point. However,
there are important differences that must be taken into account.
 A normal domestic socket requires no initial investment, but communication with the EV and load
transfer supervision are minimal. There is a risk of overheating the installation, which could ultimately
start a fire. With a dedicated EV charging point, communication between the EV and the charging
device is more sophisticated, substantially enhancing fire safety.
 Load intensity is very low using a domestic socket, which means that it takes a long time to charge the
vehicle fully (approximately 17 hours). EV charging points are specifically designed to achieve
optimum charging in the shortest possible time (3-10 hours, depending on the current and whether it
is a single-phase or three-phase connection).
Public charging points dedicated to EVs and can be normal (>22 kV) or fast (≤ 22 kW). Normal power public
stations are by far the most prevalent in Europe with a share close to 90% in 2017, but fast charging stations
are growing in popularity in recent years.
Figure 3 – Evolution of public charging stations.
MillionofBEV*
0
20
40
60
80
100
120
140
2017 2020 2025 2030
Note: BEV includes passenger light-duty vehicles and light commercial vehicles
Source: International Energy Agency, CREARA Analysis
CAGR
(2017-2030)
New
Policies
Scenario
25.26%
EV30@30
Scenario
36.80%
New
Policies
Scenario
EV30@30
Scenario
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
2013 2014 2015 2016 2017 2018
28.4
Thousands of
infrastructures
41.3 69.0 104.6 135.3 149.9
CAGR
2013-2017
90%
57%
Note: 1
From January to August, 2018
Source: EAFO; CREARA Analysis
1
Fast
charging
stations
Normal
charging
stations
47%Total
Publication No Cu0263
Issue Date: July 2019
Page 4
Figure 3 illustrates the relationship between the EV new sales market share and the number of EVs per
available public charging station. EV market share is still low in most countries with the exception of Norway
where almost a third of newly sold vehicles are electric. The second biggest market share belongs to the
Netherlands, with over 6% EV sales penetration. The share of EVs in other countries is below 3%.
Figure 4 – Relation between EV new sales market share and the number of EVs per available public charging
point.
0.0%
0.5%
1.0%
1.5%
2.0%
0 2 4 6 8 10 12 14 16 18 20
EVmarketshareofnewsales
Numberof electricvehiclesperavailable publiccharging point
Portugal
Current stateof EV(BEV + PHEV) market in selectedcountries1
(2016)
Canada
China France
Germany
India
Italia
Japan
Korea
Spain
Sweden
UK
EE.UU
Ball size indicates total BEV +
PHEV stock:
= 400.000
= 125.000
= 55.000
= 2.000
Norway
The
Netherlands
29%6,4%
Note: 1Norway, the Netherlands and Sweden have not been plotted in real scale due to their higher market share compared with the rest of
countries
Source: IEA; CREARA Analysis
3,4%
Publication No Cu0263
Issue Date: July 2019
Page 5
CORPORATE APPROACH
A company may decide to install EV charging stations based on one or a combination of the following reasons:
1. The organisation runs, or is planning to run, an EV fleet;
2. To attract clients and increase the loyalty of employees who drive EVs;
3. To enhance the corporate image;
4. Obligated by regulation;
5. To generate an additional revenue stream.
1. THE ORGANISATION RUNS, OR IS PLANNING TO RUN, AN EV FLEET
There is an increasing trend among companies to establish EV fleets to reduce their carbon footprint.
Although BEV manufacturing emissions are approximately 68 percent higher than for comparable
conventional petrol vehicles, electric vehicles generally emit 53% less CO2e per mile compared to
petrol vehicles during their lifecycle, saving 54 tonnes of CO2e
1
.
Many corporations are also seeking to reduce the total cost of ownership (TCO) of their fleets. The
initial investment for EVs is higher compared to petrol vehicles but the TCO can be lower, depending
on the circumstances.
In 2018, an analysis comparing the TCO of petrol and electric vehicles in the UK, US (California and
Texas) and Japan was published. The study takes all significant vehicle ownership costs into
consideration for 2015: depreciation, tax, maintenance, insurance and petrol/electricity. The research
also took into account financial incentives. FIGURE 5 illustrates the results: on average, the BEV has a
lower cost of ownership in all the regions studied.
1
R. Nealer, D. Reichmuth, D. Anair (2015). Cleaner Cars from Cradle to Grave. Under certain conditions:
considering a full-size 265-mile-range BEV, when is powered by the electricity grid mix representative of where
BEVs are sold today
Publication No Cu0263
Issue Date: July 2019
Page 6
Figure 5 – TCO component breakdown for 2015 across Japan, UK and US.
2. TO INCREASE THE LOYALTY OF EMPLOYEES AND ATTRACT CLIENTS WHO DRIVE ELECTRIC
VEHICLES
A further reason to install EV charging stations is to increase the loyalty of employees by offering this
additional benefit. Many organizations operating charging points offer free energy to their staff.
By installing EV charging stations, companies also reduce carbon emissions from the vehicles of their
employees and clients. Many companies have already installed points at their facilities hoping to
reduce these emissions, for example Apple (700 charging stations in Apple Park) or Ikea (charging
stations at 69% of their stores and 42% of shopping centres).
Some organizations have already published the economic or environmental results achieved following
the installation of charging stations. For example, Air New Zealand saves €1,200 per EV per year at its
45 charging points; Google saved 2,142 tonnes of C02 in 2016 by installing 1,646 stations.
A study of Dutch drivers
4
recently suggested that over half of EV drivers use only one or two points
(probably at their homes overnight and at their workplaces) to charge their vehicles. These numbers
reflect the fact that many drivers follow a daily loading routine. By installing charging points on their
premises, companies can facilitate this routine for their employees before the number of stations
increases. Installing EV charging infrastructures could also lead to a competitive advantage since
customers who own an EV may prefer doing business with a company operating charging points at
their premises.
0
5
10
15
20
25
Petrol
BEV
Petrol
BEV
Petrol
BEV
Petrol
BEV
Depretiation Taxes Maintenance Insurance Petrol cost Electricity cost
Japan California (USA) Texas (USA) United Kingdom
Totalcostofownership
(thousandsEUR)
Incentives
Note: This research considers an ownership with an average length of 3 years
Source: University of Leeds, CREARA Analysis
Publication No Cu0263
Issue Date: July 2019
Page 7
Figure 6 - Segmentation by charging points used by EVs in a 90-day period
3. TO ENHANCE CORPORATE IMAGE
The installation of EV charging points is still considered innovative and can attract media interest. This
can contribute to promoting an environmentally friendly image.
Not surprisingly, leading companies have already announced plans to develop EV charging
infrastructures at their premises, among them Coca-Cola, Ikea, Facebook, General Electric and
Google.
4. OBLIGATED BY REGULATION
In some countries or regions, regulation requires charging stations to be installed under some
circumstances. One example is EU Directive 2018/844, which amends Directive 2010/31. According to
this directive, EU Member States should ensure the installation of at least one charging point for
every five parking spaces in non-residential buildings with more than ten parking spaces, whether
newbuild or when undergoing major renovation.
To facilitate this obligation, many countries grant tax exemption for EV charging infrastructure
installation.
5. TO GENERATE AN ADDITIONAL REVENUE STREAM
Charging stations could bring a new source of income to cover initial investment and generate
additional profits where users pay more than the actual cost of charging.
Companies select their preferred business model depending on the reason for installing the EV charging
stations and the value proposition offered to EV drivers. They must first carefully analyse their company profile
(e.g. size, public or private, business culture and brand image) and the profiles of potential users (e.g. time
spent by users, and the mix of clients and employees) before deciding on their preferred business model. The
following alternatives exist:
NO COST TO THE USER, WITH NOTIFICATION
In this scenario, the company assumes the total cost of EV charging. It notifies this cost to users so
that they can better perceive the benefit they enjoy.
NO COST TO THE USER, WITHOUT NOTIFICATION
The company assumes the total cost of EV charging but does not notify the costs.
46%
20%
22%
12%
0%
20%
40%
60%
80%
100%
2 charging points
1 charging point
3 to 5 charging points
+ 5 charging points
Publication No Cu0263
Issue Date: July 2019
Page 8
These two models are commonly applied by organizations wishing to encourage employee loyalty. Employees
have extra motivation to work for companies offering free energy for EV charging, and it may also function as
an incentive for potential customers.
SUBSIDIZED FOR THE USER
This model is considered by companies who wish to encourage the loyalty of EV users but are
unwilling to bear the entire cost of EV charging. The cost is therefore only partially subsidized by the
organization.
TOTAL COST COVERED BY THE USER
The company bears the cost of installing the EV charging stations on their premises, but the user must
pay for all the energy used in charging. Through an access control system, the charging station
identifies the user.
TOTAL COST COVERED BY THE USER PLUS PROFIT MARGIN
In addition to the user being liable for the charging cost, companies also include a profit margin in the
price to recover the initial investment of installing the EV charging points or gain an additional source
of income.
Additionally, companies must decide whether they wish to outsource the financing and management of the
charging stations. They must evaluate whether to make use of internal or external financial resources, as well
as whether they have the necessary technical capacity to operate the equipment or need to outsource its
management:
 Financing can be procured from internal funds or external investors;
o Own financing: the company allocates available internal funds to install the charging points
and consequently will own new depreciating assets;
o External financing: an external investor puts up the required investment. Together with the
new assets, a new debt arises in the company’s liabilities. Of the different forms of external
financing, those most commonly used for EV charging station installations are debt, lines of
credit and leasing;
 Operation. Charging stations are usually managed and operated by specialist third parties, who
provide maintenance and guarantee the correct use of the chargers. Many organizations, especially
larger companies, may have technical departments with the knowledge and expertise to manage such
infrastructure.
Based on these two parameters, companies are positioned in the matrix in Figure 7 according to the type of
financing and operation employed:
Publication No Cu0263
Issue Date: July 2019
Page 9
Figure 7 – Matrix of EV charging station management.
Companies that do not have the technical expertise to manage the installation and operation processes usually
opt to outsource EV charging station operation and financing. In this case, it presents several advantages:
 Companies can focus their resources on their core business and other strategic activities;
 Technical risks and management responsibilities are covered by the third party;
 Charging station energy use is optimized.
• The company self-
financesthe
installationof the
recharging stations
and operatesthem
from a specialized
technical department
• The company seeks
external financing
(usuallythrough
renting,leasingor
debt),but is in charge
of operatingthe
charging points
• The company
financesthe
installationbut
outsourcesthe
managementof the
charging stations to a
specializedthird
party
• The company
outsourcesboth the
financingand
management
processesto a
specializedexternal
company
FINANCING
OWN
SELF-OPERATEDTHIRD-PARTY
EXTERNAL
OPERATION
Publication No Cu0263
Issue Date: July 2019
Page 10
MULTIPLE EV CHARGING STATION INSTALLATIONS
In a multiple EV charging station project, and prior to technical calculations, the following general issues need
to be taken into account.
DESIGN
Charging stations must be designed and installed to be clearly visible to potential users. The following are key
features that any charging station must incorporate:
 Colours and a recognisable aesthetic to capture the attention of users.
 Lighting to illuminate the charging area as well as lights indicating whether the vehicle is being
charged.
 Charging points must be at an appropriate ergonomic height for users.
 It is recommended that cables and holders are integrated within charging stations for ease of use and
for drivers who may not carry their own cables in their vehicles. The length of the cable must
accommodate all type of vehicles and, if it is not retractable, there must be holders to avoid loose
cables causing accidents at stations.
 Instructions must be simple, clear and understandable by all drivers. Graphical directions are
especially useful for novice drivers or non-native speakers.
 Drivers need to know how much they are paying to charge their vehicles, and therefore pricing
information is an essential requirement at the station (except where charging is free).
 Problems may arise when charging a vehicle so drivers must feel confident that there will be
assistance 24/7 if any issues arise.
Companies can benefit from branding opportunities or even advertising to drivers at charging stations.
There are also technical features to be incorporated in the wallbox:
 Ideally, the charging point will include a display for better user interaction. An extra screen can
include advertising, resulting in an additional income source.
 The charging station operator can also offer an app to facilitate its use.
 High voltage charging points should incorporate a load limiter allowing users with less powerful
batteries to charge their vehicle at a lower voltage.
CHARGING STATION FUNCTIONALITY
Charging stations can have many functionalities depending on the following features:
 Type of connection. With or without socket.
 Type of socket. Different standards apply depending on the charging mode.
Standard CEE 7
(e.g. shuko)
SAE J1772
Yazaki
IEC 62196 - 2
Mennekes
IEC 62851 - 23&24
CHAdeMO
IEC 62196 - 3
CCS Combo
Publication No Cu0263
Issue Date: July 2019
Page 11
 Number of chargers. There could be one or two sockets integrated within each wallbox and, to allow
users to charge other types of electric vehicles (such as bikes, motorbikes or scooters), it is customary
to install an additional standard CEE 7 socket, independent of the wallboxes.
 Network analyser or counter (if present).
 Measuring equipment and invoicing system (if present).
 Access control. Alternatives include the use of an app, Radio Frequency Identification (RFID), digital or
analogue fingerprint, or facial recognition.
 Communication system. 3G or Ethernet.
 Protocol. Open Charge Point Protocol (OCPP) including automatic upgrade.
 Type of charging. Single-phase or three-phase.
Companies choose the functionalities according to their needs.
CHARGING AREA SURROUNDS
There are factors related to charging area surrounds drivers consider when using a charging station.
 Charging points must be accessible, and without physical barriers and, ideally, EV parking spaces
should be close to entrances to encourage drivers to charge their vehicles;
 Charging station surrounds should be clean and well-maintained;
 Drivers must feel safe leaving their cars to charge in the parking areas; useful measures could include
positioning parking spaces in areas where there is little traffic, installing signal lamps, and/or
deploying other physical security measures such as security cameras or security staff;
 Drivers will especially appreciate protection from the weather; on rainy days drivers will opt for an
underground, indoor or protected station;
 Offering drivers opportunities for recreation and relaxation may help to increase loyalty for a specific
charging point, because charging may take at least 30 minutes.
Publication No Cu0263
Issue Date: July 2019
Page 12
LOAD CALCULATION
INTRODUCTION
The installation of multiple EV charging stations is a comprehensive project affecting the entire organization,
with many sections of the company participating in the process. For example, the finance department will
oversee the investment, personnel will be looking at how project implementation will affect staff, and
marketing will be analysing opportunities for branding and positioning.
So, a charging station installation cannot simply be seen as a linear project split into distinct phases. There
must be an integrated plan where important decisions influencing the entire project are made before starting
work. Some of the main questions are: what is the total investment the company is willing to make, what is the
business model, are the charging stations only for EVs or are electric bikes and motorcycles included, what are
the intended charging times, and how many charging points will there be?
Two important technical factors must be evaluated to make the load calculation:
1) Charging mode. There are four charging modes – Modes 1, 2, 3 and 4 (see below) – and each comes
with specific characteristics (such as current, voltage and power), as well as advantages and
disadvantages. The most commonly used by European companies is mode 3. There are also charging
stations on the market offering the possibility of charging in different modes.
2) Electrical installation. It may be the case that the existing installation has insufficient capacity to
support the additional power required for multiple EV charging stations. If there are electrical
limitations, the project must be either adapted by reducing the load power or redesigned.
MODES 1 AND 2
These modes are characterized by standard sockets up to 16 A and 32 A respectively. Although they are the
most usual modes for regular residential usage, they are not recommended for EVs. Their usage could lead to
the electric installation overheating, with the risk of ignition and fire.
In Mode 1, there is no communication device between the EV and the charging point nor any load transfer
supervision. In Mode 2 the level of communication between the EV and the charging station is higher than in
Mode 1, but is still very limited. In these two modes, the load intensity is very low (in Mode 2 for security
reasons), so getting full load can take a lot of time (around 17 hours). As a result, these modes are not a viable
option for EV charging.
Publication No Cu0263
Issue Date: July 2019
Page 13
MODE 3
Mode 3 is specifically designed for and aimed at EVs. The load is in alternating current and consequently the
infrastructure can be installed cost-effectively almost anywhere.
An additional characteristic is the type of socket. Type 2 connector (62196-2, commonly known as Mennekes)
is the European standard (EN 62196-2). However, other sockets meeting earlier standards (such as SAE J1772)
can still be found.
CHARGING STATION PRICING
Wallbox charging station prices for a company can range between €1,500 and €2,500, depending on the extras
or additions specified.
This price does not include the installation cost, which will vary according to the technical features of the
facility, such as the location of the charging station, the distance to the electrical installation, the number of
charging stations, and whether building work is required.
Prices for public access charging stations are higher, between €7,500 and €9,000, also depending on the
characteristics of the station.
LOADING SPEED AND LOADING TIME
The current for Mode 3 can range between 6 A and 63 A. Voltage can be single-phase (230 V) or three-phase
(400 V).
At the time of defining the load, it must be taken into account that some EVs (such as the Renault Zoe) cannot
load at a current lower than 13 A due to their technical characteristics.
The loading speed is defined by the power. To calculate the power, the formulae are different for single-phase
and three-phase loads:
𝑃𝑜𝑤𝑒𝑟 𝑖𝑛 𝑀𝑜𝑑𝑒 3 (𝑠𝑖𝑛𝑔𝑙𝑒 − 𝑝ℎ𝑎𝑠𝑒 𝑙𝑜𝑎𝑑) =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ∗ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒
1000
𝑃𝑜𝑤𝑒𝑟 𝑖𝑛 𝑀𝑜𝑑𝑒 3 (𝑡ℎ𝑟𝑒𝑒 − 𝑝ℎ𝑎𝑠𝑒 𝑙𝑜𝑎𝑑) =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ∗ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 ∗ √3
1000
The standard voltage level is 230 V for a single phase load and 400 V for a three phase load, but there is no
standard current level, so the power will vary with the current. Table 1 shows the possible calculations for
single-phase and three-phase loading transfers. At present, the most widely-used currents for EV charging in
Europe are 16 A and 32 A, while single-phase load is more frequent due to its lower price. Where companies
prioritize loading time over cost, they will select three-phase load.
Publication No Cu0263
Issue Date: July 2019
Page 14
Single-phase load
(230 V)
Three-phase load
(400 V)
Current Power (kW)
6 A 1.38 4.16
10 A 2.30 6.93
16 A 3.68 11.09
18 A 4.14 12.47
20 A 4.60 13.86
25 A 5.75 17.32
32 A 7.36 22.17
63 A 14.49 43.65
Table 1 – Loading speed in Mode 3.
The loading time varies mainly depending on two factors: the level to which the battery is already charged and
the battery capacity. The loading time is:
𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑡𝑡𝑒𝑟𝑦
𝑊𝑎𝑡𝑡𝑎𝑔𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
Table 2 shows the loading times starting from a fully discharged battery up to a full load of 40 kWh.
Power (kW) Loading time (h) Power (kW) Loading time (h)
Current
Single-phase load
(230 V)
Three-phase load
(400 V)
6 A 1.38 28.99 4.16 9.62
10 A 2.30 17.39 6.93 5.77
16 A 3.68 10.87 11.09 3.61
18 A 4.14 9.66 12.47 3.21
20 A 4.60 8.70 13.86 2.89
25 A 5.75 6.96 17.32 2.31
32 A 7.36 5.43 22.17 1.80
63 A 14.49 2.76 43.65 0.92
Table 2 – Loading times in Mode 3.
ADVANTAGES AND DISADVANTAGES
Mode 3 installations present a broader range of advantages compared with Modes 1 and 2.
ADVANTAGES
 High level of communication between the EV and the station leading to optimized load transfer;
 Most cost-effective mode for safe charging;
 Designed specifically for EVs – the risks for the EV and users are minimal.
DISADVANTAGES
 Charging stations only for electric cars – other electric vehicles such as motorcycles or bikes cannot be
charged unless there is an additional standard socket;
 Loading times are longer than for Mode 4.
Publication No Cu0263
Issue Date: July 2019
Page 15
MODE 4
Mode 4 is also a power system specifically designed for EVs. However, in this case the loading is in direct
current thus making the charging station installation more expensive, and also requiring specific devices such
as CHAdeMO or CCS Combo sockets.
CHARGING STATION PRICING
Fast charging stations represent the most expensive charging infrastructure on the market, costing up to
€20,000 not including installation.
LOADING SPEED AND LOADING TIME
In Mode 4, the loading is in direct current which means that the current flows in one direction only, and the
power is calculated without any correction:
𝑃𝑜𝑤𝑒𝑟 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑥 𝑉𝑜𝑙𝑡𝑎𝑔𝑒
Using the same assumptions – a completely empty battery and a capacity of 40 kWh – the current is up to 120
A at 500 V, resulting in the following loading time:
𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑚𝑝𝑡𝑦 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 − 40 𝑘𝑊ℎ
𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 − 60,000 𝑊
= 0.45 ℎ𝑜𝑢𝑟𝑠
In this scenario an EV can be totally charged in about 45 minutes, which is between 14.5 and 2.5 times faster
than using Mode 3 (single-phase at 16 A and three-phase at 32 A respectively). This is why Mode 4 is known as
the fast charging mode.
ADVANTAGES AND DISADVANTAGES
Mode 4 holds advantages similar to those of Mode 3, on top of being the fastest charging mode, but it also
comes with a few disadvantages.
ADVANTAGES
 High level of communication between the EV and the station, leading to optimized loading;
 Installation designed specifically for EVs. The risks for the EV and users are minimal;
 Mode 4 is the fastest charging mode.
DISADVANTAGES
 The charging stations are used only by electric cars, unless there is an additional standard socket;
 Not all EVs have the specific socket to charge in Mode 4;
 The investment required to install a fast charging station is high;
 Regular loading in Mode 4 may have a negative impact on battery life;
 Higher monthly costs for contracted power are reflected in electricity bills.
SAFETY STANDARDS
INTERNATIONAL AND EUROPEAN SAFETY STANDARDS
The safety of charging stations is a key issue that must be considered in all circumstances. Several international
standards have been developed to ensure the safety of EV charging stations users.
The International Electrotechnical Commission (IEC) has published consensus-based International Standards
affecting EV charging infrastructure. The adoption of IEC standards by any country is entirely voluntary. These
standards are:
Publication No Cu0263
Issue Date: July 2019
Page 16
IEC Scope Stability date
IEC 61140
Protection against electric shock - Common aspects for installation and
equipment
2022
IEC 62040
Uninterruptible power systems (UPS)
 Part 1: Safety requirements
 Part 2: Electromagnetic compatibility (EMC) requirements
 Part 3: Method of specifying the performance and test
requirements
 Part 4: Environmental aspects - Requirements and reporting
 Part 5-3: DC output UPS - Performance and test requirements
 Part 1: 2022
 Part 2: 2021
 Part 3: 2018
(revision in 2020)
 Part 4: 2020
 Part 5: 2021
IEC 60529 –
Amendment 2
Degrees of protection provided by enclosures (IP Code) 2025
IEC 60364
 Part 7-722: Requirements for special installations or locations -
Supplies for electric vehicles
2023
Table 3 – IEC safety standards.
The International Standardization Organization (ISO) has also published several standards to address user
safety, some of which are currently being revised. A standard on magnetic field wireless power transfer is
under development.
ISO Scope
Published
ISO 6469
Electrically propelled road vehicles -- Safety specifications
 Part 1: On-board rechargeable energy storage system (RESS)
 Part 2: Vehicle Operational safety
 Part 3: Electrical safety
 Part 4: Post crash electrical safety
ISO 17409
Electrically propelled road vehicles - Connection to an external electric power supply - Safety
requirements
Under revision / development
ISO 6469 Part 1: On-board rechargeable energy storage system (RESS)
ISO 17409
Electrically propelled road vehicles - Connection to an external electric power supply - Safety
requirements
ISO 19363
Electrically propelled road vehicles -- Magnetic field wireless power transfer -- Safety and
interoperability requirements
Table 4 – ISO standards on safety.
INFRASTRUCTURE REQUIREMENTS
INTERNATIONAL AND EUROPEAN INFRASTRUCTURE REQUIREMENTS: OVERVIEW
Requirements for EV charging infrastructure are also established by IEC and ISO standards. These are grouped
in three categories depending on their role in the infrastructure: accessories, communication and topology.
Publication No Cu0263
Issue Date: July 2019
Page 17
Figure 8 – EV charging infrastructure standard categories.
Norm Scope Stability date
Accessories
IEC 62196
Plugs, socket-outlets, vehicle connectors and vehicle inlets - Conductive
charging of electric vehicles
 Part 1: General requirements
 Part 2: Dimensional compatibility and interchangeability
requirements for AC pin and contact-tube accessories
 Part 3: Dimensional compatibility and interchangeability
requirements for DC and AC/DC pin and contact-tube vehicle
couplers
2019
Communication
IEC 61850
 Part 90-8: Communication networks and systems for power utility
automation. Object model for E-mobility.
2019
IEC 61851
 Part 24: Digital communication between a DC EV charging station
and an EV for control of DC charging
2019
ISO 15118
Vehicle to grid communication interface:
 Part 1: General information and use-case definition
 Part 2: Network and application protocol requirements
 Part 3: Physical and data link layer requirements
 Part 4: Network and application protocol conformance test
 Part 5: Physical layer and data link layer conformance test
 Part 8: Physical layer and data link layer requirements for wireless
communication
NA
Norm Scope Stability date
Topology
IEC 61439
Low-voltage switchgear and controlgear assemblies
 Part 1: General rules
 Part 2: Power switchgear and controlgear assemblies
 Part 3: Distribution boards intended to be operated by ordinary
persons
 Part 4: Particular requirements for assemblies for construction
sites
 Part 5: Assemblies for power distribution in public networks
 Part 1: 2018 (revised
2020)
 Part 2: 2018 (revised
2019)
 Part 3: 2019
 Part 4: 2019
 Part 5: 2019
Accessories
Communication
BATTERY
Charging
station
Source: CREARA Analysis
Topology
On-board
charger
Publication No Cu0263
Issue Date: July 2019
Page 18
IEC 61851
Electric vehicle conductive charging system
 Part 1: General requirements
 Part 21-1: Electric vehicle on-board charger EMC requirements for
conductive connection to AC/DC supply
 Part 21-2: Electric vehicle requirements for conductive connection
to an AC/DC supply - EMC requirements for off board electric
vehicle charging systems
 Part 23: DC electric vehicle charging station
 Part 1: 2021
 Part 21-1: 2021
 Part 21-2: 2021
 Part 23: 2019
IEC 61980
Electric vehicle wireless power transfer (WPT) systems
 Part 1: General requirements
2019
Table 5 – International infrastructure requirements.
NATIONAL REGULATION
In addition to international standards, there are national regulations covering the process of installing EV
charging stations which differ from one country to another:.
 In Spain, the Instrucción Técnica Complementaria BT-52 was passed by Royal Decree 1053/2014. This
standard includes a technical guide to the infrastructure and safety requirements for EV charging
stations.
 In the Netherlands, EV charging point safety issues are regulated by NEN-EN 1010, a set of safety
standards for low-voltage installations. Application of these standards is not mandatory, however it is
mandatory to demonstrate that the same level of safety is achieved if other solutions are chosen.
Publication No Cu0263
Issue Date: July 2019
Page 19
CASE STUDY: IMPLEMENTATION OF MULTIPLE EV CHARGING STATIONS AT THE
OFFICES OF A LARGE FINANCIAL INSTITUTION
GENERAL CIRCUMSTANCES
In this real case, a large financial institution based in Spain (referred to in this study as the client) hired a fleet
of 48 Plug-in Hybrid Electric Vehicles (PHEVs) through a specialist rental company to allocate to 48 managers.
The charging stations are not for use on a free access or rotational basis, but are to be used on a personalized
or one-to-one basis by each PHEV owner.
The client requested the installation of 48 charging points at the beginning of April spread over three
basement floors (B-1, B-2 and B-3). Parking spaces were to be grouped in eight slots of two – all consecutive –
resulting in the installation of eight double-socket wallboxes on each floor – 24 in total.
Initially, the client wanted the PHEVs to be charged as fast as possible but, in practice, PHEVs usually have a
battery with a limited capacity, making fast loading superfluous. However, the charging installations would
most probably have a longer life than the PHEVs and, by installing high-speed Mode 3 chargers, the client
would be investing in a long-term solution allowing for any future switch to BEVs.
THE PROPOSED SOLUTION
At the first site visit, the electric installation to which the client wanted to connect the charging stations was
examined. Unfortunately, it had just four automatic switches of 80 A each (320 A in total) and consequently it
was not possible to proceed with the installation of 48 charging points each drawing a current of 32 A.
This led to three possibilities for the client:
 Renew the electrical installation to increase the available power;
 Find additional capacity in other available electrical circuits;
 Revise the project to reduce either the number of charging points or the loading speed.
It was agreed that a reduction in loading speed would be the best solution for two main reasons:
 Managers spend a lot of time at the offices and therefore do not need fast charging to completely
load their vehicles.
 The PHEVs have a battery capacity of 10 kWh and do not allow fast charging. When connected to a
fast charging system, their Battery Management System (BMS) would demand less energy than
offered by the charger, resulting in energy losses. This means that for the EVs concerned, an
installation which met the initial specifications of the client would be oversized.
One downside of this choice is that the installation could need an upgrade if the PHEV fleet is later replaced by
a BEV fleet.
This illustrates one of the potential limitations that could arise during project development. Usually,
companies wishing to install multiple EV charging stations would not have the necessary specialist knowledge
or expertise concerning the electrical capacity of their facilities. This is the first thing to be checked since it can
influence decision-making for the entire project.
Other potential constraints (such as the building material used, the location of the parking spaces and the
distance between from the electric installation and the charging point) may not emerge until the project is in
Publication No Cu0263
Issue Date: July 2019
Page 20
the execution phase. These constraints could lift the investment required for the installation above what was
originally planned.
PROJECT EXECUTION
The project was executed in three distinct phases:
 In the first phase, six double-socket and two single-socket wallboxes were installed in B-1;
 In the second phase, eight double-socket wallboxes were installed in B-2 and another eight in B-3;
 The final phase was not planned in advance; instead, after seeing the advantages and possibilities of
the double-socket wallbox, the client institution decided to replace the two single-socket wallboxes
installed in the first phase (in B-1) with double wallboxes.
To facilitate analysis, the study focuses on the installation of half of the total number of charging points
(namely 24 charging points: seven in B-1 in the first phase, eight in B-2 and eight in B-3 in the second phase,
and 2 additional ones in B-1 in the third phase) – we call them X1. The other half (also 24 charging points) are
installed in exactly the same way – we call them X2. In other words, X1 and X2 are each other’s mirror image.
FIRST PHASE
In this phase, six double and two single wallboxes were installed in B-1. FIGURE 9 illustrates one half of the
installation.
Figure 9 – Phase 1 of the project.
In this case, the Mode 3 double-socket wallboxes come with an integrated load control function which
regulates the energy transfer depending on how many EVs are being charged at one time. If only one EV is
connected, the full power (or charging speed) of 7.4 kW will go to that vehicle (as in wallbox 2 in FIGURE 9). If
32 A32 A
32 A
32 A
Wallbox2 Wallbox3
CP CP CP CP
Wallbox4
CP
Wallbox1
CP CP
16 A
3.7 kW
16 A
3.7 kW
32 A
7.4 kW
16 A
3.7 kW
16 A
3.7 kW
32 A
22 kW
32 A
Automatic
Switch 1
80 A
Three-phase voltage One-phase voltage CP Charge point
Note: Notice that this figure only shows half of the eight wallboxes; the other half is installed in the same way
Publication No Cu0263
Issue Date: July 2019
Page 21
two EVs are connected simultaneously, the wallbox will split the available power between the two charging
points and the load will be reduced to 3.7 kW (see wallboxes 1 and 3 in FIGURE 9).
Note that such a load control function is not standard in Mode 3 wallboxes. Where this function is not
included, an external load control box should be added to comply with standard IEC 60364 722.311. In this
case, an alternative and simpler solution to comply with the IEC standard could be to allow both connecting
points to draw full power simultaneously and upgrade the cable sizing of the entire feeding circuit accordingly.
Using a standard dual socket Mode 3 wallbox without load control and without full power cable sizing is not
compliant.
2
Originally, wallbox 4 (and its counterpart in X2) was planned for only a single PHEV to be charged using three-
phase power. In phase 3, these wallboxes were substituted by double-socket versions.
In this phase, the total current used for four wallboxes is 64 A drawn from Automatic Switch 1 (Automatic
Switch 2 in X2).
SECOND PHASE
In this phase, the remaining eight wallboxes were installed in B-2 and B-3. As in the first phase, the electric
circuit in Figure 10 illustrates only one half of the wallbox installation. The eight additional charging
infrastructures are installed similarly.
2
IEC 60364 722.311: "Since all the connecting points of the installation can be used simultaneously, the
diversity factor of the distribution circuit shall be taken as equal to 1. However, this factor may be
reduced where load control is available."
Publication No Cu0263
Issue Date: July 2019
Page 22
Figure 10 – Phase 2 of the project.
Given that 128 A is used by the wallboxes installed in Phase 1, further calculations were required to determine
the power needed by the remaining wallboxes in B-2 and B-3.
In this phase, four switches are used: automatic switches 1 and 2 each with a spare capacity of 16 A, and
automatic switches 3 and 4 each with 80 A.
The current distribution is optimized as illustrated in Figure 10.
THIRD PHASE
Once all the wallboxes were installed, the client requested two charging points instead of one in wallbox 4
(and its counterpart in X2). There were two options to replace them:
 Option 1: two three-phase charging points of 32 A in each wallbox, with the load being balanced
between them;
 Option 2: two one-phase charging points of 32 A in each wallbox.
32 A
32 A 32 A 32 A
Wallbox7
CP CP
16 A
3.7 kW
16 A
3.7 kW
Wallbox
6
CP CP
32 A
7.4 kW
Wallbox
5
CP CP
16 A
3.7 kW
16 A
3.7 kW
32 A
Automatic
Switch 1
16 A
Automatic
Switch 3
80 A
Wallbox8
CP CP
16 A
3.7 kW
16 A
3.7 kW
Basement -2
Wallbox
11
CP CP
16 A
3.7 kW
16 A
3.7 kW
Wallbox
10
CP CP
32 A
7.4 kW
16 A
3.7 kW
Wallbox
12
CP CP
16 A
3.7 kW
16 A
3.7 kW
Basement -3
32 A
Wallbox9
CP
16 A
3.7 kW
CP
32 A32 A
16 A16 A
Three-phase voltage One-phase voltage CP
Occupied
charge point
CP
Idle
charge point
Note: Notice that this figure only shows half of the 16 wallboxes; the other half is installed in the same way
Publication No Cu0263
Issue Date: July 2019
Page 23
Figure 11 – Options for wallbox 4.
Even though the load transfer is faster in Option 1, this wallbox is larger than the others, including the one it
replaces. Therefore Option 2 was chosen.
BUDGET
The main direct cost is labour, which is dependent on the location of the installation. In this case, the
installation was in Spain and unit labour costs per wallbox were approximately €900. Labour costs will be
higher in countries such as the Netherlands, Germany or Belgium, while they would be similar in Italy, and
lower in Greece, Portugal or Eastern European countries.
Wallbox prices vary according to the technical features of the device. Usually, these cost between €1,500 and
€2,000, including special features and accessories.
Cabling is normally one of the more significant costs depending on the characteristics of the installation. The
longer the distance between the electric installation and the wallbox, the longer the cable needed and the
more costly will project execution be.
Saving on the sizing of the cable conductor is not recommended, since this increases energy losses and
ultimately the lifecycle cost of the project.
However, the more EV charging stations installed, the cheaper the unit cost. Some components will cover the
whole installation so their unit cost will decrease as the number of charging points rises.
16 A
11 kW
CP
32 A
Three-phase voltage One-phase voltage CP Charge point
CP
32 A
7,4 kW
CP CP
32 A
7,4 kW
16 A
11 kW
32 A
Option 1 Option 2
Publication No Cu0263
Issue Date: July 2019
Page 24
Figure 12 – Breakdown of the installation costs of one wallbox.
The final budget for this project – including the 24 double-socket wallboxes – is approximately €80,000,
meaning that the total unit cost for each wallbox is €3,300.
MAIN RESULTS
Within a month of the project starting, the PHEV drivers were able to charge their cars at their workplace.
Loading transactions have been monitored since installation, with the first six months illustrated in Figure 13.
There were 1,096 transactions totalling 5.77 MWh of energy. The number of loadings increased from
September coinciding with the end of the summer break. A higher number of transactions is expected in the
future, as drivers begin to perceive the many advantages of using PHEVs and when their use becomes more
mainstream.
Figure 13 – Monitoring of EV loading.
0
500
1,000
1,500
2,000
2,500
3,000
3,500
Wallbox & accessories
Labor
Material
Cabling
Maintenance
Protection and electrical panel
48%
27%
13%
5%
4%
3%
0
500
1,000
1,500
2,000
2,500
0
50
100
150
200
250
300
350
May June July August September October
Energy(kWh)
Numberoftransactions
Publication No Cu0263
Issue Date: July 2019
Page 25
The client has a power purchase tariff of 0.080478 EUR/kWh. With the aim of transferring these costs to the
EV users and making an additional profit for the services offered, they took the decision to sell the energy at a
higher price of 0.095 EUR/kWh.
FIGURE 14 shows the evolution of the profit margin over the months since the charging stations were
installed, comparing the accumulated energy purchase and energy sale prices. The more the charging points
are used, the greater the profit margin becomes.
Figure 14 – Profit margin evolution.
EUR
Profit margin
(EUR)
4.0 5.7 15.4 4.2 25.7 28.7
Total profit
83.8
-200
-150
-100
-50
0
50
100
150
200
250
May June July August September October
Energy
sale
Energy
purchase
Publication No Cu0263
Issue Date: July 2019
Page 26
CONCLUSION
The installation of multiple EV charging stations is a comprehensive project that affects the entire company.
Consequently, the decision to carry out such a project must involve all sections of the company.
Depending on the reasons for the installation – which can be diverse – and the value proposition that the
company is willing to offer to its EV drivers, the business model is selected from the following scenarios:
 No cost to the user, with notification;
 No cost to the user, without notification;
 Subsidized cost to the user;
 Total cost to the user;
 Total cost to the user, plus profit margin.
Financing and operational management must be taken into account when deciding the most appropriate
business model for the company. Both aspects can be managed internally or outsourced to specialists.
Once the decision is made to install EV charging infrastructures and the business model is selected, the
company must choose between charging Mode 3 and charging Mode 4. Modes 1 and 2 are not an option since
they involve the risk of overheating the electrical installation.
The electrical installation should also be checked to see if it supports the power required for the charging
stations. Where there is insufficient capacity, there are three options:
 Renewing and reinforcing the electrical installation;
 Seeking additional circuits within the existing installation with the required capacity;
 Resizing the project, reducing either the number of charging points or the loading speed.
In addition to the possibility that the installation has insufficient capacity to support the power demand, there
are other contingencies that could emerge during project execution that could increase the planned
investment.
In every case, project execution and EV recharging points must comply with a series of safety standards and
requirements determined by international organizations and national regulations.
General factors, such as the design and functionality of the charging stations and the characteristics of the
surrounds must also be taken into consideration.
Publication No Cu0263
Issue Date: July 2019
Page 27
REFERENCES
1 K. Palmer, J. E. Tate, Z. Wadud, J. Nellthorp (2018). Total cost of ownership and market share
for hybrid and electric vehicles in the UK, US and Japan.
2 R. Nealer, D. Reichmuth, D. Anair (2015). Cleaner Cars from Cradle to Grave.
3 International Electrotechnical Commission (2018): www.iec.ch
4 J. C. Spoelstra (2014). Charging behavior of Dutch EV drivers

Contenu connexe

Tendances

V2G and G2V power transfer issues
V2G and G2V power transfer issuesV2G and G2V power transfer issues
V2G and G2V power transfer issuesMohd Javed
 
Electric vehicle-new 2018 charging presentation mahesh chandra manav by c&s
Electric vehicle-new 2018 charging presentation mahesh chandra manav by c&sElectric vehicle-new 2018 charging presentation mahesh chandra manav by c&s
Electric vehicle-new 2018 charging presentation mahesh chandra manav by c&sMahesh Chandra Manav
 
Hybrid electric vehicles
Hybrid electric vehiclesHybrid electric vehicles
Hybrid electric vehiclessimplysoumya
 
EV Charging infrastructure Intelligent charging solutions
EV Charging infrastructure Intelligent charging solutionsEV Charging infrastructure Intelligent charging solutions
EV Charging infrastructure Intelligent charging solutionsElektrumlv
 
Electric vehicle report
Electric vehicle reportElectric vehicle report
Electric vehicle reportKhushbu Parmar
 
Electric vehicle charging information. by linkvue system
Electric vehicle charging   information. by linkvue systemElectric vehicle charging   information. by linkvue system
Electric vehicle charging information. by linkvue systemMahesh Chandra Manav
 
High performance fast charging of electric vehicles
High performance fast charging of electric vehiclesHigh performance fast charging of electric vehicles
High performance fast charging of electric vehiclesstudent
 
UPCOMING TRENDS IN EV CHARGING INFRASTRUCTURE AND FUTURE OUTLOOK
UPCOMING TRENDS IN EV CHARGING INFRASTRUCTURE AND FUTURE OUTLOOKUPCOMING TRENDS IN EV CHARGING INFRASTRUCTURE AND FUTURE OUTLOOK
UPCOMING TRENDS IN EV CHARGING INFRASTRUCTURE AND FUTURE OUTLOOKiQHub
 
Vehicle to grid technology
Vehicle to grid technologyVehicle to grid technology
Vehicle to grid technologyMD. Anamul Haque
 
About Electric Vehicle Charging and OpConnect EV Charging Stations
About Electric Vehicle Charging and OpConnect EV Charging StationsAbout Electric Vehicle Charging and OpConnect EV Charging Stations
About Electric Vehicle Charging and OpConnect EV Charging StationsBeaverton Area Chamber of Commerce
 
hybrid electric vehicle
hybrid electric vehiclehybrid electric vehicle
hybrid electric vehicle007skpk
 
electric vehicle ppt
electric vehicle pptelectric vehicle ppt
electric vehicle pptSubhash kumar
 
Self charging solar car seminar report
Self charging solar car seminar reportSelf charging solar car seminar report
Self charging solar car seminar reportAshish Dubey
 
Fuel cell vehicles and electric vehicles in future by rai asad sahi
Fuel cell vehicles and electric vehicles in future by rai asad sahiFuel cell vehicles and electric vehicles in future by rai asad sahi
Fuel cell vehicles and electric vehicles in future by rai asad sahiMuhammad Sahi
 
Hybrid Electric Vehicles
Hybrid Electric VehiclesHybrid Electric Vehicles
Hybrid Electric VehiclesColloquium
 
OCPP INTEROPERABILITY: DEMOCRATIZED FUTURE OF CHARGING
OCPP INTEROPERABILITY: DEMOCRATIZED FUTURE OF CHARGINGOCPP INTEROPERABILITY: DEMOCRATIZED FUTURE OF CHARGING
OCPP INTEROPERABILITY: DEMOCRATIZED FUTURE OF CHARGINGiQHub
 

Tendances (20)

V2G and G2V power transfer issues
V2G and G2V power transfer issuesV2G and G2V power transfer issues
V2G and G2V power transfer issues
 
Electric vehicle-new 2018 charging presentation mahesh chandra manav by c&s
Electric vehicle-new 2018 charging presentation mahesh chandra manav by c&sElectric vehicle-new 2018 charging presentation mahesh chandra manav by c&s
Electric vehicle-new 2018 charging presentation mahesh chandra manav by c&s
 
Hybrid electric vehicles
Hybrid electric vehiclesHybrid electric vehicles
Hybrid electric vehicles
 
EV Charging infrastructure Intelligent charging solutions
EV Charging infrastructure Intelligent charging solutionsEV Charging infrastructure Intelligent charging solutions
EV Charging infrastructure Intelligent charging solutions
 
Electric vehicle report
Electric vehicle reportElectric vehicle report
Electric vehicle report
 
Electric vehicle charging information. by linkvue system
Electric vehicle charging   information. by linkvue systemElectric vehicle charging   information. by linkvue system
Electric vehicle charging information. by linkvue system
 
High performance fast charging of electric vehicles
High performance fast charging of electric vehiclesHigh performance fast charging of electric vehicles
High performance fast charging of electric vehicles
 
UPCOMING TRENDS IN EV CHARGING INFRASTRUCTURE AND FUTURE OUTLOOK
UPCOMING TRENDS IN EV CHARGING INFRASTRUCTURE AND FUTURE OUTLOOKUPCOMING TRENDS IN EV CHARGING INFRASTRUCTURE AND FUTURE OUTLOOK
UPCOMING TRENDS IN EV CHARGING INFRASTRUCTURE AND FUTURE OUTLOOK
 
Vehicle to grid technology
Vehicle to grid technologyVehicle to grid technology
Vehicle to grid technology
 
About Electric Vehicle Charging and OpConnect EV Charging Stations
About Electric Vehicle Charging and OpConnect EV Charging StationsAbout Electric Vehicle Charging and OpConnect EV Charging Stations
About Electric Vehicle Charging and OpConnect EV Charging Stations
 
Electric vehicle
Electric vehicleElectric vehicle
Electric vehicle
 
hybrid electric vehicle
hybrid electric vehiclehybrid electric vehicle
hybrid electric vehicle
 
electric vehicle ppt
electric vehicle pptelectric vehicle ppt
electric vehicle ppt
 
Self charging solar car seminar report
Self charging solar car seminar reportSelf charging solar car seminar report
Self charging solar car seminar report
 
Fuel cell vehicles and electric vehicles in future by rai asad sahi
Fuel cell vehicles and electric vehicles in future by rai asad sahiFuel cell vehicles and electric vehicles in future by rai asad sahi
Fuel cell vehicles and electric vehicles in future by rai asad sahi
 
Hybrid Electric Vehicles
Hybrid Electric VehiclesHybrid Electric Vehicles
Hybrid Electric Vehicles
 
Wireless charging for electric vehicles
Wireless charging for electric vehiclesWireless charging for electric vehicles
Wireless charging for electric vehicles
 
Gyro bus
Gyro busGyro bus
Gyro bus
 
OCPP INTEROPERABILITY: DEMOCRATIZED FUTURE OF CHARGING
OCPP INTEROPERABILITY: DEMOCRATIZED FUTURE OF CHARGINGOCPP INTEROPERABILITY: DEMOCRATIZED FUTURE OF CHARGING
OCPP INTEROPERABILITY: DEMOCRATIZED FUTURE OF CHARGING
 
Presentation
PresentationPresentation
Presentation
 

Similaire à Multiple EV charging stations

Electric vehicles - DecarbEurope
Electric vehicles - DecarbEuropeElectric vehicles - DecarbEurope
Electric vehicles - DecarbEuropeLeonardo ENERGY
 
Vehicle-to-Grid: l’integrazione della mobilità elettrica nei sistemi elettric...
Vehicle-to-Grid: l’integrazione della mobilità elettrica nei sistemi elettric...Vehicle-to-Grid: l’integrazione della mobilità elettrica nei sistemi elettric...
Vehicle-to-Grid: l’integrazione della mobilità elettrica nei sistemi elettric...Sardegna Ricerche
 
From Ugly Duckling to Superstar: how energy efficiency (almost) got to the to...
From Ugly Duckling to Superstar: how energy efficiency (almost) got to the to...From Ugly Duckling to Superstar: how energy efficiency (almost) got to the to...
From Ugly Duckling to Superstar: how energy efficiency (almost) got to the to...FTI Consulting FR
 
Juliana Mendonca BMW Assignment - May 2018
Juliana Mendonca BMW Assignment - May 2018Juliana Mendonca BMW Assignment - May 2018
Juliana Mendonca BMW Assignment - May 2018Juliana Reis Mendonça
 
IEA Report: World Energy Investment 2023
IEA Report: World Energy Investment 2023IEA Report: World Energy Investment 2023
IEA Report: World Energy Investment 2023Energy for One World
 
World-Energy-Investment-2023.pdf
World-Energy-Investment-2023.pdfWorld-Energy-Investment-2023.pdf
World-Energy-Investment-2023.pdfAdrian Yap
 
Global EV Outlook 2016 - IEA Report
Global EV Outlook 2016 - IEA ReportGlobal EV Outlook 2016 - IEA Report
Global EV Outlook 2016 - IEA ReportRoger Atkins
 
sustainability-13-mlkmmmmmmmmmn12379.pdf
sustainability-13-mlkmmmmmmmmmn12379.pdfsustainability-13-mlkmmmmmmmmmn12379.pdf
sustainability-13-mlkmmmmmmmmmn12379.pdft8hru8nj9a
 
IEA Technology roadmap solar photovoltaic energy 2014
IEA Technology roadmap solar photovoltaic energy 2014 IEA Technology roadmap solar photovoltaic energy 2014
IEA Technology roadmap solar photovoltaic energy 2014 Andrew Gelston
 
Electric Mobility and Development Worldbank UITP EVConsult
Electric Mobility and Development Worldbank UITP EVConsultElectric Mobility and Development Worldbank UITP EVConsult
Electric Mobility and Development Worldbank UITP EVConsultEVConsult
 
Responding To Continual Energy Market Change
Responding To Continual Energy Market ChangeResponding To Continual Energy Market Change
Responding To Continual Energy Market ChangeCTRM Center
 
Prospects for Electric Vehicles from now to 2030 - Robert Evans
Prospects for Electric Vehicles from now to 2030 - Robert EvansProspects for Electric Vehicles from now to 2030 - Robert Evans
Prospects for Electric Vehicles from now to 2030 - Robert EvansIES / IAQM
 
Innovation needs for the integration of electric vehicles into the energy system
Innovation needs for the integration of electric vehicles into the energy systemInnovation needs for the integration of electric vehicles into the energy system
Innovation needs for the integration of electric vehicles into the energy systemDrStefanWolf
 
E-mobility | Part 1 - An overview on the EV landscape (English)
E-mobility | Part 1 - An overview on the EV landscape (English)E-mobility | Part 1 - An overview on the EV landscape (English)
E-mobility | Part 1 - An overview on the EV landscape (English)Vertex Holdings
 
Global ESCO Network Newsletter - Issue # 1 - Efficiency Valuation Organizatio...
Global ESCO Network Newsletter - Issue # 1 - Efficiency Valuation Organizatio...Global ESCO Network Newsletter - Issue # 1 - Efficiency Valuation Organizatio...
Global ESCO Network Newsletter - Issue # 1 - Efficiency Valuation Organizatio...Kiril Raytchev
 
BCO221 GLOBAL ECONOMICS – Task brief & rubrics Task brief .docx
BCO221 GLOBAL ECONOMICS – Task brief & rubrics Task brief .docxBCO221 GLOBAL ECONOMICS – Task brief & rubrics Task brief .docx
BCO221 GLOBAL ECONOMICS – Task brief & rubrics Task brief .docxikirkton
 
BCO221 GLOBAL ECONOMICS – Task brief & rubrics Task brief .docx
BCO221 GLOBAL ECONOMICS – Task brief & rubrics Task brief .docxBCO221 GLOBAL ECONOMICS – Task brief & rubrics Task brief .docx
BCO221 GLOBAL ECONOMICS – Task brief & rubrics Task brief .docxgarnerangelika
 
GlobalElectricVehicleOutlook2022.pdf
GlobalElectricVehicleOutlook2022.pdfGlobalElectricVehicleOutlook2022.pdf
GlobalElectricVehicleOutlook2022.pdfrajchavan55
 

Similaire à Multiple EV charging stations (20)

Electric vehicles - DecarbEurope
Electric vehicles - DecarbEuropeElectric vehicles - DecarbEurope
Electric vehicles - DecarbEurope
 
Vehicle-to-Grid: l’integrazione della mobilità elettrica nei sistemi elettric...
Vehicle-to-Grid: l’integrazione della mobilità elettrica nei sistemi elettric...Vehicle-to-Grid: l’integrazione della mobilità elettrica nei sistemi elettric...
Vehicle-to-Grid: l’integrazione della mobilità elettrica nei sistemi elettric...
 
From Ugly Duckling to Superstar: how energy efficiency (almost) got to the to...
From Ugly Duckling to Superstar: how energy efficiency (almost) got to the to...From Ugly Duckling to Superstar: how energy efficiency (almost) got to the to...
From Ugly Duckling to Superstar: how energy efficiency (almost) got to the to...
 
Juliana Mendonca BMW Assignment - May 2018
Juliana Mendonca BMW Assignment - May 2018Juliana Mendonca BMW Assignment - May 2018
Juliana Mendonca BMW Assignment - May 2018
 
IEA Report: World Energy Investment 2023
IEA Report: World Energy Investment 2023IEA Report: World Energy Investment 2023
IEA Report: World Energy Investment 2023
 
World-Energy-Investment-2023.pdf
World-Energy-Investment-2023.pdfWorld-Energy-Investment-2023.pdf
World-Energy-Investment-2023.pdf
 
Global EV Outlook 2016 - IEA Report
Global EV Outlook 2016 - IEA ReportGlobal EV Outlook 2016 - IEA Report
Global EV Outlook 2016 - IEA Report
 
sustainability-13-mlkmmmmmmmmmn12379.pdf
sustainability-13-mlkmmmmmmmmmn12379.pdfsustainability-13-mlkmmmmmmmmmn12379.pdf
sustainability-13-mlkmmmmmmmmmn12379.pdf
 
Solar PV Road Map
Solar PV Road MapSolar PV Road Map
Solar PV Road Map
 
IEA Technology roadmap solar photovoltaic energy 2014
IEA Technology roadmap solar photovoltaic energy 2014 IEA Technology roadmap solar photovoltaic energy 2014
IEA Technology roadmap solar photovoltaic energy 2014
 
Electric Mobility and Development Worldbank UITP EVConsult
Electric Mobility and Development Worldbank UITP EVConsultElectric Mobility and Development Worldbank UITP EVConsult
Electric Mobility and Development Worldbank UITP EVConsult
 
Responding To Continual Energy Market Change
Responding To Continual Energy Market ChangeResponding To Continual Energy Market Change
Responding To Continual Energy Market Change
 
An economic assessment of low carbon vehicles
An economic assessment of low carbon vehiclesAn economic assessment of low carbon vehicles
An economic assessment of low carbon vehicles
 
Prospects for Electric Vehicles from now to 2030 - Robert Evans
Prospects for Electric Vehicles from now to 2030 - Robert EvansProspects for Electric Vehicles from now to 2030 - Robert Evans
Prospects for Electric Vehicles from now to 2030 - Robert Evans
 
Innovation needs for the integration of electric vehicles into the energy system
Innovation needs for the integration of electric vehicles into the energy systemInnovation needs for the integration of electric vehicles into the energy system
Innovation needs for the integration of electric vehicles into the energy system
 
E-mobility | Part 1 - An overview on the EV landscape (English)
E-mobility | Part 1 - An overview on the EV landscape (English)E-mobility | Part 1 - An overview on the EV landscape (English)
E-mobility | Part 1 - An overview on the EV landscape (English)
 
Global ESCO Network Newsletter - Issue # 1 - Efficiency Valuation Organizatio...
Global ESCO Network Newsletter - Issue # 1 - Efficiency Valuation Organizatio...Global ESCO Network Newsletter - Issue # 1 - Efficiency Valuation Organizatio...
Global ESCO Network Newsletter - Issue # 1 - Efficiency Valuation Organizatio...
 
BCO221 GLOBAL ECONOMICS – Task brief & rubrics Task brief .docx
BCO221 GLOBAL ECONOMICS – Task brief & rubrics Task brief .docxBCO221 GLOBAL ECONOMICS – Task brief & rubrics Task brief .docx
BCO221 GLOBAL ECONOMICS – Task brief & rubrics Task brief .docx
 
BCO221 GLOBAL ECONOMICS – Task brief & rubrics Task brief .docx
BCO221 GLOBAL ECONOMICS – Task brief & rubrics Task brief .docxBCO221 GLOBAL ECONOMICS – Task brief & rubrics Task brief .docx
BCO221 GLOBAL ECONOMICS – Task brief & rubrics Task brief .docx
 
GlobalElectricVehicleOutlook2022.pdf
GlobalElectricVehicleOutlook2022.pdfGlobalElectricVehicleOutlook2022.pdf
GlobalElectricVehicleOutlook2022.pdf
 

Plus de Leonardo ENERGY

A new generation of instruments and tools to monitor buildings performance
A new generation of instruments and tools to monitor buildings performanceA new generation of instruments and tools to monitor buildings performance
A new generation of instruments and tools to monitor buildings performanceLeonardo ENERGY
 
Addressing the Energy Efficiency First Principle in a National Energy and Cli...
Addressing the Energy Efficiency First Principle in a National Energy and Cli...Addressing the Energy Efficiency First Principle in a National Energy and Cli...
Addressing the Energy Efficiency First Principle in a National Energy and Cli...Leonardo ENERGY
 
Auctions for energy efficiency and the experience of renewables
 Auctions for energy efficiency and the experience of renewables Auctions for energy efficiency and the experience of renewables
Auctions for energy efficiency and the experience of renewablesLeonardo ENERGY
 
Energy efficiency first – retrofitting the building stock final
Energy efficiency first – retrofitting the building stock finalEnergy efficiency first – retrofitting the building stock final
Energy efficiency first – retrofitting the building stock finalLeonardo ENERGY
 
How auction design affects the financing of renewable energy projects
How auction design affects the financing of renewable energy projects How auction design affects the financing of renewable energy projects
How auction design affects the financing of renewable energy projects Leonardo ENERGY
 
Energy Efficiency Funds in Europe (updated)
Energy Efficiency Funds in Europe (updated)Energy Efficiency Funds in Europe (updated)
Energy Efficiency Funds in Europe (updated)Leonardo ENERGY
 
Energy Efficiency Funds in Europe
Energy Efficiency Funds in EuropeEnergy Efficiency Funds in Europe
Energy Efficiency Funds in EuropeLeonardo ENERGY
 
Five actions fit for 55: streamlining energy savings calculations
Five actions fit for 55: streamlining energy savings calculationsFive actions fit for 55: streamlining energy savings calculations
Five actions fit for 55: streamlining energy savings calculationsLeonardo ENERGY
 
Recent energy efficiency trends in the EU
Recent energy efficiency trends in the EURecent energy efficiency trends in the EU
Recent energy efficiency trends in the EULeonardo ENERGY
 
Energy and mobility poverty: Will the Social Climate Fund be enough to delive...
Energy and mobility poverty: Will the Social Climate Fund be enough to delive...Energy and mobility poverty: Will the Social Climate Fund be enough to delive...
Energy and mobility poverty: Will the Social Climate Fund be enough to delive...Leonardo ENERGY
 
Does the EU Emission Trading Scheme ETS Promote Energy Efficiency?
Does the EU Emission Trading Scheme ETS Promote Energy Efficiency?Does the EU Emission Trading Scheme ETS Promote Energy Efficiency?
Does the EU Emission Trading Scheme ETS Promote Energy Efficiency?Leonardo ENERGY
 
Energy efficiency, structural change and energy savings in the manufacturing ...
Energy efficiency, structural change and energy savings in the manufacturing ...Energy efficiency, structural change and energy savings in the manufacturing ...
Energy efficiency, structural change and energy savings in the manufacturing ...Leonardo ENERGY
 
Energy Sufficiency Indicators and Policies (Lea Gynther, Motiva)
Energy Sufficiency Indicators and Policies (Lea Gynther, Motiva)Energy Sufficiency Indicators and Policies (Lea Gynther, Motiva)
Energy Sufficiency Indicators and Policies (Lea Gynther, Motiva)Leonardo ENERGY
 
The Super-efficient Equipment and Appliance Deployment (SEAD) Initiative Prod...
The Super-efficient Equipment and Appliance Deployment (SEAD) Initiative Prod...The Super-efficient Equipment and Appliance Deployment (SEAD) Initiative Prod...
The Super-efficient Equipment and Appliance Deployment (SEAD) Initiative Prod...Leonardo ENERGY
 
Modelling and optimisation of electric motors with hairpin windings
Modelling and optimisation of electric motors with hairpin windingsModelling and optimisation of electric motors with hairpin windings
Modelling and optimisation of electric motors with hairpin windingsLeonardo ENERGY
 
Casting zero porosity rotors
Casting zero porosity rotorsCasting zero porosity rotors
Casting zero porosity rotorsLeonardo ENERGY
 
Direct coil cooling through hollow wire
Direct coil cooling through hollow wireDirect coil cooling through hollow wire
Direct coil cooling through hollow wireLeonardo ENERGY
 
Motor renovation - Potential savings and views from various EU Member States
Motor renovation - Potential savings and views from various EU Member StatesMotor renovation - Potential savings and views from various EU Member States
Motor renovation - Potential savings and views from various EU Member StatesLeonardo ENERGY
 
The need for an updated European Motor Study - key findings from the 2021 US...
The need for  an updated European Motor Study - key findings from the 2021 US...The need for  an updated European Motor Study - key findings from the 2021 US...
The need for an updated European Motor Study - key findings from the 2021 US...Leonardo ENERGY
 
Efficient motor systems for a Net Zero world, by Conrad U. Brunner - Impact E...
Efficient motor systems for a Net Zero world, by Conrad U. Brunner - Impact E...Efficient motor systems for a Net Zero world, by Conrad U. Brunner - Impact E...
Efficient motor systems for a Net Zero world, by Conrad U. Brunner - Impact E...Leonardo ENERGY
 

Plus de Leonardo ENERGY (20)

A new generation of instruments and tools to monitor buildings performance
A new generation of instruments and tools to monitor buildings performanceA new generation of instruments and tools to monitor buildings performance
A new generation of instruments and tools to monitor buildings performance
 
Addressing the Energy Efficiency First Principle in a National Energy and Cli...
Addressing the Energy Efficiency First Principle in a National Energy and Cli...Addressing the Energy Efficiency First Principle in a National Energy and Cli...
Addressing the Energy Efficiency First Principle in a National Energy and Cli...
 
Auctions for energy efficiency and the experience of renewables
 Auctions for energy efficiency and the experience of renewables Auctions for energy efficiency and the experience of renewables
Auctions for energy efficiency and the experience of renewables
 
Energy efficiency first – retrofitting the building stock final
Energy efficiency first – retrofitting the building stock finalEnergy efficiency first – retrofitting the building stock final
Energy efficiency first – retrofitting the building stock final
 
How auction design affects the financing of renewable energy projects
How auction design affects the financing of renewable energy projects How auction design affects the financing of renewable energy projects
How auction design affects the financing of renewable energy projects
 
Energy Efficiency Funds in Europe (updated)
Energy Efficiency Funds in Europe (updated)Energy Efficiency Funds in Europe (updated)
Energy Efficiency Funds in Europe (updated)
 
Energy Efficiency Funds in Europe
Energy Efficiency Funds in EuropeEnergy Efficiency Funds in Europe
Energy Efficiency Funds in Europe
 
Five actions fit for 55: streamlining energy savings calculations
Five actions fit for 55: streamlining energy savings calculationsFive actions fit for 55: streamlining energy savings calculations
Five actions fit for 55: streamlining energy savings calculations
 
Recent energy efficiency trends in the EU
Recent energy efficiency trends in the EURecent energy efficiency trends in the EU
Recent energy efficiency trends in the EU
 
Energy and mobility poverty: Will the Social Climate Fund be enough to delive...
Energy and mobility poverty: Will the Social Climate Fund be enough to delive...Energy and mobility poverty: Will the Social Climate Fund be enough to delive...
Energy and mobility poverty: Will the Social Climate Fund be enough to delive...
 
Does the EU Emission Trading Scheme ETS Promote Energy Efficiency?
Does the EU Emission Trading Scheme ETS Promote Energy Efficiency?Does the EU Emission Trading Scheme ETS Promote Energy Efficiency?
Does the EU Emission Trading Scheme ETS Promote Energy Efficiency?
 
Energy efficiency, structural change and energy savings in the manufacturing ...
Energy efficiency, structural change and energy savings in the manufacturing ...Energy efficiency, structural change and energy savings in the manufacturing ...
Energy efficiency, structural change and energy savings in the manufacturing ...
 
Energy Sufficiency Indicators and Policies (Lea Gynther, Motiva)
Energy Sufficiency Indicators and Policies (Lea Gynther, Motiva)Energy Sufficiency Indicators and Policies (Lea Gynther, Motiva)
Energy Sufficiency Indicators and Policies (Lea Gynther, Motiva)
 
The Super-efficient Equipment and Appliance Deployment (SEAD) Initiative Prod...
The Super-efficient Equipment and Appliance Deployment (SEAD) Initiative Prod...The Super-efficient Equipment and Appliance Deployment (SEAD) Initiative Prod...
The Super-efficient Equipment and Appliance Deployment (SEAD) Initiative Prod...
 
Modelling and optimisation of electric motors with hairpin windings
Modelling and optimisation of electric motors with hairpin windingsModelling and optimisation of electric motors with hairpin windings
Modelling and optimisation of electric motors with hairpin windings
 
Casting zero porosity rotors
Casting zero porosity rotorsCasting zero porosity rotors
Casting zero porosity rotors
 
Direct coil cooling through hollow wire
Direct coil cooling through hollow wireDirect coil cooling through hollow wire
Direct coil cooling through hollow wire
 
Motor renovation - Potential savings and views from various EU Member States
Motor renovation - Potential savings and views from various EU Member StatesMotor renovation - Potential savings and views from various EU Member States
Motor renovation - Potential savings and views from various EU Member States
 
The need for an updated European Motor Study - key findings from the 2021 US...
The need for  an updated European Motor Study - key findings from the 2021 US...The need for  an updated European Motor Study - key findings from the 2021 US...
The need for an updated European Motor Study - key findings from the 2021 US...
 
Efficient motor systems for a Net Zero world, by Conrad U. Brunner - Impact E...
Efficient motor systems for a Net Zero world, by Conrad U. Brunner - Impact E...Efficient motor systems for a Net Zero world, by Conrad U. Brunner - Impact E...
Efficient motor systems for a Net Zero world, by Conrad U. Brunner - Impact E...
 

Dernier

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 

Dernier (20)

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 

Multiple EV charging stations

  • 1. APPLICATION NOTE MULTIPLE EV CHARGING STATIONS CREARA Energy Experts July 2019 ECI Publication No Cu0263 Available from www.leonardo-energy.org
  • 2. Publication No Cu0263 Issue Date: July 2019 Page i Document Issue Control Sheet Document Title: Application Note – Multiple EV Charging Stations Publication No: Cu0263 Issue: 01 Release: Public Content provider(s) CREARA Energy Experts Author(s): Pedro Luis Espejo, José Ignacio Briano, Paolo Sonvilla Editorial and language review Bruno De Wachter (editorial), Andrew Wilson (English language) Content review: Angelo Baggini Document History Issue Date Purpose 1 July 2019 First publication, in the framework of the Good Practice Guide 2 3 Disclaimer While this publication has been prepared with care, European Copper Institute and other contributors provide no warranty with regards to the content and shall not be liable for any direct, incidental or consequential damages that may result from the use of the information or the data contained. Copyright© European Copper Institute. Reproduction is authorized providing the material is unabridged and the source is acknowledged.
  • 3. Publication No Cu0263 Issue Date: July 2019 Page ii CONTENTS Summary ........................................................................................................................................................ 1 Introduction.................................................................................................................................................... 2 Corporate approach........................................................................................................................................ 5 Multiple EV charging station installations..................................................................................................... 10 Load calculation....................................................................................................................................................12 Introduction............................................................................................................................................12 Modes 1 and 2........................................................................................................................................12 Mode 3 ...................................................................................................................................................13 Mode 4 ...................................................................................................................................................15 Safety standards ...................................................................................................................................................15 International and European safety standards........................................................................................15 Infrastructure requirements.................................................................................................................................16 International and European infrastructure requirements: overview.....................................................16 National regulation...............................................................................................................................................18 Case study: implementation of multiple EV charging stations at the offices of a large financial institution .. 19 General circumstances .........................................................................................................................................19 The proposed solution..........................................................................................................................................19 Project execution..................................................................................................................................................20 Main results..........................................................................................................................................................24 Conclusion .................................................................................................................................................... 26 References.................................................................................................................................................... 27
  • 4. Publication No Cu0263 Issue Date: July 2019 Page 1 SUMMARY The electric vehicle (EV) is here to stay. The number of EVs has increased steeply in recent years and this evolution is expected to continue in the years ahead, particularly as a result of the EU’s commitment on the decarbonisation of the economy. This application note is intended as a guide for organizations who have decided to install charging stations for their employees and/or customers. It describes the entire process from the moment of the decision to implement charging points on their premises through to the operation and functioning of the stations, illustrated by a real-world case study. This document is organised as follows:  Introduction outlining the current position on electric vehicles;  Decision-making process for companies installing EV charging infrastructure and selecting a business model;  Installation process for multiple EV charging stations, including: o General issues; o Technical calculations of the load transfer in Modes 3 and 4; o Safety standards and infrastructure requirements;  Case study of a 48 EV charging station installation at the offices of a large financial institution, from the initial request to charging point monitoring and economic outcome.
  • 5. Publication No Cu0263 Issue Date: July 2019 Page 2 INTRODUCTION The Plug-in Electric Vehicle (PEV) market has been steadily growing in recent years in Europe as illustrated by Figure 1. Total new PEV registrations have increased every year since 2013, reaching a total of over 290,000 by 2017. Consequently, even though the EV share remains low, the proportion of these vehicles has more than quadrupled in the market since 2013. There are two main categories of plug-in EVs. Plug-in hybrid electric vehicles (PHEVs) have an internal combustion engine in addition to their electric motor. Battery electric vehicles (BEV) have only an electric motor. Figure 1 – PEV market share in Europe. The International Energy Agency anticipates two potential scenarios for EV market growth:  The New Policies Scenario is the central scenario and incorporates the policies and measures put in place by governments around the world;  The EV30@30 campaign is an optimistic scenario consistent with the pledged ambition of EVI countries (Canada, Chile, China, Finland, France, Germany, India, Japan, Mexico, the Netherlands, New Zealand, Norway, Portugal, Sweden, the United Kingdom and the United States ) 3 in the EV30@30 Campaign Declaration. BEV units are expected to grow considerably in number by 2030. Figure 2 shows a compound annual growth rate of over 25% in the New Policies Scenario, with a total of more than 40 million of BEVs by 2030. In the more optimistic EV30@30 campaign scenario, almost 130 million BEVs are expected in the same time horizon. 0 0.2 0.4 0.6 0.8 1 1.2 2013 2014 2015 2016 2017 2018 PHEV BEV 0.45 Total share of EV in Europe 0.68 1.26 1.30 1.78 2.11 ShareinEurope Note: From January to August, 2018 Source: EAFO; CREARA Analysis
  • 6. Publication No Cu0263 Issue Date: July 2019 Page 3 Figure 2 – Expected growth in BEV numbers. The increasing number of EVs leads to the urgent need for EV charging points. Any EV can be charged through a normal domestic socket or through a dedicated EV charging point. However, there are important differences that must be taken into account.  A normal domestic socket requires no initial investment, but communication with the EV and load transfer supervision are minimal. There is a risk of overheating the installation, which could ultimately start a fire. With a dedicated EV charging point, communication between the EV and the charging device is more sophisticated, substantially enhancing fire safety.  Load intensity is very low using a domestic socket, which means that it takes a long time to charge the vehicle fully (approximately 17 hours). EV charging points are specifically designed to achieve optimum charging in the shortest possible time (3-10 hours, depending on the current and whether it is a single-phase or three-phase connection). Public charging points dedicated to EVs and can be normal (>22 kV) or fast (≤ 22 kW). Normal power public stations are by far the most prevalent in Europe with a share close to 90% in 2017, but fast charging stations are growing in popularity in recent years. Figure 3 – Evolution of public charging stations. MillionofBEV* 0 20 40 60 80 100 120 140 2017 2020 2025 2030 Note: BEV includes passenger light-duty vehicles and light commercial vehicles Source: International Energy Agency, CREARA Analysis CAGR (2017-2030) New Policies Scenario 25.26% EV30@30 Scenario 36.80% New Policies Scenario EV30@30 Scenario 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 2013 2014 2015 2016 2017 2018 28.4 Thousands of infrastructures 41.3 69.0 104.6 135.3 149.9 CAGR 2013-2017 90% 57% Note: 1 From January to August, 2018 Source: EAFO; CREARA Analysis 1 Fast charging stations Normal charging stations 47%Total
  • 7. Publication No Cu0263 Issue Date: July 2019 Page 4 Figure 3 illustrates the relationship between the EV new sales market share and the number of EVs per available public charging station. EV market share is still low in most countries with the exception of Norway where almost a third of newly sold vehicles are electric. The second biggest market share belongs to the Netherlands, with over 6% EV sales penetration. The share of EVs in other countries is below 3%. Figure 4 – Relation between EV new sales market share and the number of EVs per available public charging point. 0.0% 0.5% 1.0% 1.5% 2.0% 0 2 4 6 8 10 12 14 16 18 20 EVmarketshareofnewsales Numberof electricvehiclesperavailable publiccharging point Portugal Current stateof EV(BEV + PHEV) market in selectedcountries1 (2016) Canada China France Germany India Italia Japan Korea Spain Sweden UK EE.UU Ball size indicates total BEV + PHEV stock: = 400.000 = 125.000 = 55.000 = 2.000 Norway The Netherlands 29%6,4% Note: 1Norway, the Netherlands and Sweden have not been plotted in real scale due to their higher market share compared with the rest of countries Source: IEA; CREARA Analysis 3,4%
  • 8. Publication No Cu0263 Issue Date: July 2019 Page 5 CORPORATE APPROACH A company may decide to install EV charging stations based on one or a combination of the following reasons: 1. The organisation runs, or is planning to run, an EV fleet; 2. To attract clients and increase the loyalty of employees who drive EVs; 3. To enhance the corporate image; 4. Obligated by regulation; 5. To generate an additional revenue stream. 1. THE ORGANISATION RUNS, OR IS PLANNING TO RUN, AN EV FLEET There is an increasing trend among companies to establish EV fleets to reduce their carbon footprint. Although BEV manufacturing emissions are approximately 68 percent higher than for comparable conventional petrol vehicles, electric vehicles generally emit 53% less CO2e per mile compared to petrol vehicles during their lifecycle, saving 54 tonnes of CO2e 1 . Many corporations are also seeking to reduce the total cost of ownership (TCO) of their fleets. The initial investment for EVs is higher compared to petrol vehicles but the TCO can be lower, depending on the circumstances. In 2018, an analysis comparing the TCO of petrol and electric vehicles in the UK, US (California and Texas) and Japan was published. The study takes all significant vehicle ownership costs into consideration for 2015: depreciation, tax, maintenance, insurance and petrol/electricity. The research also took into account financial incentives. FIGURE 5 illustrates the results: on average, the BEV has a lower cost of ownership in all the regions studied. 1 R. Nealer, D. Reichmuth, D. Anair (2015). Cleaner Cars from Cradle to Grave. Under certain conditions: considering a full-size 265-mile-range BEV, when is powered by the electricity grid mix representative of where BEVs are sold today
  • 9. Publication No Cu0263 Issue Date: July 2019 Page 6 Figure 5 – TCO component breakdown for 2015 across Japan, UK and US. 2. TO INCREASE THE LOYALTY OF EMPLOYEES AND ATTRACT CLIENTS WHO DRIVE ELECTRIC VEHICLES A further reason to install EV charging stations is to increase the loyalty of employees by offering this additional benefit. Many organizations operating charging points offer free energy to their staff. By installing EV charging stations, companies also reduce carbon emissions from the vehicles of their employees and clients. Many companies have already installed points at their facilities hoping to reduce these emissions, for example Apple (700 charging stations in Apple Park) or Ikea (charging stations at 69% of their stores and 42% of shopping centres). Some organizations have already published the economic or environmental results achieved following the installation of charging stations. For example, Air New Zealand saves €1,200 per EV per year at its 45 charging points; Google saved 2,142 tonnes of C02 in 2016 by installing 1,646 stations. A study of Dutch drivers 4 recently suggested that over half of EV drivers use only one or two points (probably at their homes overnight and at their workplaces) to charge their vehicles. These numbers reflect the fact that many drivers follow a daily loading routine. By installing charging points on their premises, companies can facilitate this routine for their employees before the number of stations increases. Installing EV charging infrastructures could also lead to a competitive advantage since customers who own an EV may prefer doing business with a company operating charging points at their premises. 0 5 10 15 20 25 Petrol BEV Petrol BEV Petrol BEV Petrol BEV Depretiation Taxes Maintenance Insurance Petrol cost Electricity cost Japan California (USA) Texas (USA) United Kingdom Totalcostofownership (thousandsEUR) Incentives Note: This research considers an ownership with an average length of 3 years Source: University of Leeds, CREARA Analysis
  • 10. Publication No Cu0263 Issue Date: July 2019 Page 7 Figure 6 - Segmentation by charging points used by EVs in a 90-day period 3. TO ENHANCE CORPORATE IMAGE The installation of EV charging points is still considered innovative and can attract media interest. This can contribute to promoting an environmentally friendly image. Not surprisingly, leading companies have already announced plans to develop EV charging infrastructures at their premises, among them Coca-Cola, Ikea, Facebook, General Electric and Google. 4. OBLIGATED BY REGULATION In some countries or regions, regulation requires charging stations to be installed under some circumstances. One example is EU Directive 2018/844, which amends Directive 2010/31. According to this directive, EU Member States should ensure the installation of at least one charging point for every five parking spaces in non-residential buildings with more than ten parking spaces, whether newbuild or when undergoing major renovation. To facilitate this obligation, many countries grant tax exemption for EV charging infrastructure installation. 5. TO GENERATE AN ADDITIONAL REVENUE STREAM Charging stations could bring a new source of income to cover initial investment and generate additional profits where users pay more than the actual cost of charging. Companies select their preferred business model depending on the reason for installing the EV charging stations and the value proposition offered to EV drivers. They must first carefully analyse their company profile (e.g. size, public or private, business culture and brand image) and the profiles of potential users (e.g. time spent by users, and the mix of clients and employees) before deciding on their preferred business model. The following alternatives exist: NO COST TO THE USER, WITH NOTIFICATION In this scenario, the company assumes the total cost of EV charging. It notifies this cost to users so that they can better perceive the benefit they enjoy. NO COST TO THE USER, WITHOUT NOTIFICATION The company assumes the total cost of EV charging but does not notify the costs. 46% 20% 22% 12% 0% 20% 40% 60% 80% 100% 2 charging points 1 charging point 3 to 5 charging points + 5 charging points
  • 11. Publication No Cu0263 Issue Date: July 2019 Page 8 These two models are commonly applied by organizations wishing to encourage employee loyalty. Employees have extra motivation to work for companies offering free energy for EV charging, and it may also function as an incentive for potential customers. SUBSIDIZED FOR THE USER This model is considered by companies who wish to encourage the loyalty of EV users but are unwilling to bear the entire cost of EV charging. The cost is therefore only partially subsidized by the organization. TOTAL COST COVERED BY THE USER The company bears the cost of installing the EV charging stations on their premises, but the user must pay for all the energy used in charging. Through an access control system, the charging station identifies the user. TOTAL COST COVERED BY THE USER PLUS PROFIT MARGIN In addition to the user being liable for the charging cost, companies also include a profit margin in the price to recover the initial investment of installing the EV charging points or gain an additional source of income. Additionally, companies must decide whether they wish to outsource the financing and management of the charging stations. They must evaluate whether to make use of internal or external financial resources, as well as whether they have the necessary technical capacity to operate the equipment or need to outsource its management:  Financing can be procured from internal funds or external investors; o Own financing: the company allocates available internal funds to install the charging points and consequently will own new depreciating assets; o External financing: an external investor puts up the required investment. Together with the new assets, a new debt arises in the company’s liabilities. Of the different forms of external financing, those most commonly used for EV charging station installations are debt, lines of credit and leasing;  Operation. Charging stations are usually managed and operated by specialist third parties, who provide maintenance and guarantee the correct use of the chargers. Many organizations, especially larger companies, may have technical departments with the knowledge and expertise to manage such infrastructure. Based on these two parameters, companies are positioned in the matrix in Figure 7 according to the type of financing and operation employed:
  • 12. Publication No Cu0263 Issue Date: July 2019 Page 9 Figure 7 – Matrix of EV charging station management. Companies that do not have the technical expertise to manage the installation and operation processes usually opt to outsource EV charging station operation and financing. In this case, it presents several advantages:  Companies can focus their resources on their core business and other strategic activities;  Technical risks and management responsibilities are covered by the third party;  Charging station energy use is optimized. • The company self- financesthe installationof the recharging stations and operatesthem from a specialized technical department • The company seeks external financing (usuallythrough renting,leasingor debt),but is in charge of operatingthe charging points • The company financesthe installationbut outsourcesthe managementof the charging stations to a specializedthird party • The company outsourcesboth the financingand management processesto a specializedexternal company FINANCING OWN SELF-OPERATEDTHIRD-PARTY EXTERNAL OPERATION
  • 13. Publication No Cu0263 Issue Date: July 2019 Page 10 MULTIPLE EV CHARGING STATION INSTALLATIONS In a multiple EV charging station project, and prior to technical calculations, the following general issues need to be taken into account. DESIGN Charging stations must be designed and installed to be clearly visible to potential users. The following are key features that any charging station must incorporate:  Colours and a recognisable aesthetic to capture the attention of users.  Lighting to illuminate the charging area as well as lights indicating whether the vehicle is being charged.  Charging points must be at an appropriate ergonomic height for users.  It is recommended that cables and holders are integrated within charging stations for ease of use and for drivers who may not carry their own cables in their vehicles. The length of the cable must accommodate all type of vehicles and, if it is not retractable, there must be holders to avoid loose cables causing accidents at stations.  Instructions must be simple, clear and understandable by all drivers. Graphical directions are especially useful for novice drivers or non-native speakers.  Drivers need to know how much they are paying to charge their vehicles, and therefore pricing information is an essential requirement at the station (except where charging is free).  Problems may arise when charging a vehicle so drivers must feel confident that there will be assistance 24/7 if any issues arise. Companies can benefit from branding opportunities or even advertising to drivers at charging stations. There are also technical features to be incorporated in the wallbox:  Ideally, the charging point will include a display for better user interaction. An extra screen can include advertising, resulting in an additional income source.  The charging station operator can also offer an app to facilitate its use.  High voltage charging points should incorporate a load limiter allowing users with less powerful batteries to charge their vehicle at a lower voltage. CHARGING STATION FUNCTIONALITY Charging stations can have many functionalities depending on the following features:  Type of connection. With or without socket.  Type of socket. Different standards apply depending on the charging mode. Standard CEE 7 (e.g. shuko) SAE J1772 Yazaki IEC 62196 - 2 Mennekes IEC 62851 - 23&24 CHAdeMO IEC 62196 - 3 CCS Combo
  • 14. Publication No Cu0263 Issue Date: July 2019 Page 11  Number of chargers. There could be one or two sockets integrated within each wallbox and, to allow users to charge other types of electric vehicles (such as bikes, motorbikes or scooters), it is customary to install an additional standard CEE 7 socket, independent of the wallboxes.  Network analyser or counter (if present).  Measuring equipment and invoicing system (if present).  Access control. Alternatives include the use of an app, Radio Frequency Identification (RFID), digital or analogue fingerprint, or facial recognition.  Communication system. 3G or Ethernet.  Protocol. Open Charge Point Protocol (OCPP) including automatic upgrade.  Type of charging. Single-phase or three-phase. Companies choose the functionalities according to their needs. CHARGING AREA SURROUNDS There are factors related to charging area surrounds drivers consider when using a charging station.  Charging points must be accessible, and without physical barriers and, ideally, EV parking spaces should be close to entrances to encourage drivers to charge their vehicles;  Charging station surrounds should be clean and well-maintained;  Drivers must feel safe leaving their cars to charge in the parking areas; useful measures could include positioning parking spaces in areas where there is little traffic, installing signal lamps, and/or deploying other physical security measures such as security cameras or security staff;  Drivers will especially appreciate protection from the weather; on rainy days drivers will opt for an underground, indoor or protected station;  Offering drivers opportunities for recreation and relaxation may help to increase loyalty for a specific charging point, because charging may take at least 30 minutes.
  • 15. Publication No Cu0263 Issue Date: July 2019 Page 12 LOAD CALCULATION INTRODUCTION The installation of multiple EV charging stations is a comprehensive project affecting the entire organization, with many sections of the company participating in the process. For example, the finance department will oversee the investment, personnel will be looking at how project implementation will affect staff, and marketing will be analysing opportunities for branding and positioning. So, a charging station installation cannot simply be seen as a linear project split into distinct phases. There must be an integrated plan where important decisions influencing the entire project are made before starting work. Some of the main questions are: what is the total investment the company is willing to make, what is the business model, are the charging stations only for EVs or are electric bikes and motorcycles included, what are the intended charging times, and how many charging points will there be? Two important technical factors must be evaluated to make the load calculation: 1) Charging mode. There are four charging modes – Modes 1, 2, 3 and 4 (see below) – and each comes with specific characteristics (such as current, voltage and power), as well as advantages and disadvantages. The most commonly used by European companies is mode 3. There are also charging stations on the market offering the possibility of charging in different modes. 2) Electrical installation. It may be the case that the existing installation has insufficient capacity to support the additional power required for multiple EV charging stations. If there are electrical limitations, the project must be either adapted by reducing the load power or redesigned. MODES 1 AND 2 These modes are characterized by standard sockets up to 16 A and 32 A respectively. Although they are the most usual modes for regular residential usage, they are not recommended for EVs. Their usage could lead to the electric installation overheating, with the risk of ignition and fire. In Mode 1, there is no communication device between the EV and the charging point nor any load transfer supervision. In Mode 2 the level of communication between the EV and the charging station is higher than in Mode 1, but is still very limited. In these two modes, the load intensity is very low (in Mode 2 for security reasons), so getting full load can take a lot of time (around 17 hours). As a result, these modes are not a viable option for EV charging.
  • 16. Publication No Cu0263 Issue Date: July 2019 Page 13 MODE 3 Mode 3 is specifically designed for and aimed at EVs. The load is in alternating current and consequently the infrastructure can be installed cost-effectively almost anywhere. An additional characteristic is the type of socket. Type 2 connector (62196-2, commonly known as Mennekes) is the European standard (EN 62196-2). However, other sockets meeting earlier standards (such as SAE J1772) can still be found. CHARGING STATION PRICING Wallbox charging station prices for a company can range between €1,500 and €2,500, depending on the extras or additions specified. This price does not include the installation cost, which will vary according to the technical features of the facility, such as the location of the charging station, the distance to the electrical installation, the number of charging stations, and whether building work is required. Prices for public access charging stations are higher, between €7,500 and €9,000, also depending on the characteristics of the station. LOADING SPEED AND LOADING TIME The current for Mode 3 can range between 6 A and 63 A. Voltage can be single-phase (230 V) or three-phase (400 V). At the time of defining the load, it must be taken into account that some EVs (such as the Renault Zoe) cannot load at a current lower than 13 A due to their technical characteristics. The loading speed is defined by the power. To calculate the power, the formulae are different for single-phase and three-phase loads: 𝑃𝑜𝑤𝑒𝑟 𝑖𝑛 𝑀𝑜𝑑𝑒 3 (𝑠𝑖𝑛𝑔𝑙𝑒 − 𝑝ℎ𝑎𝑠𝑒 𝑙𝑜𝑎𝑑) = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ∗ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 1000 𝑃𝑜𝑤𝑒𝑟 𝑖𝑛 𝑀𝑜𝑑𝑒 3 (𝑡ℎ𝑟𝑒𝑒 − 𝑝ℎ𝑎𝑠𝑒 𝑙𝑜𝑎𝑑) = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ∗ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 ∗ √3 1000 The standard voltage level is 230 V for a single phase load and 400 V for a three phase load, but there is no standard current level, so the power will vary with the current. Table 1 shows the possible calculations for single-phase and three-phase loading transfers. At present, the most widely-used currents for EV charging in Europe are 16 A and 32 A, while single-phase load is more frequent due to its lower price. Where companies prioritize loading time over cost, they will select three-phase load.
  • 17. Publication No Cu0263 Issue Date: July 2019 Page 14 Single-phase load (230 V) Three-phase load (400 V) Current Power (kW) 6 A 1.38 4.16 10 A 2.30 6.93 16 A 3.68 11.09 18 A 4.14 12.47 20 A 4.60 13.86 25 A 5.75 17.32 32 A 7.36 22.17 63 A 14.49 43.65 Table 1 – Loading speed in Mode 3. The loading time varies mainly depending on two factors: the level to which the battery is already charged and the battery capacity. The loading time is: 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑊𝑎𝑡𝑡𝑎𝑔𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 Table 2 shows the loading times starting from a fully discharged battery up to a full load of 40 kWh. Power (kW) Loading time (h) Power (kW) Loading time (h) Current Single-phase load (230 V) Three-phase load (400 V) 6 A 1.38 28.99 4.16 9.62 10 A 2.30 17.39 6.93 5.77 16 A 3.68 10.87 11.09 3.61 18 A 4.14 9.66 12.47 3.21 20 A 4.60 8.70 13.86 2.89 25 A 5.75 6.96 17.32 2.31 32 A 7.36 5.43 22.17 1.80 63 A 14.49 2.76 43.65 0.92 Table 2 – Loading times in Mode 3. ADVANTAGES AND DISADVANTAGES Mode 3 installations present a broader range of advantages compared with Modes 1 and 2. ADVANTAGES  High level of communication between the EV and the station leading to optimized load transfer;  Most cost-effective mode for safe charging;  Designed specifically for EVs – the risks for the EV and users are minimal. DISADVANTAGES  Charging stations only for electric cars – other electric vehicles such as motorcycles or bikes cannot be charged unless there is an additional standard socket;  Loading times are longer than for Mode 4.
  • 18. Publication No Cu0263 Issue Date: July 2019 Page 15 MODE 4 Mode 4 is also a power system specifically designed for EVs. However, in this case the loading is in direct current thus making the charging station installation more expensive, and also requiring specific devices such as CHAdeMO or CCS Combo sockets. CHARGING STATION PRICING Fast charging stations represent the most expensive charging infrastructure on the market, costing up to €20,000 not including installation. LOADING SPEED AND LOADING TIME In Mode 4, the loading is in direct current which means that the current flows in one direction only, and the power is calculated without any correction: 𝑃𝑜𝑤𝑒𝑟 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑥 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 Using the same assumptions – a completely empty battery and a capacity of 40 kWh – the current is up to 120 A at 500 V, resulting in the following loading time: 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑚𝑝𝑡𝑦 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 − 40 𝑘𝑊ℎ 𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 − 60,000 𝑊 = 0.45 ℎ𝑜𝑢𝑟𝑠 In this scenario an EV can be totally charged in about 45 minutes, which is between 14.5 and 2.5 times faster than using Mode 3 (single-phase at 16 A and three-phase at 32 A respectively). This is why Mode 4 is known as the fast charging mode. ADVANTAGES AND DISADVANTAGES Mode 4 holds advantages similar to those of Mode 3, on top of being the fastest charging mode, but it also comes with a few disadvantages. ADVANTAGES  High level of communication between the EV and the station, leading to optimized loading;  Installation designed specifically for EVs. The risks for the EV and users are minimal;  Mode 4 is the fastest charging mode. DISADVANTAGES  The charging stations are used only by electric cars, unless there is an additional standard socket;  Not all EVs have the specific socket to charge in Mode 4;  The investment required to install a fast charging station is high;  Regular loading in Mode 4 may have a negative impact on battery life;  Higher monthly costs for contracted power are reflected in electricity bills. SAFETY STANDARDS INTERNATIONAL AND EUROPEAN SAFETY STANDARDS The safety of charging stations is a key issue that must be considered in all circumstances. Several international standards have been developed to ensure the safety of EV charging stations users. The International Electrotechnical Commission (IEC) has published consensus-based International Standards affecting EV charging infrastructure. The adoption of IEC standards by any country is entirely voluntary. These standards are:
  • 19. Publication No Cu0263 Issue Date: July 2019 Page 16 IEC Scope Stability date IEC 61140 Protection against electric shock - Common aspects for installation and equipment 2022 IEC 62040 Uninterruptible power systems (UPS)  Part 1: Safety requirements  Part 2: Electromagnetic compatibility (EMC) requirements  Part 3: Method of specifying the performance and test requirements  Part 4: Environmental aspects - Requirements and reporting  Part 5-3: DC output UPS - Performance and test requirements  Part 1: 2022  Part 2: 2021  Part 3: 2018 (revision in 2020)  Part 4: 2020  Part 5: 2021 IEC 60529 – Amendment 2 Degrees of protection provided by enclosures (IP Code) 2025 IEC 60364  Part 7-722: Requirements for special installations or locations - Supplies for electric vehicles 2023 Table 3 – IEC safety standards. The International Standardization Organization (ISO) has also published several standards to address user safety, some of which are currently being revised. A standard on magnetic field wireless power transfer is under development. ISO Scope Published ISO 6469 Electrically propelled road vehicles -- Safety specifications  Part 1: On-board rechargeable energy storage system (RESS)  Part 2: Vehicle Operational safety  Part 3: Electrical safety  Part 4: Post crash electrical safety ISO 17409 Electrically propelled road vehicles - Connection to an external electric power supply - Safety requirements Under revision / development ISO 6469 Part 1: On-board rechargeable energy storage system (RESS) ISO 17409 Electrically propelled road vehicles - Connection to an external electric power supply - Safety requirements ISO 19363 Electrically propelled road vehicles -- Magnetic field wireless power transfer -- Safety and interoperability requirements Table 4 – ISO standards on safety. INFRASTRUCTURE REQUIREMENTS INTERNATIONAL AND EUROPEAN INFRASTRUCTURE REQUIREMENTS: OVERVIEW Requirements for EV charging infrastructure are also established by IEC and ISO standards. These are grouped in three categories depending on their role in the infrastructure: accessories, communication and topology.
  • 20. Publication No Cu0263 Issue Date: July 2019 Page 17 Figure 8 – EV charging infrastructure standard categories. Norm Scope Stability date Accessories IEC 62196 Plugs, socket-outlets, vehicle connectors and vehicle inlets - Conductive charging of electric vehicles  Part 1: General requirements  Part 2: Dimensional compatibility and interchangeability requirements for AC pin and contact-tube accessories  Part 3: Dimensional compatibility and interchangeability requirements for DC and AC/DC pin and contact-tube vehicle couplers 2019 Communication IEC 61850  Part 90-8: Communication networks and systems for power utility automation. Object model for E-mobility. 2019 IEC 61851  Part 24: Digital communication between a DC EV charging station and an EV for control of DC charging 2019 ISO 15118 Vehicle to grid communication interface:  Part 1: General information and use-case definition  Part 2: Network and application protocol requirements  Part 3: Physical and data link layer requirements  Part 4: Network and application protocol conformance test  Part 5: Physical layer and data link layer conformance test  Part 8: Physical layer and data link layer requirements for wireless communication NA Norm Scope Stability date Topology IEC 61439 Low-voltage switchgear and controlgear assemblies  Part 1: General rules  Part 2: Power switchgear and controlgear assemblies  Part 3: Distribution boards intended to be operated by ordinary persons  Part 4: Particular requirements for assemblies for construction sites  Part 5: Assemblies for power distribution in public networks  Part 1: 2018 (revised 2020)  Part 2: 2018 (revised 2019)  Part 3: 2019  Part 4: 2019  Part 5: 2019 Accessories Communication BATTERY Charging station Source: CREARA Analysis Topology On-board charger
  • 21. Publication No Cu0263 Issue Date: July 2019 Page 18 IEC 61851 Electric vehicle conductive charging system  Part 1: General requirements  Part 21-1: Electric vehicle on-board charger EMC requirements for conductive connection to AC/DC supply  Part 21-2: Electric vehicle requirements for conductive connection to an AC/DC supply - EMC requirements for off board electric vehicle charging systems  Part 23: DC electric vehicle charging station  Part 1: 2021  Part 21-1: 2021  Part 21-2: 2021  Part 23: 2019 IEC 61980 Electric vehicle wireless power transfer (WPT) systems  Part 1: General requirements 2019 Table 5 – International infrastructure requirements. NATIONAL REGULATION In addition to international standards, there are national regulations covering the process of installing EV charging stations which differ from one country to another:.  In Spain, the Instrucción Técnica Complementaria BT-52 was passed by Royal Decree 1053/2014. This standard includes a technical guide to the infrastructure and safety requirements for EV charging stations.  In the Netherlands, EV charging point safety issues are regulated by NEN-EN 1010, a set of safety standards for low-voltage installations. Application of these standards is not mandatory, however it is mandatory to demonstrate that the same level of safety is achieved if other solutions are chosen.
  • 22. Publication No Cu0263 Issue Date: July 2019 Page 19 CASE STUDY: IMPLEMENTATION OF MULTIPLE EV CHARGING STATIONS AT THE OFFICES OF A LARGE FINANCIAL INSTITUTION GENERAL CIRCUMSTANCES In this real case, a large financial institution based in Spain (referred to in this study as the client) hired a fleet of 48 Plug-in Hybrid Electric Vehicles (PHEVs) through a specialist rental company to allocate to 48 managers. The charging stations are not for use on a free access or rotational basis, but are to be used on a personalized or one-to-one basis by each PHEV owner. The client requested the installation of 48 charging points at the beginning of April spread over three basement floors (B-1, B-2 and B-3). Parking spaces were to be grouped in eight slots of two – all consecutive – resulting in the installation of eight double-socket wallboxes on each floor – 24 in total. Initially, the client wanted the PHEVs to be charged as fast as possible but, in practice, PHEVs usually have a battery with a limited capacity, making fast loading superfluous. However, the charging installations would most probably have a longer life than the PHEVs and, by installing high-speed Mode 3 chargers, the client would be investing in a long-term solution allowing for any future switch to BEVs. THE PROPOSED SOLUTION At the first site visit, the electric installation to which the client wanted to connect the charging stations was examined. Unfortunately, it had just four automatic switches of 80 A each (320 A in total) and consequently it was not possible to proceed with the installation of 48 charging points each drawing a current of 32 A. This led to three possibilities for the client:  Renew the electrical installation to increase the available power;  Find additional capacity in other available electrical circuits;  Revise the project to reduce either the number of charging points or the loading speed. It was agreed that a reduction in loading speed would be the best solution for two main reasons:  Managers spend a lot of time at the offices and therefore do not need fast charging to completely load their vehicles.  The PHEVs have a battery capacity of 10 kWh and do not allow fast charging. When connected to a fast charging system, their Battery Management System (BMS) would demand less energy than offered by the charger, resulting in energy losses. This means that for the EVs concerned, an installation which met the initial specifications of the client would be oversized. One downside of this choice is that the installation could need an upgrade if the PHEV fleet is later replaced by a BEV fleet. This illustrates one of the potential limitations that could arise during project development. Usually, companies wishing to install multiple EV charging stations would not have the necessary specialist knowledge or expertise concerning the electrical capacity of their facilities. This is the first thing to be checked since it can influence decision-making for the entire project. Other potential constraints (such as the building material used, the location of the parking spaces and the distance between from the electric installation and the charging point) may not emerge until the project is in
  • 23. Publication No Cu0263 Issue Date: July 2019 Page 20 the execution phase. These constraints could lift the investment required for the installation above what was originally planned. PROJECT EXECUTION The project was executed in three distinct phases:  In the first phase, six double-socket and two single-socket wallboxes were installed in B-1;  In the second phase, eight double-socket wallboxes were installed in B-2 and another eight in B-3;  The final phase was not planned in advance; instead, after seeing the advantages and possibilities of the double-socket wallbox, the client institution decided to replace the two single-socket wallboxes installed in the first phase (in B-1) with double wallboxes. To facilitate analysis, the study focuses on the installation of half of the total number of charging points (namely 24 charging points: seven in B-1 in the first phase, eight in B-2 and eight in B-3 in the second phase, and 2 additional ones in B-1 in the third phase) – we call them X1. The other half (also 24 charging points) are installed in exactly the same way – we call them X2. In other words, X1 and X2 are each other’s mirror image. FIRST PHASE In this phase, six double and two single wallboxes were installed in B-1. FIGURE 9 illustrates one half of the installation. Figure 9 – Phase 1 of the project. In this case, the Mode 3 double-socket wallboxes come with an integrated load control function which regulates the energy transfer depending on how many EVs are being charged at one time. If only one EV is connected, the full power (or charging speed) of 7.4 kW will go to that vehicle (as in wallbox 2 in FIGURE 9). If 32 A32 A 32 A 32 A Wallbox2 Wallbox3 CP CP CP CP Wallbox4 CP Wallbox1 CP CP 16 A 3.7 kW 16 A 3.7 kW 32 A 7.4 kW 16 A 3.7 kW 16 A 3.7 kW 32 A 22 kW 32 A Automatic Switch 1 80 A Three-phase voltage One-phase voltage CP Charge point Note: Notice that this figure only shows half of the eight wallboxes; the other half is installed in the same way
  • 24. Publication No Cu0263 Issue Date: July 2019 Page 21 two EVs are connected simultaneously, the wallbox will split the available power between the two charging points and the load will be reduced to 3.7 kW (see wallboxes 1 and 3 in FIGURE 9). Note that such a load control function is not standard in Mode 3 wallboxes. Where this function is not included, an external load control box should be added to comply with standard IEC 60364 722.311. In this case, an alternative and simpler solution to comply with the IEC standard could be to allow both connecting points to draw full power simultaneously and upgrade the cable sizing of the entire feeding circuit accordingly. Using a standard dual socket Mode 3 wallbox without load control and without full power cable sizing is not compliant. 2 Originally, wallbox 4 (and its counterpart in X2) was planned for only a single PHEV to be charged using three- phase power. In phase 3, these wallboxes were substituted by double-socket versions. In this phase, the total current used for four wallboxes is 64 A drawn from Automatic Switch 1 (Automatic Switch 2 in X2). SECOND PHASE In this phase, the remaining eight wallboxes were installed in B-2 and B-3. As in the first phase, the electric circuit in Figure 10 illustrates only one half of the wallbox installation. The eight additional charging infrastructures are installed similarly. 2 IEC 60364 722.311: "Since all the connecting points of the installation can be used simultaneously, the diversity factor of the distribution circuit shall be taken as equal to 1. However, this factor may be reduced where load control is available."
  • 25. Publication No Cu0263 Issue Date: July 2019 Page 22 Figure 10 – Phase 2 of the project. Given that 128 A is used by the wallboxes installed in Phase 1, further calculations were required to determine the power needed by the remaining wallboxes in B-2 and B-3. In this phase, four switches are used: automatic switches 1 and 2 each with a spare capacity of 16 A, and automatic switches 3 and 4 each with 80 A. The current distribution is optimized as illustrated in Figure 10. THIRD PHASE Once all the wallboxes were installed, the client requested two charging points instead of one in wallbox 4 (and its counterpart in X2). There were two options to replace them:  Option 1: two three-phase charging points of 32 A in each wallbox, with the load being balanced between them;  Option 2: two one-phase charging points of 32 A in each wallbox. 32 A 32 A 32 A 32 A Wallbox7 CP CP 16 A 3.7 kW 16 A 3.7 kW Wallbox 6 CP CP 32 A 7.4 kW Wallbox 5 CP CP 16 A 3.7 kW 16 A 3.7 kW 32 A Automatic Switch 1 16 A Automatic Switch 3 80 A Wallbox8 CP CP 16 A 3.7 kW 16 A 3.7 kW Basement -2 Wallbox 11 CP CP 16 A 3.7 kW 16 A 3.7 kW Wallbox 10 CP CP 32 A 7.4 kW 16 A 3.7 kW Wallbox 12 CP CP 16 A 3.7 kW 16 A 3.7 kW Basement -3 32 A Wallbox9 CP 16 A 3.7 kW CP 32 A32 A 16 A16 A Three-phase voltage One-phase voltage CP Occupied charge point CP Idle charge point Note: Notice that this figure only shows half of the 16 wallboxes; the other half is installed in the same way
  • 26. Publication No Cu0263 Issue Date: July 2019 Page 23 Figure 11 – Options for wallbox 4. Even though the load transfer is faster in Option 1, this wallbox is larger than the others, including the one it replaces. Therefore Option 2 was chosen. BUDGET The main direct cost is labour, which is dependent on the location of the installation. In this case, the installation was in Spain and unit labour costs per wallbox were approximately €900. Labour costs will be higher in countries such as the Netherlands, Germany or Belgium, while they would be similar in Italy, and lower in Greece, Portugal or Eastern European countries. Wallbox prices vary according to the technical features of the device. Usually, these cost between €1,500 and €2,000, including special features and accessories. Cabling is normally one of the more significant costs depending on the characteristics of the installation. The longer the distance between the electric installation and the wallbox, the longer the cable needed and the more costly will project execution be. Saving on the sizing of the cable conductor is not recommended, since this increases energy losses and ultimately the lifecycle cost of the project. However, the more EV charging stations installed, the cheaper the unit cost. Some components will cover the whole installation so their unit cost will decrease as the number of charging points rises. 16 A 11 kW CP 32 A Three-phase voltage One-phase voltage CP Charge point CP 32 A 7,4 kW CP CP 32 A 7,4 kW 16 A 11 kW 32 A Option 1 Option 2
  • 27. Publication No Cu0263 Issue Date: July 2019 Page 24 Figure 12 – Breakdown of the installation costs of one wallbox. The final budget for this project – including the 24 double-socket wallboxes – is approximately €80,000, meaning that the total unit cost for each wallbox is €3,300. MAIN RESULTS Within a month of the project starting, the PHEV drivers were able to charge their cars at their workplace. Loading transactions have been monitored since installation, with the first six months illustrated in Figure 13. There were 1,096 transactions totalling 5.77 MWh of energy. The number of loadings increased from September coinciding with the end of the summer break. A higher number of transactions is expected in the future, as drivers begin to perceive the many advantages of using PHEVs and when their use becomes more mainstream. Figure 13 – Monitoring of EV loading. 0 500 1,000 1,500 2,000 2,500 3,000 3,500 Wallbox & accessories Labor Material Cabling Maintenance Protection and electrical panel 48% 27% 13% 5% 4% 3% 0 500 1,000 1,500 2,000 2,500 0 50 100 150 200 250 300 350 May June July August September October Energy(kWh) Numberoftransactions
  • 28. Publication No Cu0263 Issue Date: July 2019 Page 25 The client has a power purchase tariff of 0.080478 EUR/kWh. With the aim of transferring these costs to the EV users and making an additional profit for the services offered, they took the decision to sell the energy at a higher price of 0.095 EUR/kWh. FIGURE 14 shows the evolution of the profit margin over the months since the charging stations were installed, comparing the accumulated energy purchase and energy sale prices. The more the charging points are used, the greater the profit margin becomes. Figure 14 – Profit margin evolution. EUR Profit margin (EUR) 4.0 5.7 15.4 4.2 25.7 28.7 Total profit 83.8 -200 -150 -100 -50 0 50 100 150 200 250 May June July August September October Energy sale Energy purchase
  • 29. Publication No Cu0263 Issue Date: July 2019 Page 26 CONCLUSION The installation of multiple EV charging stations is a comprehensive project that affects the entire company. Consequently, the decision to carry out such a project must involve all sections of the company. Depending on the reasons for the installation – which can be diverse – and the value proposition that the company is willing to offer to its EV drivers, the business model is selected from the following scenarios:  No cost to the user, with notification;  No cost to the user, without notification;  Subsidized cost to the user;  Total cost to the user;  Total cost to the user, plus profit margin. Financing and operational management must be taken into account when deciding the most appropriate business model for the company. Both aspects can be managed internally or outsourced to specialists. Once the decision is made to install EV charging infrastructures and the business model is selected, the company must choose between charging Mode 3 and charging Mode 4. Modes 1 and 2 are not an option since they involve the risk of overheating the electrical installation. The electrical installation should also be checked to see if it supports the power required for the charging stations. Where there is insufficient capacity, there are three options:  Renewing and reinforcing the electrical installation;  Seeking additional circuits within the existing installation with the required capacity;  Resizing the project, reducing either the number of charging points or the loading speed. In addition to the possibility that the installation has insufficient capacity to support the power demand, there are other contingencies that could emerge during project execution that could increase the planned investment. In every case, project execution and EV recharging points must comply with a series of safety standards and requirements determined by international organizations and national regulations. General factors, such as the design and functionality of the charging stations and the characteristics of the surrounds must also be taken into consideration.
  • 30. Publication No Cu0263 Issue Date: July 2019 Page 27 REFERENCES 1 K. Palmer, J. E. Tate, Z. Wadud, J. Nellthorp (2018). Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan. 2 R. Nealer, D. Reichmuth, D. Anair (2015). Cleaner Cars from Cradle to Grave. 3 International Electrotechnical Commission (2018): www.iec.ch 4 J. C. Spoelstra (2014). Charging behavior of Dutch EV drivers