SlideShare une entreprise Scribd logo
1  sur  5
TARUNGEHLOTS
                                   Linear Conformal Mapping
The goal of this exercise is to derive a linear transformation from one two-dimensional Euclidean
space to another, given a set of points that are supposed to correspond. The transformation can
involve a change of scale (e.g. dilation or compression) but must otherwise be rigid. In
particular, it must be conformal (i. e. angles and shapes are preserved).
The linear transformation that describes this mapping is
 ui           a          b xi         c
 vi           pb        pa yi         d

where the xi ’s, yi ’s, ui ’s, and vi ’s are known points that are used to calibrate the
transformation and p is a “parity parameter” that specifies whether the handedness of the x-y
coordinate system is the same (1) or opposite (-1) the handedness of the u-v coordinate system.
We will find the values of the unknown transformation parameters a , b , c , and d that
minimizes the value of the following quantity:
                                      2                                   2
Q             axi byi c ui                 pbxi         pay d vi
                                                           i
      i

This is an elementary least-squares technique. We set the derivatives of Q with respect to all
transformation parameters a , b , c , and d to zero:
 Q
          2        axi     byi      c ui xi       bxi       ayi     pd    pvi yi       0
 a            i

 Q
          2          axi     byi     c ui yi          bxi     ayi    pd       pvi xi       0
 b            i

 Q
          2       axi     byi      c ui       0
 c            i

 Q
          2        pbxi     pay i     d   vi      0
 d            i

We then write these equations in matrix form:
x2 y2                    0                      x     p     y a       ux p vy
                             2         2
     0                   x         y                 y    p     x b        uy p vx
       x                          y             n             0   c           u
    p y                 p         x             0             n   d           v

where n is the number of data points. From the last two rows of the matrix equation it follows
that
c u        ax by
d   v      pay    pbx

where it is useful to note that p 2                  1. Substituting c and d into the first two rows of the matrix
equation gives
a     x2    y2      u     ax by                x     pv       ay bx   y     ux p      vy
b     x2    y2      u    ax by                 y     pv       ay bx   x       uy p      vx
Dividing by n and solving for a and b gives
    ux u x    pvy pv y
a
              D
        uy u y pvx pv x
b
              D
where D      x2     y2           x2        y 2 . Numerical error is best if these quantities are evaluated as

D    ( x x )2      (y    y )2
    (u u )( x x )          p(v v )( y y )
a
                          D
        (u u )( y       y ) p(v v )( x x )
b
                           D
c and d can then be evaluated as above.

Parity Determination
It is possible to determine whether p is 1 or –1 a priori, without knowing it in advance, by
finding which possible value of p leads to the smaller value of Q . We begin this process by
substituting the expressions for c and d into the expression for Q . The result is
2                                                  2
Q           a( xi   x ) b( yi          y ) (ui         u)           pb( xi     x)     pa( yi   y ) (vi       v)
      i

Q
     (a 2    b 2 ) D (u u ) 2               (v v ) 2
n
     2a      (u u )( x x )             p(v v )( y              y)   2b (u u )( y         y)    p(v v )( x x )
     (a 2    b 2 ) D (u u ) 2               (v v ) 2       2a 2 D 2b 2 D
     (u u ) 2       (v v ) 2         (a 2     b2 ) D
We now substitute into this the expressions for a and b :
Q
     (u u ) 2       (v v ) 2
n
                           2                           2
      (u u )( x       x)        (v v )( y         y)           2 p (u u )( x        x ) (v v )( y    y)
                                                           D
                           2                           2
      (u u )( y       y)        (v v )( x         x)           2 p(u u )( y         y ) (v v )( x    x)
                                                           D
                                                                      Q
We now define Q and Q to be the value of                                D for p          1 and p          1, respectively. Then
                                                                      n
Q    Q       4(u u )( x             x ) (v v )( y          y ) 4(u u )( y            y ) (v v )( x    x ))

If Q Q        0 , then p              1 leads to the lower value of Q . If Q                    Q         0 , then p          1 leads to
the lower value of Q .

Error Estimation
If we want to know the error in estimating the transformation parameters a and b , we must look
upon them as statistics, i.e. functions of random variables that represent a sample from a
population. We will consider the ui ’s, and vi ’s to represent this sample, while the xi ’s, yi ’s are
not random variables; they are fixed values given to us and we are not interested in modeling
their distributions. In other words, we are doing regression analysis, not correlation analysis.
In the language of random variables,
    (u u )( x x )         p(v v )( y y )
ˆ
a
                        D
ˆ     (u u )( y        y ) p(v v )( x x )
b
                          D
                          ˆ           ˆ
It is easily shown that E(a) a and E (b )                                              ˆ
                                                                    b . We can rewrite a as

    u( x     x) u(x            x)     pv ( y     y)        pv ( y     y)
ˆ
a
                                      D
Since u and v are constants with respect to averages over data points and x                                           x   y    y   0,
u( x           x)           pv ( y                   y)
ˆ
a
                                   D
By analogous reasoning,

ˆ         u( y                 y ) pv ( x                        x)
b
                                  D
We now have
                   1
                       var(u)( x                            x )2            1
                                                                                var(v )( y   y )2        2 p 1 cov( u, v )( x     x )( y   y)
    ˆ
var(a )            n                                                        n                                n
                                                                                             D2
                           2                                           2
                       u       (x           x )2                 v         (y     y )2 2 p     uv   (x      x )( y   y)
                                                                                  nD 2
Analogously,
                           2                                           2
    ˆ                  u       (y           y )2                   v       (x     x )2 2 p     uv   (x     x )( y    y)
var(b)
                                                                                  nD 2
                                       2                2
                           (                                )( x           x )( y     y) p           (x      x )2    (y    y )2
    ˆ ˆ
cov(a , b)                         v                u                                           uv
                                                                                       nD 2
For given values of u and v (not coming from the data used to find the transformation), we wish
to find the variance of a “conditional probability distribution” of the values of x and y that
could have yielded the observed values of u and v . To do so, we will make use of the following
“chain rule of variances”, which makes a linear approximation of f over the variance of each of
its random variable arguments:
var(f ( x1 , x2 ,, xn ))                                                 fi ( x1,, xn ) f j ( x1,, xn ) cov(xi , x j )
                                                                 ij


where x1,, xn are observed values for x1 ,, xn .
We write the inverse transformation:
    x              1                       a            pb u c
               2               2
    y     a            b                    b           pa v d
Substituting the values of c and d and performing some simple algebraic rearrangements
yields:
    x      x                           1                    a              pb u u
                                   2            2
    y      y                   a            b                b             pa v v
Before proceeding, it is useful to note the following lemmas:
x   (a 2     b 2 )(u u ) 2a[a(u u )                       pb (v v )]
 a                       (a 2 b 2 ) 2
     (a 2    b 2 )(u u ) 2a(a 2 b 2 )[ x                     x]
                     (a 2 b 2 ) 2
     a ( x x ) b( y y ) 2a ( x x )
                    a 2 b2
        a ( x x ) b( y y )
              a 2 b2
Analogously,
 x     b( x    x ) a( y y )
 b           a 2 b2
 y   b( x x ) a ( y y )
 a          a 2 b2
 y     a ( x x ) b( y y )
 b           a 2 b2
We now apply the “chain rule of variances” to x and y as functions of a , b , u , v , u , and v :

            a 2 (var(u) var(u )) b 2 (var(v ) var(v )) 2abp(cov( , v ) cov( , v ))
                                                               u          u
var(x )                                      2  2 2
                                            (a b )
                     2                              2
                x                           x                      x x
                         var(a )                        var(b) 2       cov( , b)
                                                                          a
                a                           b                      a b
                                 2              2                           2                 2
                    1 a2     u        b2    v      2abp       uv        x                 x                  x x
            1                                                                   var(a )           var(b) 2       cov( , b)
                                                                                                                    a
                    n                (a 2        2 2
                                                b )                     a                 b                  a b
            b 2 (var(u) var(u )) a 2 (var(v ) var(v )) 2abp(cov( , v ) cov( , v ))
                                                               u          u
var(y )                                      2  2 2
                                            (a b )
                     2                              2
                y                           y                      y y
                         var(a )                        var(b) 2       cov( , b)
                                                                          a
                a                           b                      a b
                                 2              2                           2                 2
                    1 b2     u        a2    v      2abp       uv        y                 y                  y y
            1                                                                   var(a )           var(b) 2       cov( , b)
                                                                                                                    a
                    n                (a 2        2 2
                                                b )                     a                 b                  a b

Contenu connexe

Tendances

12 X1 T07 01 V And A In Terms Of X
12 X1 T07 01 V And A In Terms Of X12 X1 T07 01 V And A In Terms Of X
12 X1 T07 01 V And A In Terms Of XNigel Simmons
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in indiaEdhole.com
 
Beam theory
Beam theoryBeam theory
Beam theorybissla19
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Kuan-Lun Wang
 
Lesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsLesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsMatthew Leingang
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integralsTarun Gehlot
 
Week 7 [compatibility mode]
Week 7 [compatibility mode]Week 7 [compatibility mode]
Week 7 [compatibility mode]Hazrul156
 
14257017 metode-frobenius (1)
14257017 metode-frobenius (1)14257017 metode-frobenius (1)
14257017 metode-frobenius (1)Sanre Tambunan
 
Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles SlidesMatthew Leingang
 
Matematika Ekonomi Diferensiasi fungsi sederhana
Matematika Ekonomi Diferensiasi fungsi sederhanaMatematika Ekonomi Diferensiasi fungsi sederhana
Matematika Ekonomi Diferensiasi fungsi sederhanalia170494
 
Meanshift Tracking Presentation
Meanshift Tracking PresentationMeanshift Tracking Presentation
Meanshift Tracking Presentationsandtouch
 
Lecture 2: linear SVM in the dual
Lecture 2: linear SVM in the dualLecture 2: linear SVM in the dual
Lecture 2: linear SVM in the dualStéphane Canu
 
fauvel_igarss.pdf
fauvel_igarss.pdffauvel_igarss.pdf
fauvel_igarss.pdfgrssieee
 

Tendances (17)

12 X1 T07 01 V And A In Terms Of X
12 X1 T07 01 V And A In Terms Of X12 X1 T07 01 V And A In Terms Of X
12 X1 T07 01 V And A In Terms Of X
 
1008 ch 10 day 8
1008 ch 10 day 81008 ch 10 day 8
1008 ch 10 day 8
 
Caims 2009
Caims 2009Caims 2009
Caims 2009
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in india
 
Beam theory
Beam theoryBeam theory
Beam theory
 
Lap lace
Lap laceLap lace
Lap lace
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
 
Lesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsLesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General Regions
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integrals
 
Week 7 [compatibility mode]
Week 7 [compatibility mode]Week 7 [compatibility mode]
Week 7 [compatibility mode]
 
14257017 metode-frobenius (1)
14257017 metode-frobenius (1)14257017 metode-frobenius (1)
14257017 metode-frobenius (1)
 
Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles Slides
 
Matematika Ekonomi Diferensiasi fungsi sederhana
Matematika Ekonomi Diferensiasi fungsi sederhanaMatematika Ekonomi Diferensiasi fungsi sederhana
Matematika Ekonomi Diferensiasi fungsi sederhana
 
Meanshift Tracking Presentation
Meanshift Tracking PresentationMeanshift Tracking Presentation
Meanshift Tracking Presentation
 
Lecture 2: linear SVM in the dual
Lecture 2: linear SVM in the dualLecture 2: linear SVM in the dual
Lecture 2: linear SVM in the dual
 
fauvel_igarss.pdf
fauvel_igarss.pdffauvel_igarss.pdf
fauvel_igarss.pdf
 
Sect1 5
Sect1 5Sect1 5
Sect1 5
 

Similaire à Linear conformal mapping

Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integralsTarun Gehlot
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equationsAhmed Haider
 
Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Septiko Aji
 
Amity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notesAmity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notesAlbert Jose
 
Basic differential equations in fluid mechanics
Basic differential equations in fluid mechanicsBasic differential equations in fluid mechanics
Basic differential equations in fluid mechanicsTarun Gehlot
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)Nigel Simmons
 
Deflection 2
Deflection 2Deflection 2
Deflection 2anashalim
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 
GATE Mathematics Paper-2000
GATE Mathematics Paper-2000GATE Mathematics Paper-2000
GATE Mathematics Paper-2000Dips Academy
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...Alexander Litvinenko
 
Dijkstra's Algorithm
Dijkstra's AlgorithmDijkstra's Algorithm
Dijkstra's Algorithmguest862df4e
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)Nigel Simmons
 
Non-sampling functional approximation of linear and non-linear Bayesian Update
Non-sampling functional approximation of linear and non-linear Bayesian UpdateNon-sampling functional approximation of linear and non-linear Bayesian Update
Non-sampling functional approximation of linear and non-linear Bayesian UpdateAlexander Litvinenko
 
Strum Liouville Problems in Eigenvalues and Eigenfunctions
Strum Liouville Problems in Eigenvalues and EigenfunctionsStrum Liouville Problems in Eigenvalues and Eigenfunctions
Strum Liouville Problems in Eigenvalues and Eigenfunctionsijtsrd
 

Similaire à Linear conformal mapping (20)

Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integrals
 
Normal
NormalNormal
Normal
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
 
Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)
 
Em10 fl
Em10 flEm10 fl
Em10 fl
 
Amity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notesAmity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notes
 
Basic differential equations in fluid mechanics
Basic differential equations in fluid mechanicsBasic differential equations in fluid mechanics
Basic differential equations in fluid mechanics
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)
 
Deflection 2
Deflection 2Deflection 2
Deflection 2
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
GATE Mathematics Paper-2000
GATE Mathematics Paper-2000GATE Mathematics Paper-2000
GATE Mathematics Paper-2000
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
cswiercz-general-presentation
cswiercz-general-presentationcswiercz-general-presentation
cswiercz-general-presentation
 
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
 
Dijkstra's Algorithm
Dijkstra's AlgorithmDijkstra's Algorithm
Dijkstra's Algorithm
 
Dijkstra
DijkstraDijkstra
Dijkstra
 
Dijkstra
DijkstraDijkstra
Dijkstra
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)
 
Non-sampling functional approximation of linear and non-linear Bayesian Update
Non-sampling functional approximation of linear and non-linear Bayesian UpdateNon-sampling functional approximation of linear and non-linear Bayesian Update
Non-sampling functional approximation of linear and non-linear Bayesian Update
 
Strum Liouville Problems in Eigenvalues and Eigenfunctions
Strum Liouville Problems in Eigenvalues and EigenfunctionsStrum Liouville Problems in Eigenvalues and Eigenfunctions
Strum Liouville Problems in Eigenvalues and Eigenfunctions
 

Plus de Tarun Gehlot

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228Tarun Gehlot
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behaviorTarun Gehlot
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)Tarun Gehlot
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error methodTarun Gehlot
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysisTarun Gehlot
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functionsTarun Gehlot
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problemsTarun Gehlot
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statisticsTarun Gehlot
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlabTarun Gehlot
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentialsTarun Gehlot
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximationTarun Gehlot
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functionsTarun Gehlot
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-trianglesTarun Gehlot
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadraturesTarun Gehlot
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theoryTarun Gehlot
 
Numerical integration
Numerical integrationNumerical integration
Numerical integrationTarun Gehlot
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theoryTarun Gehlot
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functionsTarun Gehlot
 

Plus de Tarun Gehlot (20)

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228
 
Binary relations
Binary relationsBinary relations
Binary relations
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behavior
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error method
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
 
Matlab commands
Matlab commandsMatlab commands
Matlab commands
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-triangles
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theory
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functions
 

Linear conformal mapping

  • 1. TARUNGEHLOTS Linear Conformal Mapping The goal of this exercise is to derive a linear transformation from one two-dimensional Euclidean space to another, given a set of points that are supposed to correspond. The transformation can involve a change of scale (e.g. dilation or compression) but must otherwise be rigid. In particular, it must be conformal (i. e. angles and shapes are preserved). The linear transformation that describes this mapping is ui a b xi c vi pb pa yi d where the xi ’s, yi ’s, ui ’s, and vi ’s are known points that are used to calibrate the transformation and p is a “parity parameter” that specifies whether the handedness of the x-y coordinate system is the same (1) or opposite (-1) the handedness of the u-v coordinate system. We will find the values of the unknown transformation parameters a , b , c , and d that minimizes the value of the following quantity: 2 2 Q axi byi c ui pbxi pay d vi i i This is an elementary least-squares technique. We set the derivatives of Q with respect to all transformation parameters a , b , c , and d to zero: Q 2 axi byi c ui xi bxi ayi pd pvi yi 0 a i Q 2 axi byi c ui yi bxi ayi pd pvi xi 0 b i Q 2 axi byi c ui 0 c i Q 2 pbxi pay i d vi 0 d i We then write these equations in matrix form:
  • 2. x2 y2 0 x p y a ux p vy 2 2 0 x y y p x b uy p vx x y n 0 c u p y p x 0 n d v where n is the number of data points. From the last two rows of the matrix equation it follows that c u ax by d v pay pbx where it is useful to note that p 2 1. Substituting c and d into the first two rows of the matrix equation gives a x2 y2 u ax by x pv ay bx y ux p vy b x2 y2 u ax by y pv ay bx x uy p vx Dividing by n and solving for a and b gives ux u x pvy pv y a D uy u y pvx pv x b D where D x2 y2 x2 y 2 . Numerical error is best if these quantities are evaluated as D ( x x )2 (y y )2 (u u )( x x ) p(v v )( y y ) a D (u u )( y y ) p(v v )( x x ) b D c and d can then be evaluated as above. Parity Determination It is possible to determine whether p is 1 or –1 a priori, without knowing it in advance, by finding which possible value of p leads to the smaller value of Q . We begin this process by substituting the expressions for c and d into the expression for Q . The result is
  • 3. 2 2 Q a( xi x ) b( yi y ) (ui u) pb( xi x) pa( yi y ) (vi v) i Q (a 2 b 2 ) D (u u ) 2 (v v ) 2 n 2a (u u )( x x ) p(v v )( y y) 2b (u u )( y y) p(v v )( x x ) (a 2 b 2 ) D (u u ) 2 (v v ) 2 2a 2 D 2b 2 D (u u ) 2 (v v ) 2 (a 2 b2 ) D We now substitute into this the expressions for a and b : Q (u u ) 2 (v v ) 2 n 2 2 (u u )( x x) (v v )( y y) 2 p (u u )( x x ) (v v )( y y) D 2 2 (u u )( y y) (v v )( x x) 2 p(u u )( y y ) (v v )( x x) D Q We now define Q and Q to be the value of D for p 1 and p 1, respectively. Then n Q Q 4(u u )( x x ) (v v )( y y ) 4(u u )( y y ) (v v )( x x )) If Q Q 0 , then p 1 leads to the lower value of Q . If Q Q 0 , then p 1 leads to the lower value of Q . Error Estimation If we want to know the error in estimating the transformation parameters a and b , we must look upon them as statistics, i.e. functions of random variables that represent a sample from a population. We will consider the ui ’s, and vi ’s to represent this sample, while the xi ’s, yi ’s are not random variables; they are fixed values given to us and we are not interested in modeling their distributions. In other words, we are doing regression analysis, not correlation analysis. In the language of random variables, (u u )( x x ) p(v v )( y y ) ˆ a D ˆ (u u )( y y ) p(v v )( x x ) b D ˆ ˆ It is easily shown that E(a) a and E (b ) ˆ b . We can rewrite a as u( x x) u(x x) pv ( y y) pv ( y y) ˆ a D Since u and v are constants with respect to averages over data points and x x y y 0,
  • 4. u( x x) pv ( y y) ˆ a D By analogous reasoning, ˆ u( y y ) pv ( x x) b D We now have 1 var(u)( x x )2 1 var(v )( y y )2 2 p 1 cov( u, v )( x x )( y y) ˆ var(a ) n n n D2 2 2 u (x x )2 v (y y )2 2 p uv (x x )( y y) nD 2 Analogously, 2 2 ˆ u (y y )2 v (x x )2 2 p uv (x x )( y y) var(b) nD 2 2 2 ( )( x x )( y y) p (x x )2 (y y )2 ˆ ˆ cov(a , b) v u uv nD 2 For given values of u and v (not coming from the data used to find the transformation), we wish to find the variance of a “conditional probability distribution” of the values of x and y that could have yielded the observed values of u and v . To do so, we will make use of the following “chain rule of variances”, which makes a linear approximation of f over the variance of each of its random variable arguments: var(f ( x1 , x2 ,, xn ))  fi ( x1,, xn ) f j ( x1,, xn ) cov(xi , x j ) ij where x1,, xn are observed values for x1 ,, xn . We write the inverse transformation: x 1 a pb u c 2 2 y a b b pa v d Substituting the values of c and d and performing some simple algebraic rearrangements yields: x x 1 a pb u u 2 2 y y a b b pa v v Before proceeding, it is useful to note the following lemmas:
  • 5. x (a 2 b 2 )(u u ) 2a[a(u u ) pb (v v )] a (a 2 b 2 ) 2 (a 2 b 2 )(u u ) 2a(a 2 b 2 )[ x x] (a 2 b 2 ) 2 a ( x x ) b( y y ) 2a ( x x ) a 2 b2 a ( x x ) b( y y ) a 2 b2 Analogously, x b( x x ) a( y y ) b a 2 b2 y b( x x ) a ( y y ) a a 2 b2 y a ( x x ) b( y y ) b a 2 b2 We now apply the “chain rule of variances” to x and y as functions of a , b , u , v , u , and v : a 2 (var(u) var(u )) b 2 (var(v ) var(v )) 2abp(cov( , v ) cov( , v )) u u var(x )  2 2 2 (a b ) 2 2 x x x x var(a ) var(b) 2 cov( , b) a a b a b 2 2 2 2 1 a2 u b2 v 2abp uv x x x x 1 var(a ) var(b) 2 cov( , b) a n (a 2 2 2 b ) a b a b b 2 (var(u) var(u )) a 2 (var(v ) var(v )) 2abp(cov( , v ) cov( , v )) u u var(y )  2 2 2 (a b ) 2 2 y y y y var(a ) var(b) 2 cov( , b) a a b a b 2 2 2 2 1 b2 u a2 v 2abp uv y y y y 1 var(a ) var(b) 2 cov( , b) a n (a 2 2 2 b ) a b a b