SlideShare une entreprise Scribd logo
1  sur  31
CÁLCULOS QUÍMICOS Lic. Fabián Ortiz V. GRADO DÉCIMO 2011 INSTITUCION EDUCATIVA “CIUDAD DE ASÍS” Religiosas Franciscanas de M.I. Pre-escolar – Básica y Media Técnica Comercial Aprobado por Decreto No. 0591 de 06 de diciembre de 2002 – NIT: 846000257-5 Carrera 18 No. 8-83 B. San Francisco de Asís - Teléfono: 4228117 www.ieciudaddeasis.edu.co  - E-Mail:  [email_address] Puerto Asís, Putumayo
REACCIONES QUÍMICAS Cambios físicos Cambios Químicos TRANSFORMACIÓN SUSTANCIAS PURAS No implican cambio de composición Ej Cambio de fase Para llegar a establecer la forma de medir la materia y las relaciones que existen entre reactivos y productos, se aplicó de manera intuitiva el método científico.
Hasta finales del XVIII y principios del XIX  no se sabía casi nada  acerca de la composición de la materia y lo que sucedía cuando reaccionaban. Precisamente en esta época se empiezan a enunciar algunas leyes básicas sobre las transformaciones de la materia que culminan con la Teoría Atómica de Dalton Estas leyes enunciadas por orden cronológico pueden resumirse así:
1789.  Ley de Lavoisier de la conservación  de la masa.  Lavoisier  comprobó que en cualquier reacción química,  1. LEYES PONDERALES. la suma de las masas de los productos que reaccionan la suma de las masas de los productos obtenidos Esto significa que: =
En una reacción química,  la materia no se crea ni se destruye, tan sólo se transforma.  Por ejemplo, si 10 gramos de A se combinan con 20 gramos de B,  se obtienen 30 gramos de A B. Antoine Lavoisier: 1734-1794
1799.  Ley de Proust de las proporciones definidas.   Afirma que: Cuando dos elementos se combinan para formar un compuesto,  lo hacen siempre en proporciones de peso fijas y definidas . Joseph Louis   Proust, (1754-1826)
Proust vino a nuestro país a impartir clases de química, en Segovia y Madrid.  el amoniaco  siempre tendrá Así, por ejemplo, un 82.25 % de nitrógeno y un 17,25 % de hidrógeno  sea cual sea el método empleado para obtenerlo. La ley de las proporciones definidas constituyó una poderosa arma para los químicos en la búsqueda de la composición.
La ley de Proust  no impide que  dos o más elementos  se unan  en varias proporciones  para formar varios compuestos
1805.  Ley de Dalton de las proporciones múltiples. Cuando dos elementos se combinan para dar más de un compuesto, los pesos de un elemento que se combinan con una cantidad fija del otro, guardan entre si una relación numérica sencilla. Dalton  1766-1844
1805.  Ley de Dalton de las proporciones múltiples. agua y peróxido de hidrógeno ambas formadas por los elementos hidrógeno y oxígeno al formar agua: 8.0 g de oxígeno reaccionan con 1.0 g de hidrógeno en el peróxido de hidrógeno, hay 16.0 g de oxígeno por cada 1.0 g de hidrógeno la proporción de la masa de oxígeno por gramo de hidrógeno entre los dos compuestos es de 2:1 Usando la teoría atómica, podemos llegar a la conclusión de que el peróxido de hidrógeno contiene dos veces más átomos de oxígeno por átomo de hidrógeno que el agua.
LOS FILÓSOFOS GRIEGOS SE PREGUNTABAN: ¿Es posible dividir la materia en pedazos cada vez más pequeños, o hay un punto en el que no se puede dividir más? Platón y Aristóteles “ La materia es infinitamente divisible” “ La materia se compone de pequeñas partículas indivisibles “ A esas partículas las llamó ATOMOS FALSO Cierto: Dalton  2000 años después Demócrito
TEORÍA ATÓMICA DE DALTON  1808  John Dalton enunció en su famosa teoría atómica basada en las relaciones ponderales antes mencionadas y puede resumirse en los siguientes puntos: 1.-   La materia está compuesta por partículas indivisibles, extremadamente pequeñas, denominadas  atomos . Dalton  1766-1844
TEORÍA ATÓMICA DE DALTON  1808  2.-  Hay diferentes clases de átomos.  Cada clase posee su tamaño y propiedades características. 3.-  Cada clase de átomos corresponde a un elemento distinto.  Todos los átomos de un elemento dado son idénticos.
TEORÍA ATÓMICA DE DALTON  1808  4.-  Los compuestos químicos puros están constituidos por átomos de distintos elementos combinados entre sí, mediante relaciones sencillas. 5.-   Las reacciones químicas consisten en la combinación, separación o reordenación de los átomos. Los átomos permanecen inalterados en cualquier transformación.
Símbolos y fórmulas. A cada una de las clases de átomos de la teoría de Dalton se le asignó un símbolo, con diferentes orígenes: proceden del latín símbolos relacionados con el nombre de un país  nitrógeno N hidrógeno H carbono C ferrum, hierro Fe aurum, oro Au natrium sodio Na kalium, potasio K francio Fr germanio Ge polonio Po
Cálculos Estequiométricos  .
Estequiometría   Stoecheion  Elemento Metron  Medida
Cálculos estequiométricos cantidades de sustancia que reaccionan Los símbolos y las fórmulas sirven al químico para poder esquematizar una reacción química. cantidades de sustancia que se producen 2 moléculas de hidrógeno   Reaccionan con 1 molécula de oxígeno Para dar 2 moléculas de agua 2H 2  +  O 2  2H 2 O reactivos productos
AJUSTE, IGUALACIÓN O “BALANCEO” DE REACCIONES.  En una reacción ni se crean ni se destruyen átomos: números de cada elemento a cada lado de la “flecha”tienen que ser iguales. Si se satisface esta condición se dice que la ecuación está   AJUSTADA. Nunca deben modificarse los subíndices al ajustar una reacción. 1º.- se ajustan los elementos que están en una sola molécula en cada miembro de la reacción.  2 2 C H 2º.- Para completar el ajuste, necesitamos poner un 2 delante del  O 2 CH 4  +  O 2  CO 2  +  H 2 O
Usamos los símbolos (g), (l), (s) y (ac) Para gas, líquido, sólido y disolución acuosa. Cuando se forma un sólido como producto se usa una flecha hacia abajo  , para indicar que precipita.
CÁLCULOS CON FÓRMULAS Y ECUACIONES QUÍMICAS El concepto de  mol  nos permite aprovechar a nivel macroscópico práctico la información cuantitativa contenida en una reacción química ajustada. Normalmente no tendremos los datos de las cantidades de reactivos en moles. Si por ejemplo tenemos los datos en gramos: Gramos de reactivo Moles de reactivo Ecuación ajustada Moles  de producto /Pm reactivo x Pm Producto Gramos de producto
Conocida la masa de un reactivo o de un producto, pueden calcularse el resto de las masas que intervienen en la reacción Ejemplo : En la descomposición del clorato de potasio se obtiene cloruro de potasio y oxígeno ¿Cuántos gramos de oxígeno se obtienen a partir de 1 kg de clorato?   KClO 3 + KCl 3/2  O 2 1 mol de KCl 3/2 mol de O 2 1 mol de KClO 3 74,45 g de KCl 48 g de O 2 122,45 g de KClO 3 X g de O 2 1000 g de KClO 3 = X   = = 587,45 g de O 2 CÁLCULOS CON MASAS 122,45 g de KClO 3 48 g O 2 1000 g de KClO 3 X  g O 2 1000 · 72 122,45
Si existen reactivos con impurezas, es necesario determinar primero las cantidades existentes de sustancia pura Ejemplo: Se hacen reaccionar 22,75 g de Zn que contiene un 7,25 % de impurezas con HCl suficiente. Calcula la masa de H 2  desprendida.  Dato : masa atómica del Zn = 65,38 X  = 21,1 g de Zn REACTIVOS CON IMPUREZAS Y  = 0,645 g de H 2 Por cada mol de Zn se obtiene 1 mol de H 2 2  HCl + Zn  ZnCl 2  + H 2 100 g de muestra (100 – 7,25) g de Zn = 22,75 g X 65,38 g de Zn 2 g de H 2 = 21,1 g de Zn Y
Reactivo Limitante
En una reacción química, los reactivos pueden estar o no en la proporción exacta que determinan sus coeficientes estequiométricos.  Ejemplo: tenemos 10 moles de H 2  y 7 moles de O 2  para formar agua. Reactivo limitante : se consume por completo y limita la cantidad de producto que se forma En este caso el reactivo limitante es el H 2 2H 2 (g) + O 2 (g) 2H 2 O(l)
En una reacción química sólo se gasta completamente el reactivo limitante. Los reactivos en exceso no se agotan completamente 2 moles de CO 2 moles de O 2 0 moles de O 2 Antes de la reacción 0 moles de CO 1 mol de O 2 2 moles de O 2 Después de la reacción
CÁLCULOS CON REACTIVO LIMITANTE. Generalmente es necesario preparar cantidades determinadas de productos a partir de cantidades de reactivos que no son estequiométricamente exactas  se consume completamente queda parte sin reaccionar El reactivo limitante reacciona solamente con la cantidad adecuada de la otra sustancia hasta que se acaba y de la que se encuentra en exceso queda parte sin reaccionar Ejemplo : Si reaccionan 7 g de Fe (56 u) con 8 g de S (32 u) para formar FeS   ¿cuál es el  reactivo limitante y cuál el excedente? Fe + S FeS 1 mol de S 1 mol de FeS 1 mol de Fe 32 g de S 88 g de FeS 56 g de Fe X g de S 7 g de Fe reactivo limitante: reactivo en exceso: Fe S
Rendimiento
RENDIMIENTO TEÓRICO:  Cantidad de producto que, según los cálculos, se forma cuando reacciona todo el reactivo limitante RENDIMIENTO REAL:  Cantidad de producto que realmente se forma en la reacción. ¿Porqué difieren? - No reacciona todo el reactivo - El reactivo está hidratado - Se den reacciones secundarias no deseadas Rendimiento real Rendimiento teórico x 100 = % RENDIMIENTO Rendimiento porcentual
RENDIMIENTO DE LAS REACCIONES QUÍMICAS. En los procesos químicos no suele obtenerse el 100% de las cantidades previstas de las sustancias, debido a reacciones simultáneas no deseadas, impurezas de los reactivos, escapes en los hornos, etc. El rendimiento de las reacciones es un factor fundamental en la industria química rendimiento  = masa obtenida masa teórica x 100 hay que calcular el RENDIMIENTO de las reacciones químicas
[object Object],[object Object],[object Object]

Contenu connexe

Tendances

Problemas de estequiometria de Gases
Problemas de estequiometria de GasesProblemas de estequiometria de Gases
Problemas de estequiometria de Gases
FrankLegion
 
ESTEQUIOMETRIA Y CÁCULOS ESTEQUIOMÉTRICOS
ESTEQUIOMETRIA Y CÁCULOS ESTEQUIOMÉTRICOSESTEQUIOMETRIA Y CÁCULOS ESTEQUIOMÉTRICOS
ESTEQUIOMETRIA Y CÁCULOS ESTEQUIOMÉTRICOS
Elias Navarrete
 
Reacciones De Desplazamiento
Reacciones De DesplazamientoReacciones De Desplazamiento
Reacciones De Desplazamiento
Verónica Rosso
 
Practica 3. Ley de la conservación de la materia
Practica 3. Ley de la conservación de la materiaPractica 3. Ley de la conservación de la materia
Practica 3. Ley de la conservación de la materia
Amairani Hernández Pérez
 
Relación mol gramos
Relación mol   gramosRelación mol   gramos
Relación mol gramos
FQM-Project
 

Tendances (20)

REDOX método del ion-electrón (medio básico)
 REDOX método del ion-electrón (medio básico) REDOX método del ion-electrón (medio básico)
REDOX método del ion-electrón (medio básico)
 
Informe.qui.general4.doc
Informe.qui.general4.docInforme.qui.general4.doc
Informe.qui.general4.doc
 
Mol y numero avogadro
Mol y numero avogadroMol y numero avogadro
Mol y numero avogadro
 
Gases ideales.
Gases ideales.Gases ideales.
Gases ideales.
 
Tema 6.- Estequiometría
Tema 6.- EstequiometríaTema 6.- Estequiometría
Tema 6.- Estequiometría
 
Problemas de estequiometria de Gases
Problemas de estequiometria de GasesProblemas de estequiometria de Gases
Problemas de estequiometria de Gases
 
ESTEQUIOMETRIA Y CÁCULOS ESTEQUIOMÉTRICOS
ESTEQUIOMETRIA Y CÁCULOS ESTEQUIOMÉTRICOSESTEQUIOMETRIA Y CÁCULOS ESTEQUIOMÉTRICOS
ESTEQUIOMETRIA Y CÁCULOS ESTEQUIOMÉTRICOS
 
Reacciones Redox
Reacciones RedoxReacciones Redox
Reacciones Redox
 
NOMENCLATURA DE ÓXIDOS, ÁCIDOS Y BASES (QUÍMICA INORGÁNICA)
NOMENCLATURA DE ÓXIDOS, ÁCIDOS Y BASES (QUÍMICA INORGÁNICA)NOMENCLATURA DE ÓXIDOS, ÁCIDOS Y BASES (QUÍMICA INORGÁNICA)
NOMENCLATURA DE ÓXIDOS, ÁCIDOS Y BASES (QUÍMICA INORGÁNICA)
 
NUMEROS DE OXIDACION Y COMPUESTOS QUIMICOS
NUMEROS DE OXIDACION Y COMPUESTOS QUIMICOSNUMEROS DE OXIDACION Y COMPUESTOS QUIMICOS
NUMEROS DE OXIDACION Y COMPUESTOS QUIMICOS
 
Hidruros
HidrurosHidruros
Hidruros
 
Termoquímica
TermoquímicaTermoquímica
Termoquímica
 
Nomenclatura química inorgánica
Nomenclatura química inorgánicaNomenclatura química inorgánica
Nomenclatura química inorgánica
 
La quimica del carbono
La quimica del carbonoLa quimica del carbono
La quimica del carbono
 
Reacciones De Desplazamiento
Reacciones De DesplazamientoReacciones De Desplazamiento
Reacciones De Desplazamiento
 
Practica 3. Ley de la conservación de la materia
Practica 3. Ley de la conservación de la materiaPractica 3. Ley de la conservación de la materia
Practica 3. Ley de la conservación de la materia
 
Reacciones de alquenos
Reacciones de alquenosReacciones de alquenos
Reacciones de alquenos
 
Carbohidratos
CarbohidratosCarbohidratos
Carbohidratos
 
Tabla de potenciales redox
Tabla de potenciales redoxTabla de potenciales redox
Tabla de potenciales redox
 
Relación mol gramos
Relación mol   gramosRelación mol   gramos
Relación mol gramos
 

Similaire à Calculos quimicos

clase08-reac quim
clase08-reac quimclase08-reac quim
clase08-reac quim
markrivas
 
Reaccionquimica feijoo 1011
Reaccionquimica feijoo 1011Reaccionquimica feijoo 1011
Reaccionquimica feijoo 1011
Roberto Vega
 
2º ESO - Tema 2. reacciones químicas i (13 14)
2º ESO - Tema 2. reacciones químicas i (13 14)2º ESO - Tema 2. reacciones químicas i (13 14)
2º ESO - Tema 2. reacciones químicas i (13 14)
Víctor M. Jiménez Suárez
 
Ciencias Exactas Reacciones Químicas
Ciencias Exactas Reacciones QuímicasCiencias Exactas Reacciones Químicas
Ciencias Exactas Reacciones Químicas
Silvia Censi
 
R E A C C IÓ N Q UÍ M I C A(97 2003)
R E A C C IÓ N  Q UÍ M I C A(97  2003)R E A C C IÓ N  Q UÍ M I C A(97  2003)
R E A C C IÓ N Q UÍ M I C A(97 2003)
jaival
 
Transformaciones químicas y estequiometría
Transformaciones químicas y estequiometríaTransformaciones químicas y estequiometría
Transformaciones químicas y estequiometría
Estela Alem
 
CLASE DE ESTEQUIOMETRÍA
CLASE DE ESTEQUIOMETRÍACLASE DE ESTEQUIOMETRÍA
CLASE DE ESTEQUIOMETRÍA
Elias Navarrete
 

Similaire à Calculos quimicos (20)

Estequiometría de los gases
Estequiometría de los gasesEstequiometría de los gases
Estequiometría de los gases
 
clase08-reac quim
clase08-reac quimclase08-reac quim
clase08-reac quim
 
Reaccionquimica feijoo 1011
Reaccionquimica feijoo 1011Reaccionquimica feijoo 1011
Reaccionquimica feijoo 1011
 
Reacciones en el aula
Reacciones en el aulaReacciones en el aula
Reacciones en el aula
 
2º ESO - Tema 2. reacciones químicas i (13 14)
2º ESO - Tema 2. reacciones químicas i (13 14)2º ESO - Tema 2. reacciones químicas i (13 14)
2º ESO - Tema 2. reacciones químicas i (13 14)
 
GUIA 1. la Estequiometría febrero 4
GUIA 1. la  Estequiometría febrero 4GUIA 1. la  Estequiometría febrero 4
GUIA 1. la Estequiometría febrero 4
 
ESTEQUIOMETRIA
ESTEQUIOMETRIAESTEQUIOMETRIA
ESTEQUIOMETRIA
 
Tema 5. reacciones químicas i (15 16) 2º ESO
Tema 5. reacciones químicas i (15 16) 2º ESOTema 5. reacciones químicas i (15 16) 2º ESO
Tema 5. reacciones químicas i (15 16) 2º ESO
 
Resumen tema 7
Resumen tema 7Resumen tema 7
Resumen tema 7
 
Reaccionquimica
ReaccionquimicaReaccionquimica
Reaccionquimica
 
Ciencias Exactas Reacciones Químicas
Ciencias Exactas Reacciones QuímicasCiencias Exactas Reacciones Químicas
Ciencias Exactas Reacciones Químicas
 
R E A C C IÓ N Q UÍ M I C A(97 2003)
R E A C C IÓ N  Q UÍ M I C A(97  2003)R E A C C IÓ N  Q UÍ M I C A(97  2003)
R E A C C IÓ N Q UÍ M I C A(97 2003)
 
Reacciones químicas
Reacciones químicasReacciones químicas
Reacciones químicas
 
Transformaciones químicas y estequiometría
Transformaciones químicas y estequiometríaTransformaciones químicas y estequiometría
Transformaciones químicas y estequiometría
 
Tema 2. reacciones químicas i (10 11)
Tema 2. reacciones químicas i (10 11)Tema 2. reacciones químicas i (10 11)
Tema 2. reacciones químicas i (10 11)
 
CLASE DE ESTEQUIOMETRÍA
CLASE DE ESTEQUIOMETRÍACLASE DE ESTEQUIOMETRÍA
CLASE DE ESTEQUIOMETRÍA
 
Guia no 2 la stequiometria
Guia no 2  la stequiometriaGuia no 2  la stequiometria
Guia no 2 la stequiometria
 
Guia no 2 la stequiometria
Guia no 2  la stequiometriaGuia no 2  la stequiometria
Guia no 2 la stequiometria
 
estequiometria---bases y fundamentos principales-mol-coeficiente-----------.ppt
estequiometria---bases y fundamentos principales-mol-coeficiente-----------.pptestequiometria---bases y fundamentos principales-mol-coeficiente-----------.ppt
estequiometria---bases y fundamentos principales-mol-coeficiente-----------.ppt
 
Reaccionesqumicas
ReaccionesqumicasReaccionesqumicas
Reaccionesqumicas
 

Plus de SVENSON ORTIZ

Plus de SVENSON ORTIZ (20)

Proyecto vía parque
Proyecto vía parqueProyecto vía parque
Proyecto vía parque
 
Modulos byb v3_julio-31-2013 (2)
Modulos byb v3_julio-31-2013 (2)Modulos byb v3_julio-31-2013 (2)
Modulos byb v3_julio-31-2013 (2)
 
Informacion general programa byb
Informacion general programa bybInformacion general programa byb
Informacion general programa byb
 
Fem 006 solicitud documentos de matrícula estudiantes
Fem 006 solicitud documentos de matrícula estudiantesFem 006 solicitud documentos de matrícula estudiantes
Fem 006 solicitud documentos de matrícula estudiantes
 
Estatuto estudiantil compendio 2014 ok
Estatuto estudiantil  compendio 2014 okEstatuto estudiantil  compendio 2014 ok
Estatuto estudiantil compendio 2014 ok
 
Grupos-funcionales-oxigenados
Grupos-funcionales-oxigenadosGrupos-funcionales-oxigenados
Grupos-funcionales-oxigenados
 
Leyes de los gases
Leyes de los gasesLeyes de los gases
Leyes de los gases
 
Tabla periodica y propiedades quimicas
Tabla periodica y propiedades quimicasTabla periodica y propiedades quimicas
Tabla periodica y propiedades quimicas
 
Celula
CelulaCelula
Celula
 
Desempeño c3
Desempeño c3Desempeño c3
Desempeño c3
 
Pasos para-crear-blog-con-blogger
Pasos para-crear-blog-con-bloggerPasos para-crear-blog-con-blogger
Pasos para-crear-blog-con-blogger
 
D1 cinematica
D1 cinematicaD1 cinematica
D1 cinematica
 
Nivel de desempeño d2 electricidad
Nivel de desempeño d2   electricidadNivel de desempeño d2   electricidad
Nivel de desempeño d2 electricidad
 
Nivel de desempeño d2 fuerzas intermoleculares
Nivel de desempeño d2   fuerzas intermolecularesNivel de desempeño d2   fuerzas intermoleculares
Nivel de desempeño d2 fuerzas intermoleculares
 
Ecosistemas
EcosistemasEcosistemas
Ecosistemas
 
Desempeño d2 leyes fundamentales de la química
Desempeño d2  leyes fundamentales de la químicaDesempeño d2  leyes fundamentales de la química
Desempeño d2 leyes fundamentales de la química
 
Desempeño d2 leyes fundamentales de la química
Desempeño d2  leyes fundamentales de la químicaDesempeño d2  leyes fundamentales de la química
Desempeño d2 leyes fundamentales de la química
 
Desempeños c1 y c2 (nomenclatura inorgánica)
Desempeños c1 y c2 (nomenclatura inorgánica)Desempeños c1 y c2 (nomenclatura inorgánica)
Desempeños c1 y c2 (nomenclatura inorgánica)
 
Desempeño d1 energia trabajo-calor
Desempeño d1   energia trabajo-calorDesempeño d1   energia trabajo-calor
Desempeño d1 energia trabajo-calor
 
El origen de la vida
El origen de la vidaEl origen de la vida
El origen de la vida
 

Dernier

FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
El Fortí
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
JonathanCovena1
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
JonathanCovena1
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
zulyvero07
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
NancyLoaa
 

Dernier (20)

proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCV
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
 
Imperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperioImperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperio
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 
plande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfplande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdf
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
 
actividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoactividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° grado
 

Calculos quimicos

  • 1. CÁLCULOS QUÍMICOS Lic. Fabián Ortiz V. GRADO DÉCIMO 2011 INSTITUCION EDUCATIVA “CIUDAD DE ASÍS” Religiosas Franciscanas de M.I. Pre-escolar – Básica y Media Técnica Comercial Aprobado por Decreto No. 0591 de 06 de diciembre de 2002 – NIT: 846000257-5 Carrera 18 No. 8-83 B. San Francisco de Asís - Teléfono: 4228117 www.ieciudaddeasis.edu.co - E-Mail: [email_address] Puerto Asís, Putumayo
  • 2. REACCIONES QUÍMICAS Cambios físicos Cambios Químicos TRANSFORMACIÓN SUSTANCIAS PURAS No implican cambio de composición Ej Cambio de fase Para llegar a establecer la forma de medir la materia y las relaciones que existen entre reactivos y productos, se aplicó de manera intuitiva el método científico.
  • 3. Hasta finales del XVIII y principios del XIX no se sabía casi nada acerca de la composición de la materia y lo que sucedía cuando reaccionaban. Precisamente en esta época se empiezan a enunciar algunas leyes básicas sobre las transformaciones de la materia que culminan con la Teoría Atómica de Dalton Estas leyes enunciadas por orden cronológico pueden resumirse así:
  • 4. 1789. Ley de Lavoisier de la conservación de la masa. Lavoisier comprobó que en cualquier reacción química, 1. LEYES PONDERALES. la suma de las masas de los productos que reaccionan la suma de las masas de los productos obtenidos Esto significa que: =
  • 5. En una reacción química, la materia no se crea ni se destruye, tan sólo se transforma. Por ejemplo, si 10 gramos de A se combinan con 20 gramos de B, se obtienen 30 gramos de A B. Antoine Lavoisier: 1734-1794
  • 6. 1799. Ley de Proust de las proporciones definidas. Afirma que: Cuando dos elementos se combinan para formar un compuesto, lo hacen siempre en proporciones de peso fijas y definidas . Joseph Louis Proust, (1754-1826)
  • 7. Proust vino a nuestro país a impartir clases de química, en Segovia y Madrid. el amoniaco siempre tendrá Así, por ejemplo, un 82.25 % de nitrógeno y un 17,25 % de hidrógeno sea cual sea el método empleado para obtenerlo. La ley de las proporciones definidas constituyó una poderosa arma para los químicos en la búsqueda de la composición.
  • 8. La ley de Proust no impide que dos o más elementos se unan en varias proporciones para formar varios compuestos
  • 9. 1805. Ley de Dalton de las proporciones múltiples. Cuando dos elementos se combinan para dar más de un compuesto, los pesos de un elemento que se combinan con una cantidad fija del otro, guardan entre si una relación numérica sencilla. Dalton 1766-1844
  • 10. 1805. Ley de Dalton de las proporciones múltiples. agua y peróxido de hidrógeno ambas formadas por los elementos hidrógeno y oxígeno al formar agua: 8.0 g de oxígeno reaccionan con 1.0 g de hidrógeno en el peróxido de hidrógeno, hay 16.0 g de oxígeno por cada 1.0 g de hidrógeno la proporción de la masa de oxígeno por gramo de hidrógeno entre los dos compuestos es de 2:1 Usando la teoría atómica, podemos llegar a la conclusión de que el peróxido de hidrógeno contiene dos veces más átomos de oxígeno por átomo de hidrógeno que el agua.
  • 11. LOS FILÓSOFOS GRIEGOS SE PREGUNTABAN: ¿Es posible dividir la materia en pedazos cada vez más pequeños, o hay un punto en el que no se puede dividir más? Platón y Aristóteles “ La materia es infinitamente divisible” “ La materia se compone de pequeñas partículas indivisibles “ A esas partículas las llamó ATOMOS FALSO Cierto: Dalton 2000 años después Demócrito
  • 12. TEORÍA ATÓMICA DE DALTON 1808 John Dalton enunció en su famosa teoría atómica basada en las relaciones ponderales antes mencionadas y puede resumirse en los siguientes puntos: 1.- La materia está compuesta por partículas indivisibles, extremadamente pequeñas, denominadas atomos . Dalton 1766-1844
  • 13. TEORÍA ATÓMICA DE DALTON 1808 2.- Hay diferentes clases de átomos. Cada clase posee su tamaño y propiedades características. 3.- Cada clase de átomos corresponde a un elemento distinto. Todos los átomos de un elemento dado son idénticos.
  • 14. TEORÍA ATÓMICA DE DALTON 1808 4.- Los compuestos químicos puros están constituidos por átomos de distintos elementos combinados entre sí, mediante relaciones sencillas. 5.- Las reacciones químicas consisten en la combinación, separación o reordenación de los átomos. Los átomos permanecen inalterados en cualquier transformación.
  • 15. Símbolos y fórmulas. A cada una de las clases de átomos de la teoría de Dalton se le asignó un símbolo, con diferentes orígenes: proceden del latín símbolos relacionados con el nombre de un país nitrógeno N hidrógeno H carbono C ferrum, hierro Fe aurum, oro Au natrium sodio Na kalium, potasio K francio Fr germanio Ge polonio Po
  • 17. Estequiometría Stoecheion Elemento Metron Medida
  • 18. Cálculos estequiométricos cantidades de sustancia que reaccionan Los símbolos y las fórmulas sirven al químico para poder esquematizar una reacción química. cantidades de sustancia que se producen 2 moléculas de hidrógeno Reaccionan con 1 molécula de oxígeno Para dar 2 moléculas de agua 2H 2 + O 2 2H 2 O reactivos productos
  • 19. AJUSTE, IGUALACIÓN O “BALANCEO” DE REACCIONES. En una reacción ni se crean ni se destruyen átomos: números de cada elemento a cada lado de la “flecha”tienen que ser iguales. Si se satisface esta condición se dice que la ecuación está AJUSTADA. Nunca deben modificarse los subíndices al ajustar una reacción. 1º.- se ajustan los elementos que están en una sola molécula en cada miembro de la reacción. 2 2 C H 2º.- Para completar el ajuste, necesitamos poner un 2 delante del O 2 CH 4 + O 2 CO 2 + H 2 O
  • 20. Usamos los símbolos (g), (l), (s) y (ac) Para gas, líquido, sólido y disolución acuosa. Cuando se forma un sólido como producto se usa una flecha hacia abajo , para indicar que precipita.
  • 21. CÁLCULOS CON FÓRMULAS Y ECUACIONES QUÍMICAS El concepto de mol nos permite aprovechar a nivel macroscópico práctico la información cuantitativa contenida en una reacción química ajustada. Normalmente no tendremos los datos de las cantidades de reactivos en moles. Si por ejemplo tenemos los datos en gramos: Gramos de reactivo Moles de reactivo Ecuación ajustada Moles de producto /Pm reactivo x Pm Producto Gramos de producto
  • 22. Conocida la masa de un reactivo o de un producto, pueden calcularse el resto de las masas que intervienen en la reacción Ejemplo : En la descomposición del clorato de potasio se obtiene cloruro de potasio y oxígeno ¿Cuántos gramos de oxígeno se obtienen a partir de 1 kg de clorato? KClO 3 + KCl 3/2 O 2 1 mol de KCl 3/2 mol de O 2 1 mol de KClO 3 74,45 g de KCl 48 g de O 2 122,45 g de KClO 3 X g de O 2 1000 g de KClO 3 = X = = 587,45 g de O 2 CÁLCULOS CON MASAS 122,45 g de KClO 3 48 g O 2 1000 g de KClO 3 X g O 2 1000 · 72 122,45
  • 23. Si existen reactivos con impurezas, es necesario determinar primero las cantidades existentes de sustancia pura Ejemplo: Se hacen reaccionar 22,75 g de Zn que contiene un 7,25 % de impurezas con HCl suficiente. Calcula la masa de H 2 desprendida. Dato : masa atómica del Zn = 65,38 X = 21,1 g de Zn REACTIVOS CON IMPUREZAS Y = 0,645 g de H 2 Por cada mol de Zn se obtiene 1 mol de H 2 2 HCl + Zn ZnCl 2 + H 2 100 g de muestra (100 – 7,25) g de Zn = 22,75 g X 65,38 g de Zn 2 g de H 2 = 21,1 g de Zn Y
  • 25. En una reacción química, los reactivos pueden estar o no en la proporción exacta que determinan sus coeficientes estequiométricos. Ejemplo: tenemos 10 moles de H 2 y 7 moles de O 2 para formar agua. Reactivo limitante : se consume por completo y limita la cantidad de producto que se forma En este caso el reactivo limitante es el H 2 2H 2 (g) + O 2 (g) 2H 2 O(l)
  • 26. En una reacción química sólo se gasta completamente el reactivo limitante. Los reactivos en exceso no se agotan completamente 2 moles de CO 2 moles de O 2 0 moles de O 2 Antes de la reacción 0 moles de CO 1 mol de O 2 2 moles de O 2 Después de la reacción
  • 27. CÁLCULOS CON REACTIVO LIMITANTE. Generalmente es necesario preparar cantidades determinadas de productos a partir de cantidades de reactivos que no son estequiométricamente exactas se consume completamente queda parte sin reaccionar El reactivo limitante reacciona solamente con la cantidad adecuada de la otra sustancia hasta que se acaba y de la que se encuentra en exceso queda parte sin reaccionar Ejemplo : Si reaccionan 7 g de Fe (56 u) con 8 g de S (32 u) para formar FeS ¿cuál es el reactivo limitante y cuál el excedente? Fe + S FeS 1 mol de S 1 mol de FeS 1 mol de Fe 32 g de S 88 g de FeS 56 g de Fe X g de S 7 g de Fe reactivo limitante: reactivo en exceso: Fe S
  • 29. RENDIMIENTO TEÓRICO: Cantidad de producto que, según los cálculos, se forma cuando reacciona todo el reactivo limitante RENDIMIENTO REAL: Cantidad de producto que realmente se forma en la reacción. ¿Porqué difieren? - No reacciona todo el reactivo - El reactivo está hidratado - Se den reacciones secundarias no deseadas Rendimiento real Rendimiento teórico x 100 = % RENDIMIENTO Rendimiento porcentual
  • 30. RENDIMIENTO DE LAS REACCIONES QUÍMICAS. En los procesos químicos no suele obtenerse el 100% de las cantidades previstas de las sustancias, debido a reacciones simultáneas no deseadas, impurezas de los reactivos, escapes en los hornos, etc. El rendimiento de las reacciones es un factor fundamental en la industria química rendimiento = masa obtenida masa teórica x 100 hay que calcular el RENDIMIENTO de las reacciones químicas
  • 31.