SlideShare une entreprise Scribd logo
1  sur  12
Galvanic Anode CP System Design
• Galvanic anodes are an important and useful means of Cathodic protection to
underground storage tanks, pipelines and other buried or submerged metallic
structures.
• The principle of protection is that one metal (active) more negative in emf series
get consumed or sacrificed while providing protection to less negative noble metal
provided they share same electrolyte and are electrically in contact with each other.
• The electrochemical reaction provides the protective current eliminating the need
of power source.
• Installation and maintenance cost is low.
• Efficient and non interfering because of relatively low current and well distributed
output is maintained and hence no interferences result.
• The small potential difference or driving potential results in a very low current
which severely limits its use in large structures and poorly coated structures.
Characteristic H1 Alloy AZ- 63
Mg Alloy
Hi Pot Mg Alloy Hi Purity Zn Alloy
Soln pot to cu-cuso4
cell
-1.55 -1.80 -1.10
Faradic
consumption rate
8.8 8.8 23.5
Current efficiency 25-50 50 90
Actual amp hrs/lb 250-500 500 360
Actual lb /amp/ year 35-17.5 17.5 26.0
Available Anode Materials: The most commonly used materials for galvanic
anodes on buried structures are alloys of Magnesium and zinc.
Common Alloy Specification
Shapes, Sizes and backfill: Galvanic anodes are offered in variety of standard
shapes and sizes and may also be ordered in custom Sizes.
• The use of anode backfill accomplishes the following effects:
 Stabilizes anode potential.
 Prevents anode Polarization and enhancing current maintenance.
 lowers anode-earth resistance increasing current output.
 Reduces self corrosion of anode by promoting a uniform corrosion attack and there by
improving efficiency.
• The most commonly used anode backfill mixture is 75% gypsum, 20% bentonite clay,
5% sodium sulfate. This mixture is selected because of wide range of soils encountered, it
has shown best success to achieve desired characteristics.
Anode selection: The criteria of selection is one would expect, an analysis of
performance vs cost.
• The CP design parameters related to anode material performance are:
— design electrochemical capacity, ε (Ah /kg)
— design closed circuit anode potential, Eoa (V)
•The design electrochemical capacity, ε (Ah /kg), and design closed circuit anode
potential, Eoa (V) are used to calculate:
 the design anode current output and
 the required net anode mass using Ohm’s and Faraday’s laws, respectively.
Cost: The costs involved can be categorized as:
•Material costs: based on alloy, backfill and anode size. Generally heavier the anode lower
the cost per unit of mass. Also Efficient anode materials result in lower cost per ampere hr
of current delivered.
•Installation cost: depends upon number of anodes however it won’t vary greatly on per
anode basis regardless of alloy or size.
• Maintenance Cost: It is not considered in Galvanic Protection.
Design Calculations
Total anode resistance: The resistance R used in the Ohm’s law contains the
anode to electrolyte (Ra/e), structure to electrolyte (Rs/e), internal structure (Rs)
and cabling (Rc) resistances. The last three are normally negligible in a Offshore
sacrificial CP design and the remaining resistance, i.e. anode to electrolyte, is the
most if not the only significant one to define.
Long slender stand off (L > 4r)
Short slender stand off (L<4r)
Long flush mounted (L width and thickness)
Short flush mounted, bracelet and other flush mounted shapes
With:
ρ : Soil or Seawater resistivity (ohm cm)
L : Length of anode (cm)
r : Radius (cm)
A : Exposed anode surface area (cm2)
S : Arithmetic mean of anode length and width (cm)
Protection potential and anode current output:
To predict the current output of protective current from a sacrificial anode the voltage
between anode and cathode (driving voltage) is divided by the resistance of the anode to
the electrolyte.
The accepted criterion for protection of steel in aerated seawater is a polarized
potential more negative than –800 mV measured with respect to silver/silver
chloride/seawater reference electrode. And it is -850 mV with respect to Cu/Cuso4
electrode/soil reference electrode.
Therefore, for design purpose, the protection potential or cathode potential stated above
is used in the equation.
BS EN 13174:2001 states that the driving potential can be chosen from values ranging from
0.3 to 0.15 volts.
Current requirement and protection potential
The current demand required to protect the steel structure is determined by the
following formula:
I= ic * A* f
where
I : Current required in Amps
ic : Current density required in A/m2
A : Surface area to be protected m2
f : Coating breakdown factor
Anode mass requirements
The total net mass of sacrificial anode material is determined from the following
formula:
Where
Im : The maintenance current demand in Amps
t: Design life in years
u : Utilisation factor
e : Electrochemical capacity of anode material in Ah/Kg
And 8760 corresponds to the number of hours per year.
The anode current output is calculated for the initial and final projected life of the
cathodic protection system. In the latter case, the anodes have been assumed to be
consumed to their utilization factor. The final length and final mass are calculated
thanks to the following formulae
m(final) = m(initial) x (1-u)
where
m(final) : Final mass of anode (Kg)
m(initial) : Initial mass of anode (Kg)
u : Utilization factor generally 0.85 (85%)
Final checks
For final verification the anode current capacity is calculated and is defined as:
C = m x e x u
where
C : Anode current capacity (Ah)
m : Net per anode (Kg)
e : Electrochemical capacity of anode (Ah/Kg)
u : Utilisation factor
Anode dimensions and net weight are selected to match all requirements for current
output (initial and final) and current capacity for a specific number of anodes.
In addition, final calculations are carried out to demonstrate that the following
requirements are met:
where
n : Number of anodes
C : Current capacity(Ah)
t : Design life of CP system (years)
and
where
n : Number of anodes
I(ini/fin) : Initial or final anode current output (A)
Ic(ini/fin) : Initial or final current demand (A)
Galvanic cp design

Contenu connexe

Tendances

20392769 design-calculation-cathodic-protection-impressed-cureent-system
20392769 design-calculation-cathodic-protection-impressed-cureent-system20392769 design-calculation-cathodic-protection-impressed-cureent-system
20392769 design-calculation-cathodic-protection-impressed-cureent-system
Adeoye Okunoye
 
Piping material-specification
Piping material-specificationPiping material-specification
Piping material-specification
ChiragShah127
 
Aramco inspection handbook
Aramco inspection handbookAramco inspection handbook
Aramco inspection handbook
ram111eg
 
Cathodic Protection For Oil Wells
Cathodic Protection For Oil WellsCathodic Protection For Oil Wells
Cathodic Protection For Oil Wells
Abinash Padhy
 

Tendances (20)

Conquer Corrosion with Materials Selection | 2017 Offshore Europe Cinema Semi...
Conquer Corrosion with Materials Selection | 2017 Offshore Europe Cinema Semi...Conquer Corrosion with Materials Selection | 2017 Offshore Europe Cinema Semi...
Conquer Corrosion with Materials Selection | 2017 Offshore Europe Cinema Semi...
 
Ppt arc welding (grp 6)
Ppt arc welding (grp 6)Ppt arc welding (grp 6)
Ppt arc welding (grp 6)
 
Cathodic protection fundamentals
Cathodic protection fundamentalsCathodic protection fundamentals
Cathodic protection fundamentals
 
Welding Defects.pdf
Welding Defects.pdfWelding Defects.pdf
Welding Defects.pdf
 
Asme section ii c new
Asme section ii c newAsme section ii c new
Asme section ii c new
 
20392769 design-calculation-cathodic-protection-impressed-cureent-system
20392769 design-calculation-cathodic-protection-impressed-cureent-system20392769 design-calculation-cathodic-protection-impressed-cureent-system
20392769 design-calculation-cathodic-protection-impressed-cureent-system
 
Radiographic interpretation
Radiographic interpretation Radiographic interpretation
Radiographic interpretation
 
ABB Laser Analyzers-r1
ABB Laser Analyzers-r1ABB Laser Analyzers-r1
ABB Laser Analyzers-r1
 
Anodic protection for corrosion prevention
Anodic protection for corrosion preventionAnodic protection for corrosion prevention
Anodic protection for corrosion prevention
 
Corrosion Prevention
Corrosion PreventionCorrosion Prevention
Corrosion Prevention
 
Weld Inspection - Non Destructive Test
Weld Inspection - Non Destructive TestWeld Inspection - Non Destructive Test
Weld Inspection - Non Destructive Test
 
Crystal structures in material science
Crystal structures in material scienceCrystal structures in material science
Crystal structures in material science
 
Rt acceptance criteria by zas
Rt acceptance  criteria by zasRt acceptance  criteria by zas
Rt acceptance criteria by zas
 
Piping material-specification
Piping material-specificationPiping material-specification
Piping material-specification
 
Corrosion
CorrosionCorrosion
Corrosion
 
Asme sec viii div 1 s
Asme sec viii div 1 sAsme sec viii div 1 s
Asme sec viii div 1 s
 
Aramco inspection handbook
Aramco inspection handbookAramco inspection handbook
Aramco inspection handbook
 
Cathodic protection
Cathodic protectionCathodic protection
Cathodic protection
 
Cathodic Protection For Oil Wells
Cathodic Protection For Oil WellsCathodic Protection For Oil Wells
Cathodic Protection For Oil Wells
 
Corrosion
CorrosionCorrosion
Corrosion
 

En vedette

Portfolio-LEGER -Modelisation3D
Portfolio-LEGER -Modelisation3DPortfolio-LEGER -Modelisation3D
Portfolio-LEGER -Modelisation3D
Hardeep Kaur
 
Impressed Current Cathodic Protection System Design ICCP
Impressed Current Cathodic Protection System Design ICCPImpressed Current Cathodic Protection System Design ICCP
Impressed Current Cathodic Protection System Design ICCP
Tauseef bin Abdul Rashid
 
WCM_PRESENTATION_Flange_Management_Rev4
WCM_PRESENTATION_Flange_Management_Rev4WCM_PRESENTATION_Flange_Management_Rev4
WCM_PRESENTATION_Flange_Management_Rev4
Afiman Abdul Rahman
 

En vedette (18)

Portfolio-LEGER -Modelisation3D
Portfolio-LEGER -Modelisation3DPortfolio-LEGER -Modelisation3D
Portfolio-LEGER -Modelisation3D
 
3 cp corrosion control
3 cp corrosion control3 cp corrosion control
3 cp corrosion control
 
Impressed Current Cathodic Protection System Design ICCP
Impressed Current Cathodic Protection System Design ICCPImpressed Current Cathodic Protection System Design ICCP
Impressed Current Cathodic Protection System Design ICCP
 
Corrosion arabic
Corrosion arabicCorrosion arabic
Corrosion arabic
 
Basics of corrosion_control
Basics of corrosion_controlBasics of corrosion_control
Basics of corrosion_control
 
Hazop gide line
Hazop gide lineHazop gide line
Hazop gide line
 
Cathodic Protection Technique to Control Galvanic Corrosion
Cathodic Protection Technique to Control Galvanic CorrosionCathodic Protection Technique to Control Galvanic Corrosion
Cathodic Protection Technique to Control Galvanic Corrosion
 
Swe cs external 25112013 services
Swe cs external 25112013   servicesSwe cs external 25112013   services
Swe cs external 25112013 services
 
Kurita handbook w ater treatment
Kurita handbook  w ater treatmentKurita handbook  w ater treatment
Kurita handbook w ater treatment
 
(cathodic protection)
(cathodic protection) (cathodic protection)
(cathodic protection)
 
WCM_PRESENTATION_Flange_Management_Rev4
WCM_PRESENTATION_Flange_Management_Rev4WCM_PRESENTATION_Flange_Management_Rev4
WCM_PRESENTATION_Flange_Management_Rev4
 
Galvanic anodes system design
Galvanic anodes system designGalvanic anodes system design
Galvanic anodes system design
 
1 Corrosion Control In Oil And Gas Industry
1  Corrosion Control In Oil And Gas Industry1  Corrosion Control In Oil And Gas Industry
1 Corrosion Control In Oil And Gas Industry
 
17767705 heat-treatment-oct08
17767705 heat-treatment-oct0817767705 heat-treatment-oct08
17767705 heat-treatment-oct08
 
Simuladores
SimuladoresSimuladores
Simuladores
 
Saudi aramco standards
Saudi aramco standardsSaudi aramco standards
Saudi aramco standards
 
Control of corrosion of underwater piles
Control of corrosion of underwater pilesControl of corrosion of underwater piles
Control of corrosion of underwater piles
 
ARMACO STANDARD
ARMACO STANDARDARMACO STANDARD
ARMACO STANDARD
 

Similaire à Galvanic cp design

CorrosionCathProtBasicDesignSATX
CorrosionCathProtBasicDesignSATXCorrosionCathProtBasicDesignSATX
CorrosionCathProtBasicDesignSATX
Stanley Worcester
 
Alumlytictrain6020
Alumlytictrain6020Alumlytictrain6020
Alumlytictrain6020
Fahe Em
 
Copper alloy conductors for overhead lines - CIGRÉ Regional South-East Europe...
Copper alloy conductors for overhead lines - CIGRÉ Regional South-East Europe...Copper alloy conductors for overhead lines - CIGRÉ Regional South-East Europe...
Copper alloy conductors for overhead lines - CIGRÉ Regional South-East Europe...
Leonardo ENERGY
 
Chapter 4 mechanical design of transmission lines
Chapter 4  mechanical design of transmission linesChapter 4  mechanical design of transmission lines
Chapter 4 mechanical design of transmission lines
firaoltemesgen1
 
Copper alloy conductors for overhead lines - Nordic Conference on Electricity...
Copper alloy conductors for overhead lines - Nordic Conference on Electricity...Copper alloy conductors for overhead lines - Nordic Conference on Electricity...
Copper alloy conductors for overhead lines - Nordic Conference on Electricity...
Leonardo ENERGY
 

Similaire à Galvanic cp design (20)

CorrosionCathProtBasicDesignSATX
CorrosionCathProtBasicDesignSATXCorrosionCathProtBasicDesignSATX
CorrosionCathProtBasicDesignSATX
 
64132673-Cathodic-Protection- diseños-Design.ppt
64132673-Cathodic-Protection- diseños-Design.ppt64132673-Cathodic-Protection- diseños-Design.ppt
64132673-Cathodic-Protection- diseños-Design.ppt
 
Alumlytictrain6020
Alumlytictrain6020Alumlytictrain6020
Alumlytictrain6020
 
CMOS Topic 4 -_the_wire
CMOS Topic 4 -_the_wireCMOS Topic 4 -_the_wire
CMOS Topic 4 -_the_wire
 
Marine cathodic protection.
Marine cathodic protection.Marine cathodic protection.
Marine cathodic protection.
 
Copper alloy conductors for overhead lines - CIGRÉ Regional South-East Europe...
Copper alloy conductors for overhead lines - CIGRÉ Regional South-East Europe...Copper alloy conductors for overhead lines - CIGRÉ Regional South-East Europe...
Copper alloy conductors for overhead lines - CIGRÉ Regional South-East Europe...
 
cathodic protection SYSTEME -190126162306.pdf
cathodic protection SYSTEME -190126162306.pdfcathodic protection SYSTEME -190126162306.pdf
cathodic protection SYSTEME -190126162306.pdf
 
Electronic passive components
Electronic passive componentsElectronic passive components
Electronic passive components
 
Chapter 4 mechanical design of transmission lines
Chapter 4  mechanical design of transmission linesChapter 4  mechanical design of transmission lines
Chapter 4 mechanical design of transmission lines
 
Lecture 1 resistors
Lecture  1  resistorsLecture  1  resistors
Lecture 1 resistors
 
New generation of copper conductors for overhead lines
New generation of copper conductors for overhead linesNew generation of copper conductors for overhead lines
New generation of copper conductors for overhead lines
 
New generation of copper conductors for overhead lines
New generation of copper conductors for overhead linesNew generation of copper conductors for overhead lines
New generation of copper conductors for overhead lines
 
Copper alloy conductors for overhead lines - Nordic Conference on Electricity...
Copper alloy conductors for overhead lines - Nordic Conference on Electricity...Copper alloy conductors for overhead lines - Nordic Conference on Electricity...
Copper alloy conductors for overhead lines - Nordic Conference on Electricity...
 
MC _ CP Rev.0.pdf
MC _ CP Rev.0.pdfMC _ CP Rev.0.pdf
MC _ CP Rev.0.pdf
 
Application in deep vertical groundbeds of linear flexible anodes
Application in deep vertical groundbeds of linear flexible anodesApplication in deep vertical groundbeds of linear flexible anodes
Application in deep vertical groundbeds of linear flexible anodes
 
Dog Conductor
Dog ConductorDog Conductor
Dog Conductor
 
Cp1
Cp1Cp1
Cp1
 
Cable Course.pptx
Cable Course.pptxCable Course.pptx
Cable Course.pptx
 
Cathodic Protection for Above Ground Storage Tanks (AGSTs)
Cathodic Protection for Above Ground Storage Tanks (AGSTs) Cathodic Protection for Above Ground Storage Tanks (AGSTs)
Cathodic Protection for Above Ground Storage Tanks (AGSTs)
 
Busbar Presentation2.pdf
Busbar Presentation2.pdfBusbar Presentation2.pdf
Busbar Presentation2.pdf
 

Dernier

VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 

Dernier (20)

VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 

Galvanic cp design

  • 1. Galvanic Anode CP System Design • Galvanic anodes are an important and useful means of Cathodic protection to underground storage tanks, pipelines and other buried or submerged metallic structures. • The principle of protection is that one metal (active) more negative in emf series get consumed or sacrificed while providing protection to less negative noble metal provided they share same electrolyte and are electrically in contact with each other. • The electrochemical reaction provides the protective current eliminating the need of power source. • Installation and maintenance cost is low. • Efficient and non interfering because of relatively low current and well distributed output is maintained and hence no interferences result. • The small potential difference or driving potential results in a very low current which severely limits its use in large structures and poorly coated structures.
  • 2. Characteristic H1 Alloy AZ- 63 Mg Alloy Hi Pot Mg Alloy Hi Purity Zn Alloy Soln pot to cu-cuso4 cell -1.55 -1.80 -1.10 Faradic consumption rate 8.8 8.8 23.5 Current efficiency 25-50 50 90 Actual amp hrs/lb 250-500 500 360 Actual lb /amp/ year 35-17.5 17.5 26.0 Available Anode Materials: The most commonly used materials for galvanic anodes on buried structures are alloys of Magnesium and zinc.
  • 4. Shapes, Sizes and backfill: Galvanic anodes are offered in variety of standard shapes and sizes and may also be ordered in custom Sizes. • The use of anode backfill accomplishes the following effects:  Stabilizes anode potential.  Prevents anode Polarization and enhancing current maintenance.  lowers anode-earth resistance increasing current output.  Reduces self corrosion of anode by promoting a uniform corrosion attack and there by improving efficiency. • The most commonly used anode backfill mixture is 75% gypsum, 20% bentonite clay, 5% sodium sulfate. This mixture is selected because of wide range of soils encountered, it has shown best success to achieve desired characteristics.
  • 5. Anode selection: The criteria of selection is one would expect, an analysis of performance vs cost. • The CP design parameters related to anode material performance are: — design electrochemical capacity, ε (Ah /kg) — design closed circuit anode potential, Eoa (V) •The design electrochemical capacity, ε (Ah /kg), and design closed circuit anode potential, Eoa (V) are used to calculate:  the design anode current output and  the required net anode mass using Ohm’s and Faraday’s laws, respectively. Cost: The costs involved can be categorized as: •Material costs: based on alloy, backfill and anode size. Generally heavier the anode lower the cost per unit of mass. Also Efficient anode materials result in lower cost per ampere hr of current delivered. •Installation cost: depends upon number of anodes however it won’t vary greatly on per anode basis regardless of alloy or size. • Maintenance Cost: It is not considered in Galvanic Protection.
  • 6. Design Calculations Total anode resistance: The resistance R used in the Ohm’s law contains the anode to electrolyte (Ra/e), structure to electrolyte (Rs/e), internal structure (Rs) and cabling (Rc) resistances. The last three are normally negligible in a Offshore sacrificial CP design and the remaining resistance, i.e. anode to electrolyte, is the most if not the only significant one to define. Long slender stand off (L > 4r) Short slender stand off (L<4r)
  • 7. Long flush mounted (L width and thickness) Short flush mounted, bracelet and other flush mounted shapes With: ρ : Soil or Seawater resistivity (ohm cm) L : Length of anode (cm) r : Radius (cm) A : Exposed anode surface area (cm2) S : Arithmetic mean of anode length and width (cm)
  • 8. Protection potential and anode current output: To predict the current output of protective current from a sacrificial anode the voltage between anode and cathode (driving voltage) is divided by the resistance of the anode to the electrolyte. The accepted criterion for protection of steel in aerated seawater is a polarized potential more negative than –800 mV measured with respect to silver/silver chloride/seawater reference electrode. And it is -850 mV with respect to Cu/Cuso4 electrode/soil reference electrode. Therefore, for design purpose, the protection potential or cathode potential stated above is used in the equation. BS EN 13174:2001 states that the driving potential can be chosen from values ranging from 0.3 to 0.15 volts.
  • 9. Current requirement and protection potential The current demand required to protect the steel structure is determined by the following formula: I= ic * A* f where I : Current required in Amps ic : Current density required in A/m2 A : Surface area to be protected m2 f : Coating breakdown factor Anode mass requirements The total net mass of sacrificial anode material is determined from the following formula: Where Im : The maintenance current demand in Amps t: Design life in years u : Utilisation factor e : Electrochemical capacity of anode material in Ah/Kg And 8760 corresponds to the number of hours per year.
  • 10. The anode current output is calculated for the initial and final projected life of the cathodic protection system. In the latter case, the anodes have been assumed to be consumed to their utilization factor. The final length and final mass are calculated thanks to the following formulae m(final) = m(initial) x (1-u) where m(final) : Final mass of anode (Kg) m(initial) : Initial mass of anode (Kg) u : Utilization factor generally 0.85 (85%) Final checks For final verification the anode current capacity is calculated and is defined as: C = m x e x u where C : Anode current capacity (Ah) m : Net per anode (Kg) e : Electrochemical capacity of anode (Ah/Kg) u : Utilisation factor Anode dimensions and net weight are selected to match all requirements for current output (initial and final) and current capacity for a specific number of anodes.
  • 11. In addition, final calculations are carried out to demonstrate that the following requirements are met: where n : Number of anodes C : Current capacity(Ah) t : Design life of CP system (years) and where n : Number of anodes I(ini/fin) : Initial or final anode current output (A) Ic(ini/fin) : Initial or final current demand (A)