SlideShare une entreprise Scribd logo
1  sur  62
T.chhay


                                      VII. tMNsamBaØ
                                    Simple Connections
7>1> esckþIepþIm Introduction
        kartP¢ab;rbs;eRKOgbgÁúMEdkCaEpñkmYyEdlmansarsMxan;bMput. kartP¢ab;EdlminmanlkçN³
minRKb;RKan; EdleKGaceGayeQμaHfa “weak link” enAkñúgeRKOgbgÁúM GacbegáItnUvkar)ak;CaeRcInkrNI.
kar)ak;rbs;Ggát;eRKOgbgÁúMKWkMrnwgekIteLIgNas; kar)ak;rbs;rcnasm<n§½PaKeRcInKWbNþalmkBIkar
KNnakartP¢ab; nigkarlMGitkartP¢ab;. bBaðaenHbNþalmkBIkarTTYlxusRtUvkñúgkarKNnakartP¢ab;.
kñúgkrNIxøH kartP¢ab;minRtUv)anKNnaedayvisVkrEdlKNnaGgát;rbs;eRKOgbgÁúMeT EtvaRtUv)anpþl;
eGayedayplitkrEdlpÁt;pÁg;sMPar³sMrab;KMerageTAvij. b:uEnþvisVkreRKOgbgÁúMEdlplitbøg;KNna Ca
GñkTTYlxusRtUvkñúgkarKNnaTaMgGs;rYmTaMgkartP¢ab;. kñúgkrNIEdltMNRtUv)anKNnaedayvisVkr
epSgeTot epSgBIvisVkrEdlKNnaGgát;eRKOgbgÁúM dUcenHeKRtUvkarvisVkrEdlmanCMnajc,as;las;kñúg
karKNnakartP¢ab;.




          eRKOgbgÁúMEdkTMenIbRtUv)antP¢ab;edaykarpSar nigedayb‘ULúg ¬ersIusþg;x<s; b¤Fmμta¦ b¤eday
bnSMénkartP¢ab;TaMgBIr. BIeBlmun kartP©ab;eFVIeLIgedaykarpSar b¤edayrIev. enAkñúgqñaM 1947
Research Council of Riveted and Bolted Structural Joints RtUv)anbegáIteLIg ehIy

Specification dMbUgrbs;vaRtUv)anecjpSayenAkñúgqñaM 1951. ÉksarenH)anGnuBaØateGayCMnYs

edayb‘ULúgersIusþg;x<s;sMrab;rIev. taMgBIeBlenaHmk b‘ULúgersIusþg;x<s;TTYl)anRbCaRbiyPaBy:ag
elOn ehIyeKk¾gakmkeRbIb‘ULúgersIsþg;x<s;enAkñúgsMNg;sIuvilvij. eKmanmUlehtuCaeRcInkñúgkar
pøas;bþÚrenH. kmμkrBInak;EdlKμanCMnajGactMeLIgb‘ULúgersIusþg;x<s;)an cMENkkartMeLIgrIevvij eKRtUv
karkmμkrEdlmanCMnajdl;eTAbYnnak;. elIsBIenHeTot vapþl;nUvsMelg nigeRKaHfñak;tictYckñúg
RbtibtþkarN_tP¢ab;rIev edaysarkarpþl;kMedAkñúgkartMeLIgrIev. b:uEnþkartP¢ab;edayrIevk¾enAEtmanerob
                                            230                                    tMNsamBaØ
T.chhay


rab;enAkñúg AISC Specfication nig Manual of steel construction edaysarEtsMNg;cas;²eRbItMN
rIev dUcenHkaryl;dwgBIkarRbRBwtþeTArbs;vamansar³sMxan;Nas;sMrab;karvaytMélersIusþg; nigkarCYs
CulnUvsMNg;TaMgenaH. karKNna nigkarviPaKtMNrIevmanlkçN³RsedogKñanwgtMNb‘ULúgFmμtaEdr Et
vaxusKñaRtg;lkçN³sMPar³Etb:ueNÑaH.
         tMNpSarmanGtßRbeyaCn_eRcInCagtMNb‘ULúg. kartP¢ab;edaykarpSarmanlkçN³samBaØ nig
RtUvkarrn§ticCagtMNb‘ULúg. kartP¢ab;EdlmanlkçN³sμúKsμajCamYynwgeRKOgP¢ab;Gacman lkçN³
gayRsYlCamYynwgkarpSar dUckrNIkñúgrUbTI 7>1. muneBlEdlkarpSarmanlkçN³eBjniym kar
tMeLIgrUbrag built-up RbePTenHRtUv)anplitedayrIev. edIm,IP¢ab;bnÞHEdksøabeTAnwgbnÞHEdkRTnug
EdkEkg (angle shape) RtUv)aneRbIedIm,IbMElgbnÞúkcenøaHFatuTaMgBIr. RbsinebIeKbEnßmbnÞHEdkBI
elImYyeTot enaHplitplsMercnwgmanlkçN³kan;EtsμúKsμaj. b:uEnþkartP¢ab;edaykarpSarman
lkçN³gayRsYlCag. b:uEnþsMrab;tMNpSar eKRtUvkarkmμkrCMnajxagpSar ehIyvaBi)ankñúgkarGegát
nigcMNayR)ak;eRcIn. EtKuNvibtþienHeKGacedaHRsay)anedaykarpSarenAkñúgeragCagCMnYseGaykar
pSarenAkardæanenARKb;eBlEdlGaceFVIeTA)an. enAeBlEdlkartP¢ab;eFVIeLIgedaybnSMénkarpSar nig
b‘ULúg enaHeKeRcInpSarenAeragCag ehIycab;b‘ULúgenAkardæan. sMrab; single-plate beam-to-column
connectioction EdlbgðajenAkñúgrUbTI 7>2 bnÞHEdkRtUv)anpSarP¢ab;eTAnwgsøabrbs;ssrenAerag

Cag ehIycab;b‘ULúgCamYynwgRTnugrbs;FñwmenAkardæan.




          edIm,IBicarNaBIkarRbRBwtþeTAénRbePTepSg²rbs;tMN eKRtUvEbgEckvaeTAtamRbePTénkar
dak;bnÞúk. rUbTI 7>3 a bgðajBI tension member lap splice EdlmaneRKOgP¢ab;rgnUvkMlaMgkat;. dUc
Kña tMNpSarenAkñúgrUbTI 7>3 b RtUvTb;Tl;nwgkMlaMgkat;TTwg. tMNrbs; bracket eTAnwgsøabssr
dUckñúgrUbTI 7>3 c edaykarpSar b¤edayb‘ULúg eFIVeGayeRKOgP¢ab; b¤TwkbnSarrgnUvkMlaMgkat;enAeBl
EdlbnÞúkGnuvtþmkelIva. tMNBÜürEdlbgðajenAkñúgrUbTI 7>3 d dak;eGayeRKOgP¢ab;rgkMlaMgTaj.
kartP¢ab;EdlbgðajenAkñúgrUbTI 7>3 e begáItTaMgkMlaMgkat;TTwg nigkMlaMgTajenAkñúgeRKOgP¢ab;CYr
xagelI. ersIusþg;rbs;eRKOgP¢ab;KWGaRs½yelIfaetIvargnUvkMlaMgkat; b¤kMlaMgTaj b¤k¾kMlaMgTaMgBIr.
                                           231                                  tMNsamBaØ
T.chhay


karpSarmankMlaMgexSaysMrab;kugRtaMgkMlaMgkat; ehIyCaTUeTAvaRtUv)ansnμt;fadac;edaykMlaMgkat;
edayminKitBITisedAénkardak;bnÞúk.




        enAeBlEdlkMlaMgkñúgeRKOgP¢ab;mYy b¤kMlaMgkñúgmYyÉktþaRbEvgrbs;TwkbnSarRtUv)ankMNt;
vaCaerOgmYyEdlgayRsYlkñúgkarkMNt;PaBRKb;RKan;rbs;tMN. karkMNt;enHQrelIeKalkarN_én
kartP¢ab;cMbgBIr. RbsinebIExSskmμrbs;kMlaMgpÁÜbEdlRtUvTb;Tl;kat;tamTIRbCMuTMgn;rbs;tMN enaH
EpñknImYy²rbs;tMNRtUv)ansnμt;faTb;Tl;nwgbnÞúkEdlEbgEckesμI ehIytMNEbbenHRtUv)aneKeGay
eQμaHfa tMNsamBaØ. enAkñúgtMNEbbenH ¬EdlbgðajenAkñúgrUbTI 7>3 a nig b¦ eRKOgP¢ab;nImYy²
nigRbEvgÉktþrbs;TwkbnSarnwgTb;Tl;nUvkMlaMgesμIKña*. bnÞab;mkeKGacrklT§PaBTb;Tl;bnÞúkrbs;tM

*
    Cak;EsþgvamancMNakp©ittUcenAkñúgtMNTaMgBIrenH EtvaRtUv)anecal
                                                      232                    tMNsamBaØ
T.chhay


NedayKuNlT§PaBTb;Tl;kMlaMgrbs;eRKOgP¢ab;nImYy² b¤RbEvgÉktþarbs;TWkbnSar CamYynwgcMnYn
eRKOgP¢ab;srub b¤RbEvgsrubrbs;TwkbnSar. kartP¢ab;énkMlaMgcakp©it RtUv)anerobrab;enAkñúgCMBUkTI 8
EdlExSskmμrbs;bnÞúkmineFVIGMeBIkat;tamTIRbCMuTMgn;rbs;tMN. kartP¢ab;enAkñúgrUbTI 7>3 d nig e Ca
RbePTéntMNenH. kñúgkrNIenHbnÞúkninRtUv)anTb;Tl;esμIKñaedayeRKOgP¢ab;nImYy² b¤RbEvgÉktþarbs;
TwkbnSareT ehIykarkMNt;énkarEbgEckbnÞúkKWCaktþad¾sμúKsμajkñúgkarKNnaénRbePTtMNenH.
       AISC Specification erobrab;BIkartP¢ab;EdlrYmman b‘ULúg rIev nig karpSarenAkñúg Chapter

J, ”Connections, Joints and Fasteners”. EtenAkñúgesovePAenH eyIgmin)anBicarNaBItMNrIeveT.



7>2>      Bolted Shear Connections: Failure Mode
         munnwgBicarNaBIersIusþg;Cak;lak;rbs;b‘ULúg eyIgRtUvBicarNaBIrebobénkardac;EdlGacekIt
manenAelItMNEdlmaneRKOgP¢ab;rgkMlaMgkat;TTwg. eKmanrebobénkardac;FMBIr³ kardac;rbs;eRKOg
P¢ab; nigkardac;rbs;EpñkEdlRtUvP¢ab;. BicarNa lap joint EdlbgðajenAkñúgrUbTI 7>4 a. kardac;rbs;
eRKOgP¢ab;GacRtUv)ansnμt;fanwgekIteLIgdUcEdl)anbgðaj. kMlaMgkat;TTwgmFümenAkñúgkrNIenHKW




       P    P
fv =     =
       A πd 2 / 4
Edl P CabnÞúkEdlmanGMeBIelIeRKOgP¢ab;nImYy² A CaRkLaépÞmuxkat;rbs;eRKOgP¢ab; nig d CaGgát;
p©itrbs;va. enaHbnÞúkenHGacsresrCa
          P = fv A
eTaHbICakardak;bnÞúkkñúgkrNIenHmincMcMnucl¥k¾eday k¾cMNakp©itmantMéltUcEdlGacecal)an. kart
enAkñúgrUbTI 7>4 b manlkçN³RsedogKña EtkarviPaKdüaRkamGgÁesrIrbs;eRKOgP¢ab;bgðajfamuxkat;nI
                                           233                                   tMNsamBaØ
T.chhay


mYy²rgEtBak;kNþalbnÞúksrub b¤eKGacniyayfamuxkat;TaMgBIrTb;Tl;nUvkMlaMgsrub. kñúgkrNIenHkM
laMg P = 2 f v A ehIybnÞúkenHRtUv)aneKehAfa double shear. karbEnßmbnÞHenAkñúgkartnwgbegáIn
cMnYnbøg;kat; ehIyvanwgkat;bnßykMlaMgenAkúñgbøg;nImy². b:uEnþ vanwgbegáInRbEvgrbs;eRKOgP¢ab; ehIy
                                                   Y
vanwgrgnUvkugRtaMgBt;.
         rebobénkadac;mYyeTotsMrab; shear connection Bak;Bn§½nwgkardac;rbs;EpñkEdlRtUv)anP¢ab;
ehIyCaTUeTAvaRtUv)anEbgEckCaBIrEpñk³
         !> kardac;EdlbNþalBI karTaj/ kMlaMgkat; b¤m:Um:g;Bt;FMenAkñúgEpñkEdlRtUvtP¢ab;. RbsinebI
Ggát;rgkarTajRtUv)antP¢ab; kMlaMgTajelI gross area nig effective net area RtUv)anGegát.
GaRs½ynwgrUbragénkartP¢ab; block shear k¾RtUv)anBicarNa. eKk¾RtUvRtYtBinitü block shear enA
kñúgkartP¢ab; beam-to-column ¬Edlmanerobrab;enAkñúgCMBUkTI 3 nigTI5 ehIyvak¾RtUv)anerobrab;enA
kñúg AISC J4.3¦. GaRs½ynwgRbePTénkartP¢ab; nigkardak;bnÞúk ral;kartP¢ab;eTAnwg gusset plate
nig framing angle TamTarnUvkarviPaKsMrab; kugRtaMgkat; kugRtaMgTaj kugRtaMgBt; nig block shear.
karKNnakartP¢ab;rbs;Ggát;rgkarTajRtUv)aneFVIeLIgRsbKñaCamYynwgkarKNnaGgát;rgkarTajBI
eRBaHdMeNIrkarTaMgBIrenHTak;TgKñaeTAvijeTAmk.




       @> kardac;rbs;EpñkEdlRtUvP¢ab;edaysar bearing EdlbegáIteLIgedayeRKOgP¢ab;. RbsinebI
RbehagmanTMhMFMCageRKOgP¢ab;bnþicbnþÜc ehIyeRKOgP¢ab;RtUv)ansnμt;faRtUv)andak;y:agENnenAkñúg
Rbehag épÞb:HrvageRKOgP¢ab; nigEpñkEdlRtUvP¢ab;nwgekItmaneRcInCagBak;kNþalénbrimaRtrbs;
eRKOgP¢ab;enAeBlEdlbnÞúkGnuvtþ. krNIenHRtUv)anbgðajenAkñúgrUbTI 7>5. kugRtaMgnwgERbRbYlBI

                                            234                                   tMNsamBaØ
T.chhay


GtibrmaenARtg; A eTAsUnüenARtg; B . edIm,IgayRsYl eKeRbIkugRtaMgmFümEdlRtUv)anKNna
edayEckkMlaMgnwgépÞRbeyalb:H.
       dUcenH bearing stees RtUv)anKNnaeday f p = P /(dt ) Edl P CakMlaMgEdlGnuvtþmkelI
eRKOgP¢ab;/ d CaGgát;p©iteRKOgP¢ab; nig t CakMras;rbs;EpñkEdlrgnUv bearing. dUcenH bearing load
KW
          P = f p dt

       karKNna bearing GacmanlkçN³sμúKsμajedaysarvtþmanrbs;b‘ULúgEdlenAEk,r b¤eday
sarcMgayBIrn§eTARCugEKmkñúgTisedArbs;bnÞúkmancMgayxøI dUcbgðajenAkñúgrUbTI 7>6. KMlatrvagb‘U
Lúg nigcMgayBIrn§eTARCugEKmmanT§iBlelI bearing strength.




7>3>      Bearing Strength, Spacing and Edge-distance Requirements
          Bearing strength   minTak;TgnwgRbePTrbs;eRKOgP¢ab;eT BIeRBaHkugRtaMgEdlRtUvBicarNasßit
enAelIEpñkEdlRtUvP¢ab; minEmnenAelIeRKOgP¢ab;eT. sMrab;mUlehtuenH bearing strength k¾dUcCag
tMrUvkarKMlat nig edge-distance k¾minTak;TgnwgRbePTeRKOgP¢ab;Edr ehIyvaRtUv)anBicarNamunkug
RtaMgkat;kñúgb‘ULúg nigersIusþg;Taj.
         karpþl;eGayrbs; AISC Specification sMrab; bearing strength k¾dUcCatMrUvkarepSg²sMrab;
b‘ULúgersIusþg;x<s; KWQrelIkarpþl;eGayrbs; specification of the Research Council on Structural
Connections of the Engineering Foundation (RCSC, 1994). kare)aHBum<pSayfμI²rbs;ÉksarenH

minTan;CaEpñkrbs; AISC Specification (AISC, 199a) EtvaRtUv)aneRbIenAkñúgesovePAenH d¾rabNa
manlkçN³minRtUvKña eKnwgeRbIkarpþl;eGayeday AISC. enAeBlsmIkarenAkñúg RSCS
Specification RtUv)anbgðajelxsmIkarmkBIÉksarenaHnwgRtUv)aneRbI ¬]TahrN_/ RCSC Equation


                                           235                                   tMNsamBaØ
T.chhay


LRFD         ¦. karerobrab;xageRkam EdlQrelI Commentary EdlENnaMeday RCSC
           4.3

Specification nwgBnül;BIeKalkrN_rbs;smIkar RCSC sMrab; bearing strength.

        rebobdac;EdlGacekItmanEdl)anBI bearing FM KWkMlaMgkat;rEhk (shear tear-out) enAxag
cugrbs;FatuEdlRtUvtP¢ab; dUcbgðajenAkñúgrUbTI 7>7 a. RbsinebIépÞdac;manlkçN³l¥dUcrUbTI 7>7 b,
failure load enAelIépÞmYyénépÞTaMgBIresμInwg shear fracture stress KuNnwgRkLaépÞkat; b¤
          Rn
             = 0.6 Fu Lc t
           2
Edl       0.6 Fu = shear fracture streesrbs;EpñkEdlRtUvP¢ab;
         Lc = cMgayBIRCugEKmrbs;RbehageTAcugrbs;EpñkEdlRtUvP¢ab;

         t = kMras;rbs;EpñkEdlRtUvP¢ab;

ersIusþg;srubKW
          Rn = 2(0.6 Fu Lc t ) = 1.2 Fu Lc t                                      ¬&>!¦




          kMlaMgkat; tear-out enHekItmanenAxagcugrbs;EpñkEdlRtUvtP¢ab; dUcEdlbgðaj b¤enAcenøaH
rn§BIrkñúgTisedAén bearing load. edIm,IkarBarsac;lUtFMrbs;Rbehag eKRtUvkMNt;EdnkMNt;x<s;bMput
rbs; bearing load EdleGayedaysmIkar &>!. EdkkMNt;enHsmamaRteTAnwg fracture stress
KuNnwg bearing area b¤
          Rn = C × Fu × bearing area = CFu dt                                     ¬&>@¦

                                               236                             tMNsamBaØ
T.chhay


Edl       C=tMélefr
       d = Ggát;p©itb‘ULúg

       t = Ggát;rbs;EpñkEdlRtUvtP¢ab;

RCSC Specification eRbIsmIkar &>! sMrab; bearing strength RbQmnwgEdnkMNt;EdleGayeday
smIkar &>@. RbsinebIeKminKitkMhUcRTg;RTay tMélefr C GacykesμInwg 3.0 . RbsinebIkMhUcRTg;
RTayFMRtUv)anKit C GacykesμInwg 2.4 ehIyCaTUeTAvaCatMélEdleKykmkeRbI. tMélenHRtUvKña
nwgsac;lUtrbs;RbehagRbEhl 1 / 4in. = 6mm ¬RCSC, 1994¦. enAkñúgesovePAenH eyIgBicarNa
kMhUcRTg;RTaysMrab;karKNna. RCSC bearing strength sMrab;b‘ULúgeTalGacRtUv)ansMEdgCa φRn
Edl
          φ = 0.75
nig       Rn = 1.2 Lc tFu ≤ 2.4dtFu                           ¬RCSC Equation LRFD 4.3¦
Edl    Lc = clear distance enAkñúgTisRsbnwgbnÞúkEdlGnuvtþ BIcugénrn§b‘ULúgeTARCugEKmrbs;rn§Edl

             enAEk,r b¤eTARCugEKmrbs;sMPar³.
        t = kMras;rbs;eRKOgP¢ab;

        d = Ggát;p©itb‘ULúg ¬minEmnGgát;p©itrbs;RbehageT¦

        Fu = ultimate tensile stress rbs;EpñkEdlRtUvP¢ab; ¬minEmnrbs;b‘ULúg¦

rUbTI 7>8 bgðajbEnßmeTotBIcMgay Lc . enAeBlEdlKNna bearing strength sMrab;b‘ULúg eKRtUv
BicarNacMgayBIb‘ULúgenaHeTAb‘ULúgEdlenAEk,r b¤eTARCugEKmkñúgTisedArbs; bearing load
elIEpñkEdl RtUvP¢ab;. sMrab;krNIEdl)anbgðaj bearing load sßitenAEpñkxageqVgrbs;rn§nImYy².
dUcenHersIusþg; sMrab;b‘ULúg ! RtUv)anKNnaCamYy Lc Edlvas;eTAb‘ULúg @ ehIyersIusþg;sMrab;b‘ULúg @
RtUv)anKNna CamYy Lc Edlvas;eTARCugEKmrbs;EpñkEdlRtUvP¢ab;.




          RCSC Equation LRFD 4.3      mantMélsMrab; standard, oversized, short-slotted and long
                                             237                                   tMNsamBaØ
T.chhay


slotted holes   CamYynwg slot EdlRsbeTAnwgbnÞúk. eyIgeRbIEt standard holes enAkñúgesovePAenH
¬RbehagEdlmanGgát;p©itFMCagGgát;p©itb‘ULúg 1/16in. = 2mm ¦.
         enAeBlEdlKNnacMgay Lc eRbIGgát;p©itRbehagCak;Esþg nigmincaM)ac;bUkbEnßm 2mm dUc
EdlRtUvkarenAkñúg AISC B.2 sMrab;KNna net area rbs;Ggát;rgkarTaj. müa:gvijeTot eRbIGgát;p©it
d + 1 / 16in. = d + 2mm minEmn d + 1 / 8in. = d + 4mm . RbsinebI h bgðajBIGgát;p©itRbehag

enaH
          h = d + 1 / 16in.
karKNnarbs; bearing strength BI RCSC Equation LRFD 4.3 GacRtUv)ansMrYlxøHdUcxageRkam.
EdnkMNt;nwgmanRbsiT§PaBenAeBl
          1.2 Lc tFu = 2.4dtFu
b¤ eRkayeBlEdlsMrYlehIy
          Lc = 2d
TMnak;TMngenHGacRtUv)aneRbIedIm,IKNnaenAeBlEdlEdnkMNt; 2.4dtFu lub³
         RbsinebI Lc ≤ 2d eRbI Rn = 1.2Fu Lct
         RbsinebI Lc > 2d eRbI Rn = 1.2Fu dt
Spacing and Edge-Distance Requirments
        edIm,IrkSacenøaHTMenrrvagex©Ab‘ULúg nigedIm,Ipþl;nUvTIFøaRKb;RKan;sMrab; wrench socket AISC
J3.3 tMrUvfaKMlatBIGkS½eTAGkS½ (center-to-center spacing) rbs;eRKOgP¢ab; ¬enARKb;Tis¦ minRtUv

tUcCag 2 2 3 d ehIyCakarniymKWminRtUvtUcCag 3d Edl d CaGgát;p©iteRKOgP¢ab;. cMgayBIRCugEKm
sMPar³ ¬RKb;Tis¦ Edlvas;BIGkS½rbs;Rbehag RtUv)aneGayenAkñúg AISC Table3.4 CaGnuKmn_eTA
nwgTMhMrbs;b‘ULúg nigRbePTrbs;RCug ¬sheared, rolled or gas cut¦. KMlat nigcMgayeTARCugEKm
EdlsMKal;eday s nig Le RtUv)anbgðajenAkñúgrUbTI 7>9.




                                            238                                     tMNsamBaØ
T.chhay


Summary fo Bearing Strength, Spacing and Edge-Distance Requirements
(standard hole)
    a. Bearing strength:
       φRn = 0.75(1.2 Lc tFu ) ≤ 0.75(2.4dtFu )               (RCSC Equation LRFD 4.3)
          b¤ eyIgGacsresrmüa:geTot
          RbsibebI         Lc ≤ 2d / φRn = 0.75(1.2 Lc tFu )

          RbsinebI         Lc > 2d / φRn = 0.75(2.4dtFu )

    b.    KMlat nigsMgayeTARCugEKmGb,brma³ sMrab;RKb;Tis TaMgRsbnwgExSskmμ nigEkgnwgExS
          skmμ
          s ≥ 2 23 d       ¬CakareBjniym 3d ¦
           Le ≥ tMélBI AISC J3.4

          sMrab; single- nig double-angle shapes CaTUeTA gage distances RtUv)aneGayenAkñúg Part 9
          of the Manual, Volume II (emIlEpñk 3>6)EdlGaceRbICMnYseGaytMélGb,brma.



]TahrN_ 7>1³ RtYtBinitü KMlatb‘ULúg nigcMgayeTARCugEKmsMrab;kartP¢ab;EdlbgðajenAkñúgrUbTI
7>10.




dMeNaHRsay³ BI AISC J3.3, KMlatGb,brmasMrab;RKb;TisTaMgGs;KW
                         ⎛3⎞
          2 2 3 d = 2.667⎜ ⎟ = 2in.
                         ⎝4⎠
       KMlatCak;Esþg = 2.5in. > 2in. (OK)
       cMgayeTARCugEKmGb,brmasMrab;RKb;TisTaMgGs;EdlTTYlBI AISC Table J3.4. RbsinebI
eyIgsnμt; sheared edges ¬krNIEdlGaRkk;CageK¦ enaHcMgayeTARCugEKmGb,brmaKW 1 14 in.
dUcenH

                                             239                                  tMNsamBaØ
T.chhay


          cMgayeTARCugEKmCak;Esþg = 1 1 in. (OK)
                                       4
          edIm,IKNna bearing strength eRbIGgát;p©itrn§
                    1 3 1 13
          h=d+       = +  = in.
                   16 4 16 16
       RtYtBinitü bearing TaMgelIGgát;rgkarTaj nig gusset plate. sMrab;Ggát;rgkarTaj nigEdl
enAEk,rRCugEKmrbs;Ggát;CageK
                      h          13 / 16
          Lc = Le −     = 1.25 −         = 0.8438in.
                      2            2
          φRn = φ (1.2 Lc tFu ) ≥ φ (2.4dtFu )
                                           ⎛1⎞
          φ (1.2 Lc tFu )0.75(1.2)(0.8438)⎜ ⎟(58) = 22.02kips
                                           ⎝2⎠
                                   ⎛ 3 ⎞⎛ 1 ⎞
          φ (2.4dtFu ) = 0.75(2.4 )⎜ ⎟⎜ ⎟(58) = 39.15kips > 22.02kips
                                   ⎝ 4 ⎠⎝ 2 ⎠
dUcenHyk φRn = 22.02kips / bolt
sMrab;rn§epSgeTot
                               13
          Lc = s − h = 2.5 −      = 1.688in.
                               16
          φRn = φ (1.2 Lc tFu ) ≤ φ (2.4dtFu )
                                            ⎛1⎞
          φ (1.2 Lc tFu ) = 0.75(1.2)(1.688)⎜ ⎟(58) = 44.06kips
                                            ⎝2⎠
          φ (2.4dtFu ) = 39.15kips < 44.06kips
dUcenHyk φRn = 39.15kips / bolt
sMrab;Ggát;rgkarTaj bearing strength KW
          φRn = 2(22.02) + 2(39.15) = 122kips > 65kips             (OK)
sMrab; gusset plat nigrn§EdlenAEk,rRCugEKmrbs;bnÞHCageK
                      h          13 / 16
          Lc = Le −     = 1.25 −         = 0.8438in.
                      2            2
          φRn = φ (1.2 Lc tFu ) ≤ φ (2.4dtFu )
                                                ⎛ 3⎞
          φ (1.2 Lc tFu ) = 0.75(1.2)(0.8438)⎜ ⎟(58) = 16.52kips
                                                ⎝8⎠
                                   ⎛ 3 ⎞⎛ 3 ⎞
          φ (2.4dtFu ) = 0.75(2.4 )⎜ ⎟⎜ ⎟(58)
                                   ⎝ 4 ⎠⎝ 8 ⎠
                       = 29.36kips > 16.52kips

                                                   240                       tMNsamBaØ
T.chhay


dUcenHyk φRn = 16.52kips / bolt
sMrab;rn§d¾éTeTot
                               13
          Lc = s − h = 2.5 −      = 1.688in.
                               16
          φRn = φ (1.2 Lc tFu ) ≤ φ (2.4dtFu )
                                           ⎛3⎞
          φ (1.2 Lc tFu ) = 0.75(1.2 )(1.688)⎜ ⎟(58) = 33.04kips
                                           ⎝8⎠
                                  ⎛ 3 ⎞⎛ 3 ⎞
          φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(58) = 29.36kips < 33.04kips
                                  ⎝ 4 ⎠⎝ 8 ⎠
dUcenHyk φRn = 33.04kips
bearing strength sMrab; gusset plate KW

          φRn = 2(16.52) + 2(29.36) = 91.8kips
gusset plate   man bearing strength tUcCag bearing strength rbs;Ggát; dUcenH gusset plate lub
          φRn = 91.8kips > 65kips                  (OK)
cMeLIy³ tMrUvkar bearing strength, KMlat nig cMgayeTARCugEKmmanlkçN³RKb;RKan;.

        KMlatb‘ULúg nigcMgayeTARCugEKmenAkñúg]TahrN_ 7>1 mantMéldUcKñasMrab;Ggát;rgkarTaj
nig gusset plate. vaxusKñaEtkMras; dUcenH gusset plate lub. sMrab;krNIdUc]TahrN_enH eKRtYt
BinitüEteRKOgbgÁúMNaEdlmankMras;esþIgCag. b:uEnþRbsinebIcMgayeTAcugEKmmantMélxusKña dac;xat
eKRtUvEtRtYtBinitüTaMgGgát;rgkarTaj nig gusset plate.

7>4> b‘ULúgFmμta Common Bolts
         eyIgcab;epþImkarerobrab;BIersIusþg;rbs;eRKOgP¢ab;CamYynwg b‘ULúgFmμta EdlxusKñaBIb‘ULúger-
sIusþg;x<s;minRtwmEtlkçN³sMPar³b:ueNÑaHeT EfmTaMgkMlaMgrwtbNþwgb‘ULúgeTotpg. b‘ULúgFmμta Edl
eKsÁal;Ca unfinished bols RtUv)ansMKal;Ca ASTM A307.
         Design shear strength rbs; A307 KW φRn / EdlemKuNersIusþg; φ = 0.75 ehIy nominal

shear strength KW

          Rn = Fv Ab
Edl       Fv = ultimate shearing stress

                                                 241                                tMNsamBaØ
T.chhay


          Ab = RkLaépÞmuxkat;rbs;EpñkEdlKμaneFμjrbs;b‘ULúg ¬EdleKsÁal;Ca nominal bolt area
               b¤ nominal body area¦
          Ultimate shearing stress RtUv)aneGayenAkñúg AISC Table J3.2 KW 24ksi = 165MPa Edl

eGay nominal strength
          Rn = Fv Ab = 24 Ab



]TahrN_ 7>2³ kMNt; design strength rbs;kartP¢ab;EdlbgðajenAkñúgrUbTI 7>11 edayQrelI
kMlaMgkat;TTwg nig bearing.




dMeNaHRsay³ kartP¢ab;GacRtUv)ancat;cMNat;fñak;CatMNsamBaØ ehIyeRKOgP¢ab;mYy²RtUv)anBicar-
NaedIm,ITb;Tl;karEbgEckMlaMgesμIKña. kñúgkrNICaeRcInvamanlkçN³gayRsYlkñúgkarkMNt;ersIusþg;
rbs;eRKOgP¢ab;mYy rYcbnÞab;mkKuNnwgcMnYneRKOgP¢ab;srub.
Shear strength: vaCakrNI single shear ehIy design shear strength rbs;b‘ULúgmYyKW

          φRn = φFv Ab = 0.75(24 Ab )
Nominal bolt area       KW
                 πd 2        π (3 / 4 )2
          Ab =          =                  = 0.4418in 2
                    4            4
dUcenH design shear strength sMrab;b‘ULúgmYyKW
          φRn = 0.75(24 )(0.4418) = 7.952kips
sMrab;b‘ULúgBIrKW
          φRn = 2(7.952) = 15.9kips
Bearing strength: edaysarcMgayeTARCugEKmrbs;Ggát;rgkarTaj nigrbs; gusset plate dUcKña enaH
beaing strength rbs; gusset plate nwglub BIeRBaHkMras;rbs;vaesþIgCagkMras;rbs;Ggát;rgkarTaj.

sMrab;karKNna bearing strength eRbIGgát;p©itRbehag
                                                          242                 tMNsamBaØ
T.chhay


                     1 3 1 13
            h=d+      = +  = in.
                    16 4 16 16
sMrab;rn§EdlenAEk,rRCugEKmrbs; gusset plate CageK
                     h         13 / 16
            Lc = Le −  = 1.5 −         = 1.094in.
                     2           2
                  ⎛3⎞
            2d = 2⎜ ⎟ = 1.5in.
                  ⎝4⎠
edaysar Lc < 2d
                                                 ⎛3⎞
           φRn = φ (1.2 Lc tFu ) = 0.75(1.2 )(1.094)⎜ ⎟(58) = 21.42kips
                                                 ⎝8⎠
sMrab;rn§déTeTot
                           13
            Lc = s − h = 3 −   = 2.188in. > 2in.
                           16
                                         ⎛ 3 ⎞⎛ 3 ⎞
dUcenH     φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(58) = 29.36kips
                                         ⎝ 4 ⎠⎝ 8 ⎠
Bearing strength      sMrab;tMNKW
           φRn = 21.42 + 29.36 = 50.8kips
Bearing strength      enHFMCag shearing strength dUcenH shear strength lub ehIyersIusþg;rbs;tMNKW
           φRn = 15.9kips
cMNaMfaRKb;tMrUvkarKMlat nigcMgayeTARCugEKmTaMgGs;RtUvEtRKb;RKan;. sMrab; sheared edge cMgay
eTARCugEKmEdlTamTareday AISC Table J3.4 KW 1 14 in. = 30mm ehIykarTamTarenHKWRKb;RKan;
sMrab;TaMg TisbeNþay nigTisTTwg. KMlatb‘ULúgKW 3in = 75mm EdlFMCag 2 2 3 d = 2.667(3 4 )
= 2in. .
cMeLIy³ edayQrelI shear nig bearing, design strength rbs;tMNKW 15.9kips . ¬cMNaMfa sßanPaB
kMNat;d¾éTepSgeTotEdlminTan;)anRtYtBinitüdUcCa kugRtaMgTajenAelI          net area   rbs;Ggát;Gacnwg
CaGñkkMNt; design strength¦.

]TahrN_ 7>3³ r)arEdk 4 × 3 / 8in. RtUv)aneRbICaGgát;rgkarTajedIm,ITb;Tl;nwg service dead load
8kips    nig service live load 22kips . Ggát;enHRtUv)anKNnaeRkamkarsnμt;fa b‘ULúg A307 Ggát;
p©it 3 / 4in. mYyCYrRtUv)aneRbIedIm,IP¢ab;Ggát;enHeTA gusset plate EdlmankMras; 3 / 8in. . TaMgGgát;
rgkarTaj nig gusset plate CaEdk A36 . etIeKRtUvkarb‘ULúgb:unμanRKab;?
                                                243                                   tMNsamBaØ
T.chhay


dMeNaHRsay³ bnÞúkemKuNKW
          Pu = 1.2 D + 1.6 L = 1.2(8) + 1.6(22) = 44.80kips
KNnalT§PaBrbs;b‘ULúgmYy. BI]TahrN_ 7>2 shear strength KW
          φRn = 7.952kips / bolt
sMrab;                   eKminsÁal;KMlat nigcMgayeTARCugEKm dUcenHeyIgsnμt;fa EdkkMNt;
          bearing strength,

φ 2.4dtFu nwglub enaHeyIgTTYl)an
                          ⎛ 3 ⎞⎛ 3 ⎞
          φRn = 0.75(2.4)⎜ ⎟⎜ ⎟(58) = 29.36kips / bolt
                          ⎝ 4 ⎠⎝ 8 ⎠
Bearing strength       Cak;EsþgsMrab;tMNenHnwgGaRs½yelItMélrbs; Lc sMrab;b‘ULúgnImYy². enAeBl
EdltMélenHRtUv)ankMNt;enAkñúgkarKNnacugeRkay enaH bearing strength RtUv)anRtYtBinitüeLIg
vijb:uEnþ shear enAEtTMngCalub.
          cMnYnb‘ULúgEdlRtUvkarKW
              44.80kips
                            = 5.63bolts
           7.952kips / bolt
cMeLIy³ eRbIb‘ULúg A307 Ggát;p©it 3 / 4in. cMnYnR)aMmYyRKab;.

7>5> b‘ULúgersIusþg;x<s; High-Strength Bolts
        b‘ULúgersIusþg;x<s;sMrab;tMNrbs;eRKOgbgÁúMmanBIry:agKW ASTM A325 nig ASTM A490 .
karpþl;eGayrbs; AISC sMrab;ersIusþg;x<s;KWCaEpñkxøHrbs;karpþl;eGayrbs; specification of the
Research Council on Structural Connections of the Engineering Foundation (RCSC, 1994).

        b‘ULúg A490 man ultimate tensile strength FMCagb‘ULúg A325 ehIyRtUv)ankMNt;faman
nominal strength FMCag. b‘ULúg A490 RtUv)andak;eGayeRbIR)as;ry³eBly:agyUrbnÞab;BIb‘ULúg

A325 RtUv)aneRbICaTUeTA sMrab;eRbICamYyEdkEdlmanersIusþg;x<s; ¬Bethlehem, 1969¦. b‘ULúg

A490 mantMéléføCag A325 b:uEnþCaTUeTAeKRtUvkarvacMnYnticCag.

        kñúgkrNIxøH b‘ULúg A490 nig A325 RtUv)antMeLIgCamYynwgkMrittwgEdleFVIeGayBYkvargnUvkM
laMgTajFMEmnETn. ]TahrN_ kMlaMgTajdMbUgenAkñúgb‘ULúg A325 Ggát;p©it 5 / 8in. GacFMesμInwg
19kips = 85KN . bBa¢IénkMlaMgTajGb,brmasMrab;tMNTaMgenaHRtUvkarRtUv)aneGayenAkñúg AISC

Table J3.1, Minimum Bolt Tension. tMélnImYy²esμInwg 70% énersIusþg;TajGb,brmarbs;b‘ULúg.

                                              244                             tMNsamBaØ
T.chhay


eKalbMNgEdleKRtUvkarkMlaMgTajFMEbbenHKWedIm,ITTYl)ankMlaMgrwtEdlbgðajenAkñúgrUbTI 7>12.
b‘ULúgEbbenHRtUv)aneKehAfa fully tensioned.
       enAeBlEdlex©ARtUv)anmYlP¢ab;eTAnwgb‘ULúg EpñkEdlRtUvP¢ab;rgnUvkMlaMgsgát; ehIyb‘ULúglUt.
düaRkaGgÁesrI (free body diagram) enAkñúgrUbTI 7>12 a bgðajfakMlaMgsgát;srubEdlmanGMeBIelI
EpñkEdlRtUvP¢ab;esμInwgkMlaMgTajenAkñúgb‘ULúg. RbsinebIeKGnuvtþkMlaMgxageRkA P kMlaMgkkitnwg
ekItmanenAcenøaHEpñkP¢ab;. kMlaMgGtibrmaEdlGacekItmanKW
          F = μN
Edl μ CaemKuNkkitsþaTicrvagEpñkEdlRtUvP¢ab; ehIy N CakMlaMgsgát;EdlmanGMeBIenAelIépÞxag
kñúg. tMélrbs; μ GaRs½ynwglkçxNÐépÞrbs;Edk ]TahrN_dUcCa épÞrbs;vamanlabfñaM b¤manERcHsIu.
dUcenHb‘ULúgnImYy²enAkñúgkartP¢ab;RtUvmanlT§PBedIm,ITb;Tl;nwgbnÞúk P = F . RbsinebIkMlaMgkkit
minFM vanwgminman bearing b¤ shear. RbsinebI P FMCag F slip ekIteLIg enaH shear nig bearing nwg
CHT§iBldl;lT§PaBrbs;tMN.




                                           245                                  tMNsamBaØ
T.chhay



kartMeLIg        Installation
         etIeKTTYl)ankMlaMgTajFMEdlmanPaBsuRkitedayrebobNa? bc©úb,nñeKmanviFIsaRsþEdl
GnuBaØateGaycMnYnbYnsMrab;kartMeLIgb‘ULúgersIusþg;x<s; (RCSC, 1994).
         !> Turn-of-the-nut method. viFIenHQrelIlkçN³bnÞúk-kMhUcRTg;RTay (load-deforma-
tion characteristic) rbs;eRKOgP¢ab; nigEpñkEdlRtUvP¢ab;. ex©AEdlmYlP¢ab;eTAnwgb‘ULúgGaceFVIeGay

b‘ULúglUtsac;. TMnak;TMng stress-strain sMrab;sMPar³b‘ULúgGacRtUv)aneRbIedIm,IKNnakMlaMgTajenA
kñúgb‘ULúg. dUcenHsMrab;RKb;TMhM nigRbePTrbs;b‘ULúg cMnYnCMumYlex©AEdlRtUvkaredIm,IbegáItkMlaMgTaj
GacRtUv)anKNna. Table 5 enAkñúg high-strength bolt specification (RCSC, 1994) eGaynUvcMnYn
CMurbs;ex©AEdlRtUvkarsMrab;TMhMepSg²rbs;b‘ULúgkñúgTMrg;pleFobRbEvgelIGgát;p©it. viFIsaRsþenHeK
eRbI ordinary spud wrench.
         @> Calibrated wrench tightening. kñúgviFIsa®sþenHeKRtUveRbI torque wrench. kMlaMgrmYl
EdlRtUvkaredIm,ITTYlkMlaMgTajkMNt;enAkñúgb‘ULúgRtUv)ankMNt;edaykarrwtbNþwgb‘ULúgenHCamYy]b
krN_EdlbgðajkMlaMgTah.
         #> Alternated wrench bolts. eKRtUvkar wrench BiessedIm,ItMeLIgb‘ULúg. karRtYtBinitükar
gartMeLIgenHmanlkçN³gayRsYlCaBiess.
         $> Direct tension indicators. sMPar³EdleKniymeRbIenAkñúgviFIsaRsþenHKW washer Edlman
protrusion enAelIépÞrbs;va. enAeBlEdleKrwtb‘ULúg protrusion rgnUvkMlaMgsgát;EdlsmamaRteTA

nwgkMlaMgTajenAkñúgb‘ULúg.

7>6>      Shear Strength of High-Strength Bolts
          Design shear strength rbs;b‘ULúg A325 nig A490 KW φRn EdlemKuNersIusþg; φ = 0.75 . dUc
Kñanwgb‘ULúgFmμtaEdr nominal shear strength rbs;b‘ULúgersIusþg;x<s;RtUv)aneGayeday ultimate
shearing stress KuNnwg nominal bolt area. Etb‘ULúg A307 mindUcb‘ULúg A325 nig A490 Rtg; shear

strength rbs;b‘ULúgersIusþg;x<s;GaRs½ynwgeFμjrbs;b‘ULúgsßitenAkñúgbøg;kat;b¤ minsßitenAkñúgbøg;kat;.

edIm,IsMrYlkñúgkareRbI reduced cross-sectional area enAeBlEdlEpñkEdlmaneFμjrgnUvkMlaMgkat;
TTwg enaH ultimate shearing stress rbs;vaRtUvKuNnwg 0.75 EdlCapleFobRbhak;RbEhlénRkLa

                                             246                                    tMNsamBaØ
T.chhay


épÞEdlmaneFμj elIRkLaépÞEdlKμaneFμj. ersIusþg;RtUv)aneGayenAkñúg AISC Table J3.2 ehIy
RtUv)ansegçbenAkñúgtarag 7>1 . AISC Table J3.2 sMedAeFμjenAkñúgbøg;kat;Ca “not excluded from
shear planes” ehIysMedAeFμjEdlminenAkñúgbøg;kat;Ca “excluded from shear planes”. RbePTTI

mYy eFμjsßitenAkñúgbøg;kat; eKsMedACaRbePTtMN “N” ehIyb‘ULúg A325 énRbePTenHGacsMKal;
eday A325 − N . karsMKal; “X” GacRtUv)aneRbIedIm,IbgðajfaeFμjminsßitenAkñúgbøg;kat;eT ]Ta-
hrN_ A325 − X .
        tarag 7>1
                                                         Nominal shear strength
                                 eRKOgP©ab;                   Rn = Fv Ab
                                                            US           IS
           A325/ eFμjenAkñúgbøg;kat;                       48 Ab         330 Ab

          A325 / eFμjminenAkñúgbøg;kat;                    60 Ab         415 Ab
          A490 / eFμjenAkñúgbøg;kat;                       60 Ab         415 Ab

          A490 / eFμjminenAkñúgbøg;kat;                    75 Ab         520 Ab



]TahrN_7>4³ kMNt; design strength rbs;tMNEdlbgðajenAkñúgrUbTI 7>13. GegÁt bolt shear,
bearing nig tensile strength rbs;Ggát;. b‘ULúgEdleRbICaRbePT A325 Ggát;p©it 7 / 8in. ehIyeFμj
rbs;vaminsßitenAkñúgbøg;kat;. Ggát;CaRbePTEdk A572 Grade 50 .




dMeNaHRsay³ shear strength sMrab;b‘ULúgmYy
                 π (7 / 8)2
          Ab =                = 0.6013in.2
                     4


                                              247                             tMNsamBaØ
T.chhay


          φRn = φFv Ab = 0.75(60)(0.6013) = 27.06kips
sMrab;b‘ULúgbI
          φRn = 3(27.06) = 81.2kips
Bearing strength    ³ sMrab;karKNna bearing strength eRbIGgát;p©itrn§
                    1 7 1 15
           h=d+      = +  = in.
                   16 8 16 16
RtYtBinitü bearing EdlekItmanTaMgelI Ggát;rgkarTaj nig gusset plate. sMrab;Ggát;rgkarTaj nig
b‘ULúgEdlenAEk,rRCugEKmCageKrbs;Ggát;
                       h          15 / 16
           Lc = Le −     = 1.25 −         = 0.7812in.
                       2            2
           2d = 2(7 / 8) = 1.75in.
edaysar Lc < 2d
                                                   ⎛1⎞
          φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(0.7812)⎜ ⎟(65) = 22.85kips
                                                   ⎝2⎠
sMrab;RbehagepSgeTot
                               15
           Lc = s − h = 2.75 −    = 1.812in. > 2d
                               16
                                        ⎛ 7 ⎞⎛ 1 ⎞
dUcenH    φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(65) = 51.19kips
                                        ⎝ 8 ⎠⎝ 2 ⎠
Bearing strength     sMrab;Ggát;rgkarTajKW
          φRn = 22.85 + 2(51.19) = 125kips
KNna bearing strength rbs; gusset plate. sMrab;rn§EdlenAEk,rRCugEKmrbs; gusset CageK
                      h          15 / 16
           Lc = Le −    = 1.5 −          = 1.031in. < 2d
                      2             2
                                                  ⎛3⎞
dUcenH    φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.031)⎜ ⎟(65) = 22.62kips
                                                  ⎝8⎠
sMrab;Rbehagd¾éTeTot
                               15
           Lc = s − h = 2.75 −    = 1.812in. > 2d
                               16
                                        ⎛ 7 ⎞⎛ 3 ⎞
dUcenH    φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(65) = 38.39kips
                                        ⎝ 8 ⎠⎝ 8 ⎠
Bearing strength     rbs; gusset plate KW
          φRn = 22.62 + 2(38.92 ) = 99.4kips

                                                248                           tMNsamBaØ
T.chhay


Gusset plate   man strength tUcCag dUcenH bearing strength sMrab;tMNKW
          φRn = 99.4kips
RtYtBinitü tensile strength rbs;Ggát;rgkarTaj.
Tension on the gross atea:
                                      ⎛    1⎞
          φt Pn = φt Fy Ag = 0.90(50 )⎜ 3 × ⎟ = 67.5kips
                                      ⎝    2⎠
Tension on the net area:   muxkat;TaMgGs;rbs;Ggát;RtUv)antP¢ab; dUcenHvaminman          shear lag   eT
dUcenHeyIg)an Ae = An . eRbIGgát;Rbehag
                 1 7 1
          h = d + = + = 1.0in.
                 8 8 8
Design strength KW
          φt Pn = φt Fu Ae = φt Fu t (wg − ∑ h ) = 0.75(65)⎜ ⎟[3 − 1(1.0)] = 48.8kips
                                                         ⎛1⎞
                                                         ⎝2⎠
karTajenAelI net section mantMéltUcCageK
cMeLIy³ Design strength rbs;tMNKW 48.8kips

7>7>      Slip-Critical Connections
        eKcat;cMNat;fñak;kartP¢ab;EdleRbIb‘ULúgersIusþg;x<s;Ca slip-critical connection b¤ bearing-
type connection. Slip-critical connection CakartP¢ab;EdleKminGnuBaØateGayman slip Edlmin

RtUvFMCagkMlaMgkkit. sMrab; bearing-type connection eKGnuBØateGayman slip ehIy shear nig
bearing ekIteLIgFmμta. enAkñúgRbePTeRKOgbgÁúMxøH CaBiesss<an kMlaMgEdlmanGMeBIelItMNGacekIt

eLIgCalkçN³xYb. kñúgkrNIEbbenH fatigue rbs;eRKOgP¢ab;GackøayCaeRKaHfñak;RbsinebIeKGnuBaØat
eGayman slip rYmCamYynwgkarekIteLIgsarcuHsareLIg enaHeKRtUvRtYtBinitü slip-critical connec-
tion. enAkñúgeRKOgbgÁúMCaeRcIn eKGnuBaØateGayman slip ehIy bearing-type connection RtUvEt

RKb;RKan;. ¬b‘ULúg A307 RtUv)aneRbIsMrab;Et bearing-type connection¦. sMrab; slip-critical
connection eKcaM)ac;RtUvEteFVIkartMeLIgeGay)anl¥ edIm,ITTYlnUvkMlaMgTajdMbUgRKb;RKan;dUcEdl)an

erobrab;. AISC J1.11 erobrab;BIsßanPaBkMNt;Edlb‘ULúgersIusþg;x<s;RtUvEtmankMlaMgTajeBj. enA
kñúg bearing-type connection tMrUvkarcaM)ac;EtmYyKt;kñúgkartMeLIgb‘ULúgKWeKRtUvpþl;nUvkMlaMgTaj

                                                249                                     tMNsamBaØ
T.chhay


RKb;RKan;edIm,IeGayépÞb:HKñaGacTb;Tl;Kña)aneTAvijeTAmk. kartMeLIgenHbegáItnUv snug-tight
condition Edl)anerobrab;enAkñúg turn-of-the-nut method.

        eTaHbICatamRTwsþI slip-critical connection minRbQmnwg shear nig bearing k¾eday
k¾eKRtUvEtman shear strength nig bearing strength RKb;RKan;sMrab;krNI overload EdlGaceFVIeGay
ekItman slip.
        edIm,IkarBar slip eKRtUvmanEdnkMNt;sMrab; service load b¤ factored load. eTaHbICakar
karBar slip mansar³sMxan;sMrab; serviceability requiremnent k¾eday k¾ AISC Specification
GnuBaØateGay slip-critical strength GacQrelI service load b¤ factored load.
        dUcEdl)anerobrab;BIxagelI lT§PaBTb;nwg slip CaGnuKmn_énplKuNrvagemKuNkkitsþaTic
nig normal force cenøaHEpñkP¢ab;. TMnak;TMngenHRtUv)anbgðajenAkñúg RCSC Specification Edl
eyIgeRbIenATIenHsMrab; slip-critical connection (RCSC, 1994). Slip-critical strength rbs;tMN KW
φRstr Edl φ = 1.0 sMrab; standard hole ehIy
          Rstr = 1.13μTm N b N s                                    (RCSC Equation LRFD 5.3)
Edl       μ = mean slip coefficient ¬emKuNkkitsþaTic¦ = 0.33 sMrab;épÞ Class A
        Tm = kMlaMgTajrbs;eRKOgP¢ab;Gb,brmaEdl)anBI AISC Table J3.1 b¤ RCSC Table 4

        N b = cMnYnb‘ULúgenAkñúgtMN

        N s = cMnYn slip plan ¬bøg;kat;¦

épÞ Class A CaépÞEdlmanEdkG‘uksIutenAépÞrbs;va. enAkñúg Specification manENnaMnUvRbePTépÞ
CaeRcIneTot EtenAkñúgesovePAenH eyIgeRbIEt épÞ Class A Edlpþl;nUv slip coefficient
tUcCageKbMput.
        Slip-critical design strength sMrab;b‘ULúgmYyén single shear KW

          φRstr = φ (1.13μTm N b N s ) = 1.0(1.13)(0.33)Tm (1)(1)
                = 0.373Tm kips
]TahrN_ 7>5³ kartP¢ab;EdlbgðajenAkñúgrUbTI 7>14 eRbIb‘ULúg A325 Ggát;p©it 3 / 4in. EdleFμj
rbs;vasßitenAkñúgbøg;kat;. eKminGnuBaØateGayman slip. TaMgGgát;rgkarTaj nig gusset plate Ca
RbePTEdk A36 . kMNt; design strength.

                                                250                                 tMNsamBaØ
T.chhay




dMeNaHRsay³ Shear strength: sMrab;b‘ULúgmYy
                 π (3 / 4 )2
          Ab =                 = 0.4418in.2
                     4
          φRn = φFv Ab = 0.75(48)(0.4418) = 15.90kips
sMrab;b‘ULúgbYnRKab;
          φRn = 4(15.90) = 63.60kips
Slip-critical strength: edaysareKminGnuBaØateGayman slip enaHkartP¢ab;enHRtUv)ancat;Ca slip-
critical. BI AISC Table J3.1 kMlaMgTajkñúgb‘ULúgGb,brmaKW Tm = 28kips . BIsmIkar &>#/

          φRstr = 0.373Tm = 0.373(28) = 10.4kips / bplt
sMrab;b‘ULúgbYn
          φRstr = 4(10.4) = 41.6kips
Bearing strength:  edaysarcMgayeTARCugEKmmanRbEvgdUcKña ehIy gusset palte esþIgCagr)ar enaH
eyIgenwgeRbI gusset plate EdlmankMras; 3 / 8in. edIm,IKNna bearing strength.
Ggát;p©itRbehag
                    1 3 1 13
          h=d+       = + = in.
                   16 4 16 16
sMrab;RbehagEdlenACitRCugEKmrbs; gusset plate CageK
                   h         13 / 16
          Lc = Le −  = 1.5 −         = 1.094in.
                   2           2
                ⎛3⎞
          2d = 2⎜ ⎟ = 1.5in.
                ⎝4⎠
edaysar Lc < 2d

                                              251                             tMNsamBaØ
T.chhay


                                                    ⎛3⎞
          φRn = φ (1.2 Lc tFu ) = 0.75(1.2 )(1.094)⎜ ⎟(58) = 21.42kips / bolt
                                                    ⎝8⎠
sMrab;d¾éTeTot
                              13
          Lc = s − h = 3 −       = 2.188in. > 2d
                              16
dUcenH φRn = φ (2.4dtFu ) = 29.36kips / bolt
Bearing strength sMrab;kartMNKW

          φRn = 2(21.42) + 2(29.36 ) = 102kips
RtYtBinitü tensile strength rbs;Ggát;rgkarTaj
karTajenAelI gross area:
                                         ⎛    1⎞
          φt Pn = φt Fy Ag = 0.90(36 )⎜ 6 × ⎟ = 97.2kips
                                         ⎝    2⎠
karTajenAelI net area: muxkat;TaMgmUlrbs;Ggát;RtUv)antP¢ab; dUcenHvaKμan shear lag eT enaHeyIg
TTYl)an Ae = An .
Ggát;p©itRbehag
                  1 3 1 7
          h=d+     = + = in.
                  8 4 8 8
Design strength    KW
          φt Pn = φt Fu Ae = φt Fu t (wg − ∑ h ) = 0.75(58)⎜ ⎟ ⎢6 − 2⎜ ⎟⎥ = 92.4kips
                                                          ⎛ 1 ⎞⎡    ⎛ 7 ⎞⎤
                                                          ⎝ 2 ⎠⎣    ⎝ 8 ⎠⎦
Block shear stredngth: failure blocksMrab; gusset plate manTMhMdUcTMhMsMrab;Ggát;rgkarTajEdr
EtxuxKñaRtg;kMras; ¬rUbTI 7>14 b¦. Gusset plate EdlmankMras;esþIgCagnwgmanersIusþg;tUcCag.
vaman shear-failure plane cMnYnBIr³
          Agv = 2 ×
                        3
                          (3 + 1.5) = 3.375in.2
                        8
edaysarvaman 1.5 Ggát;p©itRbehagkñúgmYyCYredkrbs;b‘ULúg
                   3⎡                 ⎛ 7 ⎞⎤
          Anv = 2 × ⎢(3 + 1.5) − (1.5)⎜ ⎟⎥ = 2.391in.2
                   8⎣                 ⎝ 8 ⎠⎦
sMrab;RkLaépÞrgkarTaj
          Agt =
               3
                 (3) = 1.125in.2
               8
               3⎛     7⎞
          Ant = ⎜ 3 − ⎟ = 0.7969in.2
               8⎝     8⎠

                                                   252                                 tMNsamBaØ
T.chhay


AISC Equation J4-3a     eGay
                  [                  ]
          φRn = φ 0.6 Fy Agv + Fu Ant = 0.75[0.6(36 )(3.375) + 58(0.7969 )]

              = 0.75[72.90 + 46.22] = 89.3kips
AISC Equation J4-3b     eGay
                  [                   ]
          φRn = φ 0.6 Fy Anv + Fy Agt = 0.75[0.6(58)(2.391) + 36(1.125)]

              = 0.75[83.21 + 40.50] = 92.8kips
tY fracture ¬EdlBak;Bn§½nwg Fu ¦ enAkñúgsmIkarTIBIrmantMélFMCagenAkñúgsmIkarTImYy dUcenH AISC
Equation 4.3b lub.

        design strength sMrab; block shear = 92.8kips

kñúgcMeNamsßanPaBkMNt;TaMgGs;Edl)aneFVIkarGegát eyIgeXIjfaersIusþg;EdlRtUvKñanwg slip mantM
éltUcCageK.
cMeLIy³ Design strength rbs;tMNKW 41.6kips

]TahrN_ 7>6³ Ggát;rgkarTajkMras; 5 / 8in. RtUv)antP¢ab;eTAnwg splice plate kMras; 1 / 4in. cMnYnBIr
dUcEdl)anbgðajenAkñúgrUbTI 7>15. bnÞúkEdl)anbgðajCabnÞúk service load. eKeRbIEdk A36 nig
b‘ULúg A325 Ggát;p©it 5 / 8in. . RbsinebIeKGnuBaØateGayman slip etIeKRtUvkarb‘ULúgb:unμanRKab;?
GkS½rbs;b‘ULúgnImYy²EdlbgðajKWCaCYrrbs;b‘ULúgkñúgTisTTwgrbs;bnÞHEdk.




                                             253                                    tMNsamBaØ
T.chhay


dMeNaHRsay³ Shear: sMrab; shear, norminal bolt area KW
                  π (5 / 8)2
           Ab =                = 0.3068in.2
                      4
snμt;fa eFμjb‘ULúgsßitenAkúñgbøg;kat;. enaH design strength sMrab;b‘ULúgmYyKW
          φRn = φFv Ab × 2planes of shear = 0.75(48)(0.3068)(2) = 22.09kips
Bearing: Beating force     enAelIGgát;rgkarTajkMras; 5 / 8in. nwgFMCag bearing force enAelI splice
plate kMras; 1 / 4in. nImYy² BIrdg. edaysarbnÞúksrubenAelI splice plates esμInwgbnÞúkenAelIGgát;

rgkarTaj enaH splice plate nwgmaneRKaHfñak;enAeBlEdlkMras;srubrbs; splice plate esþIgCag
kMras;rbs;Ggát;rgkarTaj. eRbIGgát;p©itRbehag
                     1 5 1 11
           h=d+       = + = in.
                    16 8 16 16
sMrab;RbehagEdlenAEk,rRCugEKmCageK
                    h         11 / 16
           Lc = Le −  = 1.5 −         = 1.156in.
                    2           2
                 ⎛5⎞
           2d = 2⎜ ⎟ = 1.25in.
                 ⎝8⎠
edaysar Lc < 2d / bearing strength KW
                                                   ⎛1   1⎞
          φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.156)⎜ + ⎟(58) = 30.17kips / bolt
                                                   ⎝4   4⎠
sMrab;rn§déTeTot
                           11
           Lc = s − h = 3 −    = 2.312in. > 2d
                           16
                                        ⎛ 5 ⎞⎛ 1 1 ⎞
dUcenH    φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ + ⎟(58) = 32.62kips / bolt
                                        ⎝ 8 ⎠⎝ 4 4 ⎠
Shearing strength         kñúgb‘ULúgmYyKWtUcCagtMél bearing TaMgBIr dUcenHersIusþg;rbs;tMNKW 22.09kips .
bnÞúkemKuNKW
           Pu = 1.2 D + 1.6 L = 1.2(25) + 1.6(25) = 70kips

cMnYnb‘ULúgEdlRtUvkar    =
                              total load
                            load per bolt
                              70
                         =         = 3.17bolts
                            22.09
cMeLIy³ eRbIb‘ULúgbYn EdlkñúgmYyCYrmanBIrRKab; enAelIRCugnImYy²rbs; splice. b‘ULúgcMnYn R)aMbI
RKab;GacRtUvkarsMrab;kartP¢ab;enH.
                                                  254                                   tMNsamBaØ
T.chhay


]TahrN_ 7>7³ C 6 ×13 EdlbgðajenAkñúgrUbTI 7>16 RtUv)aneRCIserIsedIm,ITb;Tl;nwgbnÞúkTajem
KuN 108kips . Ggát;enHRtUv)anP¢ab;eTAnwg gusset plate kMras; 3 / 8in. CamYynwgb‘ULúg A325
EdlmanGgát;p©it 7 / 8in. . ]bmafaeFμjrbs;b‘ULúgsßitenAkñúgbøg;énkMlaMgkat;TTwg ehIyeKGnuBaØat
eGayman slip sMrab;kartP¢ab;enH. kMNt;cMnYn nigeFVIkartMerobb‘ULúgy:agNaedIm,ITTYl)anRbEvgt
P¢ab; h Gb,brma. eKeRbIEdk A36 .




dMeNaHRsay³ kMNt;lT§PaBrbs;b‘ULúgeTal
kMlaMgkat;TTwg³
                 π (7 / 8)2
          Ab =                = 0.6013in.2
                     4
          φRn = φFv Ab = 0.75(48)(0.6013) = 21.65kips
bearing³ edaysarkMras;rbs; gusset plate esþIgCaRTnugrbs;Edk channel dUcenH bearing strength
rbs; gusset plate nwgtUcCagEdk channel. snμt;faRbEvg Lc EdlRsbnwgkMlaMgEdlGnuvtþmantMél
FMCag 2d sMrab;b‘ULúgTaMgGs;. enaH
                                             ⎛ 7 ⎞⎛ 3 ⎞
          φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(58) = 34.26kips
                                             ⎝ 8 ⎠⎝ 8 ⎠
enaH kMlaMgkat;TTwglub. dUcenH
         cMnYnb‘ULúgEdlRtUvkar = 21.65 = 4.99
                                  108


eTaHbICab‘ULúg 5 pþl;nUversIusþg;RKb;RKan;k¾eday k¾eKsakl,gb‘ULúg 6RKab;EdlGacerobCalkçN³
sIuemRTI edaymanb‘ULúg 3RKab;BIrCYr dUcbgðajenAkñúgrUbTI 7>17. ¬b‘ULúgBIrCYrRtUv)aneRbIedIm,I
TTYl)anRbEvgtP¢ab;Gb,brma¦. eyIgmin)andwgfaetIkarKNnamuxkat;Ggát;rgkarTajenHQrelI
karsnμt;eRKOgP¢ab;b:unμanCYr dUcenHlT§PaBTb;karTajrbs;Edk channel CamYynwgb‘ULúgBIrCYrRtUv)an
RtYtBinitümunnwgdMeNIrkarKNnakartP¢ab;bnþ.
                                                    255                       tMNsamBaØ
T.chhay




          karTajenAelI gross area:
          φt Pn = 0.90 Fy Ag = 0.90(36 )(3.83) = 124kips
          net area
          An = 3.83 − 2(1.0)(0.437 ) = 2.96in.2
     edaysareyIgminTan;sÁal;RbEvgtP¢ab;BitR)akd dUcenHeyIgRtUveRbItMélmFümrbs;              U   BI
Commentary.

          Ae = UAn = 0.85(2.96) = 2.51in.2
          kMlaMgTajenAelI net area
          φt Pn = 0.75Fu Ae = 0.75(58)(2.51) = 109kips     ¬lub¦
dUcenH lT§PaBrbs;Ggát;rgkarTajKWQrelIb‘ULúgBIrCYr.
        RtYtBinitüKMlat nigRbEvgeTARCugEKmtamTisEkgnwgkMlaMg. BI AISC J3.3
        KMlatGb,brma = 2.667⎛ 7 ⎞ = 2.33in.
                                 ⎜ ⎟
                                 ⎝8⎠
        BI AISC Table J3.4
        RbEvgeTARCugEKmGb,brma = 1 18 in.
        KMlat 3in. nigRbEvgeTARCugEKm1 12 in. nwgRtUv)aneRbIkñúgTisEkgnwgkMlaMg.
        eKGackMNt;RbEvgtP¢ab;Gb,brmarbs;kartP¢ab;edayeRbIKMlat nigRbEvgeTARCugEKmGnuBaØat
Gb,brmakñúgTisbeNþay ¬RsbnwgkMlaMg¦. KMlatGb,brmakñúgTisnImYy²KW 2 2 3 d = 2.33in. .
sakl,g 2 12 in. . RbEvgeTARCugEKmGb,brmaKW 1 18 in. . cMgayGb,brmaTaMgenHnwgRtUv)aneRbI
sMrab;epÞógpÞat; bearing strength rbs;kartP¢ab;. sMrab;karKNna bearing strength eKeRbIGgát;p©it
rn§
                      1 7 1 15
          h=d+         = +  = in.
                     16 8 16 16
          sMrab;RbehagEdlenAEk,rRCugEKmrbs; gusset plate CageK

                                              256                               tMNsamBaØ
T.chhay


                      h           15 / 16
          Lc = Le −     = 1.125 −         = 0.6562in.
                      2             2
          2d = 2(7 / 8) = 1.75in.
          edaysar Lc < 2d bearing strength KW
                                                    ⎛3⎞
          φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(0.6562)⎜ ⎟(58) = 12.85kips / bolt
                                                    ⎝8⎠
          sMrab;Rbehagd¾éTeTot
                               15
          Lc = s − h = 2.5 −      = 1.562in. < 2d
                               16
          dUcenH φRn = φ (1.2LctFu ) = 0.75(1.2)(1.562)⎜ 8 ⎞(58) = 30.58kips / bolt
                                                       ⎛3
                                                       ⎝ ⎠
                                                           ⎟

          Bearing strength srubsMrab;kartP¢ab;KW
          φRn = 2(12.85) + 4(30.58) = 148kips > Pu = 108kips             (OK)
        rUbTI 7>18 bgðajBIkartP¢ab;sakl,gsMrab;RtYtBinitüemIl block shear enAkñúg gusset plate
¬sMrab;ragGrNImaRtén failure block enAkñúgEdl channel KWdUcKña b:uEnþ gusset plate mankMras;esþIg
Cag¦.




          Shear areas:
          Agv = (2.5 + 2.5 + 1.125)(2) = 4.594in.2
                 3
                 8
          ehIyedaysarEtvamanRbehag 2.5 enAtamépÞkat;nImYy²
          Anv =
                3
                  [6.125 − 2.5(1.0)](2) = 2.719in.2
                8
          Tension area
          Agt = (3) = 1.125in.2
                3
                8
          ehIy  Ant = (3 − 1.0) = 0.75in.2
                      3
                      8
          RtYtBinitüsMrab; tension yield nig shear fracture CamYynwg AISC Equation J4-3a:
                                               257                                    tMNsamBaØ
T.chhay


                   [
          φRn = φ 0.6 Fy Agv + Fu Ant   ]
              = 0.75[0.6(36 )(4.594 ) + 58(0.75)] = 0.75[99.23 + 43.50] = 107.0kips
          RtYtBinitüsMrab; tension fracture nig shear yield CamYynwg AISC Equation J4-3b:
          φRn = φ [0.6 Fu Anv + Fy Agt ]

              = 0.75[0.6(58)(2.719 ) + 36(1.125)] = 0.75[94.62 + 40.50] = 101.3kips
tY fracture ¬tYEdlBak;Bn§½nwg Fu ¦ enAkñúgsmIkarTIBIrmantMélFMCagtY fracture enAkñúgsmIkarTImYy
dUcenH smIkarTIBIrlub.
         Design strength sMrab; block shear = 101.3kips < 108kips      (N.G.)

viFIEdlsamBaØbMputkñúgkarbegáIn block shear strength sMrab;kartP¢ab;enHKWbegáIn shear area eday
begáInKMlatb‘ULúg. RbsinebIeKbegáInKMlat AISC Equation J4-3b enAEtlubdEdl. ebIeTaHbICaKM
latEdlRtUvkarGackMNt;eday trial and error k¾eday k¾eKGacedaHRsayedaypÞal;dUcEdleyIg
nwgeFVIenATIenH. BI AISC Equation J4-3b, eKeGay
          0.75[0.6(58)Anv + 40.50] = 108kips
          dUcenHeKRtUvkar Anv = 2.974in.2
          Anv =
                  3
                    (2s + 1.125 − 2.5)(2) = 2.974in.2
                  8
       dUcenH s = 2.67in.
       yk s = 3in.
CamYynwgKMlat 3in. net shear area KW
          Anv =
                  3
                    (3 + 3 + 1.125 − 2.5)(2) = 3.469in.2
                  8
          ehIy block shear strength BI AISC Equation J4-3b KW
                   [
          φRn = φ 0.6 Fu Anv + Fy Agt   ]
              = 0.75[0.6(58)(3.469 ) + 36(1.125)] = 0.75[120.7 + 40.50] = 120.9kips
edayeRbIKMlat nigRbEvgeTARCugEKmEdl)ankMNt; dUcenHRbEvgGb,brmaKW
          h = 1.125 + 2 × 3 + 1.125 = 8.5in
cMeLIy³ eRbIkartP¢ab;lMGitEdlbgðajenAkñúgrUbTI 7>19.

                                                 258                                  tMNsamBaØ
T.chhay




        kartMerobb‘ULúgenAkñúg]TahrN_ 7>7 manlkçN³sIuemRTIeFobnwgGkS½RsbnwgGkS½TIRbCMuTMgn;.
dUcenHkMlaMgpÁÜbEdlTb;Tl;kMlaMgEdlpþleGayedayeRKOgP¢ab;k¾eFVIGMeBItamGkS½enH ehIyragFrNI-
maRtenHRtUvKñanwgkartP¢ab;samBaØ. RbsinebIeKRtUvkarcMnYnb‘ULúgess ehIyeKeRbIBIrCYr vanwgminman
PaBsIuemRTIeT ehIykartP¢ab;nwgmanlkçN³cakp©it. kñúgkrNIEbbenH GñkKNnamuxkat;nwgmanCMerIs
eRcIn³ ¬!¦ minKitcMNakp©it edaysnμt;faT§BlenHGacecal)an/ ¬@¦ KitcMNakp©it/ ¬#¦ eRbIkartM
erobqøas; (staggered pattern) EdlGacrkSanUvPaBsIuemRTI/ b¤ ¬$¦ bEnßmcMnYnb‘ULúgedIm,ITTYl)an
kartMerobEdlmanlkçN³sIuemRTI. visVkrPaKeRcInRbEhlCanwgeRCIserIsCMerIscugeRkay.

]TahrN_ 7>8³ Ggát;rgkarTajRbEvg 13 ft nigkartP¢ab;rbs;vaRtUv)anKNnasMrab; service dead
load 8kips  nig service live load 22kips . eKminGnuBaØateGayman slip sMrab;kartP¢ab;enHeT.
Ggát;enHRtUv)antP¢ab;eTAnwg gusset plate kMras; 3 / 8in. dUcbgðajenAkñúgrUbTI 7>20. eRbIEdkEkg
eTal (single angle) sMrab;Ggát;rgkarTaj. eRbIb‘ULúg A325 nigEdk A572 grade 50 sMrab;Ggát;rg
karTaj nig gusset plate.




dMeNaHRsay³ bnÞúkemKuNEdlRtUvTb;Tl;KW
          Pu = 1.2 D + 1.6 L = 1.2(8) + 1.6(22) = 44.8kips
                                               259                             tMNsamBaØ
T.chhay


edaysarTMhMb‘ULúg nigkartMerobb‘ULúgCHT§iBldl; net area rbs;Ggát;rgkarTaj eyIgnwgcab;epþIm
CamYynwgkareRCIserIsb‘ULúg. yuT§saRsþKWkareRCIserIssMrab;karsakl,g/ kMNt;cMnYnb‘ULúgEdlRtUv
kar/ rYcbnÞab;mksakl,gTMhMepSgeTotRbsinebITMhMEdl)ansakl,gFMeBk b¤tUceBk. Ggát;p©itb‘U
LúgsßitenAcenøaHBI 1/ 2in. ≈ 13mm eTA 1 12 in. ≈ 38mm edayekIneLIgmþg 1 / 8in. ≈ 3mm
        sakl,gb‘ULúg 5 / 8in. . Nominal bolt area KW
                 π (5 / 8)2
          Ab =                = 0.3068in.2
                        4
Shear strength     KW
          φRn = φFv Ab = 0.75(48)Ab = 0.75(48)(0.3068)
               = 11.04kips / bolt  ¬edaysnμt;faeFμjsßitenAkñúgbøg;kat;¦
edayeKminGnuBaØateGayman slip dUcenHkartP¢ab;enHCa slip-critical. eyIgsnμt;épÞ Class A ehIy
sMrab;b‘ULúgGgát;p©it 5 / 8in. kMlaMgTajGb,brmaKW Tm = 19kips ¬BI AISC Table J3.1). BI RCSC
Equation LRFD 5.3, slip critical strength sMrab;b‘ULúgeTalKW

          φRstr = φ (1.13μTm N b N s ) = 1.0(1.13)(0.33)(19)(1)(1) = 7.085kips / bolt
eday slip-critical strength tUcCag shear strength dUcenH slip-critical strength lub. eyIgnwgkM
Nt;cMnYnb‘ULúgedayQrelI slip-critical strength ehIyRtYtBinitü bearing bnÞab;BIeRCIserIsGgát;
¬edaysar bearing strength minGackMNt;)an Tal;EteKsÁal;kMras;Ggát;sin¦. dUcenH
        cMnYnb‘ULúg = load per bolt = 7.085 = 6.3bolts
                        total load     44.8


dUcenHeKRtUvkarb‘ULúgy:agtic 7 RKab;. RbsinebIeKeRbIBIrCYr eKRtUvbEnßmb‘ULúgmYyRKab;edIm,IrkSaPaB
sIuemRTI. rUbTI 7>21 bgðajBIkartMerobb‘ULúgEdlmanCaeRcInTMrg;. kartMerobb‘ULúgTaMgenHeKGaceRbI
)anTaMgGs; EtRbEvgénkartP¢ab;GacRtUv)ankat;bnßyedayeRbITMhMb‘ULúgFM nigcMnYntic.
        sakl,gb‘ULúgEdlmanGgát;p©it 7 / 8in. . Nominal bolt area KW
                 π (7 / 8)2
          Ab =                = 0.6013in.2
                        4
          Shear strength      KW
          φRn = 0.75(48)Ab = 0.75(48)(0.6013)
               = 21.65kips / bolt     ¬edaysnμt;faeFμjsßitenAkñúgbøg;kat;¦

                                                 260                                    tMNsamBaØ
T.chhay


kMlaMgTajGb,brmasMrab;b‘ULúg A325 Ggát;p©it 7 / 8in. KW Tm = 39kips dUcenH slip-critical
strength KW

        φRstr = φ (1.13μTm N b N s ) = 1.0(1.13)(0.33)(39)(1)(1) = 14.54kips / bolt ¬lub¦
eKRtUvkarb‘ULúgEdlmanGgát;p©it 7 / 8in. cMnYn
           44.8
                = 3.1bolts
          14.54




dUcenHeyIgeRbIb‘ULúg A325 EdlmanGgát;p©it 7 / 8in. cMnYn 4 RKab;. BI AISC J3.3, KMlatGb,brmaKW
                           ⎛7⎞                                       ⎛7⎞
        s = 2.667 d = 2.667⎜ ⎟ = 2.33in. ¬b¤sMrab;karniym/ 3d = 3⎜ ⎟ = 2.62in. ¦
                           ⎝8⎠                                       ⎝8⎠
BI AISC Table J3.4, cMgayeTARCugEKmKW
        Le = 1.5in.    ¬edaysnμt; sheared edges¦
edaysakl,gkartMerobdUcbgðajenAkñúgrUbTI 7>22 eRCIserIsGgát;rgkarTaj. Gross area EdlRtUv
karKW
                   Pu    44.8
          Ag ≥         =        = 0.996in.2
                 0.9 Fy 0.9(50)

Effective net area   EdlRtUvkarKW
                   Pu     44.8
          Ae ≥         =         = 0.9190in.2
                 0.75Fy 0.75(36)

edaysar effective net area KW Ae = UAn / net area EdlRtUvkarKW
                 requiredAe
          An =
                     U
BIkartMerobb‘ULúgEdlbgðajenAkñúgrUbTI 7>22/ CamYynwgb‘ULúgeRcInCagBIrkñúgTisénkMlaMgEdlGnuvtþ
tMélmFümrbs; U BI Commentary to the AISC Specification KW 0.85 . ¬enAeBlEdleKeRCIserIs
Ggát;rYcehIy eKGackMNt;tMél U CamYynwg AISC Equation B3-2¦. dUcenH
                                              261                                 tMNsamBaØ
T.chhay


                 0.9190
          An ≥          = 1.08in.2
                  0.85




cMNaMfa net area EdlRtUvkarKWFMCag gross area EdlRtUvkar. kaMniclPaBGb,brmaEdlRtUvkarKW
                    L    13(12)
          rmin =       =        = 0.52in.
                   300    300
sakl,g L3 12 × 2 12 × 14
          Ag = 1.44in.2 > 0.996in.2         (OK)
          rmin = rz = 0.544in. > 0.52in. (OK)
sMrab;karKNna net area, eRbIGgát;p©itrn§ 7 8 + 18 = 1.0in.
                                      ⎛1⎞
          An = Ag − Ahole = 1.44 − 1.0⎜ ⎟ = 1.190in.2 > 1.08in.2    (OK)
                                      ⎝4⎠
KNna U CamYynwg AISC Equation B3-2:
                 x
          U =1−    ≤ 0.9
                 L
                 0.785
            = 1−       = 0.913
                   9
edaysartMélenHFMCag 0.9 / dUcenHeRbI U = 0.9 . Effective net area KW
          Ae = UAn = 0.9(1.190) = 1.071in.2 > 0.9190in.2     (OK)
RtYtBinitü bearing strength. cMgayeTARCugEKmsMrab;EdkEkgesμInwgcMgayeTARCugEKmsMrab; gusset
plate ehIyedaysarEdkEkgmankMras;esþIgCag gusset plate dUcenHeyIgeRbIEdkEkgEdlmankMras;

1 / 4in. sMrab;KNna bearing strength. sMrab;karKNna bearing strength, eyIgeRbIGgát;p©itRbehag
                    1 7 1 15
          h=d+       = +  = in.
                   16 8 16 16
sMrab;RbehagEdlenAEk,RCugEKmGgát;CageK
                      h         15 / 16
          Lc = Lc −     = 1.5 −         = 1.031in.
                      2           2

                                                262                             tMNsamBaØ
T.chhay



          2d = 2(7 / 8) = 1.75in.
edaysar Lc < 2d / bearing strength KW
                                                  ⎛1⎞
          φRc = φ (1.2 Lc tFu ) = 0.75(1.2)(1.031)⎜ ⎟(65) = 15.08kips / bolt
                                                  ⎝4⎠
sMrab;Rbehagd¾éTeTot
                          15
          Lc = s − h = 3 −    = 2.062in. > 2d
                          16
                                        ⎛ 7 ⎞⎛ 1 ⎞
dUcenH    φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(65) = 25.59kips / bolt
                                        ⎝ 8 ⎠⎝ 4 ⎠
Bearing strength         srubsMrab;kartP¢ab;KW
          φRn = 15.08 + 3(25.59) = 91.9kips > Pu = 44.8kips       (OK)
RtYtBinitü block shear. CamYynwgb‘ULúgEdlP¢ab;enAelIeCIgEvgCamYynwgcMgayKMlat ¬emIlCMBUk
III/ rUbTI 3>22¦ failure block RtUv)anbgðajenAkñúgrUbTI 7>23. Shear area KW

          Agv =
               1
                 (1.5 + 9) = 2.625in.2
               4
          Anv = [1.5 + 9 − 3.5(1.0)] = 1.750in.2
               1
               4
                                                          ¬Ggát;p©itRbehagmancMnYn 3.5 ¦




Tension area    KW
          Agt =
               1
                 (1.5) = 0.3750in.2
               4
          Ant = [1.5 − 0.5(1.0)] = 0.25in.2
               1
               4
                                                          ¬Ggát;p©itRbehagmancMnYn 0.5 ¦
AISC Equation J4-3a           eGay
                     [
          φRn = φ 0.6 F y Agv + Fu Ant     ]
              = 0.75[0.6(50 )(2.625) + 65(0.25)] = 0.75(78.75 + 16.25) = 71.2kips

                                                 263                                 tMNsamBaØ
T.chhay


AISC Equation J4-3b     eGay
                  [
          φRn = φ 0.6 Fu Anv + Fy Agt   ]
              = 0.75[0.6(65)(1.75) + 50(0.375)] = 0.75(68.25 + 18.75) = 65.2kips
smIkar J4-3bmantY fracture FMCag dUcenHsmIkarenHlub. dUcenH block shear strength KW
          φRn = 65.2kips > Pu = 44.8kips       (OK)
cMeLIy³ eRbI L3 1 2 × 2 12 × 1 4 CamYynwgkartP¢ab;enAelIeCIgEvg. eRbIb‘ULúg A325 Ggát;p©it 7 8 in.
dUcbgðajenAkñúgrUbTI 7>24.




7>8> b‘ULúgersIusþg;x<s;rgkarTaj High-Strength Bolts in Tension
        enAeBlEdlkMlaMgTajEdlGnuvtþelIb‘ULúgedayKμankMlaMgTajedIm (initial tension) kMlaMg
TajenAkñúgb‘ULúgesμInwgkMlaMgEdlGnuvtþ. b:uEnþ RbsinebIb‘ULúgrgeRbkugRtaMg Epñkd¾FMrbs;kMlaMgEdl
GnuvtþRtUv)aneRbIedIm,Ibn§ÚrkMlaMgsgát; b¤kMlaMgrwt (clamping force) enAelIEpñkEdlRtUvtP¢ab; dUcEdl
kMNt;eday Kulak, Fisher, nig Struik (1987) ehIyRtUv)anbkRsayenATIenH. rUbTI 7>25 bgðajBI
tMNBüÜr (hanger connection) EdlpSMeLIgeday structural tee shape EdlRtUv)ancab;b‘ULúgeTAnwg
søabxageRkamrbs; W-shape nigrgnUvkMlaMgTaj. b‘ULúgeTal nwgcMENkénEpñkEdlRtUvtP¢ab;
RtUv)ansikSamun nigeRkayeBldak;bnÞúk.




                                             264                                    tMNsamBaØ
T.chhay


        düaRkamGgÁesrIrbs;kartP¢ab;muneBldak;bnÞúkRtUv)anbgðajenAkñúgrUbTI 7>26 a. ral;kMlaMg
TaMgGs;CakMlaMgkñúg. edIm,IPaBgayRsYl kMlaMgTaMgGs;RtUv)ansnμt;sIuemRTIeFobGkS½rbs;b‘ULúg
ehIycMNakp©itminRtUv)anKit. Rb sinebIeKBicarNaEpñkEdlRtUvtP¢ab;dac;edayELk kMlaMgrYmmankM
laMgTajrbs;b‘ULúg To nigkMlaMgrwt Ekg (normal clamping force) N o EdlbgðajenATIenHRtUv)an
BRgayesμI. edIm,IeGaymanlMnwg eKRtUvkar To = N o . enAeBlEdleKGnuvtþkMlaMgxageRkA kMlaMg
enAelIkartP¢ab;RtUv)anbgðajenAkñúgrUbTI 7>26 b Edl F tMNageGaykMlaMgTajsrubEdlGnuvtþ
mkelIb‘ULúgmYy. rUbTI 7>26 c bgðajkMlaMgEdlmanGMeBIelIdüaRkamGgÁesrIrbs;Epñkénsøabrbs;
structural tee nigEpñkEdlRtUvKñarbs;b‘ULúg. bUkkMlaMgtamTisGkS½b‘ULúg eyIgTTYl)an

          T =F+N
         kMlaMg F nwgbegáInkMlaMgTajrbs;b‘ULúg ehIyeFVIeGayvalUt)an δ b . kMlaMgsgát;enAkñúg
søabrbs; structurel atee nwgRtUv)ankat;bnßy CalT§plvamanbMlas;TI δ fl EdlmanTisdUc δ b .
TMnak;TMngrvagkMlaMgGnuvtþn_ nigbMErbMrYlkMlaMgTajrbs;b‘ULúgGacRtUv)ankMNt;dUcxageRkam³




       BI elementary mechanics of materials, kMhUcRTg;RTaytamGkS½rbs;bnÞúktamGkS½Edl
GnuvtþelIGgát;KW³
                                           265                                   tMNsamBaØ
T.chhay


          δ=
               PL
               AE
                                                                                    ¬&>$¦
Edl       P=kMlaMgtamGkS½
        L = RbEvgedIm

        A = RkLaépÞmuxkat;

        E = m:UDuleGLasÞic

BIsmIkar &>$ eyIgGacTajrkkMlaMg
                AEδ
          P=
                 L
                                                                                    ¬&>%¦
dUcenHbMErbMrYlkMlaMgenAkñúgb‘ULúgEdlRtUvKñaeTAnwgkMhUcRTg;RTay δ b KW
              A E δ
          ΔT = b b b
                Lb
                                                                                    ¬&>^¦
BIsmIkar &>% eKTTYl)anbMErbMrYlkMlaMg N
                  A fl E fl δ fl
          ΔN =
                       L fl
                                                                                    ¬&>&¦
Edl L fl CakMras;rbs;søab. RbsinEpñkEdlRtUvP¢ab; ¬søabTaMgBIr¦ enAb:HKña kMhUcRTg;RTayrbs;
b‘ULúg δ b nigkMhUcRTg;RTaysøab δ fl nwgesμIKña. edaysar E fl esÞIresμInwg Eb (Bickford, 1981),
ehIy A fl FMCag Ab
          A fl E fl δ fl     A E δ
                           >> b b b
               L fl            Lb

dUcenH ΔN >> ΔT
pleFob ΔN elI ΔT sßitenAcenøaHBI 0.05 eTA 0.1 (Kulak, Fisher, nig Struik, 1987). dUcenH ΔT
minRtUvFMCag 0.1ΔN EdlbgðajfakMlaMgEdlGnuvtþPaKeRcInKWbn§ÚrkMlaMgsgát;rbs;EpñkEdlRtUvtP¢ab;.
KNnakMlaMgEdlRtUvkaredIm,IeFVIeGayEpñkEdlRtUvP¢ab;XøatecjBIKña emIlrUbTI 7>27. enAeBlEdl
EpñkTaMgBIrXøatecjBIKña
          T =F
b¤ To + ΔT = F                                                                 ¬&>*¦
enAeBlEdlCitdl;cMnucEdlRtUvXøatKña sac;lUtrbs;b‘ULúg nigKMlatrbs;søabKWesμIKña
            A E        A E
       ΔT = b b δ b = b b δ fl
             L          L
                                                                               ¬&>(¦
                      b            b


                                             266                                 tMNsamBaØ
T.chhay


Edl δ fl CakMhUcRTg;RTayEdlRtUvKñanwgkMlaMgsgát;edIm N o . BIsmIkar &>$
                   N o L fl
          δ fl =
                   A fl E fl

CMnYsvaeTAkñúgsmIkar &>( eyIg)an
               ⎛ A E ⎞⎛ N o L fl   ⎞ ⎛ Ab Eb / Lb         ⎞       ⎛
                                                          ⎟ N o = ⎜ Ab Eb / Lb
                                                                                       ⎞
          ΔT = ⎜ b b ⎟⎜
               ⎜ L ⎟⎜ A E
                                   ⎟=⎜                                                 ⎟To ≈ 0.1To
               ⎝ b ⎠⎝ fl fl        ⎟ ⎜ A fl E fl / L fl   ⎟       ⎜ A fl E fl / L fl   ⎟
                                   ⎠ ⎝                    ⎠       ⎝                    ⎠
BIsmIkar &>*
          To + 0.1To = F       b¤          F = 1.1To




dUcenH enAxN³eBlEdlcab;epþImXøat kMlaMgTajenAkñúgb‘ULúgFMCagkMlaMgTajedImEdlmanenAeBl
tMeLIgb‘ULúgRbEhl 10% . b:uEnþ enAeBlEdlEpñkEdlRtUvP¢ab;Xøatecj kMlaMgxageRkAEdlekIneLIg
nwgRtUv)anTb;edaykMlaMgEdlekIneLIgRtUvKñaenAkñúgb‘ULúg. RbsinebIeKsnμt;fakMlaMgTajenAkñúgb‘U
LúgRtUv)andak;eGayesμIkMlaMgxageRkA ¬RbsinebIKμankMlaMgTajedIm¦ ehIykartP¢ab;rgnUvbnÞúkrhUt
dl;EpñkEdltP¢ab;XøatecjBIKña enaHkMlaMgTajenAkñúgb‘ULúgRtUv)anKNnaticCag 10% . sMrab;krNI
enH b‘ULúgersIusþg;x<s;RtUvrgnUveRbkugRtaMgtamtMélEdlmanenAkñúg AISC Table J3.1 eTaHCakartP¢ab;
enHCa slip-critical b¤minEmnk¾eday. CarYm eKRtUvKNnakMlaMgTajenAkñúgb‘UøLúgedayKitbBa©ÚlTaMgkM
laMgTajedIm.
Prying Action
       sMrab;kartP¢ab;PaKeRcInEdleRKOgP¢ab;rgkMlaMgTaj kMhUcRTg;RTayrbs;EpñkEdlRtUvP¢ab;
GacbegáInkMlaMgTajEdlGnuvtþeTAelIeRKOgP¢ab;. RbePT hanger connection Edl)anerobrab;xag
elICaRbePTkartP¢ab;EdlmanlkçN³eFVIkardUcEdl)anerobrab;. kMlaMgTajbEnßmRtUv)aneKehAfa
prying force ehIyRtUv)anbgðajenAkñúgrUbTI 7>28 EdlrUbenHbgðajBIkMlaMgenAelIGgÁesrIrbs;
hanger. muneBlEdlbnÞúkxageRkAGnuvtþ kMlaMgsgát;Ekg (normal compressive force) N o RbmUl
                                                 267                                             tMNsamBaØ
T.chhay


pþúMenAelIGgS½rbs;b‘ULúg. enAeBlEdlbnÞúkGnuvtþ RbsinebIsøab flexible RKb;RKan; enaHvanwgxUcRTg;
RTaydUcEdlbgðaj ehIykMlaMgsgát;nwgrMkileTAxagcugrbs;søab. karBRgaykMlaMgeLIgvijenH nwg
EkERbTMnak;TMngrvagbnÞúkTaMgGs; ehIykMlaMgTajrbs;b‘ULúgnwgekIneLIg. b:uEnþ RbsinebIEpñkEdl
RtUvP¢ab;manlkçN³rwgRKb;RKan; vanwgminmankarpøas;bþÚrkMlaMgeT ehIyk¾minman prying action Edr.
eKTTYl)antMélGtibrmarbs; prying force enAeBlEdlkac;RCugrbs;søabenAEtb:HCamYynwgEpñk
EdlRtUvP¢ab;d¾éTeTot.
          enAkñúgkartP¢ab;RbePTenH bending EdlekIteLIgeday prying force EtgEtmanlkçN³lub
kñúgkarKNnaEpñkEdlRtUvP¢ab;. AISC J3.6 tMrUveGayKitbBa©Úl prying force eTAkñúgkarKNnakMlaMg
TajEdlGnuvtþelIeRKOgP¢ab;.




         viFIsaRsþsMrab;karKNna prying force EdlQrelI Guide to design Criteria for Bolted
and Riveted Joints (Kulak, Fisher, nig Strick, 1987) manenAkñúg Manual in Part 11, “Connec-

tions for Tension and Compression” (Volume II). krNICak;lak;EdlRtUv)anRtYtBinitüCakart

P¢ab; structural tee shape ehIyEdkEkgKUrEdlxñgTl;xñg ( a pair of back-to-back angle) nwg
RtUv)anKitkñúgpøÚvdUcKñaEdr. viFIEdlbgðajenATIenHmanTMrg;xusKñabnþicEtpþl;nUvlT§pldUcKña.
         viFIEdleRbIKWQrelIKMrUEdlbgðajenAkñúgrUbTi 7>29. RKb;kMlaMgTaMgGs;KWsMrab;EteRKOgP¢ab;
mYy. dUcenH T CakMlaMgTajemKuNxageRkAEdlGnuvtþeTAelIEtb‘ULúgmYy/ Q Ca prying force Edl
                                           268                                  tMNsamBaØ
T.chhay


RtUvKñanwgb‘ULúgmYy nig Bc CakMlaMgb‘ULúgsrub. Prying force )anrMkileTAcugrbs;søab ehIyvaman
tMélGtibrma.
         smIkarxageRkamRtUv)anbMEbkBIsmIkarlMnwgrbs;GgÁesrIkñúgrUbTI 7>29. BIplbUkm:Um:g;Rtg;
muxkat; B-B enAkñúgrUbTI 7>29 b
          Tb − M a − a = Qa                                                       ¬&>!0¦




BIrUbTI 7>29 c
          M b − b = Qa                                                             ¬&>!!¦
cugeRkay/ kMlaMglMnwgRtUvkarKW
          Bc = T + Q                                                               ¬&>!@¦
smIkarlMnwgTaMgbIenHGacbBa©ÚlKñaedIm,ITTYl)ansmIkareTalsMrab;kMlaMgb‘ULúgsrub EdlrYmbBa©Úl
TaMgT§iBl prying force. dMbUgeyIgkMNt;Gefr α CapleFobrvagm:Um:g;kñúgmYyÉktþaRbEvgtam
beNþayGkS½b‘ULúgelIm:Um:g;kñúgmYyÉktþaRbEvgenARtg;épÞKl;. sMrab;GkS½b‘ULúg/ RbEvgCa net length,
dUcenH
                                           269                                  tMNsamBaØ
T.chhay


               M b − b / ( p − d ') M b − b   ⎛             ⎞ M b −b
          α=                       =          ⎜
                                                    1
                                              ⎜ 1 − d ' / p ⎟ = δM
                                                            ⎟                      ¬&>!#¦
                 M a−a / p           M a−a    ⎝             ⎠      a−a

Edl       p=    RbEvgrgsMBaFrbs;søabsMrab;b‘ULúgmYy ¬emIlrUbTI 7>29 a¦
          d ' = Ggát;p©itrbs;Rbehagb‘ULúg
                   d'   net area at bolt line
          δ = 1−      =
                   p gross area at web face
                                                                 (
          M a − a = design strength at a − a = φb M p = φb pt 2 F y / 4
                                                              f           )
eyIgGacbBa©ÚlsmIkarlMnwgbI &>!0-&>!@ edIm,ITTYl)ankMlaMgb‘ULúgsrub/ Bc :
                 ⎡    δα b ⎤
          Bc = T ⎢1 +          ⎥                                                   ¬&>!$¦
                 ⎣ (1 + δα ) a ⎦
CamYynwg bnÞúkEdlTTYl)anBIsmIkar &>!$ eyIgnwgTTYl)ankMhUcRTg;RTayFMEdleFVIeGaykugRtaMg
TajpÁÜbenAkñúgb‘ULúgminRtYtsIuKñaCamYyGkS½rbs;b‘ULúg. dUcenH kMlaMgkñúgb‘ULúgEdleGayedaysmI-
kar &>!$ minRtUvKñaCamYynwglT§plBiesaFn_. edIm,ITTYl)anlT§plEdlcg;)an luHRtaEtkMlaMg Bc
rMkileTAkan;Kl;rbs; tee edaybrimaN d / 2 Edl d CaGgát;p©itb‘ULúg. dUcenHtMél b nig a RtUv)an
EkERbCa
         b' = b −
                  d
                   2
                            nig a' = a + d   2
¬edIm,IeGayRtUvnwglT§plBiesaFn_kan;Etl¥ tMélrbs; a minRtUvFMCag 1.25b eT¦
        CamYynwgkarpøas;bþÚrenHeyIgGacsresrsmIkar &>!$ Ca
                  ⎡       δα b' ⎤
         Bc = T ⎢1 +                 ⎥                                             ¬&>!%¦
                  ⎣ (1 + δα ) a ' ⎦
eyIgGackMNt; α BIsmIkar &>!% edayeGaykMlaMgenAkñúgb‘ULúg Bc esμIeTAnwg design tensil
strength EdleyIgsMKal;Ca B . lT§plEdlTTYl)anKW

         α=
                  [(B / T ) − 1](a' / b')                                          ¬&>!^¦
              δ { − [(B / T ) − 1](a' / b')}
                 1
        eKGacmansßanPaBkMNt;BIr³ tensil failure rbs;b‘ULúg nig bending failure rbs; tee. eK
snμt;fa failure rbs; tee ekItmanenAeBlEdlsnøak;)aøsÞic (plastic hinges) ekItmanRtg;muxkat; a-a,
Rtg;Kl;rbs; tee, nigenARtg;muxkat; b-b. edayehtuenHvanwgbegáItCa beam mechanism. m:Um:g;énTI
taMgTaMgenHnwgesμInwg M p EdlCalT§PaBm:Um:g;)aøsÞicénRbEvgrbs;RbEvgrgsMBaFrbs;søabsMrab;b‘U
LúgmYy. RbsinebItMéldac;xatrbs; α EdlTTYl)anBIsmIkar &>!^ tUcCag 1.0 enaHm:Um:g;enARtg;

                                                    270                         tMNsamBaØ
T.chhay


GkS½b‘ULúgtUcCagm:Um:g;enARtg;Kl; tee Edlvabgðajfa beam mechanism minRtUv)anbegáIteT ehIy
sßanPaBkMNt;RtUv)ankMNt;Ca tensile failure rbs;b‘ULúg. kMlaMgb‘ULúg Bc kñúgkrNIenH nwgesμInwg
design strength B . RbsinebItMéldac;xatrbs; α ≥ 1.0 enaH plastc hinges nwgekItmanenARtg; a-a

nig b-b ehIysßanPaBkMNt;KW flexural failure rbs;søabrbs; tee. edaysarEtm:Um:g;Rtg;kEnøgTaMg
BIrenHRtUv)ankMNt;Rtwmm:Um:g;)aøsÞic M p enaH α KYrEtUv)ankMNt;esμInwg 1.0 .
        smIkarlMnwgbI &>!0-&>!@ k¾GacRtUv)anrYmbBa©ÚlKñakøayCasmIkarEtmYysMrab;kMNt;kMras;
søab t f . BIsmIkar &>!0 nig &>!! eyIgGacsresr
          Tb'− M a − a = M b − b
Edl b' RtUv)anCMnYseGay b . BIsmIkar &>!#
          Tb'− M a − a = δαM a − a                                                   ¬&>!&¦
eGay M a − a esμInwg design strength eKTTYl)an
                                   pt 2 Fy
                                      f
          M a − a = φb M p = φ b
                                     4
Edl t f CakMras;søabEdlRtUvkar. CMnYs M a − a eTAkñúgsmIkar &>!& eyIgTTYl)an
                      4Tb'
          tf =
                 φb pF y (1 + δα )

Edl φb = 0.90
          tf =
                   4.444Tb'
                  pF y (1 + δα )
                                                                                     ¬&>!*¦
         karKNnakartP¢ab;EdlrgnUv prying action CatMeNIrkarKNna trial-and-error. enAeBl
eRCIserIsTMhM nigcMnYnrbs;b‘ULúg eyIgRtUvEtKiteRtomTuksMrab; prying force. kareRCIserIskMras; tee
mankarLM)akCagedaysarvaTak;TgeTAnwgkareRCIserIsb‘ULúg nigTMhM tee. eKGaceRbI Preliminary
Hanger Connection Selection Table EdlmanenAkñúg Part 11 of the Manual sMrab;CYysMrYldl;

kareRCIserIsrUbragsakl,g. enAeBlEdleKeRCIserIsmuxkat;sakl,g/ dwgcMnYnb‘ULúg nigkartMerob
b‘ULúgrYcehIy eKGaceRbIsmIkar &>!% nig &>!* edIm,IepÞógpÞat;.
         RbsinebIkMras;søabCak;EsþgxusBItMélEdlRtUvkar tMélCak;Esþgrbs; α nig Bc k¾GacxusBIGVI
EdleK)anKNnaknøgmkEdr. RbsinebIeKRtUvkMlaMgb‘ULúgCak;Esþg EdlrYmbBa©ÚlTaMg prying force
Q enaHeKRtUvkMNt; α eLIgvijdUcxageRkam.

                                             271                                  tMNsamBaØ
T.chhay


          M b − b = Tb'− M a − a
BIsmIkar &>!#/
               M b −b
          α=
              δM a − a
              Tb'− M a − a Tb' / M a − a − 1
            =             =
               δM a − a           δ
edayeGay M a − a esμIwTAnwg design moment eK)an
                               ⎛ pt 2 F y ⎞
                               ⎜ f        ⎟
        M a − a = φb M p = 0.90⎜          ⎟
                               ⎜ 4 ⎟
                               ⎝          ⎠
                Tb'
                           −1
          0.90 pt 2 Fy / 4       ⎛             ⎞
                               1 ⎜ 4.444Tb' ⎟
enaH   α=
                  f
                   δ
                              = ⎜
                               δ ⎜ pt 2 Fy
                                            − 1⎟                                ¬&>!(¦
                                               ⎟
                                 ⎝     f       ⎠
eKGacrkkMlaMgb‘ULúgsrubBIsmIkar &>!%

]TahrN_ 7>9³ WT10.5 × 66 RbEvg 8in. RtUv)anP¢ab;eTAnwg)atsøabrbs;Fñwm dUcbgðajenAkñúgrUbTI
7>30. Hanger enHrgnUvbnÞúkemKuN 90kips . kMNt;cMnYnb‘ULúg A325 Ggát;p©it 7 / 8in. EdlRtUvkar
nigepÞógpÞat;nUvPaBRKb;RKan;rbs; tee. EdkEdleRbICaRbePTEdk A36 .




                                               272                            tMNsamBaØ
T.chhay


dMeNaHRsay³ RkLaépÞb‘ULúgKW
                 π (7 / 8)2
          Ab =                = 0.6013in.2
                     4
ehIy design strength rbs;b‘ULúgmYyKW
          B = φRn = φFt Ab = 0.75(90 )(0.6013) = 40.59kips
cMnYnb‘ULúgEdlRtUvkarKW 90 / 40.59 = 2.22 . cMnYnb‘ULúgGb,brmaEdlRtUvkarKW 4 edIm,IrkSaPaBsIuem-
RTI. BITMhMEdlbgðajenAkñúgrUbTI 7>30
          b=
               (5.5 − 0.650) = 2.425in.
                  2
          a=
             (12.44 − 5.5) = 3.470in.
                  2
          1.25b = 1.25(2.425) = 3.031in. < 3.470in.
          yk a = 3.031in.
                  d           7/8
          b' = b −  = 2.425 −     = 1.988in.
                  2            2
                  d           7/8
          a' = a + = 3.031 +      = 3.468in.
                  2            2
bnÞúkxageRkAemKuNkñúgmYyb‘ULúg edayKitTaMg prying force KW T = 90 / 4 = 22.5kips .
KNna δ ³
                     1 7 1
          d'= d +     = + = 1in.
                     8 8 8
              8
          p=     = 4in.
              2
                  d'    1
          δ = 1 − = 1 − = 0.75
                  p     4
KNna α ³
          B      40.59
            −1 =       − 1 = 0.8040
          T       22.5
          a' 3.468
            =       = 1.744
          b' 1.988
BIsmIkar &>!^/
          α=
                   [(B / T ) − 1](a' / b') = 0.8040(1.744) = −4.65
               δ { − [(B / T ) − 1](a' / b')} 0.75[1 − 0.8040(1.744)]
                  1
edaysar α > 1.0 / yk α = 1.0 . BIsmIkar &>!*

                                               273                               tMNsamBaØ
T.chhay


                       4.444Tb'        4.444(22.5)(1.988)
          tf =                       =
                      pF y (1 + δα )     4(36)(1 + 0.75)
            = 0.888in. < 1.035in.           (OK)
TaMgcMnYnb‘ULúgEdleRCIserIs nwgkMras;søabKWRKb;RKan; ehIyminRtUvkarkarKNnateTAmuxeToteT.
b:uEnþ edIm,IbgðajBIviFIsaRsþKNna eyIgKNna prying force edayeRbIsmIkar &>!( nig &>!%. BI
smIkar &>!(/
                 ⎛            ⎞
               1 ⎜ 4.444Tb' ⎟     1 ⎡ 4.444(22.5)(1.988) ⎤
          α=     ⎜         − 1⎟ =    ⎢                  − 1⎥ = 0.3848
               δ ⎜ pt 2 Fy    ⎟ 0.75 ⎢ 4(1.035)2 (36 )
                                     ⎣                     ⎥
                                                           ⎦
                 ⎝    f       ⎠
BIsmIkar &>!%/ kMlaMgb‘ULúgsrub edayKitTaMg prying force KW
                 ⎡      δα b' ⎤
          Bc = T ⎢1 +            ⎥
                 ⎣ (1 + δα ) a ' ⎦
                    ⎡    0.75(0.3848) ⎛ 1.988 ⎞⎤
             = 22.5⎢1 +                ⎜       ⎟⎥ = 25.39kips
                    ⎣ 1 + 0.75(0.3848) ⎝ 3.468 ⎠⎦
Prying force     KW
          Q = Bc − T = 25.39 − 22.5 = 2.89kips
cMeLIy³ WT10.5 × 66 RKb;RKan;. eRbIb‘ULúg A325 Ggát;p©it 7 / 8in.

        RbsinebIkMras;søabminRKb;RKan; eKGacsakl,g tee shape EdlmanTMhMFMCag b¤k¾eRbIcMnYn
b‘ULúgbEnßmedIm,Ikat;bnßy T EdlCakMlaMgxageRkAkñúgmYyb‘ULúg. Prying force enAkñúg]TahrN_
7>9 bEnßmRbEhl 13% eTAelIkMlaMgxageRkA. karecalnUvkMlaMgTajbEnßmenHnwgpþl;nUvplvi)ak
y:agF¶n;F¶r.

7>9> kMlaMgpÁÜbrvagkMlaMgTaj nigkMlaMgTajenAkñúgb‘ULúg                 Combined Shear
and Tension in Fasteners
        enAkñúgsßanPaBCaeRcInkartP¢ab;EtgRbQmnwgkMlaMgkat; nigkMlaMgTaj. tMNEdlTTYlbnÞúk
cMNakp©itRtUv)anerobrab;enAkñúgCMBUkTI 8. b:uEnþ sMrab;tMNsamBaØxøH eRKOgP¢ab;sßitkñúgsßanPaBkMlaMg
pÁÜb. rUbTI 7>31 bgðajBIkMNat; structural tee EdlP¢ab;eTAnwgsøabrbs;ssrkñúgeKalbMNgedIm,I
P¢ab;Ggát;BRgwg (bracing member). Ggát;BRgwgenHRtg;)andak;tMrg;y:agNaedIm,IeGayExSskmμrbs;
kMlaMgkat;tamTIRbCMuTMgn;rbs;kartP¢ab;. bgÁúMkMlaMgbBaÄrnwgeFVIeGayeRKOgP¢ab;rgkugRtaMgkat; ehIy
                                                 274                                tMNsamBaØ
T.chhay


bgÁúMkMlaMgedknwgbegáItkMlaMgTaj ¬EdlGacmankarpSMCamYynwg prying force¦. edaysarExSskmμ
rbs;kMlaMgeFVIGMeBIkat;tamTIRbCMuTMgn;rbs;tMN eRKOgP¢ab;nImYy²RtUv)ansnμt;faTTYlkugRtaMgedaycM
ENkesμI²Kña.




         kñúgkrNIbgÁúMkMlaMgepSgeTot eKGaceRbIviFIrUbmnþGnþrkmμ (interaction formula approach) .
ersIusþg;kMlaMgkat; nigersIusþg;kMlaMgTajsMrab;b‘ULúgRbePT bearing KWQrelIlT§plénkarBiesaFn_
nwgRtUv)anykBI elliptical interaction curve EdlbgðajenAkñúgrUbTI 7>32. smIkarrbs;ExSenHKW
                   2             2
          ⎡ Pu ⎤       ⎡ Vu ⎤
          ⎢         ⎥ +⎢         ⎥ = 1.0
          ⎣ (φRn )t ⎥
          ⎢         ⎦  ⎢ (φRn )v ⎥
                       ⎣         ⎦
Edl       Pu = kMlaMgTajemKuNenAelIb‘ULúg
          (φRn )t = design strength rbs;b‘ULúgrgkarTaj
          Vu = kMlaMgkat;TTwgemKuNenAelIb‘ULúg

          (φRn )v = design strength rbs;b‘ULúgrgkarkat;




       bnSMkMlaMgkat; nigkMlaMgTajEdlGacTTYlyk)anKWvaCYbKñaRtg;kEnøgEdlsßitenABIeRkamExS
ekag. enHCatMrUvkarrbs; RCSC Specification Edl
                   2             2
          ⎡ Pu ⎤       ⎡ Vu ⎤
          ⎢         ⎥ +⎢         ⎥ ≤ 1 .0                    (RCSC Equation LRFD 4.2)
          ⎢ (φRn )t ⎥
          ⎣         ⎦  ⎢ (φRn )v ⎥
                       ⎣         ⎦
                                             275                                 tMNsamBaØ
T.chhay


        sMrab; slip-critical connection Edlb‘ULúgrgnUvkMlaMgkat; nigkMlaMgTaj T§iBlrbs;kMlaMg
TajKWbn§Úrbnßy clamping force EdleFVIeGaymankarkat;bnßykMlaMgkkit. AISC Specification
kat;bnßy slip-critical shear strength sMrab;krNIenH. BI AISC Appendix J, slip-critical shear
strength RtUv)anKuNedayemKuN
          ⎡     Tu     ⎤
          ⎢1 −         ⎥                                     (AISC Equation A-J3-2)
          ⎣ 1.13Tm N b ⎦
Edl          kMlaMgTajemKuNenAelItMN
          Tu =

        Tm = kMlaMgTajb‘ULúgedImEdl)anBI AISC Table J3.1

        N b = cMnYnb‘ULúgenAkñúgtMN

cMNaMfa RCSC Equation LRFD 4.2 Edl)anbgðajenATIenHRtUv)anGnuvtþeTAelIb‘ULúgeTal Et
AISC Equation A-J3-2 Edl)anbgðajenATIenHGnuvtþeTAelItMNTaMgmUl. smIkarnImYy²Gac

RtUv)anEkERbedIm,IGnuvtþsMrab;viFIepSgeTot.

]TahrN_ 7>10³ eKeRbI WT10.5 × 31 Ca             bracket edIm,IbBa¢Ún service load 60kips eTAssr
W 14 × 90 dUcEdl)anbgðajenAkñúgrUUbTI 7>31. bnÞúkpSMeLIgedaybnÞúkefr 15kips nigbnÞúkGefr

45kips . eKeRbIb‘ULúg A325 Ggát;p©it 7 / 8in. cMnYn 4 RKab;. TaMgssr nig bracket eFVIBIEdk A36 .

snμt;fatMrUvkarKMlat nigcMgayeTARCugEKmTaMgGs;KWRKb;RKan; edayrYmbBa©ÚlTaMgPaBcaM)ac;sMrab;kar
eRbIR)as; design strengn GtibrmasMrab; bearing ¬dUcCa φ [2.4dtFu ] ¦ nigkMNt;nUvPaBRKb;RKan;rbs;
b‘ULúgsMrab;kartP¢ab;xageRkam³
¬!¦ bearing –types connection EdlmaneFμjsßitenAkñúgbøg;kat;. ¬@¦ slip-critical connection
EdlmaneFμjsßitenAkñúgbøg;kat;.
dMeNaHRsay³ bnÞúkemKuNKW
          1.2 D + 1.6 L = 1.2(15) + 1.6(45) = 90kips
¬!¦ sMrab; bearing-type connection EdlmaneFμjsßitenAkñúgbøg;kat; kMlaMgkat;TTwgsrubKW
          3
            (90) = 54kips
          5
kMlaMgkat;TTwgsMrab;b‘ULúgmYyKW
                 54
          Vu =      = 13.5kips
                  4
                                               276                               tMNsamBaØ
T.chhay


                    π (7 / 8) 2
nig       Ab =
                          4
                                  = 0.6013in. 2

          (φRn )v = φFv Ab = 0.75(48)(0.6013)
                    = 21.65kips > 13.5kips
Bearing strength      ¬søabrbs; tee lub¦ KW
                                      ⎛7⎞
          φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟(0.615)(58)
                                      ⎝8⎠
               = 56.18kips > 13.5kips (OK)
kMlaMgTajsrubKW
          4
            (90) = 75kips
          5
kMlaMgTajsMrab;b‘ULúgmYyKW
                 72
          Pu =      = 18kips
                  4
BI AISC Table J3.2,
          (φRn )t   = φFt Ab = 0.75(90)(0.6013) = 40.59kips > 18kips      (OK)

BI RCSC Equation LRFD 4.2,
                      2               2
          ⎡ Pu ⎤       ⎡ Vu ⎤       ⎛ 18 ⎞
                                              2
                                                ⎛ 13.5 ⎞
                                                          2
          ⎢         ⎥ +⎢         ⎥ =⎜       ⎟ +⎜        ⎟ = 0.585 < 1.0           (OK)
          ⎣ (φRn )t ⎥
          ⎢         ⎦  ⎣ (φRn )v ⎥
                       ⎢         ⎦  ⎝ 40.59 ⎠   ⎝ 21.65 ⎠
cMeLIy³ kartP¢ab;manlkçN³RKb;RKan;Ca bearing-type connection. ¬edIm,IkMueGayBi)akyl;kñúgkar
bnSMbnÞúkrbs;]TahrN_enH prying action minRtUv)anrYmbBa©ÚleTAkñúgkarviPaKeT¦.
¬@¦ sMrab; slip-critical connection, EdlmaneFμjsßitenAkñúgbøg;kat; BIEpñk ¬!¦ shear, bearing/
and tension strength KWmanlkçN³RKb;RKan;. BI RCSC Equation LRFD 5.3, slip-critical strenght

KW
          φRstr = φ (1.13μTm N b N s )
BI AISC Table J3.1, kMlaMgTajsMrab;b‘ULúg A325 Ggát;p©it 7 / 8in. KW
          Tm = 39kips
RbsinebIeyIgsnμt;épÞb:HCa Class A, slip coefficent KW μ = 0.33 nigsMrab;b‘ULúgbYnRKab;
          φRstr = φ (1.13μTm N b N s ) = 1.0(1.13)(0.33)(39)(4 )(1) = 58.17kips
edaysarvamankMlaMgTajenAelIb‘ULúg/ slip-critcal strength RtUv)ankat;bnßyedayemKuN
                                                  277                                tMNsamBaØ
T.chhay


          ⎛     Tu               ⎞ ⎡      72       ⎤
          ⎜1 −
          ⎜ 1.13T N              ⎟ = ⎢1 −
                                 ⎟                 ⎥ = 0.5916
          ⎝      m b             ⎠ ⎣ 1.13(39 )(4 ) ⎦
dUcenHresIusþg;Edl)ankat;bnßyehIyKW
          φRstr = 0.5916(58.17 ) = 34.4kips < 54kips                               (N.G.)
cMeLIy³ kartP¢ab;minmanlkçN³RKb;RKan;Ca slip-critical connection eT.

       kartP¢ab;edayb‘ULúgEdlrgnUvkMlaMgkat;TTwg nigkMlaMgTajGacRtUv)anKNnaedaypÞal;.
eKGaceRbI RCSC Equation 4.2 edIm,IedaHRsayTMhMb‘ULúgdUcxageRkam³
                         2              2                                2                 2
          ⎡ Pu ⎤       ⎡ Vu ⎤       ⎛ Pu                             ⎞  ⎛ Vu           ⎞
          ⎢         ⎥ +⎢         ⎥ =⎜
                                    ⎜ φF ∑ A                         ⎟ +⎜
                                                                     ⎟  ⎜ φF ∑ A       ⎟
                                                                                       ⎟
          ⎣ (φRn )t ⎥
          ⎢         ⎦  ⎢ (φRn )v ⎥
                       ⎣         ⎦  ⎝ t     b                        ⎠  ⎝ v     b      ⎠
                                                               2                       2
                                             ⎛P            ⎞             1  ⎛V     ⎞           1
                                            =⎜ u
                                             ⎜             ⎟
                                                           ⎟               +⎜ u    ⎟
                                                                          2 ⎜ φF   ⎟
                                             ⎝ φFt         ⎠       (∑ Ab ) ⎝ v     ⎠       (∑ Ab )2
Edl       Pu =kMlaMgTajsrubenAelItMN
        Ft = ultimate tensile stress rbs;b‘ULúg

        Vu = kMlaMgkat;TTwgsrubenAelItMN

        Fv = ultimate shear stress rbs;b‘ULúg

        ∑ Ab = RkLaépÞmuxkat;b‘ULúgsrub

CMnYseTAkñúg RCSC Equation LRFD 4.2, eyIg)an
                     2                          2
          ⎛ Pu   ⎞           1    ⎛V        ⎞          1
          ⎜
          ⎜ φF   ⎟
                 ⎟               +⎜ u       ⎟                       ≤ 1 .0
          ⎝ t    ⎠       (∑ Ab )2 ⎜ φFv
                                  ⎝
                                            ⎟
                                            ⎠       (∑ Ab )2
                                 2              2
                 ⎛P              ⎞  ⎛V      ⎞
b¤        ∑ Ab ≥ ⎜ u
                 ⎜ φF            ⎟ +⎜ u
                                 ⎟  ⎜ φF    ⎟
                                            ⎟                                                           ¬&>@0¦
                 ⎝ t             ⎠  ⎝ v     ⎠
Edl       ∑ Ab   CaRkLaépÞmuxkat;b‘ULúgsrub

]TahrN_ 7>11³ tMNEdlrgbnÞúkcMp©itrgnUv service load shear force 50kips nig service tensile
force 100kips        . bnÞúk CabnÞúkefr nig 75% CabnÞúkGefr. eRKOgP¢ab;rgnUv single shear
                                 25%

ehIy baring strength nwgRtUv)anKNnaCamYynwgEpñkEdlRtUvP¢ab;EdlmankMras; 5 / 16in. . snμt;fa
KMlat nigcMgayeTARCugEKmTaMgGs;manlkçN³RKb;RKan; nigsnμt;faeKGnuBaØateGayeRbI bearing
                                                                   278                                tMNsamBaØ
T.chhay


strength    Gtibrma φ (2.4dtFu ) . kMNt;cMnYnb‘ULúg          A325   Ggát;p©it 3 / 4in. EdlcaM)ac;sMrab;krNIxag
eRkam³
¬!¦ bearing-type connection CamYynwgeFμjsßitenAkñúgbøg;kat;
¬@¦ slip-critical connection CamYynwgeFμjsßitenAkñúgbøg;kat;
épÞb:HTaMgGs;man clean mill scale.
         karKNnaenHmin)anBicarNa prying action sMxan;eT.
dMeNaHRsay³ kMlaMgkat;TTwgemKuN = 1.2[0.25(50)] + 1.6[0.75(50)] = 75kips
          kMlaMgTajemKuN = 1.2[0.25(100)] + 1.6[0.75(100)] = 150kips
¬!¦ sMrab; bearing-type connection CamYynwgeFμjsßitenAkñúgbøg;kat; smIkar &>@0 eGay
                                2                            2                2
                 ⎛P             ⎞  ⎛V     ⎞   ⎡ 150 ⎤        ⎡ 75 ⎤
          ∑ Ab ≥ ⎜ u
                 ⎜ φF           ⎟ +⎜ u
                                ⎟  ⎜ φF   ⎟
                                          ⎟ = ⎢ 0.75(90) ⎥ + ⎢ 0.75(48) ⎥ = 3.046in.
                                                                                     2
                 ⎝ t            ⎠  ⎝ v    ⎠   ⎣          ⎦   ⎣          ⎦
RkLaépÞrbs;muxkat;eTalKW
                  π (3 / 4 )2
           Ab =                 = 0.4418in.2
                       4
dUcenHcMnYnb‘ULúgEdlRtUvkarKW
           ∑ Ab   3.046
                =        = 6.89
            Ab    0.4418
sakl,gb‘ULúg 7 RKab; ehIyRtYtBinitü bearing:
          φRn = φ (2.4dtFu ) × 7
                         ⎛ 7 ⎞⎛ 5 ⎞
              = 0.75(2.4)⎜ ⎟⎜ ⎟(58)(7 ) = 171kips > 75kips
                         ⎝ 8 ⎠⎝ 16 ⎠
¬eKminRtUvkarRtYtBinitüKMlat nigcMgayeTARCugEKmsMrab;karKNnacugeRkayeT¦
cMeLIy³ eRbIb‘ULúg 7 RKab;. ¬RbsinebIeKerobb‘ULúgCaBIrCYr enaHeRbIb‘ULúg 8 RKab;edIm,IPaBsIuemRTI¦
¬@¦ sMrab; slip-critical connection, slip-critical strength EdleGayeday RCSC Equation
LRFD RtUv)anKuNedayemKuNkat;bnßyrbs; AISC Equation A-J3-2:
                                   ⎛              ⎞
       φRstr = φ (1.13μTm N b N s )⎜1 −
                                           Tu
                                   ⎜ 1.13T N ⎟    ⎟                                     ¬&>@!¦
                                          ⎝         m    b   ⎠
BI AISC Table J3.1, sMrab;b‘ULúg A325 Ggát;p©it 3 / 4in. / Tm = 28kips . CMnYs Tm eTAkñúgsmIkar
&>@!/ eyIg)an

                                                   279                                        tMNsamBaØ
T.chhay


                                     ⎛           Tu  ⎞
          φRstr = φ (1.13μTm N b N s )⎜1 −
                                      ⎜              ⎟
                                                     ⎟
                                     ⎝               ⎠
                                             1.13Tm N b
                                               ⎡             ⎤
                = 1.0(1.13)(0.33)(28)( N b )(1)⎢1 −
                                                     150
                                                             ⎥
                                               ⎣ 1.13(28)N b ⎦
                       ⎛ 4.741 ⎞
                = 10.44⎜1 −
                       ⎜       ⎟ = 10.44(N b − 4.741)
                       ⎝    Nb ⎟
                               ⎠
dak;lT§plEdlTTYl)anenH nigkMlaMgkat;TTwgEdlGnuvtþeGayesμIKña enaHeyIgGacrkcMnYnb‘ULúgEdl
RtUvkaredIm,IkarBar slip³
          10.44( N b − 4.741) = 75kips

          N b = 11.9
        edaysarb‘ULúg 7 RKab;RKb;RKan;sMrab; shear, bearing nig tension dUcenHeKminRtUvkarRtYt
BinitüsßanPaBkMNt;TaMgenHeT.
cMelIy³ eRbIb‘ULúg A325 Ggát;p©it 3 / 4in.

7>10> tMNpSar Welded connections
         karpSarCadMeNIrkareFVIeGayEpñkEdlRtUvP¢ab;Cab;Kña. ]TahrN_ Ggát;rgkarTajEdlman lap
joint dUcbgðajenAkñúgrUbTI 7>33 a GacRtUv)aneFVIeLIgedaykarpSartamcugTaMgsgçagrbs;EpñkEdl

RtUvP¢ab;. kMBs;d¾tUcbMputrbs;sMPar³RtUv)anrlay eRkayBITukeGayRtCak; eRKOgbgÁúMEdk nig weld
metal eFVIkardUcEpñkEdlCab;KñaenAkEnøgtMN. EdkbEnßmRtUv)andak;BI special electrode EdlCaEpñk

rbs;crnþGKÁisnIeTAelIEpñkEdlRtUvP¢ab; b¤ base metal.




        enAkñúgdMeNIrkar shielded metal arc welding (SMAW) EdlbgðajenAkñúgrUbTI 7>34 FñÚ
GKÁisnI (current arc) kat;tamcenøaHrvag electrode nig base metal edayrMlayEpñkEdlRtUvP¢ab;
nigdak;Epñkrbs;eGLicRtUteTAkñúg base metal Edlrlay. Specail coating enAelI electrode begáIt
protective gaseous shield edaykarBar molten weld metal BIGuksIutkmμmunnwgvarwg. eKrMkil

                                                 280                           tMNsamBaØ
T.chhay


electrode  kat;tamtMN ehIy weld bead RtUv)andak; TMhMrbs;vaGaRsy½nwgGRtaéndMeNIrrbs;
electrode. enAeBlEdlTwkbnSaRtCak; impuriries elceLIgenAelIépÞ EdlbegáItCa coating EdleK

ehAfa slag ehIy slag enHRtUv)anykecjmunnwglabfñaMelIGgát; b¤EpñkepSg²EdlRtUv)anbegáIteLIg
eday electrode.




        CaTUeTA Shielded metal arc welding EdlRtUv)aneFIVeLIgedayéd ehIyCadMeNIrkareKeRbICa
sklenAelIkardæan. sMrab;karpSarenAeragCag eKniymeRbIdMeNIrkarsV½yRbvtþ b¤Bak;kNþalsV½y
Rbvtþ. karRtYtBinitüKuNPaBsMrab;kartP¢ab;edaykarpSarKWmanlkçN³Bi)ak edaykarTwkbnSarEdl
minl¥sßitenABIeRkamépÞ b¤k¾PaBminl¥d¾tictYcEdlmanenAépÞbnSar GaceKcputBIExSEPñkrbs;eyIg)an.
sMrab;karpSarenARtg;kEnøgEdleRKaHfñak;eKRtUvkarCagpSarEdlmanCMnajRtwmRtUv ehIyeKRtUveRbI
bec©keTsBiessdUcCa radiography b¤ ultresonic testion.




                                         281                                 tMNsamBaØ
T.chhay


        eKniymeRbIkarpSarBIrRbePTKW fillet weld nig groove weld. Lap joint EdlbgðajenAkñúgrUb
TI 7>33 a nig b RtUv)anbegáIteLIgeday fillet weld . Groove weld RtUv)aneRbIsMrab; butt, tee nig
corner dUcbgðajenAkñúgrUbTI 7>35 a nig b. rUbTI 7>36 bgðajBI plug and slot wled EdleBlxøHva

RtUvkaredIm,IbEnßmBIelIkarpSartam RCug. rn§ragmUl b¤RTEvgRtUv)ankat;ecjBIEpñkmYyedIm,IGacbMeBj
TwkbnSar)an.
        kñúgcMeNamkarpSarTaMgBIrRbePTenH eyIgnwgelIkykkar pSar fillet weld mkbkRsaylMGit
enATIenH. karKNnasMrab; complete penetration groove weld minmanlkçN³minsMxan;EdlkarpSar
manersIusþg;dUcKñanwg base metal nigEpñkEdlRtUvP¢ab;. ersIusþg;rbs; partial penetration groove
weld GaRs½yeTAnwgbrimaNén penetration. dMeNIrkarénkarKNna groove weld RsedogKñanwgkar

KNna fillet weld.




7>11>     Fillet Welds
        karKNna nigkarviPaKsMrab; fillet weld KWQrelIkarsnμt;famuxkat;rbs;TwkbnSarCaRtIekaN
EkgEdlmanmMu 45o dUcbgðajkñúgrUbTI 7>37. TTwgrbs; fillet weld RtUv)ansMKal;eday w . TMhMTWk
nSarbTdæanKWekIneLIgmþg 1 / 16in. = 2mm . eTaHbICaRbEvgrbs;karpSarGacrgnUvbnÞúk tamTiskMlaMg
kat;/ kMlaMgsgát; nigkMlaMgTajk¾eday k¾fillet weld manersIusþg;exSaysMrab;kMlaMgkat; ehIyvaEtg
EtRtUv)aneKsnμt;fadac;edaysarkMlaMgenH. kardac;RtUv)ansnμt;ekItmantambøg;Edlkat;tam throat
rbs;TwkbnSar. sMrab; fillet weld EdlbegáIteLIgCamYy shielded metal arc process, throat CaRb
EvgEkgBIRCugEKm b¤ root rbs;TwkbnSareTAGIub:Uetnus nigmantMélesμI 0.707 dgénTMhMTwkbnSar.
¬Effective throad thickness sMrab;TwkbnSarEdl)anBI arc welding process manTMhMFMCag. dUcenH
kñúgesovePAenH eyIgsnμt;eRbI shielded metal arc welding process¦. dUcenHsMrab;RbEvg L Edlrg
bnÞúk P / kugRtaMgkMlaMgkat;eRKaHfñak;KW
                                           282                                  tMNsamBaØ
T.chhay


                      P
          fv =
                 0.707 × w × L
Edl w CaTTwgTwkbnSar




      RbsinebIeKeRbI weld ultimate shearing stress/ FW enAkñúgsmIkarenH eKGacsresr
nominal load capacity rbs;TwkbnSardUcxageRkam³

          Rn = 0.707 × w × L × FW
ehIy nominal design strength KW
          φRn = 0.707 × w × L × φFW                                                ¬&>@@¦
        ersIusþg;rbs; fillet weld GaRs½yeTAnwgkareRbIR)as; weld metal EdlCaGnuKmn_eTAnwg
RbePT electrode. ersIusþg;rbs; electrode RtUv)ankMNt;Ca ultimate tensile strength rbs;vaCamYy
nwgersIusþg; 60, 70, 80, 90, 100, nig 120ksi b¤ 415, 480, 550, 620, 690, nig 830MPa sMrab;
shielded metal arc welding process. nimitþsBaØasMrab;kMNt; electrod KWGkSr E Edlbnþedayelx

BIr b¤bIxÞg;EdlbgðajBIersIusþg;rbs;vaCa ksi . edaysarEtersIusþg;CalkçN³dMbUgEdl design
engineer ykcitþTukdak; CaTUeTAGkSrBIrxÞg;cugeRkayRtUv)anbgðajeday XX ehIykMNt;sMKal;

køayCa E 70 XX b¤ E 70 EdlbgðajBI electrode CamYy ultimate tensile strength 70ksi . eKKYr
eRCIserIs electrode eGayRtUvKñaCamYynwg base metal. sMrab; grade rbs;EdkEdleRbIR)as;TUeTA
eKBicarNaEt electrode BIrRbePTb:ueNÑaHKW³
        eRbI electrode E 70 XX CamYynwgEdkEdlman yield strength tUcCag 60ksi
                                          283                                 tMNsamBaØ
T.chhay


        eRbI electrode E80 XX CamYynwgEdkEdlman yied strength 60ksi b¤ 65ksi
        nimitþsBaØasMrab; electrode nigkarpþl;eGayrbs; AISC Specification EdledaHRsayCamYy
nwgTwkbnSarRtUv)andkRsg;ecjBI Structural Welding Code rbs; American Welding Society
(AWS, 1996). eKGacrk)annUvlkçxNÐEdlminmanEcgenAkñúg AISC Specification enAkñúg AWS

Code.

        Design strength rbs;TwkbnSarRtUv)anbgðajenAkñúg AISC Table J2.5. Ultimate shearing

stress FW enAkñúg fillet weld esμInwg 0.6 dgén tensile strength rbs; weld metal EdlRtUv)ansM

Kal;eday FEXX . dUcenH design stress KW φFW Edl φ = 0.75 nig FW = 0.60FEXX . sMrab;
electrode FmμtaTaMgBIr design strengths (stresses) RtUv)anbgðajdUcxageRkam³

          E 70 XX : φFW = 0.75[0.60(70)] = 31.5ksi

          E 80 XX : φFW = 0.75[0.6(80 )] = 36ksi
tMrUvkarbEnßmKWfakMlaMgkat;TTwgemKuNenAelI base metal minKYrbegáIt stress FMCag φFBM Edl
φFBM Ca nominal shear strength rbs;sMPar³EdlRtUvP¢ab;. dUcenHbnÞúkemKuNsMrab;tMNRtUv)an
kMNt;Rtwm
          φRn = φFBM × area of base metal subject to shear
AISC J5, “Connecting elements”      eGay shear yielding strength Ca φRn Edl
          φ = 0.90
          Rn = 0.6 Ag F y                                           (AISC Equation J5-3)

nig Ag CaRkLaépÞEdlrgkMlaMgkat;TTwg. dUcenH shear strength rbs; base metal CasresrCa
          φFBM = 0.90(0.6) F y = 0.54 F y

dUcenH enAeBlEdlbnÞúksßitenAkñúgTisdUcGkS½rbs;TwkbnSar eKRtUveFVIkarGegát base metal edayeRbI
TMnak;TMngénsmIkar &>@#. eKGacBnül;BItMrUvkarenHedayRtYtBinitükartP¢ab; bracket edaykarpSar
EdlbgðajenAkñúgrUbTI 7>38. edaysnμt;fa bnÞúksßitenAEk,rcugEdlpSaredayeyIgGacecalcMNak
p©it. RbsinebITWkbnSarTaMgBIrmanTMhMdUcKña design strength rbs;TwkbnSarmçag²kñúgRbEvgÉktþaGac
RtUv)anrkBIsmIkar &>@@ Ca
          0.707 × w × φFW
b:uEnþBIsmIkar &>@#/ ersIusþg;rbs; bracket plate Tb;nwgkMlaMgkat;kñúgmYyÉktþaRbEvgKW
                                             284                                 tMNsamBaØ
7.simple connections
7.simple connections
7.simple connections
7.simple connections
7.simple connections
7.simple connections
7.simple connections

Contenu connexe

Tendances

Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsionChhay Teng
 
Estimation and Confidence Intervals
Estimation and Confidence IntervalsEstimation and Confidence Intervals
Estimation and Confidence IntervalsTung Nget
 
Xvii design of two way slab
Xvii design of two way slabXvii design of two way slab
Xvii design of two way slabChhay Teng
 
Roof preparation
Roof preparationRoof preparation
Roof preparationChhay Teng
 
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofXi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofChhay Teng
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural membersChhay Teng
 
V. shear and torsional strength design
V. shear and torsional strength designV. shear and torsional strength design
V. shear and torsional strength designChhay Teng
 
Ix. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systemsIx. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systemsChhay Teng
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining wallsChhay Teng
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concreteChhay Teng
 
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlChhay Teng
 
6. influence lines for statically determinate structures
6. influence lines for statically determinate structures6. influence lines for statically determinate structures
6. influence lines for statically determinate structuresChhay Teng
 
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elementsIv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elementsChhay Teng
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stressesChhay Teng
 
Cement knowledge revised 160110
Cement knowledge revised 160110Cement knowledge revised 160110
Cement knowledge revised 160110Chhay Teng
 
X. connections for prestressed concrete element
X. connections for prestressed concrete elementX. connections for prestressed concrete element
X. connections for prestressed concrete elementChhay Teng
 
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeXii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeChhay Teng
 

Tendances (19)

Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsion
 
Estimation and Confidence Intervals
Estimation and Confidence IntervalsEstimation and Confidence Intervals
Estimation and Confidence Intervals
 
Xvii design of two way slab
Xvii design of two way slabXvii design of two way slab
Xvii design of two way slab
 
Roof preparation
Roof preparationRoof preparation
Roof preparation
 
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofXi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural members
 
V. shear and torsional strength design
V. shear and torsional strength designV. shear and torsional strength design
V. shear and torsional strength design
 
8. deflection
8. deflection8. deflection
8. deflection
 
Ix. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systemsIx. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systems
 
ក្រប់គ្រងសំណង់
ក្រប់គ្រងសំណង់ក្រប់គ្រងសំណង់
ក្រប់គ្រងសំណង់
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining walls
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concrete
 
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
 
6. influence lines for statically determinate structures
6. influence lines for statically determinate structures6. influence lines for statically determinate structures
6. influence lines for statically determinate structures
 
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elementsIv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stresses
 
Cement knowledge revised 160110
Cement knowledge revised 160110Cement knowledge revised 160110
Cement knowledge revised 160110
 
X. connections for prestressed concrete element
X. connections for prestressed concrete elementX. connections for prestressed concrete element
X. connections for prestressed concrete element
 
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeXii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
 

En vedette

Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concreteChhay Teng
 
Carpentering work
Carpentering work Carpentering work
Carpentering work Chhay Teng
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresChhay Teng
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy methodChhay Teng
 
Appendix b structural steel design based on allowable stress
Appendix  b structural steel design based on allowable stressAppendix  b structural steel design based on allowable stress
Appendix b structural steel design based on allowable stressChhay Teng
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension memberChhay Teng
 
Construction plan
Construction planConstruction plan
Construction planChhay Teng
 
4.compression members
4.compression members4.compression members
4.compression membersChhay Teng
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connectionsChhay Teng
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design Chhay Teng
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distributionChhay Teng
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness methodChhay Teng
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bendingChhay Teng
 

En vedette (20)

Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concrete
 
Carpentering work
Carpentering work Carpentering work
Carpentering work
 
Appendix
AppendixAppendix
Appendix
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structures
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
 
5.beams
5.beams5.beams
5.beams
 
Appendix b structural steel design based on allowable stress
Appendix  b structural steel design based on allowable stressAppendix  b structural steel design based on allowable stress
Appendix b structural steel design based on allowable stress
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension member
 
Construction plan
Construction planConstruction plan
Construction plan
 
4.compression members
4.compression members4.compression members
4.compression members
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connections
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design
 
Euro l
Euro lEuro l
Euro l
 
Appendix
AppendixAppendix
Appendix
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness method
 
Euro upe
Euro upeEuro upe
Euro upe
 
Tiling
Tiling Tiling
Tiling
 
Euron fl
Euron flEuron fl
Euron fl
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
 

Similaire à 7.simple connections

Project maha eang khut.plan sangkum thor
Project maha eang khut.plan sangkum thorProject maha eang khut.plan sangkum thor
Project maha eang khut.plan sangkum thorVen Eang Khut
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded columnChhay Teng
 
3. analysis of statically determinate trusses
3. analysis of statically determinate trusses3. analysis of statically determinate trusses
3. analysis of statically determinate trussesChhay Teng
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slabChhay Teng
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteChhay Teng
 
Riks mangement policy
Riks mangement policyRiks mangement policy
Riks mangement policykutmdoc
 
Kutm new accounting1
Kutm new accounting1Kutm new accounting1
Kutm new accounting1kutmdoc
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practiceChhay Teng
 
Academic policy
Academic policyAcademic policy
Academic policykutmdoc
 
The root of 7 jan
The root of 7 janThe root of 7 jan
The root of 7 janHen Chan
 
The root of 7 jan
The root of 7 janThe root of 7 jan
The root of 7 janHen Chan
 
The root of 7 jan
The root of 7 janThe root of 7 jan
The root of 7 janRos4khmer
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tensionChhay Teng
 
Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and designChhay Teng
 
Estimation and Confidence Intervals
Estimation and Confidence IntervalsEstimation and Confidence Intervals
Estimation and Confidence IntervalsTung Nget
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking Chhay Teng
 
Strategic plan policy
Strategic plan policyStrategic plan policy
Strategic plan policykutmdoc
 

Similaire à 7.simple connections (20)

Project maha eang khut.plan sangkum thor
Project maha eang khut.plan sangkum thorProject maha eang khut.plan sangkum thor
Project maha eang khut.plan sangkum thor
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded column
 
3. analysis of statically determinate trusses
3. analysis of statically determinate trusses3. analysis of statically determinate trusses
3. analysis of statically determinate trusses
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slab
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concrete
 
Riks mangement policy
Riks mangement policyRiks mangement policy
Riks mangement policy
 
Kutm new accounting1
Kutm new accounting1Kutm new accounting1
Kutm new accounting1
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practice
 
Academic policy
Academic policyAcademic policy
Academic policy
 
The root of 7 jan
The root of 7 janThe root of 7 jan
The root of 7 jan
 
The root of 7 jan
The root of 7 janThe root of 7 jan
The root of 7 jan
 
The root of 7 jan
The root of 7 janThe root of 7 jan
The root of 7 jan
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tension
 
Constitution khmer
Constitution khmerConstitution khmer
Constitution khmer
 
Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and design
 
Estimation and Confidence Intervals
Estimation and Confidence IntervalsEstimation and Confidence Intervals
Estimation and Confidence Intervals
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking
 
Senator
SenatorSenator
Senator
 
Strategic plan policy
Strategic plan policyStrategic plan policy
Strategic plan policy
 
Leadership1
Leadership1Leadership1
Leadership1
 

Plus de Chhay Teng

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_studentsChhay Teng
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countriesChhay Teng
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix designChhay Teng
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelinesChhay Teng
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto contentChhay Teng
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-camChhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basicsChhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryoutChhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapesChhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shapeChhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shapeChhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shapeChhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shapeChhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shapeChhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipnChhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angleChhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upeChhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upnChhay Teng
 

Plus de Chhay Teng (20)

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
 
Type of road
Type of roadType of road
Type of road
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 

7.simple connections

  • 1. T.chhay VII. tMNsamBaØ Simple Connections 7>1> esckþIepþIm Introduction kartP¢ab;rbs;eRKOgbgÁúMEdkCaEpñkmYyEdlmansarsMxan;bMput. kartP¢ab;EdlminmanlkçN³ minRKb;RKan; EdleKGaceGayeQμaHfa “weak link” enAkñúgeRKOgbgÁúM GacbegáItnUvkar)ak;CaeRcInkrNI. kar)ak;rbs;Ggát;eRKOgbgÁúMKWkMrnwgekIteLIgNas; kar)ak;rbs;rcnasm<n§½PaKeRcInKWbNþalmkBIkar KNnakartP¢ab; nigkarlMGitkartP¢ab;. bBaðaenHbNþalmkBIkarTTYlxusRtUvkñúgkarKNnakartP¢ab;. kñúgkrNIxøH kartP¢ab;minRtUv)anKNnaedayvisVkrEdlKNnaGgát;rbs;eRKOgbgÁúMeT EtvaRtUv)anpþl; eGayedayplitkrEdlpÁt;pÁg;sMPar³sMrab;KMerageTAvij. b:uEnþvisVkreRKOgbgÁúMEdlplitbøg;KNna Ca GñkTTYlxusRtUvkñúgkarKNnaTaMgGs;rYmTaMgkartP¢ab;. kñúgkrNIEdltMNRtUv)anKNnaedayvisVkr epSgeTot epSgBIvisVkrEdlKNnaGgát;eRKOgbgÁúM dUcenHeKRtUvkarvisVkrEdlmanCMnajc,as;las;kñúg karKNnakartP¢ab;. eRKOgbgÁúMEdkTMenIbRtUv)antP¢ab;edaykarpSar nigedayb‘ULúg ¬ersIusþg;x<s; b¤Fmμta¦ b¤eday bnSMénkartP¢ab;TaMgBIr. BIeBlmun kartP©ab;eFVIeLIgedaykarpSar b¤edayrIev. enAkñúgqñaM 1947 Research Council of Riveted and Bolted Structural Joints RtUv)anbegáIteLIg ehIy Specification dMbUgrbs;vaRtUv)anecjpSayenAkñúgqñaM 1951. ÉksarenH)anGnuBaØateGayCMnYs edayb‘ULúgersIusþg;x<s;sMrab;rIev. taMgBIeBlenaHmk b‘ULúgersIusþg;x<s;TTYl)anRbCaRbiyPaBy:ag elOn ehIyeKk¾gakmkeRbIb‘ULúgersIsþg;x<s;enAkñúgsMNg;sIuvilvij. eKmanmUlehtuCaeRcInkñúgkar pøas;bþÚrenH. kmμkrBInak;EdlKμanCMnajGactMeLIgb‘ULúgersIusþg;x<s;)an cMENkkartMeLIgrIevvij eKRtUv karkmμkrEdlmanCMnajdl;eTAbYnnak;. elIsBIenHeTot vapþl;nUvsMelg nigeRKaHfñak;tictYckñúg RbtibtþkarN_tP¢ab;rIev edaysarkarpþl;kMedAkñúgkartMeLIgrIev. b:uEnþkartP¢ab;edayrIevk¾enAEtmanerob 230 tMNsamBaØ
  • 2. T.chhay rab;enAkñúg AISC Specfication nig Manual of steel construction edaysarEtsMNg;cas;²eRbItMN rIev dUcenHkaryl;dwgBIkarRbRBwtþeTArbs;vamansar³sMxan;Nas;sMrab;karvaytMélersIusþg; nigkarCYs CulnUvsMNg;TaMgenaH. karKNna nigkarviPaKtMNrIevmanlkçN³RsedogKñanwgtMNb‘ULúgFmμtaEdr Et vaxusKñaRtg;lkçN³sMPar³Etb:ueNÑaH. tMNpSarmanGtßRbeyaCn_eRcInCagtMNb‘ULúg. kartP¢ab;edaykarpSarmanlkçN³samBaØ nig RtUvkarrn§ticCagtMNb‘ULúg. kartP¢ab;EdlmanlkçN³sμúKsμajCamYynwgeRKOgP¢ab;Gacman lkçN³ gayRsYlCamYynwgkarpSar dUckrNIkñúgrUbTI 7>1. muneBlEdlkarpSarmanlkçN³eBjniym kar tMeLIgrUbrag built-up RbePTenHRtUv)anplitedayrIev. edIm,IP¢ab;bnÞHEdksøabeTAnwgbnÞHEdkRTnug EdkEkg (angle shape) RtUv)aneRbIedIm,IbMElgbnÞúkcenøaHFatuTaMgBIr. RbsinebIeKbEnßmbnÞHEdkBI elImYyeTot enaHplitplsMercnwgmanlkçN³kan;EtsμúKsμaj. b:uEnþkartP¢ab;edaykarpSarman lkçN³gayRsYlCag. b:uEnþsMrab;tMNpSar eKRtUvkarkmμkrCMnajxagpSar ehIyvaBi)ankñúgkarGegát nigcMNayR)ak;eRcIn. EtKuNvibtþienHeKGacedaHRsay)anedaykarpSarenAkñúgeragCagCMnYseGaykar pSarenAkardæanenARKb;eBlEdlGaceFVIeTA)an. enAeBlEdlkartP¢ab;eFVIeLIgedaybnSMénkarpSar nig b‘ULúg enaHeKeRcInpSarenAeragCag ehIycab;b‘ULúgenAkardæan. sMrab; single-plate beam-to-column connectioction EdlbgðajenAkñúgrUbTI 7>2 bnÞHEdkRtUv)anpSarP¢ab;eTAnwgsøabrbs;ssrenAerag Cag ehIycab;b‘ULúgCamYynwgRTnugrbs;FñwmenAkardæan. edIm,IBicarNaBIkarRbRBwtþeTAénRbePTepSg²rbs;tMN eKRtUvEbgEckvaeTAtamRbePTénkar dak;bnÞúk. rUbTI 7>3 a bgðajBI tension member lap splice EdlmaneRKOgP¢ab;rgnUvkMlaMgkat;. dUc Kña tMNpSarenAkñúgrUbTI 7>3 b RtUvTb;Tl;nwgkMlaMgkat;TTwg. tMNrbs; bracket eTAnwgsøabssr dUckñúgrUbTI 7>3 c edaykarpSar b¤edayb‘ULúg eFIVeGayeRKOgP¢ab; b¤TwkbnSarrgnUvkMlaMgkat;enAeBl EdlbnÞúkGnuvtþmkelIva. tMNBÜürEdlbgðajenAkñúgrUbTI 7>3 d dak;eGayeRKOgP¢ab;rgkMlaMgTaj. kartP¢ab;EdlbgðajenAkñúgrUbTI 7>3 e begáItTaMgkMlaMgkat;TTwg nigkMlaMgTajenAkñúgeRKOgP¢ab;CYr xagelI. ersIusþg;rbs;eRKOgP¢ab;KWGaRs½yelIfaetIvargnUvkMlaMgkat; b¤kMlaMgTaj b¤k¾kMlaMgTaMgBIr. 231 tMNsamBaØ
  • 3. T.chhay karpSarmankMlaMgexSaysMrab;kugRtaMgkMlaMgkat; ehIyCaTUeTAvaRtUv)ansnμt;fadac;edaykMlaMgkat; edayminKitBITisedAénkardak;bnÞúk. enAeBlEdlkMlaMgkñúgeRKOgP¢ab;mYy b¤kMlaMgkñúgmYyÉktþaRbEvgrbs;TwkbnSarRtUv)ankMNt; vaCaerOgmYyEdlgayRsYlkñúgkarkMNt;PaBRKb;RKan;rbs;tMN. karkMNt;enHQrelIeKalkarN_én kartP¢ab;cMbgBIr. RbsinebIExSskmμrbs;kMlaMgpÁÜbEdlRtUvTb;Tl;kat;tamTIRbCMuTMgn;rbs;tMN enaH EpñknImYy²rbs;tMNRtUv)ansnμt;faTb;Tl;nwgbnÞúkEdlEbgEckesμI ehIytMNEbbenHRtUv)aneKeGay eQμaHfa tMNsamBaØ. enAkñúgtMNEbbenH ¬EdlbgðajenAkñúgrUbTI 7>3 a nig b¦ eRKOgP¢ab;nImYy² nigRbEvgÉktþrbs;TwkbnSarnwgTb;Tl;nUvkMlaMgesμIKña*. bnÞab;mkeKGacrklT§PaBTb;Tl;bnÞúkrbs;tM * Cak;EsþgvamancMNakp©ittUcenAkñúgtMNTaMgBIrenH EtvaRtUv)anecal 232 tMNsamBaØ
  • 4. T.chhay NedayKuNlT§PaBTb;Tl;kMlaMgrbs;eRKOgP¢ab;nImYy² b¤RbEvgÉktþarbs;TWkbnSar CamYynwgcMnYn eRKOgP¢ab;srub b¤RbEvgsrubrbs;TwkbnSar. kartP¢ab;énkMlaMgcakp©it RtUv)anerobrab;enAkñúgCMBUkTI 8 EdlExSskmμrbs;bnÞúkmineFVIGMeBIkat;tamTIRbCMuTMgn;rbs;tMN. kartP¢ab;enAkñúgrUbTI 7>3 d nig e Ca RbePTéntMNenH. kñúgkrNIenHbnÞúkninRtUv)anTb;Tl;esμIKñaedayeRKOgP¢ab;nImYy² b¤RbEvgÉktþarbs; TwkbnSareT ehIykarkMNt;énkarEbgEckbnÞúkKWCaktþad¾sμúKsμajkñúgkarKNnaénRbePTtMNenH. AISC Specification erobrab;BIkartP¢ab;EdlrYmman b‘ULúg rIev nig karpSarenAkñúg Chapter J, ”Connections, Joints and Fasteners”. EtenAkñúgesovePAenH eyIgmin)anBicarNaBItMNrIeveT. 7>2> Bolted Shear Connections: Failure Mode munnwgBicarNaBIersIusþg;Cak;lak;rbs;b‘ULúg eyIgRtUvBicarNaBIrebobénkardac;EdlGacekIt manenAelItMNEdlmaneRKOgP¢ab;rgkMlaMgkat;TTwg. eKmanrebobénkardac;FMBIr³ kardac;rbs;eRKOg P¢ab; nigkardac;rbs;EpñkEdlRtUvP¢ab;. BicarNa lap joint EdlbgðajenAkñúgrUbTI 7>4 a. kardac;rbs; eRKOgP¢ab;GacRtUv)ansnμt;fanwgekIteLIgdUcEdl)anbgðaj. kMlaMgkat;TTwgmFümenAkñúgkrNIenHKW P P fv = = A πd 2 / 4 Edl P CabnÞúkEdlmanGMeBIelIeRKOgP¢ab;nImYy² A CaRkLaépÞmuxkat;rbs;eRKOgP¢ab; nig d CaGgát; p©itrbs;va. enaHbnÞúkenHGacsresrCa P = fv A eTaHbICakardak;bnÞúkkñúgkrNIenHmincMcMnucl¥k¾eday k¾cMNakp©itmantMéltUcEdlGacecal)an. kart enAkñúgrUbTI 7>4 b manlkçN³RsedogKña EtkarviPaKdüaRkamGgÁesrIrbs;eRKOgP¢ab;bgðajfamuxkat;nI 233 tMNsamBaØ
  • 5. T.chhay mYy²rgEtBak;kNþalbnÞúksrub b¤eKGacniyayfamuxkat;TaMgBIrTb;Tl;nUvkMlaMgsrub. kñúgkrNIenHkM laMg P = 2 f v A ehIybnÞúkenHRtUv)aneKehAfa double shear. karbEnßmbnÞHenAkñúgkartnwgbegáIn cMnYnbøg;kat; ehIyvanwgkat;bnßykMlaMgenAkúñgbøg;nImy². b:uEnþ vanwgbegáInRbEvgrbs;eRKOgP¢ab; ehIy Y vanwgrgnUvkugRtaMgBt;. rebobénkadac;mYyeTotsMrab; shear connection Bak;Bn§½nwgkardac;rbs;EpñkEdlRtUv)anP¢ab; ehIyCaTUeTAvaRtUv)anEbgEckCaBIrEpñk³ !> kardac;EdlbNþalBI karTaj/ kMlaMgkat; b¤m:Um:g;Bt;FMenAkñúgEpñkEdlRtUvtP¢ab;. RbsinebI Ggát;rgkarTajRtUv)antP¢ab; kMlaMgTajelI gross area nig effective net area RtUv)anGegát. GaRs½ynwgrUbragénkartP¢ab; block shear k¾RtUv)anBicarNa. eKk¾RtUvRtYtBinitü block shear enA kñúgkartP¢ab; beam-to-column ¬Edlmanerobrab;enAkñúgCMBUkTI 3 nigTI5 ehIyvak¾RtUv)anerobrab;enA kñúg AISC J4.3¦. GaRs½ynwgRbePTénkartP¢ab; nigkardak;bnÞúk ral;kartP¢ab;eTAnwg gusset plate nig framing angle TamTarnUvkarviPaKsMrab; kugRtaMgkat; kugRtaMgTaj kugRtaMgBt; nig block shear. karKNnakartP¢ab;rbs;Ggát;rgkarTajRtUv)aneFVIeLIgRsbKñaCamYynwgkarKNnaGgát;rgkarTajBI eRBaHdMeNIrkarTaMgBIrenHTak;TgKñaeTAvijeTAmk. @> kardac;rbs;EpñkEdlRtUvP¢ab;edaysar bearing EdlbegáIteLIgedayeRKOgP¢ab;. RbsinebI RbehagmanTMhMFMCageRKOgP¢ab;bnþicbnþÜc ehIyeRKOgP¢ab;RtUv)ansnμt;faRtUv)andak;y:agENnenAkñúg Rbehag épÞb:HrvageRKOgP¢ab; nigEpñkEdlRtUvP¢ab;nwgekItmaneRcInCagBak;kNþalénbrimaRtrbs; eRKOgP¢ab;enAeBlEdlbnÞúkGnuvtþ. krNIenHRtUv)anbgðajenAkñúgrUbTI 7>5. kugRtaMgnwgERbRbYlBI 234 tMNsamBaØ
  • 6. T.chhay GtibrmaenARtg; A eTAsUnüenARtg; B . edIm,IgayRsYl eKeRbIkugRtaMgmFümEdlRtUv)anKNna edayEckkMlaMgnwgépÞRbeyalb:H. dUcenH bearing stees RtUv)anKNnaeday f p = P /(dt ) Edl P CakMlaMgEdlGnuvtþmkelI eRKOgP¢ab;/ d CaGgát;p©iteRKOgP¢ab; nig t CakMras;rbs;EpñkEdlrgnUv bearing. dUcenH bearing load KW P = f p dt karKNna bearing GacmanlkçN³sμúKsμajedaysarvtþmanrbs;b‘ULúgEdlenAEk,r b¤eday sarcMgayBIrn§eTARCugEKmkñúgTisedArbs;bnÞúkmancMgayxøI dUcbgðajenAkñúgrUbTI 7>6. KMlatrvagb‘U Lúg nigcMgayBIrn§eTARCugEKmmanT§iBlelI bearing strength. 7>3> Bearing Strength, Spacing and Edge-distance Requirements Bearing strength minTak;TgnwgRbePTrbs;eRKOgP¢ab;eT BIeRBaHkugRtaMgEdlRtUvBicarNasßit enAelIEpñkEdlRtUvP¢ab; minEmnenAelIeRKOgP¢ab;eT. sMrab;mUlehtuenH bearing strength k¾dUcCag tMrUvkarKMlat nig edge-distance k¾minTak;TgnwgRbePTeRKOgP¢ab;Edr ehIyvaRtUv)anBicarNamunkug RtaMgkat;kñúgb‘ULúg nigersIusþg;Taj. karpþl;eGayrbs; AISC Specification sMrab; bearing strength k¾dUcCatMrUvkarepSg²sMrab; b‘ULúgersIusþg;x<s; KWQrelIkarpþl;eGayrbs; specification of the Research Council on Structural Connections of the Engineering Foundation (RCSC, 1994). kare)aHBum<pSayfμI²rbs;ÉksarenH minTan;CaEpñkrbs; AISC Specification (AISC, 199a) EtvaRtUv)aneRbIenAkñúgesovePAenH d¾rabNa manlkçN³minRtUvKña eKnwgeRbIkarpþl;eGayeday AISC. enAeBlsmIkarenAkñúg RSCS Specification RtUv)anbgðajelxsmIkarmkBIÉksarenaHnwgRtUv)aneRbI ¬]TahrN_/ RCSC Equation 235 tMNsamBaØ
  • 7. T.chhay LRFD ¦. karerobrab;xageRkam EdlQrelI Commentary EdlENnaMeday RCSC 4.3 Specification nwgBnül;BIeKalkrN_rbs;smIkar RCSC sMrab; bearing strength. rebobdac;EdlGacekItmanEdl)anBI bearing FM KWkMlaMgkat;rEhk (shear tear-out) enAxag cugrbs;FatuEdlRtUvtP¢ab; dUcbgðajenAkñúgrUbTI 7>7 a. RbsinebIépÞdac;manlkçN³l¥dUcrUbTI 7>7 b, failure load enAelIépÞmYyénépÞTaMgBIresμInwg shear fracture stress KuNnwgRkLaépÞkat; b¤ Rn = 0.6 Fu Lc t 2 Edl 0.6 Fu = shear fracture streesrbs;EpñkEdlRtUvP¢ab; Lc = cMgayBIRCugEKmrbs;RbehageTAcugrbs;EpñkEdlRtUvP¢ab; t = kMras;rbs;EpñkEdlRtUvP¢ab; ersIusþg;srubKW Rn = 2(0.6 Fu Lc t ) = 1.2 Fu Lc t ¬&>!¦ kMlaMgkat; tear-out enHekItmanenAxagcugrbs;EpñkEdlRtUvtP¢ab; dUcEdlbgðaj b¤enAcenøaH rn§BIrkñúgTisedAén bearing load. edIm,IkarBarsac;lUtFMrbs;Rbehag eKRtUvkMNt;EdnkMNt;x<s;bMput rbs; bearing load EdleGayedaysmIkar &>!. EdkkMNt;enHsmamaRteTAnwg fracture stress KuNnwg bearing area b¤ Rn = C × Fu × bearing area = CFu dt ¬&>@¦ 236 tMNsamBaØ
  • 8. T.chhay Edl C=tMélefr d = Ggát;p©itb‘ULúg t = Ggát;rbs;EpñkEdlRtUvtP¢ab; RCSC Specification eRbIsmIkar &>! sMrab; bearing strength RbQmnwgEdnkMNt;EdleGayeday smIkar &>@. RbsinebIeKminKitkMhUcRTg;RTay tMélefr C GacykesμInwg 3.0 . RbsinebIkMhUcRTg; RTayFMRtUv)anKit C GacykesμInwg 2.4 ehIyCaTUeTAvaCatMélEdleKykmkeRbI. tMélenHRtUvKña nwgsac;lUtrbs;RbehagRbEhl 1 / 4in. = 6mm ¬RCSC, 1994¦. enAkñúgesovePAenH eyIgBicarNa kMhUcRTg;RTaysMrab;karKNna. RCSC bearing strength sMrab;b‘ULúgeTalGacRtUv)ansMEdgCa φRn Edl φ = 0.75 nig Rn = 1.2 Lc tFu ≤ 2.4dtFu ¬RCSC Equation LRFD 4.3¦ Edl Lc = clear distance enAkñúgTisRsbnwgbnÞúkEdlGnuvtþ BIcugénrn§b‘ULúgeTARCugEKmrbs;rn§Edl enAEk,r b¤eTARCugEKmrbs;sMPar³. t = kMras;rbs;eRKOgP¢ab; d = Ggát;p©itb‘ULúg ¬minEmnGgát;p©itrbs;RbehageT¦ Fu = ultimate tensile stress rbs;EpñkEdlRtUvP¢ab; ¬minEmnrbs;b‘ULúg¦ rUbTI 7>8 bgðajbEnßmeTotBIcMgay Lc . enAeBlEdlKNna bearing strength sMrab;b‘ULúg eKRtUv BicarNacMgayBIb‘ULúgenaHeTAb‘ULúgEdlenAEk,r b¤eTARCugEKmkñúgTisedArbs; bearing load elIEpñkEdl RtUvP¢ab;. sMrab;krNIEdl)anbgðaj bearing load sßitenAEpñkxageqVgrbs;rn§nImYy². dUcenHersIusþg; sMrab;b‘ULúg ! RtUv)anKNnaCamYy Lc Edlvas;eTAb‘ULúg @ ehIyersIusþg;sMrab;b‘ULúg @ RtUv)anKNna CamYy Lc Edlvas;eTARCugEKmrbs;EpñkEdlRtUvP¢ab;. RCSC Equation LRFD 4.3 mantMélsMrab; standard, oversized, short-slotted and long 237 tMNsamBaØ
  • 9. T.chhay slotted holes CamYynwg slot EdlRsbeTAnwgbnÞúk. eyIgeRbIEt standard holes enAkñúgesovePAenH ¬RbehagEdlmanGgát;p©itFMCagGgát;p©itb‘ULúg 1/16in. = 2mm ¦. enAeBlEdlKNnacMgay Lc eRbIGgát;p©itRbehagCak;Esþg nigmincaM)ac;bUkbEnßm 2mm dUc EdlRtUvkarenAkñúg AISC B.2 sMrab;KNna net area rbs;Ggát;rgkarTaj. müa:gvijeTot eRbIGgát;p©it d + 1 / 16in. = d + 2mm minEmn d + 1 / 8in. = d + 4mm . RbsinebI h bgðajBIGgát;p©itRbehag enaH h = d + 1 / 16in. karKNnarbs; bearing strength BI RCSC Equation LRFD 4.3 GacRtUv)ansMrYlxøHdUcxageRkam. EdnkMNt;nwgmanRbsiT§PaBenAeBl 1.2 Lc tFu = 2.4dtFu b¤ eRkayeBlEdlsMrYlehIy Lc = 2d TMnak;TMngenHGacRtUv)aneRbIedIm,IKNnaenAeBlEdlEdnkMNt; 2.4dtFu lub³ RbsinebI Lc ≤ 2d eRbI Rn = 1.2Fu Lct RbsinebI Lc > 2d eRbI Rn = 1.2Fu dt Spacing and Edge-Distance Requirments edIm,IrkSacenøaHTMenrrvagex©Ab‘ULúg nigedIm,Ipþl;nUvTIFøaRKb;RKan;sMrab; wrench socket AISC J3.3 tMrUvfaKMlatBIGkS½eTAGkS½ (center-to-center spacing) rbs;eRKOgP¢ab; ¬enARKb;Tis¦ minRtUv tUcCag 2 2 3 d ehIyCakarniymKWminRtUvtUcCag 3d Edl d CaGgát;p©iteRKOgP¢ab;. cMgayBIRCugEKm sMPar³ ¬RKb;Tis¦ Edlvas;BIGkS½rbs;Rbehag RtUv)aneGayenAkñúg AISC Table3.4 CaGnuKmn_eTA nwgTMhMrbs;b‘ULúg nigRbePTrbs;RCug ¬sheared, rolled or gas cut¦. KMlat nigcMgayeTARCugEKm EdlsMKal;eday s nig Le RtUv)anbgðajenAkñúgrUbTI 7>9. 238 tMNsamBaØ
  • 10. T.chhay Summary fo Bearing Strength, Spacing and Edge-Distance Requirements (standard hole) a. Bearing strength: φRn = 0.75(1.2 Lc tFu ) ≤ 0.75(2.4dtFu ) (RCSC Equation LRFD 4.3) b¤ eyIgGacsresrmüa:geTot RbsibebI Lc ≤ 2d / φRn = 0.75(1.2 Lc tFu ) RbsinebI Lc > 2d / φRn = 0.75(2.4dtFu ) b. KMlat nigsMgayeTARCugEKmGb,brma³ sMrab;RKb;Tis TaMgRsbnwgExSskmμ nigEkgnwgExS skmμ s ≥ 2 23 d ¬CakareBjniym 3d ¦ Le ≥ tMélBI AISC J3.4 sMrab; single- nig double-angle shapes CaTUeTA gage distances RtUv)aneGayenAkñúg Part 9 of the Manual, Volume II (emIlEpñk 3>6)EdlGaceRbICMnYseGaytMélGb,brma. ]TahrN_ 7>1³ RtYtBinitü KMlatb‘ULúg nigcMgayeTARCugEKmsMrab;kartP¢ab;EdlbgðajenAkñúgrUbTI 7>10. dMeNaHRsay³ BI AISC J3.3, KMlatGb,brmasMrab;RKb;TisTaMgGs;KW ⎛3⎞ 2 2 3 d = 2.667⎜ ⎟ = 2in. ⎝4⎠ KMlatCak;Esþg = 2.5in. > 2in. (OK) cMgayeTARCugEKmGb,brmasMrab;RKb;TisTaMgGs;EdlTTYlBI AISC Table J3.4. RbsinebI eyIgsnμt; sheared edges ¬krNIEdlGaRkk;CageK¦ enaHcMgayeTARCugEKmGb,brmaKW 1 14 in. dUcenH 239 tMNsamBaØ
  • 11. T.chhay cMgayeTARCugEKmCak;Esþg = 1 1 in. (OK) 4 edIm,IKNna bearing strength eRbIGgát;p©itrn§ 1 3 1 13 h=d+ = + = in. 16 4 16 16 RtYtBinitü bearing TaMgelIGgát;rgkarTaj nig gusset plate. sMrab;Ggát;rgkarTaj nigEdl enAEk,rRCugEKmrbs;Ggát;CageK h 13 / 16 Lc = Le − = 1.25 − = 0.8438in. 2 2 φRn = φ (1.2 Lc tFu ) ≥ φ (2.4dtFu ) ⎛1⎞ φ (1.2 Lc tFu )0.75(1.2)(0.8438)⎜ ⎟(58) = 22.02kips ⎝2⎠ ⎛ 3 ⎞⎛ 1 ⎞ φ (2.4dtFu ) = 0.75(2.4 )⎜ ⎟⎜ ⎟(58) = 39.15kips > 22.02kips ⎝ 4 ⎠⎝ 2 ⎠ dUcenHyk φRn = 22.02kips / bolt sMrab;rn§epSgeTot 13 Lc = s − h = 2.5 − = 1.688in. 16 φRn = φ (1.2 Lc tFu ) ≤ φ (2.4dtFu ) ⎛1⎞ φ (1.2 Lc tFu ) = 0.75(1.2)(1.688)⎜ ⎟(58) = 44.06kips ⎝2⎠ φ (2.4dtFu ) = 39.15kips < 44.06kips dUcenHyk φRn = 39.15kips / bolt sMrab;Ggát;rgkarTaj bearing strength KW φRn = 2(22.02) + 2(39.15) = 122kips > 65kips (OK) sMrab; gusset plat nigrn§EdlenAEk,rRCugEKmrbs;bnÞHCageK h 13 / 16 Lc = Le − = 1.25 − = 0.8438in. 2 2 φRn = φ (1.2 Lc tFu ) ≤ φ (2.4dtFu ) ⎛ 3⎞ φ (1.2 Lc tFu ) = 0.75(1.2)(0.8438)⎜ ⎟(58) = 16.52kips ⎝8⎠ ⎛ 3 ⎞⎛ 3 ⎞ φ (2.4dtFu ) = 0.75(2.4 )⎜ ⎟⎜ ⎟(58) ⎝ 4 ⎠⎝ 8 ⎠ = 29.36kips > 16.52kips 240 tMNsamBaØ
  • 12. T.chhay dUcenHyk φRn = 16.52kips / bolt sMrab;rn§d¾éTeTot 13 Lc = s − h = 2.5 − = 1.688in. 16 φRn = φ (1.2 Lc tFu ) ≤ φ (2.4dtFu ) ⎛3⎞ φ (1.2 Lc tFu ) = 0.75(1.2 )(1.688)⎜ ⎟(58) = 33.04kips ⎝8⎠ ⎛ 3 ⎞⎛ 3 ⎞ φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(58) = 29.36kips < 33.04kips ⎝ 4 ⎠⎝ 8 ⎠ dUcenHyk φRn = 33.04kips bearing strength sMrab; gusset plate KW φRn = 2(16.52) + 2(29.36) = 91.8kips gusset plate man bearing strength tUcCag bearing strength rbs;Ggát; dUcenH gusset plate lub φRn = 91.8kips > 65kips (OK) cMeLIy³ tMrUvkar bearing strength, KMlat nig cMgayeTARCugEKmmanlkçN³RKb;RKan;. KMlatb‘ULúg nigcMgayeTARCugEKmenAkñúg]TahrN_ 7>1 mantMéldUcKñasMrab;Ggát;rgkarTaj nig gusset plate. vaxusKñaEtkMras; dUcenH gusset plate lub. sMrab;krNIdUc]TahrN_enH eKRtYt BinitüEteRKOgbgÁúMNaEdlmankMras;esþIgCag. b:uEnþRbsinebIcMgayeTAcugEKmmantMélxusKña dac;xat eKRtUvEtRtYtBinitüTaMgGgát;rgkarTaj nig gusset plate. 7>4> b‘ULúgFmμta Common Bolts eyIgcab;epþImkarerobrab;BIersIusþg;rbs;eRKOgP¢ab;CamYynwg b‘ULúgFmμta EdlxusKñaBIb‘ULúger- sIusþg;x<s;minRtwmEtlkçN³sMPar³b:ueNÑaHeT EfmTaMgkMlaMgrwtbNþwgb‘ULúgeTotpg. b‘ULúgFmμta Edl eKsÁal;Ca unfinished bols RtUv)ansMKal;Ca ASTM A307. Design shear strength rbs; A307 KW φRn / EdlemKuNersIusþg; φ = 0.75 ehIy nominal shear strength KW Rn = Fv Ab Edl Fv = ultimate shearing stress 241 tMNsamBaØ
  • 13. T.chhay Ab = RkLaépÞmuxkat;rbs;EpñkEdlKμaneFμjrbs;b‘ULúg ¬EdleKsÁal;Ca nominal bolt area b¤ nominal body area¦ Ultimate shearing stress RtUv)aneGayenAkñúg AISC Table J3.2 KW 24ksi = 165MPa Edl eGay nominal strength Rn = Fv Ab = 24 Ab ]TahrN_ 7>2³ kMNt; design strength rbs;kartP¢ab;EdlbgðajenAkñúgrUbTI 7>11 edayQrelI kMlaMgkat;TTwg nig bearing. dMeNaHRsay³ kartP¢ab;GacRtUv)ancat;cMNat;fñak;CatMNsamBaØ ehIyeRKOgP¢ab;mYy²RtUv)anBicar- NaedIm,ITb;Tl;karEbgEckMlaMgesμIKña. kñúgkrNICaeRcInvamanlkçN³gayRsYlkñúgkarkMNt;ersIusþg; rbs;eRKOgP¢ab;mYy rYcbnÞab;mkKuNnwgcMnYneRKOgP¢ab;srub. Shear strength: vaCakrNI single shear ehIy design shear strength rbs;b‘ULúgmYyKW φRn = φFv Ab = 0.75(24 Ab ) Nominal bolt area KW πd 2 π (3 / 4 )2 Ab = = = 0.4418in 2 4 4 dUcenH design shear strength sMrab;b‘ULúgmYyKW φRn = 0.75(24 )(0.4418) = 7.952kips sMrab;b‘ULúgBIrKW φRn = 2(7.952) = 15.9kips Bearing strength: edaysarcMgayeTARCugEKmrbs;Ggát;rgkarTaj nigrbs; gusset plate dUcKña enaH beaing strength rbs; gusset plate nwglub BIeRBaHkMras;rbs;vaesþIgCagkMras;rbs;Ggát;rgkarTaj. sMrab;karKNna bearing strength eRbIGgát;p©itRbehag 242 tMNsamBaØ
  • 14. T.chhay 1 3 1 13 h=d+ = + = in. 16 4 16 16 sMrab;rn§EdlenAEk,rRCugEKmrbs; gusset plate CageK h 13 / 16 Lc = Le − = 1.5 − = 1.094in. 2 2 ⎛3⎞ 2d = 2⎜ ⎟ = 1.5in. ⎝4⎠ edaysar Lc < 2d ⎛3⎞ φRn = φ (1.2 Lc tFu ) = 0.75(1.2 )(1.094)⎜ ⎟(58) = 21.42kips ⎝8⎠ sMrab;rn§déTeTot 13 Lc = s − h = 3 − = 2.188in. > 2in. 16 ⎛ 3 ⎞⎛ 3 ⎞ dUcenH φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(58) = 29.36kips ⎝ 4 ⎠⎝ 8 ⎠ Bearing strength sMrab;tMNKW φRn = 21.42 + 29.36 = 50.8kips Bearing strength enHFMCag shearing strength dUcenH shear strength lub ehIyersIusþg;rbs;tMNKW φRn = 15.9kips cMNaMfaRKb;tMrUvkarKMlat nigcMgayeTARCugEKmTaMgGs;RtUvEtRKb;RKan;. sMrab; sheared edge cMgay eTARCugEKmEdlTamTareday AISC Table J3.4 KW 1 14 in. = 30mm ehIykarTamTarenHKWRKb;RKan; sMrab;TaMg TisbeNþay nigTisTTwg. KMlatb‘ULúgKW 3in = 75mm EdlFMCag 2 2 3 d = 2.667(3 4 ) = 2in. . cMeLIy³ edayQrelI shear nig bearing, design strength rbs;tMNKW 15.9kips . ¬cMNaMfa sßanPaB kMNat;d¾éTepSgeTotEdlminTan;)anRtYtBinitüdUcCa kugRtaMgTajenAelI net area rbs;Ggát;Gacnwg CaGñkkMNt; design strength¦. ]TahrN_ 7>3³ r)arEdk 4 × 3 / 8in. RtUv)aneRbICaGgát;rgkarTajedIm,ITb;Tl;nwg service dead load 8kips nig service live load 22kips . Ggát;enHRtUv)anKNnaeRkamkarsnμt;fa b‘ULúg A307 Ggát; p©it 3 / 4in. mYyCYrRtUv)aneRbIedIm,IP¢ab;Ggát;enHeTA gusset plate EdlmankMras; 3 / 8in. . TaMgGgát; rgkarTaj nig gusset plate CaEdk A36 . etIeKRtUvkarb‘ULúgb:unμanRKab;? 243 tMNsamBaØ
  • 15. T.chhay dMeNaHRsay³ bnÞúkemKuNKW Pu = 1.2 D + 1.6 L = 1.2(8) + 1.6(22) = 44.80kips KNnalT§PaBrbs;b‘ULúgmYy. BI]TahrN_ 7>2 shear strength KW φRn = 7.952kips / bolt sMrab; eKminsÁal;KMlat nigcMgayeTARCugEKm dUcenHeyIgsnμt;fa EdkkMNt; bearing strength, φ 2.4dtFu nwglub enaHeyIgTTYl)an ⎛ 3 ⎞⎛ 3 ⎞ φRn = 0.75(2.4)⎜ ⎟⎜ ⎟(58) = 29.36kips / bolt ⎝ 4 ⎠⎝ 8 ⎠ Bearing strength Cak;EsþgsMrab;tMNenHnwgGaRs½yelItMélrbs; Lc sMrab;b‘ULúgnImYy². enAeBl EdltMélenHRtUv)ankMNt;enAkñúgkarKNnacugeRkay enaH bearing strength RtUv)anRtYtBinitüeLIg vijb:uEnþ shear enAEtTMngCalub. cMnYnb‘ULúgEdlRtUvkarKW 44.80kips = 5.63bolts 7.952kips / bolt cMeLIy³ eRbIb‘ULúg A307 Ggát;p©it 3 / 4in. cMnYnR)aMmYyRKab;. 7>5> b‘ULúgersIusþg;x<s; High-Strength Bolts b‘ULúgersIusþg;x<s;sMrab;tMNrbs;eRKOgbgÁúMmanBIry:agKW ASTM A325 nig ASTM A490 . karpþl;eGayrbs; AISC sMrab;ersIusþg;x<s;KWCaEpñkxøHrbs;karpþl;eGayrbs; specification of the Research Council on Structural Connections of the Engineering Foundation (RCSC, 1994). b‘ULúg A490 man ultimate tensile strength FMCagb‘ULúg A325 ehIyRtUv)ankMNt;faman nominal strength FMCag. b‘ULúg A490 RtUv)andak;eGayeRbIR)as;ry³eBly:agyUrbnÞab;BIb‘ULúg A325 RtUv)aneRbICaTUeTA sMrab;eRbICamYyEdkEdlmanersIusþg;x<s; ¬Bethlehem, 1969¦. b‘ULúg A490 mantMéléføCag A325 b:uEnþCaTUeTAeKRtUvkarvacMnYnticCag. kñúgkrNIxøH b‘ULúg A490 nig A325 RtUv)antMeLIgCamYynwgkMrittwgEdleFVIeGayBYkvargnUvkM laMgTajFMEmnETn. ]TahrN_ kMlaMgTajdMbUgenAkñúgb‘ULúg A325 Ggát;p©it 5 / 8in. GacFMesμInwg 19kips = 85KN . bBa¢IénkMlaMgTajGb,brmasMrab;tMNTaMgenaHRtUvkarRtUv)aneGayenAkñúg AISC Table J3.1, Minimum Bolt Tension. tMélnImYy²esμInwg 70% énersIusþg;TajGb,brmarbs;b‘ULúg. 244 tMNsamBaØ
  • 16. T.chhay eKalbMNgEdleKRtUvkarkMlaMgTajFMEbbenHKWedIm,ITTYl)ankMlaMgrwtEdlbgðajenAkñúgrUbTI 7>12. b‘ULúgEbbenHRtUv)aneKehAfa fully tensioned. enAeBlEdlex©ARtUv)anmYlP¢ab;eTAnwgb‘ULúg EpñkEdlRtUvP¢ab;rgnUvkMlaMgsgát; ehIyb‘ULúglUt. düaRkaGgÁesrI (free body diagram) enAkñúgrUbTI 7>12 a bgðajfakMlaMgsgát;srubEdlmanGMeBIelI EpñkEdlRtUvP¢ab;esμInwgkMlaMgTajenAkñúgb‘ULúg. RbsinebIeKGnuvtþkMlaMgxageRkA P kMlaMgkkitnwg ekItmanenAcenøaHEpñkP¢ab;. kMlaMgGtibrmaEdlGacekItmanKW F = μN Edl μ CaemKuNkkitsþaTicrvagEpñkEdlRtUvP¢ab; ehIy N CakMlaMgsgát;EdlmanGMeBIenAelIépÞxag kñúg. tMélrbs; μ GaRs½ynwglkçxNÐépÞrbs;Edk ]TahrN_dUcCa épÞrbs;vamanlabfñaM b¤manERcHsIu. dUcenHb‘ULúgnImYy²enAkñúgkartP¢ab;RtUvmanlT§PBedIm,ITb;Tl;nwgbnÞúk P = F . RbsinebIkMlaMgkkit minFM vanwgminman bearing b¤ shear. RbsinebI P FMCag F slip ekIteLIg enaH shear nig bearing nwg CHT§iBldl;lT§PaBrbs;tMN. 245 tMNsamBaØ
  • 17. T.chhay kartMeLIg Installation etIeKTTYl)ankMlaMgTajFMEdlmanPaBsuRkitedayrebobNa? bc©úb,nñeKmanviFIsaRsþEdl GnuBaØateGaycMnYnbYnsMrab;kartMeLIgb‘ULúgersIusþg;x<s; (RCSC, 1994). !> Turn-of-the-nut method. viFIenHQrelIlkçN³bnÞúk-kMhUcRTg;RTay (load-deforma- tion characteristic) rbs;eRKOgP¢ab; nigEpñkEdlRtUvP¢ab;. ex©AEdlmYlP¢ab;eTAnwgb‘ULúgGaceFVIeGay b‘ULúglUtsac;. TMnak;TMng stress-strain sMrab;sMPar³b‘ULúgGacRtUv)aneRbIedIm,IKNnakMlaMgTajenA kñúgb‘ULúg. dUcenHsMrab;RKb;TMhM nigRbePTrbs;b‘ULúg cMnYnCMumYlex©AEdlRtUvkaredIm,IbegáItkMlaMgTaj GacRtUv)anKNna. Table 5 enAkñúg high-strength bolt specification (RCSC, 1994) eGaynUvcMnYn CMurbs;ex©AEdlRtUvkarsMrab;TMhMepSg²rbs;b‘ULúgkñúgTMrg;pleFobRbEvgelIGgát;p©it. viFIsaRsþenHeK eRbI ordinary spud wrench. @> Calibrated wrench tightening. kñúgviFIsa®sþenHeKRtUveRbI torque wrench. kMlaMgrmYl EdlRtUvkaredIm,ITTYlkMlaMgTajkMNt;enAkñúgb‘ULúgRtUv)ankMNt;edaykarrwtbNþwgb‘ULúgenHCamYy]b krN_EdlbgðajkMlaMgTah. #> Alternated wrench bolts. eKRtUvkar wrench BiessedIm,ItMeLIgb‘ULúg. karRtYtBinitükar gartMeLIgenHmanlkçN³gayRsYlCaBiess. $> Direct tension indicators. sMPar³EdleKniymeRbIenAkñúgviFIsaRsþenHKW washer Edlman protrusion enAelIépÞrbs;va. enAeBlEdleKrwtb‘ULúg protrusion rgnUvkMlaMgsgát;EdlsmamaRteTA nwgkMlaMgTajenAkñúgb‘ULúg. 7>6> Shear Strength of High-Strength Bolts Design shear strength rbs;b‘ULúg A325 nig A490 KW φRn EdlemKuNersIusþg; φ = 0.75 . dUc Kñanwgb‘ULúgFmμtaEdr nominal shear strength rbs;b‘ULúgersIusþg;x<s;RtUv)aneGayeday ultimate shearing stress KuNnwg nominal bolt area. Etb‘ULúg A307 mindUcb‘ULúg A325 nig A490 Rtg; shear strength rbs;b‘ULúgersIusþg;x<s;GaRs½ynwgeFμjrbs;b‘ULúgsßitenAkñúgbøg;kat;b¤ minsßitenAkñúgbøg;kat;. edIm,IsMrYlkñúgkareRbI reduced cross-sectional area enAeBlEdlEpñkEdlmaneFμjrgnUvkMlaMgkat; TTwg enaH ultimate shearing stress rbs;vaRtUvKuNnwg 0.75 EdlCapleFobRbhak;RbEhlénRkLa 246 tMNsamBaØ
  • 18. T.chhay épÞEdlmaneFμj elIRkLaépÞEdlKμaneFμj. ersIusþg;RtUv)aneGayenAkñúg AISC Table J3.2 ehIy RtUv)ansegçbenAkñúgtarag 7>1 . AISC Table J3.2 sMedAeFμjenAkñúgbøg;kat;Ca “not excluded from shear planes” ehIysMedAeFμjEdlminenAkñúgbøg;kat;Ca “excluded from shear planes”. RbePTTI mYy eFμjsßitenAkñúgbøg;kat; eKsMedACaRbePTtMN “N” ehIyb‘ULúg A325 énRbePTenHGacsMKal; eday A325 − N . karsMKal; “X” GacRtUv)aneRbIedIm,IbgðajfaeFμjminsßitenAkñúgbøg;kat;eT ]Ta- hrN_ A325 − X . tarag 7>1 Nominal shear strength eRKOgP©ab; Rn = Fv Ab US IS A325/ eFμjenAkñúgbøg;kat; 48 Ab 330 Ab A325 / eFμjminenAkñúgbøg;kat; 60 Ab 415 Ab A490 / eFμjenAkñúgbøg;kat; 60 Ab 415 Ab A490 / eFμjminenAkñúgbøg;kat; 75 Ab 520 Ab ]TahrN_7>4³ kMNt; design strength rbs;tMNEdlbgðajenAkñúgrUbTI 7>13. GegÁt bolt shear, bearing nig tensile strength rbs;Ggát;. b‘ULúgEdleRbICaRbePT A325 Ggát;p©it 7 / 8in. ehIyeFμj rbs;vaminsßitenAkñúgbøg;kat;. Ggát;CaRbePTEdk A572 Grade 50 . dMeNaHRsay³ shear strength sMrab;b‘ULúgmYy π (7 / 8)2 Ab = = 0.6013in.2 4 247 tMNsamBaØ
  • 19. T.chhay φRn = φFv Ab = 0.75(60)(0.6013) = 27.06kips sMrab;b‘ULúgbI φRn = 3(27.06) = 81.2kips Bearing strength ³ sMrab;karKNna bearing strength eRbIGgát;p©itrn§ 1 7 1 15 h=d+ = + = in. 16 8 16 16 RtYtBinitü bearing EdlekItmanTaMgelI Ggát;rgkarTaj nig gusset plate. sMrab;Ggát;rgkarTaj nig b‘ULúgEdlenAEk,rRCugEKmCageKrbs;Ggát; h 15 / 16 Lc = Le − = 1.25 − = 0.7812in. 2 2 2d = 2(7 / 8) = 1.75in. edaysar Lc < 2d ⎛1⎞ φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(0.7812)⎜ ⎟(65) = 22.85kips ⎝2⎠ sMrab;RbehagepSgeTot 15 Lc = s − h = 2.75 − = 1.812in. > 2d 16 ⎛ 7 ⎞⎛ 1 ⎞ dUcenH φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(65) = 51.19kips ⎝ 8 ⎠⎝ 2 ⎠ Bearing strength sMrab;Ggát;rgkarTajKW φRn = 22.85 + 2(51.19) = 125kips KNna bearing strength rbs; gusset plate. sMrab;rn§EdlenAEk,rRCugEKmrbs; gusset CageK h 15 / 16 Lc = Le − = 1.5 − = 1.031in. < 2d 2 2 ⎛3⎞ dUcenH φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.031)⎜ ⎟(65) = 22.62kips ⎝8⎠ sMrab;Rbehagd¾éTeTot 15 Lc = s − h = 2.75 − = 1.812in. > 2d 16 ⎛ 7 ⎞⎛ 3 ⎞ dUcenH φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(65) = 38.39kips ⎝ 8 ⎠⎝ 8 ⎠ Bearing strength rbs; gusset plate KW φRn = 22.62 + 2(38.92 ) = 99.4kips 248 tMNsamBaØ
  • 20. T.chhay Gusset plate man strength tUcCag dUcenH bearing strength sMrab;tMNKW φRn = 99.4kips RtYtBinitü tensile strength rbs;Ggát;rgkarTaj. Tension on the gross atea: ⎛ 1⎞ φt Pn = φt Fy Ag = 0.90(50 )⎜ 3 × ⎟ = 67.5kips ⎝ 2⎠ Tension on the net area: muxkat;TaMgGs;rbs;Ggát;RtUv)antP¢ab; dUcenHvaminman shear lag eT dUcenHeyIg)an Ae = An . eRbIGgát;Rbehag 1 7 1 h = d + = + = 1.0in. 8 8 8 Design strength KW φt Pn = φt Fu Ae = φt Fu t (wg − ∑ h ) = 0.75(65)⎜ ⎟[3 − 1(1.0)] = 48.8kips ⎛1⎞ ⎝2⎠ karTajenAelI net section mantMéltUcCageK cMeLIy³ Design strength rbs;tMNKW 48.8kips 7>7> Slip-Critical Connections eKcat;cMNat;fñak;kartP¢ab;EdleRbIb‘ULúgersIusþg;x<s;Ca slip-critical connection b¤ bearing- type connection. Slip-critical connection CakartP¢ab;EdleKminGnuBaØateGayman slip Edlmin RtUvFMCagkMlaMgkkit. sMrab; bearing-type connection eKGnuBØateGayman slip ehIy shear nig bearing ekIteLIgFmμta. enAkñúgRbePTeRKOgbgÁúMxøH CaBiesss<an kMlaMgEdlmanGMeBIelItMNGacekIt eLIgCalkçN³xYb. kñúgkrNIEbbenH fatigue rbs;eRKOgP¢ab;GackøayCaeRKaHfñak;RbsinebIeKGnuBaØat eGayman slip rYmCamYynwgkarekIteLIgsarcuHsareLIg enaHeKRtUvRtYtBinitü slip-critical connec- tion. enAkñúgeRKOgbgÁúMCaeRcIn eKGnuBaØateGayman slip ehIy bearing-type connection RtUvEt RKb;RKan;. ¬b‘ULúg A307 RtUv)aneRbIsMrab;Et bearing-type connection¦. sMrab; slip-critical connection eKcaM)ac;RtUvEteFVIkartMeLIgeGay)anl¥ edIm,ITTYlnUvkMlaMgTajdMbUgRKb;RKan;dUcEdl)an erobrab;. AISC J1.11 erobrab;BIsßanPaBkMNt;Edlb‘ULúgersIusþg;x<s;RtUvEtmankMlaMgTajeBj. enA kñúg bearing-type connection tMrUvkarcaM)ac;EtmYyKt;kñúgkartMeLIgb‘ULúgKWeKRtUvpþl;nUvkMlaMgTaj 249 tMNsamBaØ
  • 21. T.chhay RKb;RKan;edIm,IeGayépÞb:HKñaGacTb;Tl;Kña)aneTAvijeTAmk. kartMeLIgenHbegáItnUv snug-tight condition Edl)anerobrab;enAkñúg turn-of-the-nut method. eTaHbICatamRTwsþI slip-critical connection minRbQmnwg shear nig bearing k¾eday k¾eKRtUvEtman shear strength nig bearing strength RKb;RKan;sMrab;krNI overload EdlGaceFVIeGay ekItman slip. edIm,IkarBar slip eKRtUvmanEdnkMNt;sMrab; service load b¤ factored load. eTaHbICakar karBar slip mansar³sMxan;sMrab; serviceability requiremnent k¾eday k¾ AISC Specification GnuBaØateGay slip-critical strength GacQrelI service load b¤ factored load. dUcEdl)anerobrab;BIxagelI lT§PaBTb;nwg slip CaGnuKmn_énplKuNrvagemKuNkkitsþaTic nig normal force cenøaHEpñkP¢ab;. TMnak;TMngenHRtUv)anbgðajenAkñúg RCSC Specification Edl eyIgeRbIenATIenHsMrab; slip-critical connection (RCSC, 1994). Slip-critical strength rbs;tMN KW φRstr Edl φ = 1.0 sMrab; standard hole ehIy Rstr = 1.13μTm N b N s (RCSC Equation LRFD 5.3) Edl μ = mean slip coefficient ¬emKuNkkitsþaTic¦ = 0.33 sMrab;épÞ Class A Tm = kMlaMgTajrbs;eRKOgP¢ab;Gb,brmaEdl)anBI AISC Table J3.1 b¤ RCSC Table 4 N b = cMnYnb‘ULúgenAkñúgtMN N s = cMnYn slip plan ¬bøg;kat;¦ épÞ Class A CaépÞEdlmanEdkG‘uksIutenAépÞrbs;va. enAkñúg Specification manENnaMnUvRbePTépÞ CaeRcIneTot EtenAkñúgesovePAenH eyIgeRbIEt épÞ Class A Edlpþl;nUv slip coefficient tUcCageKbMput. Slip-critical design strength sMrab;b‘ULúgmYyén single shear KW φRstr = φ (1.13μTm N b N s ) = 1.0(1.13)(0.33)Tm (1)(1) = 0.373Tm kips ]TahrN_ 7>5³ kartP¢ab;EdlbgðajenAkñúgrUbTI 7>14 eRbIb‘ULúg A325 Ggát;p©it 3 / 4in. EdleFμj rbs;vasßitenAkñúgbøg;kat;. eKminGnuBaØateGayman slip. TaMgGgát;rgkarTaj nig gusset plate Ca RbePTEdk A36 . kMNt; design strength. 250 tMNsamBaØ
  • 22. T.chhay dMeNaHRsay³ Shear strength: sMrab;b‘ULúgmYy π (3 / 4 )2 Ab = = 0.4418in.2 4 φRn = φFv Ab = 0.75(48)(0.4418) = 15.90kips sMrab;b‘ULúgbYnRKab; φRn = 4(15.90) = 63.60kips Slip-critical strength: edaysareKminGnuBaØateGayman slip enaHkartP¢ab;enHRtUv)ancat;Ca slip- critical. BI AISC Table J3.1 kMlaMgTajkñúgb‘ULúgGb,brmaKW Tm = 28kips . BIsmIkar &>#/ φRstr = 0.373Tm = 0.373(28) = 10.4kips / bplt sMrab;b‘ULúgbYn φRstr = 4(10.4) = 41.6kips Bearing strength: edaysarcMgayeTARCugEKmmanRbEvgdUcKña ehIy gusset palte esþIgCagr)ar enaH eyIgenwgeRbI gusset plate EdlmankMras; 3 / 8in. edIm,IKNna bearing strength. Ggát;p©itRbehag 1 3 1 13 h=d+ = + = in. 16 4 16 16 sMrab;RbehagEdlenACitRCugEKmrbs; gusset plate CageK h 13 / 16 Lc = Le − = 1.5 − = 1.094in. 2 2 ⎛3⎞ 2d = 2⎜ ⎟ = 1.5in. ⎝4⎠ edaysar Lc < 2d 251 tMNsamBaØ
  • 23. T.chhay ⎛3⎞ φRn = φ (1.2 Lc tFu ) = 0.75(1.2 )(1.094)⎜ ⎟(58) = 21.42kips / bolt ⎝8⎠ sMrab;d¾éTeTot 13 Lc = s − h = 3 − = 2.188in. > 2d 16 dUcenH φRn = φ (2.4dtFu ) = 29.36kips / bolt Bearing strength sMrab;kartMNKW φRn = 2(21.42) + 2(29.36 ) = 102kips RtYtBinitü tensile strength rbs;Ggát;rgkarTaj karTajenAelI gross area: ⎛ 1⎞ φt Pn = φt Fy Ag = 0.90(36 )⎜ 6 × ⎟ = 97.2kips ⎝ 2⎠ karTajenAelI net area: muxkat;TaMgmUlrbs;Ggát;RtUv)antP¢ab; dUcenHvaKμan shear lag eT enaHeyIg TTYl)an Ae = An . Ggát;p©itRbehag 1 3 1 7 h=d+ = + = in. 8 4 8 8 Design strength KW φt Pn = φt Fu Ae = φt Fu t (wg − ∑ h ) = 0.75(58)⎜ ⎟ ⎢6 − 2⎜ ⎟⎥ = 92.4kips ⎛ 1 ⎞⎡ ⎛ 7 ⎞⎤ ⎝ 2 ⎠⎣ ⎝ 8 ⎠⎦ Block shear stredngth: failure blocksMrab; gusset plate manTMhMdUcTMhMsMrab;Ggát;rgkarTajEdr EtxuxKñaRtg;kMras; ¬rUbTI 7>14 b¦. Gusset plate EdlmankMras;esþIgCagnwgmanersIusþg;tUcCag. vaman shear-failure plane cMnYnBIr³ Agv = 2 × 3 (3 + 1.5) = 3.375in.2 8 edaysarvaman 1.5 Ggát;p©itRbehagkñúgmYyCYredkrbs;b‘ULúg 3⎡ ⎛ 7 ⎞⎤ Anv = 2 × ⎢(3 + 1.5) − (1.5)⎜ ⎟⎥ = 2.391in.2 8⎣ ⎝ 8 ⎠⎦ sMrab;RkLaépÞrgkarTaj Agt = 3 (3) = 1.125in.2 8 3⎛ 7⎞ Ant = ⎜ 3 − ⎟ = 0.7969in.2 8⎝ 8⎠ 252 tMNsamBaØ
  • 24. T.chhay AISC Equation J4-3a eGay [ ] φRn = φ 0.6 Fy Agv + Fu Ant = 0.75[0.6(36 )(3.375) + 58(0.7969 )] = 0.75[72.90 + 46.22] = 89.3kips AISC Equation J4-3b eGay [ ] φRn = φ 0.6 Fy Anv + Fy Agt = 0.75[0.6(58)(2.391) + 36(1.125)] = 0.75[83.21 + 40.50] = 92.8kips tY fracture ¬EdlBak;Bn§½nwg Fu ¦ enAkñúgsmIkarTIBIrmantMélFMCagenAkñúgsmIkarTImYy dUcenH AISC Equation 4.3b lub. design strength sMrab; block shear = 92.8kips kñúgcMeNamsßanPaBkMNt;TaMgGs;Edl)aneFVIkarGegát eyIgeXIjfaersIusþg;EdlRtUvKñanwg slip mantM éltUcCageK. cMeLIy³ Design strength rbs;tMNKW 41.6kips ]TahrN_ 7>6³ Ggát;rgkarTajkMras; 5 / 8in. RtUv)antP¢ab;eTAnwg splice plate kMras; 1 / 4in. cMnYnBIr dUcEdl)anbgðajenAkñúgrUbTI 7>15. bnÞúkEdl)anbgðajCabnÞúk service load. eKeRbIEdk A36 nig b‘ULúg A325 Ggát;p©it 5 / 8in. . RbsinebIeKGnuBaØateGayman slip etIeKRtUvkarb‘ULúgb:unμanRKab;? GkS½rbs;b‘ULúgnImYy²EdlbgðajKWCaCYrrbs;b‘ULúgkñúgTisTTwgrbs;bnÞHEdk. 253 tMNsamBaØ
  • 25. T.chhay dMeNaHRsay³ Shear: sMrab; shear, norminal bolt area KW π (5 / 8)2 Ab = = 0.3068in.2 4 snμt;fa eFμjb‘ULúgsßitenAkúñgbøg;kat;. enaH design strength sMrab;b‘ULúgmYyKW φRn = φFv Ab × 2planes of shear = 0.75(48)(0.3068)(2) = 22.09kips Bearing: Beating force enAelIGgát;rgkarTajkMras; 5 / 8in. nwgFMCag bearing force enAelI splice plate kMras; 1 / 4in. nImYy² BIrdg. edaysarbnÞúksrubenAelI splice plates esμInwgbnÞúkenAelIGgát; rgkarTaj enaH splice plate nwgmaneRKaHfñak;enAeBlEdlkMras;srubrbs; splice plate esþIgCag kMras;rbs;Ggát;rgkarTaj. eRbIGgát;p©itRbehag 1 5 1 11 h=d+ = + = in. 16 8 16 16 sMrab;RbehagEdlenAEk,rRCugEKmCageK h 11 / 16 Lc = Le − = 1.5 − = 1.156in. 2 2 ⎛5⎞ 2d = 2⎜ ⎟ = 1.25in. ⎝8⎠ edaysar Lc < 2d / bearing strength KW ⎛1 1⎞ φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.156)⎜ + ⎟(58) = 30.17kips / bolt ⎝4 4⎠ sMrab;rn§déTeTot 11 Lc = s − h = 3 − = 2.312in. > 2d 16 ⎛ 5 ⎞⎛ 1 1 ⎞ dUcenH φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ + ⎟(58) = 32.62kips / bolt ⎝ 8 ⎠⎝ 4 4 ⎠ Shearing strength kñúgb‘ULúgmYyKWtUcCagtMél bearing TaMgBIr dUcenHersIusþg;rbs;tMNKW 22.09kips . bnÞúkemKuNKW Pu = 1.2 D + 1.6 L = 1.2(25) + 1.6(25) = 70kips cMnYnb‘ULúgEdlRtUvkar = total load load per bolt 70 = = 3.17bolts 22.09 cMeLIy³ eRbIb‘ULúgbYn EdlkñúgmYyCYrmanBIrRKab; enAelIRCugnImYy²rbs; splice. b‘ULúgcMnYn R)aMbI RKab;GacRtUvkarsMrab;kartP¢ab;enH. 254 tMNsamBaØ
  • 26. T.chhay ]TahrN_ 7>7³ C 6 ×13 EdlbgðajenAkñúgrUbTI 7>16 RtUv)aneRCIserIsedIm,ITb;Tl;nwgbnÞúkTajem KuN 108kips . Ggát;enHRtUv)anP¢ab;eTAnwg gusset plate kMras; 3 / 8in. CamYynwgb‘ULúg A325 EdlmanGgát;p©it 7 / 8in. . ]bmafaeFμjrbs;b‘ULúgsßitenAkñúgbøg;énkMlaMgkat;TTwg ehIyeKGnuBaØat eGayman slip sMrab;kartP¢ab;enH. kMNt;cMnYn nigeFVIkartMerobb‘ULúgy:agNaedIm,ITTYl)anRbEvgt P¢ab; h Gb,brma. eKeRbIEdk A36 . dMeNaHRsay³ kMNt;lT§PaBrbs;b‘ULúgeTal kMlaMgkat;TTwg³ π (7 / 8)2 Ab = = 0.6013in.2 4 φRn = φFv Ab = 0.75(48)(0.6013) = 21.65kips bearing³ edaysarkMras;rbs; gusset plate esþIgCaRTnugrbs;Edk channel dUcenH bearing strength rbs; gusset plate nwgtUcCagEdk channel. snμt;faRbEvg Lc EdlRsbnwgkMlaMgEdlGnuvtþmantMél FMCag 2d sMrab;b‘ULúgTaMgGs;. enaH ⎛ 7 ⎞⎛ 3 ⎞ φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(58) = 34.26kips ⎝ 8 ⎠⎝ 8 ⎠ enaH kMlaMgkat;TTwglub. dUcenH cMnYnb‘ULúgEdlRtUvkar = 21.65 = 4.99 108 eTaHbICab‘ULúg 5 pþl;nUversIusþg;RKb;RKan;k¾eday k¾eKsakl,gb‘ULúg 6RKab;EdlGacerobCalkçN³ sIuemRTI edaymanb‘ULúg 3RKab;BIrCYr dUcbgðajenAkñúgrUbTI 7>17. ¬b‘ULúgBIrCYrRtUv)aneRbIedIm,I TTYl)anRbEvgtP¢ab;Gb,brma¦. eyIgmin)andwgfaetIkarKNnamuxkat;Ggát;rgkarTajenHQrelI karsnμt;eRKOgP¢ab;b:unμanCYr dUcenHlT§PaBTb;karTajrbs;Edk channel CamYynwgb‘ULúgBIrCYrRtUv)an RtYtBinitümunnwgdMeNIrkarKNnakartP¢ab;bnþ. 255 tMNsamBaØ
  • 27. T.chhay karTajenAelI gross area: φt Pn = 0.90 Fy Ag = 0.90(36 )(3.83) = 124kips net area An = 3.83 − 2(1.0)(0.437 ) = 2.96in.2 edaysareyIgminTan;sÁal;RbEvgtP¢ab;BitR)akd dUcenHeyIgRtUveRbItMélmFümrbs; U BI Commentary. Ae = UAn = 0.85(2.96) = 2.51in.2 kMlaMgTajenAelI net area φt Pn = 0.75Fu Ae = 0.75(58)(2.51) = 109kips ¬lub¦ dUcenH lT§PaBrbs;Ggát;rgkarTajKWQrelIb‘ULúgBIrCYr. RtYtBinitüKMlat nigRbEvgeTARCugEKmtamTisEkgnwgkMlaMg. BI AISC J3.3 KMlatGb,brma = 2.667⎛ 7 ⎞ = 2.33in. ⎜ ⎟ ⎝8⎠ BI AISC Table J3.4 RbEvgeTARCugEKmGb,brma = 1 18 in. KMlat 3in. nigRbEvgeTARCugEKm1 12 in. nwgRtUv)aneRbIkñúgTisEkgnwgkMlaMg. eKGackMNt;RbEvgtP¢ab;Gb,brmarbs;kartP¢ab;edayeRbIKMlat nigRbEvgeTARCugEKmGnuBaØat Gb,brmakñúgTisbeNþay ¬RsbnwgkMlaMg¦. KMlatGb,brmakñúgTisnImYy²KW 2 2 3 d = 2.33in. . sakl,g 2 12 in. . RbEvgeTARCugEKmGb,brmaKW 1 18 in. . cMgayGb,brmaTaMgenHnwgRtUv)aneRbI sMrab;epÞógpÞat; bearing strength rbs;kartP¢ab;. sMrab;karKNna bearing strength eKeRbIGgát;p©it rn§ 1 7 1 15 h=d+ = + = in. 16 8 16 16 sMrab;RbehagEdlenAEk,rRCugEKmrbs; gusset plate CageK 256 tMNsamBaØ
  • 28. T.chhay h 15 / 16 Lc = Le − = 1.125 − = 0.6562in. 2 2 2d = 2(7 / 8) = 1.75in. edaysar Lc < 2d bearing strength KW ⎛3⎞ φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(0.6562)⎜ ⎟(58) = 12.85kips / bolt ⎝8⎠ sMrab;Rbehagd¾éTeTot 15 Lc = s − h = 2.5 − = 1.562in. < 2d 16 dUcenH φRn = φ (1.2LctFu ) = 0.75(1.2)(1.562)⎜ 8 ⎞(58) = 30.58kips / bolt ⎛3 ⎝ ⎠ ⎟ Bearing strength srubsMrab;kartP¢ab;KW φRn = 2(12.85) + 4(30.58) = 148kips > Pu = 108kips (OK) rUbTI 7>18 bgðajBIkartP¢ab;sakl,gsMrab;RtYtBinitüemIl block shear enAkñúg gusset plate ¬sMrab;ragGrNImaRtén failure block enAkñúgEdl channel KWdUcKña b:uEnþ gusset plate mankMras;esþIg Cag¦. Shear areas: Agv = (2.5 + 2.5 + 1.125)(2) = 4.594in.2 3 8 ehIyedaysarEtvamanRbehag 2.5 enAtamépÞkat;nImYy² Anv = 3 [6.125 − 2.5(1.0)](2) = 2.719in.2 8 Tension area Agt = (3) = 1.125in.2 3 8 ehIy Ant = (3 − 1.0) = 0.75in.2 3 8 RtYtBinitüsMrab; tension yield nig shear fracture CamYynwg AISC Equation J4-3a: 257 tMNsamBaØ
  • 29. T.chhay [ φRn = φ 0.6 Fy Agv + Fu Ant ] = 0.75[0.6(36 )(4.594 ) + 58(0.75)] = 0.75[99.23 + 43.50] = 107.0kips RtYtBinitüsMrab; tension fracture nig shear yield CamYynwg AISC Equation J4-3b: φRn = φ [0.6 Fu Anv + Fy Agt ] = 0.75[0.6(58)(2.719 ) + 36(1.125)] = 0.75[94.62 + 40.50] = 101.3kips tY fracture ¬tYEdlBak;Bn§½nwg Fu ¦ enAkñúgsmIkarTIBIrmantMélFMCagtY fracture enAkñúgsmIkarTImYy dUcenH smIkarTIBIrlub. Design strength sMrab; block shear = 101.3kips < 108kips (N.G.) viFIEdlsamBaØbMputkñúgkarbegáIn block shear strength sMrab;kartP¢ab;enHKWbegáIn shear area eday begáInKMlatb‘ULúg. RbsinebIeKbegáInKMlat AISC Equation J4-3b enAEtlubdEdl. ebIeTaHbICaKM latEdlRtUvkarGackMNt;eday trial and error k¾eday k¾eKGacedaHRsayedaypÞal;dUcEdleyIg nwgeFVIenATIenH. BI AISC Equation J4-3b, eKeGay 0.75[0.6(58)Anv + 40.50] = 108kips dUcenHeKRtUvkar Anv = 2.974in.2 Anv = 3 (2s + 1.125 − 2.5)(2) = 2.974in.2 8 dUcenH s = 2.67in. yk s = 3in. CamYynwgKMlat 3in. net shear area KW Anv = 3 (3 + 3 + 1.125 − 2.5)(2) = 3.469in.2 8 ehIy block shear strength BI AISC Equation J4-3b KW [ φRn = φ 0.6 Fu Anv + Fy Agt ] = 0.75[0.6(58)(3.469 ) + 36(1.125)] = 0.75[120.7 + 40.50] = 120.9kips edayeRbIKMlat nigRbEvgeTARCugEKmEdl)ankMNt; dUcenHRbEvgGb,brmaKW h = 1.125 + 2 × 3 + 1.125 = 8.5in cMeLIy³ eRbIkartP¢ab;lMGitEdlbgðajenAkñúgrUbTI 7>19. 258 tMNsamBaØ
  • 30. T.chhay kartMerobb‘ULúgenAkñúg]TahrN_ 7>7 manlkçN³sIuemRTIeFobnwgGkS½RsbnwgGkS½TIRbCMuTMgn;. dUcenHkMlaMgpÁÜbEdlTb;Tl;kMlaMgEdlpþleGayedayeRKOgP¢ab;k¾eFVIGMeBItamGkS½enH ehIyragFrNI- maRtenHRtUvKñanwgkartP¢ab;samBaØ. RbsinebIeKRtUvkarcMnYnb‘ULúgess ehIyeKeRbIBIrCYr vanwgminman PaBsIuemRTIeT ehIykartP¢ab;nwgmanlkçN³cakp©it. kñúgkrNIEbbenH GñkKNnamuxkat;nwgmanCMerIs eRcIn³ ¬!¦ minKitcMNakp©it edaysnμt;faT§BlenHGacecal)an/ ¬@¦ KitcMNakp©it/ ¬#¦ eRbIkartM erobqøas; (staggered pattern) EdlGacrkSanUvPaBsIuemRTI/ b¤ ¬$¦ bEnßmcMnYnb‘ULúgedIm,ITTYl)an kartMerobEdlmanlkçN³sIuemRTI. visVkrPaKeRcInRbEhlCanwgeRCIserIsCMerIscugeRkay. ]TahrN_ 7>8³ Ggát;rgkarTajRbEvg 13 ft nigkartP¢ab;rbs;vaRtUv)anKNnasMrab; service dead load 8kips nig service live load 22kips . eKminGnuBaØateGayman slip sMrab;kartP¢ab;enHeT. Ggát;enHRtUv)antP¢ab;eTAnwg gusset plate kMras; 3 / 8in. dUcbgðajenAkñúgrUbTI 7>20. eRbIEdkEkg eTal (single angle) sMrab;Ggát;rgkarTaj. eRbIb‘ULúg A325 nigEdk A572 grade 50 sMrab;Ggát;rg karTaj nig gusset plate. dMeNaHRsay³ bnÞúkemKuNEdlRtUvTb;Tl;KW Pu = 1.2 D + 1.6 L = 1.2(8) + 1.6(22) = 44.8kips 259 tMNsamBaØ
  • 31. T.chhay edaysarTMhMb‘ULúg nigkartMerobb‘ULúgCHT§iBldl; net area rbs;Ggát;rgkarTaj eyIgnwgcab;epþIm CamYynwgkareRCIserIsb‘ULúg. yuT§saRsþKWkareRCIserIssMrab;karsakl,g/ kMNt;cMnYnb‘ULúgEdlRtUv kar/ rYcbnÞab;mksakl,gTMhMepSgeTotRbsinebITMhMEdl)ansakl,gFMeBk b¤tUceBk. Ggát;p©itb‘U LúgsßitenAcenøaHBI 1/ 2in. ≈ 13mm eTA 1 12 in. ≈ 38mm edayekIneLIgmþg 1 / 8in. ≈ 3mm sakl,gb‘ULúg 5 / 8in. . Nominal bolt area KW π (5 / 8)2 Ab = = 0.3068in.2 4 Shear strength KW φRn = φFv Ab = 0.75(48)Ab = 0.75(48)(0.3068) = 11.04kips / bolt ¬edaysnμt;faeFμjsßitenAkñúgbøg;kat;¦ edayeKminGnuBaØateGayman slip dUcenHkartP¢ab;enHCa slip-critical. eyIgsnμt;épÞ Class A ehIy sMrab;b‘ULúgGgát;p©it 5 / 8in. kMlaMgTajGb,brmaKW Tm = 19kips ¬BI AISC Table J3.1). BI RCSC Equation LRFD 5.3, slip critical strength sMrab;b‘ULúgeTalKW φRstr = φ (1.13μTm N b N s ) = 1.0(1.13)(0.33)(19)(1)(1) = 7.085kips / bolt eday slip-critical strength tUcCag shear strength dUcenH slip-critical strength lub. eyIgnwgkM Nt;cMnYnb‘ULúgedayQrelI slip-critical strength ehIyRtYtBinitü bearing bnÞab;BIeRCIserIsGgát; ¬edaysar bearing strength minGackMNt;)an Tal;EteKsÁal;kMras;Ggát;sin¦. dUcenH cMnYnb‘ULúg = load per bolt = 7.085 = 6.3bolts total load 44.8 dUcenHeKRtUvkarb‘ULúgy:agtic 7 RKab;. RbsinebIeKeRbIBIrCYr eKRtUvbEnßmb‘ULúgmYyRKab;edIm,IrkSaPaB sIuemRTI. rUbTI 7>21 bgðajBIkartMerobb‘ULúgEdlmanCaeRcInTMrg;. kartMerobb‘ULúgTaMgenHeKGaceRbI )anTaMgGs; EtRbEvgénkartP¢ab;GacRtUv)ankat;bnßyedayeRbITMhMb‘ULúgFM nigcMnYntic. sakl,gb‘ULúgEdlmanGgát;p©it 7 / 8in. . Nominal bolt area KW π (7 / 8)2 Ab = = 0.6013in.2 4 Shear strength KW φRn = 0.75(48)Ab = 0.75(48)(0.6013) = 21.65kips / bolt ¬edaysnμt;faeFμjsßitenAkñúgbøg;kat;¦ 260 tMNsamBaØ
  • 32. T.chhay kMlaMgTajGb,brmasMrab;b‘ULúg A325 Ggát;p©it 7 / 8in. KW Tm = 39kips dUcenH slip-critical strength KW φRstr = φ (1.13μTm N b N s ) = 1.0(1.13)(0.33)(39)(1)(1) = 14.54kips / bolt ¬lub¦ eKRtUvkarb‘ULúgEdlmanGgát;p©it 7 / 8in. cMnYn 44.8 = 3.1bolts 14.54 dUcenHeyIgeRbIb‘ULúg A325 EdlmanGgát;p©it 7 / 8in. cMnYn 4 RKab;. BI AISC J3.3, KMlatGb,brmaKW ⎛7⎞ ⎛7⎞ s = 2.667 d = 2.667⎜ ⎟ = 2.33in. ¬b¤sMrab;karniym/ 3d = 3⎜ ⎟ = 2.62in. ¦ ⎝8⎠ ⎝8⎠ BI AISC Table J3.4, cMgayeTARCugEKmKW Le = 1.5in. ¬edaysnμt; sheared edges¦ edaysakl,gkartMerobdUcbgðajenAkñúgrUbTI 7>22 eRCIserIsGgát;rgkarTaj. Gross area EdlRtUv karKW Pu 44.8 Ag ≥ = = 0.996in.2 0.9 Fy 0.9(50) Effective net area EdlRtUvkarKW Pu 44.8 Ae ≥ = = 0.9190in.2 0.75Fy 0.75(36) edaysar effective net area KW Ae = UAn / net area EdlRtUvkarKW requiredAe An = U BIkartMerobb‘ULúgEdlbgðajenAkñúgrUbTI 7>22/ CamYynwgb‘ULúgeRcInCagBIrkñúgTisénkMlaMgEdlGnuvtþ tMélmFümrbs; U BI Commentary to the AISC Specification KW 0.85 . ¬enAeBlEdleKeRCIserIs Ggát;rYcehIy eKGackMNt;tMél U CamYynwg AISC Equation B3-2¦. dUcenH 261 tMNsamBaØ
  • 33. T.chhay 0.9190 An ≥ = 1.08in.2 0.85 cMNaMfa net area EdlRtUvkarKWFMCag gross area EdlRtUvkar. kaMniclPaBGb,brmaEdlRtUvkarKW L 13(12) rmin = = = 0.52in. 300 300 sakl,g L3 12 × 2 12 × 14 Ag = 1.44in.2 > 0.996in.2 (OK) rmin = rz = 0.544in. > 0.52in. (OK) sMrab;karKNna net area, eRbIGgát;p©itrn§ 7 8 + 18 = 1.0in. ⎛1⎞ An = Ag − Ahole = 1.44 − 1.0⎜ ⎟ = 1.190in.2 > 1.08in.2 (OK) ⎝4⎠ KNna U CamYynwg AISC Equation B3-2: x U =1− ≤ 0.9 L 0.785 = 1− = 0.913 9 edaysartMélenHFMCag 0.9 / dUcenHeRbI U = 0.9 . Effective net area KW Ae = UAn = 0.9(1.190) = 1.071in.2 > 0.9190in.2 (OK) RtYtBinitü bearing strength. cMgayeTARCugEKmsMrab;EdkEkgesμInwgcMgayeTARCugEKmsMrab; gusset plate ehIyedaysarEdkEkgmankMras;esþIgCag gusset plate dUcenHeyIgeRbIEdkEkgEdlmankMras; 1 / 4in. sMrab;KNna bearing strength. sMrab;karKNna bearing strength, eyIgeRbIGgát;p©itRbehag 1 7 1 15 h=d+ = + = in. 16 8 16 16 sMrab;RbehagEdlenAEk,RCugEKmGgát;CageK h 15 / 16 Lc = Lc − = 1.5 − = 1.031in. 2 2 262 tMNsamBaØ
  • 34. T.chhay 2d = 2(7 / 8) = 1.75in. edaysar Lc < 2d / bearing strength KW ⎛1⎞ φRc = φ (1.2 Lc tFu ) = 0.75(1.2)(1.031)⎜ ⎟(65) = 15.08kips / bolt ⎝4⎠ sMrab;Rbehagd¾éTeTot 15 Lc = s − h = 3 − = 2.062in. > 2d 16 ⎛ 7 ⎞⎛ 1 ⎞ dUcenH φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(65) = 25.59kips / bolt ⎝ 8 ⎠⎝ 4 ⎠ Bearing strength srubsMrab;kartP¢ab;KW φRn = 15.08 + 3(25.59) = 91.9kips > Pu = 44.8kips (OK) RtYtBinitü block shear. CamYynwgb‘ULúgEdlP¢ab;enAelIeCIgEvgCamYynwgcMgayKMlat ¬emIlCMBUk III/ rUbTI 3>22¦ failure block RtUv)anbgðajenAkñúgrUbTI 7>23. Shear area KW Agv = 1 (1.5 + 9) = 2.625in.2 4 Anv = [1.5 + 9 − 3.5(1.0)] = 1.750in.2 1 4 ¬Ggát;p©itRbehagmancMnYn 3.5 ¦ Tension area KW Agt = 1 (1.5) = 0.3750in.2 4 Ant = [1.5 − 0.5(1.0)] = 0.25in.2 1 4 ¬Ggát;p©itRbehagmancMnYn 0.5 ¦ AISC Equation J4-3a eGay [ φRn = φ 0.6 F y Agv + Fu Ant ] = 0.75[0.6(50 )(2.625) + 65(0.25)] = 0.75(78.75 + 16.25) = 71.2kips 263 tMNsamBaØ
  • 35. T.chhay AISC Equation J4-3b eGay [ φRn = φ 0.6 Fu Anv + Fy Agt ] = 0.75[0.6(65)(1.75) + 50(0.375)] = 0.75(68.25 + 18.75) = 65.2kips smIkar J4-3bmantY fracture FMCag dUcenHsmIkarenHlub. dUcenH block shear strength KW φRn = 65.2kips > Pu = 44.8kips (OK) cMeLIy³ eRbI L3 1 2 × 2 12 × 1 4 CamYynwgkartP¢ab;enAelIeCIgEvg. eRbIb‘ULúg A325 Ggát;p©it 7 8 in. dUcbgðajenAkñúgrUbTI 7>24. 7>8> b‘ULúgersIusþg;x<s;rgkarTaj High-Strength Bolts in Tension enAeBlEdlkMlaMgTajEdlGnuvtþelIb‘ULúgedayKμankMlaMgTajedIm (initial tension) kMlaMg TajenAkñúgb‘ULúgesμInwgkMlaMgEdlGnuvtþ. b:uEnþ RbsinebIb‘ULúgrgeRbkugRtaMg Epñkd¾FMrbs;kMlaMgEdl GnuvtþRtUv)aneRbIedIm,Ibn§ÚrkMlaMgsgát; b¤kMlaMgrwt (clamping force) enAelIEpñkEdlRtUvtP¢ab; dUcEdl kMNt;eday Kulak, Fisher, nig Struik (1987) ehIyRtUv)anbkRsayenATIenH. rUbTI 7>25 bgðajBI tMNBüÜr (hanger connection) EdlpSMeLIgeday structural tee shape EdlRtUv)ancab;b‘ULúgeTAnwg søabxageRkamrbs; W-shape nigrgnUvkMlaMgTaj. b‘ULúgeTal nwgcMENkénEpñkEdlRtUvtP¢ab; RtUv)ansikSamun nigeRkayeBldak;bnÞúk. 264 tMNsamBaØ
  • 36. T.chhay düaRkamGgÁesrIrbs;kartP¢ab;muneBldak;bnÞúkRtUv)anbgðajenAkñúgrUbTI 7>26 a. ral;kMlaMg TaMgGs;CakMlaMgkñúg. edIm,IPaBgayRsYl kMlaMgTaMgGs;RtUv)ansnμt;sIuemRTIeFobGkS½rbs;b‘ULúg ehIycMNakp©itminRtUv)anKit. Rb sinebIeKBicarNaEpñkEdlRtUvtP¢ab;dac;edayELk kMlaMgrYmmankM laMgTajrbs;b‘ULúg To nigkMlaMgrwt Ekg (normal clamping force) N o EdlbgðajenATIenHRtUv)an BRgayesμI. edIm,IeGaymanlMnwg eKRtUvkar To = N o . enAeBlEdleKGnuvtþkMlaMgxageRkA kMlaMg enAelIkartP¢ab;RtUv)anbgðajenAkñúgrUbTI 7>26 b Edl F tMNageGaykMlaMgTajsrubEdlGnuvtþ mkelIb‘ULúgmYy. rUbTI 7>26 c bgðajkMlaMgEdlmanGMeBIelIdüaRkamGgÁesrIrbs;Epñkénsøabrbs; structural tee nigEpñkEdlRtUvKñarbs;b‘ULúg. bUkkMlaMgtamTisGkS½b‘ULúg eyIgTTYl)an T =F+N kMlaMg F nwgbegáInkMlaMgTajrbs;b‘ULúg ehIyeFVIeGayvalUt)an δ b . kMlaMgsgát;enAkñúg søabrbs; structurel atee nwgRtUv)ankat;bnßy CalT§plvamanbMlas;TI δ fl EdlmanTisdUc δ b . TMnak;TMngrvagkMlaMgGnuvtþn_ nigbMErbMrYlkMlaMgTajrbs;b‘ULúgGacRtUv)ankMNt;dUcxageRkam³ BI elementary mechanics of materials, kMhUcRTg;RTaytamGkS½rbs;bnÞúktamGkS½Edl GnuvtþelIGgát;KW³ 265 tMNsamBaØ
  • 37. T.chhay δ= PL AE ¬&>$¦ Edl P=kMlaMgtamGkS½ L = RbEvgedIm A = RkLaépÞmuxkat; E = m:UDuleGLasÞic BIsmIkar &>$ eyIgGacTajrkkMlaMg AEδ P= L ¬&>%¦ dUcenHbMErbMrYlkMlaMgenAkñúgb‘ULúgEdlRtUvKñaeTAnwgkMhUcRTg;RTay δ b KW A E δ ΔT = b b b Lb ¬&>^¦ BIsmIkar &>% eKTTYl)anbMErbMrYlkMlaMg N A fl E fl δ fl ΔN = L fl ¬&>&¦ Edl L fl CakMras;rbs;søab. RbsinEpñkEdlRtUvP¢ab; ¬søabTaMgBIr¦ enAb:HKña kMhUcRTg;RTayrbs; b‘ULúg δ b nigkMhUcRTg;RTaysøab δ fl nwgesμIKña. edaysar E fl esÞIresμInwg Eb (Bickford, 1981), ehIy A fl FMCag Ab A fl E fl δ fl A E δ >> b b b L fl Lb dUcenH ΔN >> ΔT pleFob ΔN elI ΔT sßitenAcenøaHBI 0.05 eTA 0.1 (Kulak, Fisher, nig Struik, 1987). dUcenH ΔT minRtUvFMCag 0.1ΔN EdlbgðajfakMlaMgEdlGnuvtþPaKeRcInKWbn§ÚrkMlaMgsgát;rbs;EpñkEdlRtUvtP¢ab;. KNnakMlaMgEdlRtUvkaredIm,IeFVIeGayEpñkEdlRtUvP¢ab;XøatecjBIKña emIlrUbTI 7>27. enAeBlEdl EpñkTaMgBIrXøatecjBIKña T =F b¤ To + ΔT = F ¬&>*¦ enAeBlEdlCitdl;cMnucEdlRtUvXøatKña sac;lUtrbs;b‘ULúg nigKMlatrbs;søabKWesμIKña A E A E ΔT = b b δ b = b b δ fl L L ¬&>(¦ b b 266 tMNsamBaØ
  • 38. T.chhay Edl δ fl CakMhUcRTg;RTayEdlRtUvKñanwgkMlaMgsgát;edIm N o . BIsmIkar &>$ N o L fl δ fl = A fl E fl CMnYsvaeTAkñúgsmIkar &>( eyIg)an ⎛ A E ⎞⎛ N o L fl ⎞ ⎛ Ab Eb / Lb ⎞ ⎛ ⎟ N o = ⎜ Ab Eb / Lb ⎞ ΔT = ⎜ b b ⎟⎜ ⎜ L ⎟⎜ A E ⎟=⎜ ⎟To ≈ 0.1To ⎝ b ⎠⎝ fl fl ⎟ ⎜ A fl E fl / L fl ⎟ ⎜ A fl E fl / L fl ⎟ ⎠ ⎝ ⎠ ⎝ ⎠ BIsmIkar &>* To + 0.1To = F b¤ F = 1.1To dUcenH enAxN³eBlEdlcab;epþImXøat kMlaMgTajenAkñúgb‘ULúgFMCagkMlaMgTajedImEdlmanenAeBl tMeLIgb‘ULúgRbEhl 10% . b:uEnþ enAeBlEdlEpñkEdlRtUvP¢ab;Xøatecj kMlaMgxageRkAEdlekIneLIg nwgRtUv)anTb;edaykMlaMgEdlekIneLIgRtUvKñaenAkñúgb‘ULúg. RbsinebIeKsnμt;fakMlaMgTajenAkñúgb‘U LúgRtUv)andak;eGayesμIkMlaMgxageRkA ¬RbsinebIKμankMlaMgTajedIm¦ ehIykartP¢ab;rgnUvbnÞúkrhUt dl;EpñkEdltP¢ab;XøatecjBIKña enaHkMlaMgTajenAkñúgb‘ULúgRtUv)anKNnaticCag 10% . sMrab;krNI enH b‘ULúgersIusþg;x<s;RtUvrgnUveRbkugRtaMgtamtMélEdlmanenAkñúg AISC Table J3.1 eTaHCakartP¢ab; enHCa slip-critical b¤minEmnk¾eday. CarYm eKRtUvKNnakMlaMgTajenAkñúgb‘UøLúgedayKitbBa©ÚlTaMgkM laMgTajedIm. Prying Action sMrab;kartP¢ab;PaKeRcInEdleRKOgP¢ab;rgkMlaMgTaj kMhUcRTg;RTayrbs;EpñkEdlRtUvP¢ab; GacbegáInkMlaMgTajEdlGnuvtþeTAelIeRKOgP¢ab;. RbePT hanger connection Edl)anerobrab;xag elICaRbePTkartP¢ab;EdlmanlkçN³eFVIkardUcEdl)anerobrab;. kMlaMgTajbEnßmRtUv)aneKehAfa prying force ehIyRtUv)anbgðajenAkñúgrUbTI 7>28 EdlrUbenHbgðajBIkMlaMgenAelIGgÁesrIrbs; hanger. muneBlEdlbnÞúkxageRkAGnuvtþ kMlaMgsgát;Ekg (normal compressive force) N o RbmUl 267 tMNsamBaØ
  • 39. T.chhay pþúMenAelIGgS½rbs;b‘ULúg. enAeBlEdlbnÞúkGnuvtþ RbsinebIsøab flexible RKb;RKan; enaHvanwgxUcRTg; RTaydUcEdlbgðaj ehIykMlaMgsgát;nwgrMkileTAxagcugrbs;søab. karBRgaykMlaMgeLIgvijenH nwg EkERbTMnak;TMngrvagbnÞúkTaMgGs; ehIykMlaMgTajrbs;b‘ULúgnwgekIneLIg. b:uEnþ RbsinebIEpñkEdl RtUvP¢ab;manlkçN³rwgRKb;RKan; vanwgminmankarpøas;bþÚrkMlaMgeT ehIyk¾minman prying action Edr. eKTTYl)antMélGtibrmarbs; prying force enAeBlEdlkac;RCugrbs;søabenAEtb:HCamYynwgEpñk EdlRtUvP¢ab;d¾éTeTot. enAkñúgkartP¢ab;RbePTenH bending EdlekIteLIgeday prying force EtgEtmanlkçN³lub kñúgkarKNnaEpñkEdlRtUvP¢ab;. AISC J3.6 tMrUveGayKitbBa©Úl prying force eTAkñúgkarKNnakMlaMg TajEdlGnuvtþelIeRKOgP¢ab;. viFIsaRsþsMrab;karKNna prying force EdlQrelI Guide to design Criteria for Bolted and Riveted Joints (Kulak, Fisher, nig Strick, 1987) manenAkñúg Manual in Part 11, “Connec- tions for Tension and Compression” (Volume II). krNICak;lak;EdlRtUv)anRtYtBinitüCakart P¢ab; structural tee shape ehIyEdkEkgKUrEdlxñgTl;xñg ( a pair of back-to-back angle) nwg RtUv)anKitkñúgpøÚvdUcKñaEdr. viFIEdlbgðajenATIenHmanTMrg;xusKñabnþicEtpþl;nUvlT§pldUcKña. viFIEdleRbIKWQrelIKMrUEdlbgðajenAkñúgrUbTi 7>29. RKb;kMlaMgTaMgGs;KWsMrab;EteRKOgP¢ab; mYy. dUcenH T CakMlaMgTajemKuNxageRkAEdlGnuvtþeTAelIEtb‘ULúgmYy/ Q Ca prying force Edl 268 tMNsamBaØ
  • 40. T.chhay RtUvKñanwgb‘ULúgmYy nig Bc CakMlaMgb‘ULúgsrub. Prying force )anrMkileTAcugrbs;søab ehIyvaman tMélGtibrma. smIkarxageRkamRtUv)anbMEbkBIsmIkarlMnwgrbs;GgÁesrIkñúgrUbTI 7>29. BIplbUkm:Um:g;Rtg; muxkat; B-B enAkñúgrUbTI 7>29 b Tb − M a − a = Qa ¬&>!0¦ BIrUbTI 7>29 c M b − b = Qa ¬&>!!¦ cugeRkay/ kMlaMglMnwgRtUvkarKW Bc = T + Q ¬&>!@¦ smIkarlMnwgTaMgbIenHGacbBa©ÚlKñaedIm,ITTYl)ansmIkareTalsMrab;kMlaMgb‘ULúgsrub EdlrYmbBa©Úl TaMgT§iBl prying force. dMbUgeyIgkMNt;Gefr α CapleFobrvagm:Um:g;kñúgmYyÉktþaRbEvgtam beNþayGkS½b‘ULúgelIm:Um:g;kñúgmYyÉktþaRbEvgenARtg;épÞKl;. sMrab;GkS½b‘ULúg/ RbEvgCa net length, dUcenH 269 tMNsamBaØ
  • 41. T.chhay M b − b / ( p − d ') M b − b ⎛ ⎞ M b −b α= = ⎜ 1 ⎜ 1 − d ' / p ⎟ = δM ⎟ ¬&>!#¦ M a−a / p M a−a ⎝ ⎠ a−a Edl p= RbEvgrgsMBaFrbs;søabsMrab;b‘ULúgmYy ¬emIlrUbTI 7>29 a¦ d ' = Ggát;p©itrbs;Rbehagb‘ULúg d' net area at bolt line δ = 1− = p gross area at web face ( M a − a = design strength at a − a = φb M p = φb pt 2 F y / 4 f ) eyIgGacbBa©ÚlsmIkarlMnwgbI &>!0-&>!@ edIm,ITTYl)ankMlaMgb‘ULúgsrub/ Bc : ⎡ δα b ⎤ Bc = T ⎢1 + ⎥ ¬&>!$¦ ⎣ (1 + δα ) a ⎦ CamYynwg bnÞúkEdlTTYl)anBIsmIkar &>!$ eyIgnwgTTYl)ankMhUcRTg;RTayFMEdleFVIeGaykugRtaMg TajpÁÜbenAkñúgb‘ULúgminRtYtsIuKñaCamYyGkS½rbs;b‘ULúg. dUcenH kMlaMgkñúgb‘ULúgEdleGayedaysmI- kar &>!$ minRtUvKñaCamYynwglT§plBiesaFn_. edIm,ITTYl)anlT§plEdlcg;)an luHRtaEtkMlaMg Bc rMkileTAkan;Kl;rbs; tee edaybrimaN d / 2 Edl d CaGgát;p©itb‘ULúg. dUcenHtMél b nig a RtUv)an EkERbCa b' = b − d 2 nig a' = a + d 2 ¬edIm,IeGayRtUvnwglT§plBiesaFn_kan;Etl¥ tMélrbs; a minRtUvFMCag 1.25b eT¦ CamYynwgkarpøas;bþÚrenHeyIgGacsresrsmIkar &>!$ Ca ⎡ δα b' ⎤ Bc = T ⎢1 + ⎥ ¬&>!%¦ ⎣ (1 + δα ) a ' ⎦ eyIgGackMNt; α BIsmIkar &>!% edayeGaykMlaMgenAkñúgb‘ULúg Bc esμIeTAnwg design tensil strength EdleyIgsMKal;Ca B . lT§plEdlTTYl)anKW α= [(B / T ) − 1](a' / b') ¬&>!^¦ δ { − [(B / T ) − 1](a' / b')} 1 eKGacmansßanPaBkMNt;BIr³ tensil failure rbs;b‘ULúg nig bending failure rbs; tee. eK snμt;fa failure rbs; tee ekItmanenAeBlEdlsnøak;)aøsÞic (plastic hinges) ekItmanRtg;muxkat; a-a, Rtg;Kl;rbs; tee, nigenARtg;muxkat; b-b. edayehtuenHvanwgbegáItCa beam mechanism. m:Um:g;énTI taMgTaMgenHnwgesμInwg M p EdlCalT§PaBm:Um:g;)aøsÞicénRbEvgrbs;RbEvgrgsMBaFrbs;søabsMrab;b‘U LúgmYy. RbsinebItMéldac;xatrbs; α EdlTTYl)anBIsmIkar &>!^ tUcCag 1.0 enaHm:Um:g;enARtg; 270 tMNsamBaØ
  • 42. T.chhay GkS½b‘ULúgtUcCagm:Um:g;enARtg;Kl; tee Edlvabgðajfa beam mechanism minRtUv)anbegáIteT ehIy sßanPaBkMNt;RtUv)ankMNt;Ca tensile failure rbs;b‘ULúg. kMlaMgb‘ULúg Bc kñúgkrNIenH nwgesμInwg design strength B . RbsinebItMéldac;xatrbs; α ≥ 1.0 enaH plastc hinges nwgekItmanenARtg; a-a nig b-b ehIysßanPaBkMNt;KW flexural failure rbs;søabrbs; tee. edaysarEtm:Um:g;Rtg;kEnøgTaMg BIrenHRtUv)ankMNt;Rtwmm:Um:g;)aøsÞic M p enaH α KYrEtUv)ankMNt;esμInwg 1.0 . smIkarlMnwgbI &>!0-&>!@ k¾GacRtUv)anrYmbBa©ÚlKñakøayCasmIkarEtmYysMrab;kMNt;kMras; søab t f . BIsmIkar &>!0 nig &>!! eyIgGacsresr Tb'− M a − a = M b − b Edl b' RtUv)anCMnYseGay b . BIsmIkar &>!# Tb'− M a − a = δαM a − a ¬&>!&¦ eGay M a − a esμInwg design strength eKTTYl)an pt 2 Fy f M a − a = φb M p = φ b 4 Edl t f CakMras;søabEdlRtUvkar. CMnYs M a − a eTAkñúgsmIkar &>!& eyIgTTYl)an 4Tb' tf = φb pF y (1 + δα ) Edl φb = 0.90 tf = 4.444Tb' pF y (1 + δα ) ¬&>!*¦ karKNnakartP¢ab;EdlrgnUv prying action CatMeNIrkarKNna trial-and-error. enAeBl eRCIserIsTMhM nigcMnYnrbs;b‘ULúg eyIgRtUvEtKiteRtomTuksMrab; prying force. kareRCIserIskMras; tee mankarLM)akCagedaysarvaTak;TgeTAnwgkareRCIserIsb‘ULúg nigTMhM tee. eKGaceRbI Preliminary Hanger Connection Selection Table EdlmanenAkñúg Part 11 of the Manual sMrab;CYysMrYldl; kareRCIserIsrUbragsakl,g. enAeBlEdleKeRCIserIsmuxkat;sakl,g/ dwgcMnYnb‘ULúg nigkartMerob b‘ULúgrYcehIy eKGaceRbIsmIkar &>!% nig &>!* edIm,IepÞógpÞat;. RbsinebIkMras;søabCak;EsþgxusBItMélEdlRtUvkar tMélCak;Esþgrbs; α nig Bc k¾GacxusBIGVI EdleK)anKNnaknøgmkEdr. RbsinebIeKRtUvkMlaMgb‘ULúgCak;Esþg EdlrYmbBa©ÚlTaMg prying force Q enaHeKRtUvkMNt; α eLIgvijdUcxageRkam. 271 tMNsamBaØ
  • 43. T.chhay M b − b = Tb'− M a − a BIsmIkar &>!#/ M b −b α= δM a − a Tb'− M a − a Tb' / M a − a − 1 = = δM a − a δ edayeGay M a − a esμIwTAnwg design moment eK)an ⎛ pt 2 F y ⎞ ⎜ f ⎟ M a − a = φb M p = 0.90⎜ ⎟ ⎜ 4 ⎟ ⎝ ⎠ Tb' −1 0.90 pt 2 Fy / 4 ⎛ ⎞ 1 ⎜ 4.444Tb' ⎟ enaH α= f δ = ⎜ δ ⎜ pt 2 Fy − 1⎟ ¬&>!(¦ ⎟ ⎝ f ⎠ eKGacrkkMlaMgb‘ULúgsrubBIsmIkar &>!% ]TahrN_ 7>9³ WT10.5 × 66 RbEvg 8in. RtUv)anP¢ab;eTAnwg)atsøabrbs;Fñwm dUcbgðajenAkñúgrUbTI 7>30. Hanger enHrgnUvbnÞúkemKuN 90kips . kMNt;cMnYnb‘ULúg A325 Ggát;p©it 7 / 8in. EdlRtUvkar nigepÞógpÞat;nUvPaBRKb;RKan;rbs; tee. EdkEdleRbICaRbePTEdk A36 . 272 tMNsamBaØ
  • 44. T.chhay dMeNaHRsay³ RkLaépÞb‘ULúgKW π (7 / 8)2 Ab = = 0.6013in.2 4 ehIy design strength rbs;b‘ULúgmYyKW B = φRn = φFt Ab = 0.75(90 )(0.6013) = 40.59kips cMnYnb‘ULúgEdlRtUvkarKW 90 / 40.59 = 2.22 . cMnYnb‘ULúgGb,brmaEdlRtUvkarKW 4 edIm,IrkSaPaBsIuem- RTI. BITMhMEdlbgðajenAkñúgrUbTI 7>30 b= (5.5 − 0.650) = 2.425in. 2 a= (12.44 − 5.5) = 3.470in. 2 1.25b = 1.25(2.425) = 3.031in. < 3.470in. yk a = 3.031in. d 7/8 b' = b − = 2.425 − = 1.988in. 2 2 d 7/8 a' = a + = 3.031 + = 3.468in. 2 2 bnÞúkxageRkAemKuNkñúgmYyb‘ULúg edayKitTaMg prying force KW T = 90 / 4 = 22.5kips . KNna δ ³ 1 7 1 d'= d + = + = 1in. 8 8 8 8 p= = 4in. 2 d' 1 δ = 1 − = 1 − = 0.75 p 4 KNna α ³ B 40.59 −1 = − 1 = 0.8040 T 22.5 a' 3.468 = = 1.744 b' 1.988 BIsmIkar &>!^/ α= [(B / T ) − 1](a' / b') = 0.8040(1.744) = −4.65 δ { − [(B / T ) − 1](a' / b')} 0.75[1 − 0.8040(1.744)] 1 edaysar α > 1.0 / yk α = 1.0 . BIsmIkar &>!* 273 tMNsamBaØ
  • 45. T.chhay 4.444Tb' 4.444(22.5)(1.988) tf = = pF y (1 + δα ) 4(36)(1 + 0.75) = 0.888in. < 1.035in. (OK) TaMgcMnYnb‘ULúgEdleRCIserIs nwgkMras;søabKWRKb;RKan; ehIyminRtUvkarkarKNnateTAmuxeToteT. b:uEnþ edIm,IbgðajBIviFIsaRsþKNna eyIgKNna prying force edayeRbIsmIkar &>!( nig &>!%. BI smIkar &>!(/ ⎛ ⎞ 1 ⎜ 4.444Tb' ⎟ 1 ⎡ 4.444(22.5)(1.988) ⎤ α= ⎜ − 1⎟ = ⎢ − 1⎥ = 0.3848 δ ⎜ pt 2 Fy ⎟ 0.75 ⎢ 4(1.035)2 (36 ) ⎣ ⎥ ⎦ ⎝ f ⎠ BIsmIkar &>!%/ kMlaMgb‘ULúgsrub edayKitTaMg prying force KW ⎡ δα b' ⎤ Bc = T ⎢1 + ⎥ ⎣ (1 + δα ) a ' ⎦ ⎡ 0.75(0.3848) ⎛ 1.988 ⎞⎤ = 22.5⎢1 + ⎜ ⎟⎥ = 25.39kips ⎣ 1 + 0.75(0.3848) ⎝ 3.468 ⎠⎦ Prying force KW Q = Bc − T = 25.39 − 22.5 = 2.89kips cMeLIy³ WT10.5 × 66 RKb;RKan;. eRbIb‘ULúg A325 Ggát;p©it 7 / 8in. RbsinebIkMras;søabminRKb;RKan; eKGacsakl,g tee shape EdlmanTMhMFMCag b¤k¾eRbIcMnYn b‘ULúgbEnßmedIm,Ikat;bnßy T EdlCakMlaMgxageRkAkñúgmYyb‘ULúg. Prying force enAkñúg]TahrN_ 7>9 bEnßmRbEhl 13% eTAelIkMlaMgxageRkA. karecalnUvkMlaMgTajbEnßmenHnwgpþl;nUvplvi)ak y:agF¶n;F¶r. 7>9> kMlaMgpÁÜbrvagkMlaMgTaj nigkMlaMgTajenAkñúgb‘ULúg Combined Shear and Tension in Fasteners enAkñúgsßanPaBCaeRcInkartP¢ab;EtgRbQmnwgkMlaMgkat; nigkMlaMgTaj. tMNEdlTTYlbnÞúk cMNakp©itRtUv)anerobrab;enAkñúgCMBUkTI 8. b:uEnþ sMrab;tMNsamBaØxøH eRKOgP¢ab;sßitkñúgsßanPaBkMlaMg pÁÜb. rUbTI 7>31 bgðajBIkMNat; structural tee EdlP¢ab;eTAnwgsøabrbs;ssrkñúgeKalbMNgedIm,I P¢ab;Ggát;BRgwg (bracing member). Ggát;BRgwgenHRtg;)andak;tMrg;y:agNaedIm,IeGayExSskmμrbs; kMlaMgkat;tamTIRbCMuTMgn;rbs;kartP¢ab;. bgÁúMkMlaMgbBaÄrnwgeFVIeGayeRKOgP¢ab;rgkugRtaMgkat; ehIy 274 tMNsamBaØ
  • 46. T.chhay bgÁúMkMlaMgedknwgbegáItkMlaMgTaj ¬EdlGacmankarpSMCamYynwg prying force¦. edaysarExSskmμ rbs;kMlaMgeFVIGMeBIkat;tamTIRbCMuTMgn;rbs;tMN eRKOgP¢ab;nImYy²RtUv)ansnμt;faTTYlkugRtaMgedaycM ENkesμI²Kña. kñúgkrNIbgÁúMkMlaMgepSgeTot eKGaceRbIviFIrUbmnþGnþrkmμ (interaction formula approach) . ersIusþg;kMlaMgkat; nigersIusþg;kMlaMgTajsMrab;b‘ULúgRbePT bearing KWQrelIlT§plénkarBiesaFn_ nwgRtUv)anykBI elliptical interaction curve EdlbgðajenAkñúgrUbTI 7>32. smIkarrbs;ExSenHKW 2 2 ⎡ Pu ⎤ ⎡ Vu ⎤ ⎢ ⎥ +⎢ ⎥ = 1.0 ⎣ (φRn )t ⎥ ⎢ ⎦ ⎢ (φRn )v ⎥ ⎣ ⎦ Edl Pu = kMlaMgTajemKuNenAelIb‘ULúg (φRn )t = design strength rbs;b‘ULúgrgkarTaj Vu = kMlaMgkat;TTwgemKuNenAelIb‘ULúg (φRn )v = design strength rbs;b‘ULúgrgkarkat; bnSMkMlaMgkat; nigkMlaMgTajEdlGacTTYlyk)anKWvaCYbKñaRtg;kEnøgEdlsßitenABIeRkamExS ekag. enHCatMrUvkarrbs; RCSC Specification Edl 2 2 ⎡ Pu ⎤ ⎡ Vu ⎤ ⎢ ⎥ +⎢ ⎥ ≤ 1 .0 (RCSC Equation LRFD 4.2) ⎢ (φRn )t ⎥ ⎣ ⎦ ⎢ (φRn )v ⎥ ⎣ ⎦ 275 tMNsamBaØ
  • 47. T.chhay sMrab; slip-critical connection Edlb‘ULúgrgnUvkMlaMgkat; nigkMlaMgTaj T§iBlrbs;kMlaMg TajKWbn§Úrbnßy clamping force EdleFVIeGaymankarkat;bnßykMlaMgkkit. AISC Specification kat;bnßy slip-critical shear strength sMrab;krNIenH. BI AISC Appendix J, slip-critical shear strength RtUv)anKuNedayemKuN ⎡ Tu ⎤ ⎢1 − ⎥ (AISC Equation A-J3-2) ⎣ 1.13Tm N b ⎦ Edl kMlaMgTajemKuNenAelItMN Tu = Tm = kMlaMgTajb‘ULúgedImEdl)anBI AISC Table J3.1 N b = cMnYnb‘ULúgenAkñúgtMN cMNaMfa RCSC Equation LRFD 4.2 Edl)anbgðajenATIenHRtUv)anGnuvtþeTAelIb‘ULúgeTal Et AISC Equation A-J3-2 Edl)anbgðajenATIenHGnuvtþeTAelItMNTaMgmUl. smIkarnImYy²Gac RtUv)anEkERbedIm,IGnuvtþsMrab;viFIepSgeTot. ]TahrN_ 7>10³ eKeRbI WT10.5 × 31 Ca bracket edIm,IbBa¢Ún service load 60kips eTAssr W 14 × 90 dUcEdl)anbgðajenAkñúgrUUbTI 7>31. bnÞúkpSMeLIgedaybnÞúkefr 15kips nigbnÞúkGefr 45kips . eKeRbIb‘ULúg A325 Ggát;p©it 7 / 8in. cMnYn 4 RKab;. TaMgssr nig bracket eFVIBIEdk A36 . snμt;fatMrUvkarKMlat nigcMgayeTARCugEKmTaMgGs;KWRKb;RKan; edayrYmbBa©ÚlTaMgPaBcaM)ac;sMrab;kar eRbIR)as; design strengn GtibrmasMrab; bearing ¬dUcCa φ [2.4dtFu ] ¦ nigkMNt;nUvPaBRKb;RKan;rbs; b‘ULúgsMrab;kartP¢ab;xageRkam³ ¬!¦ bearing –types connection EdlmaneFμjsßitenAkñúgbøg;kat;. ¬@¦ slip-critical connection EdlmaneFμjsßitenAkñúgbøg;kat;. dMeNaHRsay³ bnÞúkemKuNKW 1.2 D + 1.6 L = 1.2(15) + 1.6(45) = 90kips ¬!¦ sMrab; bearing-type connection EdlmaneFμjsßitenAkñúgbøg;kat; kMlaMgkat;TTwgsrubKW 3 (90) = 54kips 5 kMlaMgkat;TTwgsMrab;b‘ULúgmYyKW 54 Vu = = 13.5kips 4 276 tMNsamBaØ
  • 48. T.chhay π (7 / 8) 2 nig Ab = 4 = 0.6013in. 2 (φRn )v = φFv Ab = 0.75(48)(0.6013) = 21.65kips > 13.5kips Bearing strength ¬søabrbs; tee lub¦ KW ⎛7⎞ φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟(0.615)(58) ⎝8⎠ = 56.18kips > 13.5kips (OK) kMlaMgTajsrubKW 4 (90) = 75kips 5 kMlaMgTajsMrab;b‘ULúgmYyKW 72 Pu = = 18kips 4 BI AISC Table J3.2, (φRn )t = φFt Ab = 0.75(90)(0.6013) = 40.59kips > 18kips (OK) BI RCSC Equation LRFD 4.2, 2 2 ⎡ Pu ⎤ ⎡ Vu ⎤ ⎛ 18 ⎞ 2 ⎛ 13.5 ⎞ 2 ⎢ ⎥ +⎢ ⎥ =⎜ ⎟ +⎜ ⎟ = 0.585 < 1.0 (OK) ⎣ (φRn )t ⎥ ⎢ ⎦ ⎣ (φRn )v ⎥ ⎢ ⎦ ⎝ 40.59 ⎠ ⎝ 21.65 ⎠ cMeLIy³ kartP¢ab;manlkçN³RKb;RKan;Ca bearing-type connection. ¬edIm,IkMueGayBi)akyl;kñúgkar bnSMbnÞúkrbs;]TahrN_enH prying action minRtUv)anrYmbBa©ÚleTAkñúgkarviPaKeT¦. ¬@¦ sMrab; slip-critical connection, EdlmaneFμjsßitenAkñúgbøg;kat; BIEpñk ¬!¦ shear, bearing/ and tension strength KWmanlkçN³RKb;RKan;. BI RCSC Equation LRFD 5.3, slip-critical strenght KW φRstr = φ (1.13μTm N b N s ) BI AISC Table J3.1, kMlaMgTajsMrab;b‘ULúg A325 Ggát;p©it 7 / 8in. KW Tm = 39kips RbsinebIeyIgsnμt;épÞb:HCa Class A, slip coefficent KW μ = 0.33 nigsMrab;b‘ULúgbYnRKab; φRstr = φ (1.13μTm N b N s ) = 1.0(1.13)(0.33)(39)(4 )(1) = 58.17kips edaysarvamankMlaMgTajenAelIb‘ULúg/ slip-critcal strength RtUv)ankat;bnßyedayemKuN 277 tMNsamBaØ
  • 49. T.chhay ⎛ Tu ⎞ ⎡ 72 ⎤ ⎜1 − ⎜ 1.13T N ⎟ = ⎢1 − ⎟ ⎥ = 0.5916 ⎝ m b ⎠ ⎣ 1.13(39 )(4 ) ⎦ dUcenHresIusþg;Edl)ankat;bnßyehIyKW φRstr = 0.5916(58.17 ) = 34.4kips < 54kips (N.G.) cMeLIy³ kartP¢ab;minmanlkçN³RKb;RKan;Ca slip-critical connection eT. kartP¢ab;edayb‘ULúgEdlrgnUvkMlaMgkat;TTwg nigkMlaMgTajGacRtUv)anKNnaedaypÞal;. eKGaceRbI RCSC Equation 4.2 edIm,IedaHRsayTMhMb‘ULúgdUcxageRkam³ 2 2 2 2 ⎡ Pu ⎤ ⎡ Vu ⎤ ⎛ Pu ⎞ ⎛ Vu ⎞ ⎢ ⎥ +⎢ ⎥ =⎜ ⎜ φF ∑ A ⎟ +⎜ ⎟ ⎜ φF ∑ A ⎟ ⎟ ⎣ (φRn )t ⎥ ⎢ ⎦ ⎢ (φRn )v ⎥ ⎣ ⎦ ⎝ t b ⎠ ⎝ v b ⎠ 2 2 ⎛P ⎞ 1 ⎛V ⎞ 1 =⎜ u ⎜ ⎟ ⎟ +⎜ u ⎟ 2 ⎜ φF ⎟ ⎝ φFt ⎠ (∑ Ab ) ⎝ v ⎠ (∑ Ab )2 Edl Pu =kMlaMgTajsrubenAelItMN Ft = ultimate tensile stress rbs;b‘ULúg Vu = kMlaMgkat;TTwgsrubenAelItMN Fv = ultimate shear stress rbs;b‘ULúg ∑ Ab = RkLaépÞmuxkat;b‘ULúgsrub CMnYseTAkñúg RCSC Equation LRFD 4.2, eyIg)an 2 2 ⎛ Pu ⎞ 1 ⎛V ⎞ 1 ⎜ ⎜ φF ⎟ ⎟ +⎜ u ⎟ ≤ 1 .0 ⎝ t ⎠ (∑ Ab )2 ⎜ φFv ⎝ ⎟ ⎠ (∑ Ab )2 2 2 ⎛P ⎞ ⎛V ⎞ b¤ ∑ Ab ≥ ⎜ u ⎜ φF ⎟ +⎜ u ⎟ ⎜ φF ⎟ ⎟ ¬&>@0¦ ⎝ t ⎠ ⎝ v ⎠ Edl ∑ Ab CaRkLaépÞmuxkat;b‘ULúgsrub ]TahrN_ 7>11³ tMNEdlrgbnÞúkcMp©itrgnUv service load shear force 50kips nig service tensile force 100kips . bnÞúk CabnÞúkefr nig 75% CabnÞúkGefr. eRKOgP¢ab;rgnUv single shear 25% ehIy baring strength nwgRtUv)anKNnaCamYynwgEpñkEdlRtUvP¢ab;EdlmankMras; 5 / 16in. . snμt;fa KMlat nigcMgayeTARCugEKmTaMgGs;manlkçN³RKb;RKan; nigsnμt;faeKGnuBaØateGayeRbI bearing 278 tMNsamBaØ
  • 50. T.chhay strength Gtibrma φ (2.4dtFu ) . kMNt;cMnYnb‘ULúg A325 Ggát;p©it 3 / 4in. EdlcaM)ac;sMrab;krNIxag eRkam³ ¬!¦ bearing-type connection CamYynwgeFμjsßitenAkñúgbøg;kat; ¬@¦ slip-critical connection CamYynwgeFμjsßitenAkñúgbøg;kat; épÞb:HTaMgGs;man clean mill scale. karKNnaenHmin)anBicarNa prying action sMxan;eT. dMeNaHRsay³ kMlaMgkat;TTwgemKuN = 1.2[0.25(50)] + 1.6[0.75(50)] = 75kips kMlaMgTajemKuN = 1.2[0.25(100)] + 1.6[0.75(100)] = 150kips ¬!¦ sMrab; bearing-type connection CamYynwgeFμjsßitenAkñúgbøg;kat; smIkar &>@0 eGay 2 2 2 ⎛P ⎞ ⎛V ⎞ ⎡ 150 ⎤ ⎡ 75 ⎤ ∑ Ab ≥ ⎜ u ⎜ φF ⎟ +⎜ u ⎟ ⎜ φF ⎟ ⎟ = ⎢ 0.75(90) ⎥ + ⎢ 0.75(48) ⎥ = 3.046in. 2 ⎝ t ⎠ ⎝ v ⎠ ⎣ ⎦ ⎣ ⎦ RkLaépÞrbs;muxkat;eTalKW π (3 / 4 )2 Ab = = 0.4418in.2 4 dUcenHcMnYnb‘ULúgEdlRtUvkarKW ∑ Ab 3.046 = = 6.89 Ab 0.4418 sakl,gb‘ULúg 7 RKab; ehIyRtYtBinitü bearing: φRn = φ (2.4dtFu ) × 7 ⎛ 7 ⎞⎛ 5 ⎞ = 0.75(2.4)⎜ ⎟⎜ ⎟(58)(7 ) = 171kips > 75kips ⎝ 8 ⎠⎝ 16 ⎠ ¬eKminRtUvkarRtYtBinitüKMlat nigcMgayeTARCugEKmsMrab;karKNnacugeRkayeT¦ cMeLIy³ eRbIb‘ULúg 7 RKab;. ¬RbsinebIeKerobb‘ULúgCaBIrCYr enaHeRbIb‘ULúg 8 RKab;edIm,IPaBsIuemRTI¦ ¬@¦ sMrab; slip-critical connection, slip-critical strength EdleGayeday RCSC Equation LRFD RtUv)anKuNedayemKuNkat;bnßyrbs; AISC Equation A-J3-2: ⎛ ⎞ φRstr = φ (1.13μTm N b N s )⎜1 − Tu ⎜ 1.13T N ⎟ ⎟ ¬&>@!¦ ⎝ m b ⎠ BI AISC Table J3.1, sMrab;b‘ULúg A325 Ggát;p©it 3 / 4in. / Tm = 28kips . CMnYs Tm eTAkñúgsmIkar &>@!/ eyIg)an 279 tMNsamBaØ
  • 51. T.chhay ⎛ Tu ⎞ φRstr = φ (1.13μTm N b N s )⎜1 − ⎜ ⎟ ⎟ ⎝ ⎠ 1.13Tm N b ⎡ ⎤ = 1.0(1.13)(0.33)(28)( N b )(1)⎢1 − 150 ⎥ ⎣ 1.13(28)N b ⎦ ⎛ 4.741 ⎞ = 10.44⎜1 − ⎜ ⎟ = 10.44(N b − 4.741) ⎝ Nb ⎟ ⎠ dak;lT§plEdlTTYl)anenH nigkMlaMgkat;TTwgEdlGnuvtþeGayesμIKña enaHeyIgGacrkcMnYnb‘ULúgEdl RtUvkaredIm,IkarBar slip³ 10.44( N b − 4.741) = 75kips N b = 11.9 edaysarb‘ULúg 7 RKab;RKb;RKan;sMrab; shear, bearing nig tension dUcenHeKminRtUvkarRtYt BinitüsßanPaBkMNt;TaMgenHeT. cMelIy³ eRbIb‘ULúg A325 Ggát;p©it 3 / 4in. 7>10> tMNpSar Welded connections karpSarCadMeNIrkareFVIeGayEpñkEdlRtUvP¢ab;Cab;Kña. ]TahrN_ Ggát;rgkarTajEdlman lap joint dUcbgðajenAkñúgrUbTI 7>33 a GacRtUv)aneFVIeLIgedaykarpSartamcugTaMgsgçagrbs;EpñkEdl RtUvP¢ab;. kMBs;d¾tUcbMputrbs;sMPar³RtUv)anrlay eRkayBITukeGayRtCak; eRKOgbgÁúMEdk nig weld metal eFVIkardUcEpñkEdlCab;KñaenAkEnøgtMN. EdkbEnßmRtUv)andak;BI special electrode EdlCaEpñk rbs;crnþGKÁisnIeTAelIEpñkEdlRtUvP¢ab; b¤ base metal. enAkñúgdMeNIrkar shielded metal arc welding (SMAW) EdlbgðajenAkñúgrUbTI 7>34 FñÚ GKÁisnI (current arc) kat;tamcenøaHrvag electrode nig base metal edayrMlayEpñkEdlRtUvP¢ab; nigdak;Epñkrbs;eGLicRtUteTAkñúg base metal Edlrlay. Specail coating enAelI electrode begáIt protective gaseous shield edaykarBar molten weld metal BIGuksIutkmμmunnwgvarwg. eKrMkil 280 tMNsamBaØ
  • 52. T.chhay electrode kat;tamtMN ehIy weld bead RtUv)andak; TMhMrbs;vaGaRsy½nwgGRtaéndMeNIrrbs; electrode. enAeBlEdlTwkbnSaRtCak; impuriries elceLIgenAelIépÞ EdlbegáItCa coating EdleK ehAfa slag ehIy slag enHRtUv)anykecjmunnwglabfñaMelIGgát; b¤EpñkepSg²EdlRtUv)anbegáIteLIg eday electrode. CaTUeTA Shielded metal arc welding EdlRtUv)aneFIVeLIgedayéd ehIyCadMeNIrkareKeRbICa sklenAelIkardæan. sMrab;karpSarenAeragCag eKniymeRbIdMeNIrkarsV½yRbvtþ b¤Bak;kNþalsV½y Rbvtþ. karRtYtBinitüKuNPaBsMrab;kartP¢ab;edaykarpSarKWmanlkçN³Bi)ak edaykarTwkbnSarEdl minl¥sßitenABIeRkamépÞ b¤k¾PaBminl¥d¾tictYcEdlmanenAépÞbnSar GaceKcputBIExSEPñkrbs;eyIg)an. sMrab;karpSarenARtg;kEnøgEdleRKaHfñak;eKRtUvkarCagpSarEdlmanCMnajRtwmRtUv ehIyeKRtUveRbI bec©keTsBiessdUcCa radiography b¤ ultresonic testion. 281 tMNsamBaØ
  • 53. T.chhay eKniymeRbIkarpSarBIrRbePTKW fillet weld nig groove weld. Lap joint EdlbgðajenAkñúgrUb TI 7>33 a nig b RtUv)anbegáIteLIgeday fillet weld . Groove weld RtUv)aneRbIsMrab; butt, tee nig corner dUcbgðajenAkñúgrUbTI 7>35 a nig b. rUbTI 7>36 bgðajBI plug and slot wled EdleBlxøHva RtUvkaredIm,IbEnßmBIelIkarpSartam RCug. rn§ragmUl b¤RTEvgRtUv)ankat;ecjBIEpñkmYyedIm,IGacbMeBj TwkbnSar)an. kñúgcMeNamkarpSarTaMgBIrRbePTenH eyIgnwgelIkykkar pSar fillet weld mkbkRsaylMGit enATIenH. karKNnasMrab; complete penetration groove weld minmanlkçN³minsMxan;EdlkarpSar manersIusþg;dUcKñanwg base metal nigEpñkEdlRtUvP¢ab;. ersIusþg;rbs; partial penetration groove weld GaRs½yeTAnwgbrimaNén penetration. dMeNIrkarénkarKNna groove weld RsedogKñanwgkar KNna fillet weld. 7>11> Fillet Welds karKNna nigkarviPaKsMrab; fillet weld KWQrelIkarsnμt;famuxkat;rbs;TwkbnSarCaRtIekaN EkgEdlmanmMu 45o dUcbgðajkñúgrUbTI 7>37. TTwgrbs; fillet weld RtUv)ansMKal;eday w . TMhMTWk nSarbTdæanKWekIneLIgmþg 1 / 16in. = 2mm . eTaHbICaRbEvgrbs;karpSarGacrgnUvbnÞúk tamTiskMlaMg kat;/ kMlaMgsgát; nigkMlaMgTajk¾eday k¾fillet weld manersIusþg;exSaysMrab;kMlaMgkat; ehIyvaEtg EtRtUv)aneKsnμt;fadac;edaysarkMlaMgenH. kardac;RtUv)ansnμt;ekItmantambøg;Edlkat;tam throat rbs;TwkbnSar. sMrab; fillet weld EdlbegáIteLIgCamYy shielded metal arc process, throat CaRb EvgEkgBIRCugEKm b¤ root rbs;TwkbnSareTAGIub:Uetnus nigmantMélesμI 0.707 dgénTMhMTwkbnSar. ¬Effective throad thickness sMrab;TwkbnSarEdl)anBI arc welding process manTMhMFMCag. dUcenH kñúgesovePAenH eyIgsnμt;eRbI shielded metal arc welding process¦. dUcenHsMrab;RbEvg L Edlrg bnÞúk P / kugRtaMgkMlaMgkat;eRKaHfñak;KW 282 tMNsamBaØ
  • 54. T.chhay P fv = 0.707 × w × L Edl w CaTTwgTwkbnSar RbsinebIeKeRbI weld ultimate shearing stress/ FW enAkñúgsmIkarenH eKGacsresr nominal load capacity rbs;TwkbnSardUcxageRkam³ Rn = 0.707 × w × L × FW ehIy nominal design strength KW φRn = 0.707 × w × L × φFW ¬&>@@¦ ersIusþg;rbs; fillet weld GaRs½yeTAnwgkareRbIR)as; weld metal EdlCaGnuKmn_eTAnwg RbePT electrode. ersIusþg;rbs; electrode RtUv)ankMNt;Ca ultimate tensile strength rbs;vaCamYy nwgersIusþg; 60, 70, 80, 90, 100, nig 120ksi b¤ 415, 480, 550, 620, 690, nig 830MPa sMrab; shielded metal arc welding process. nimitþsBaØasMrab;kMNt; electrod KWGkSr E Edlbnþedayelx BIr b¤bIxÞg;EdlbgðajBIersIusþg;rbs;vaCa ksi . edaysarEtersIusþg;CalkçN³dMbUgEdl design engineer ykcitþTukdak; CaTUeTAGkSrBIrxÞg;cugeRkayRtUv)anbgðajeday XX ehIykMNt;sMKal; køayCa E 70 XX b¤ E 70 EdlbgðajBI electrode CamYy ultimate tensile strength 70ksi . eKKYr eRCIserIs electrode eGayRtUvKñaCamYynwg base metal. sMrab; grade rbs;EdkEdleRbIR)as;TUeTA eKBicarNaEt electrode BIrRbePTb:ueNÑaHKW³ eRbI electrode E 70 XX CamYynwgEdkEdlman yield strength tUcCag 60ksi 283 tMNsamBaØ
  • 55. T.chhay eRbI electrode E80 XX CamYynwgEdkEdlman yied strength 60ksi b¤ 65ksi nimitþsBaØasMrab; electrode nigkarpþl;eGayrbs; AISC Specification EdledaHRsayCamYy nwgTwkbnSarRtUv)andkRsg;ecjBI Structural Welding Code rbs; American Welding Society (AWS, 1996). eKGacrk)annUvlkçxNÐEdlminmanEcgenAkñúg AISC Specification enAkñúg AWS Code. Design strength rbs;TwkbnSarRtUv)anbgðajenAkñúg AISC Table J2.5. Ultimate shearing stress FW enAkñúg fillet weld esμInwg 0.6 dgén tensile strength rbs; weld metal EdlRtUv)ansM Kal;eday FEXX . dUcenH design stress KW φFW Edl φ = 0.75 nig FW = 0.60FEXX . sMrab; electrode FmμtaTaMgBIr design strengths (stresses) RtUv)anbgðajdUcxageRkam³ E 70 XX : φFW = 0.75[0.60(70)] = 31.5ksi E 80 XX : φFW = 0.75[0.6(80 )] = 36ksi tMrUvkarbEnßmKWfakMlaMgkat;TTwgemKuNenAelI base metal minKYrbegáIt stress FMCag φFBM Edl φFBM Ca nominal shear strength rbs;sMPar³EdlRtUvP¢ab;. dUcenHbnÞúkemKuNsMrab;tMNRtUv)an kMNt;Rtwm φRn = φFBM × area of base metal subject to shear AISC J5, “Connecting elements” eGay shear yielding strength Ca φRn Edl φ = 0.90 Rn = 0.6 Ag F y (AISC Equation J5-3) nig Ag CaRkLaépÞEdlrgkMlaMgkat;TTwg. dUcenH shear strength rbs; base metal CasresrCa φFBM = 0.90(0.6) F y = 0.54 F y dUcenH enAeBlEdlbnÞúksßitenAkñúgTisdUcGkS½rbs;TwkbnSar eKRtUveFVIkarGegát base metal edayeRbI TMnak;TMngénsmIkar &>@#. eKGacBnül;BItMrUvkarenHedayRtYtBinitükartP¢ab; bracket edaykarpSar EdlbgðajenAkñúgrUbTI 7>38. edaysnμt;fa bnÞúksßitenAEk,rcugEdlpSaredayeyIgGacecalcMNak p©it. RbsinebITWkbnSarTaMgBIrmanTMhMdUcKña design strength rbs;TwkbnSarmçag²kñúgRbEvgÉktþaGac RtUv)anrkBIsmIkar &>@@ Ca 0.707 × w × φFW b:uEnþBIsmIkar &>@#/ ersIusþg;rbs; bracket plate Tb;nwgkMlaMgkat;kñúgmYyÉktþaRbEvgKW 284 tMNsamBaØ