SlideShare une entreprise Scribd logo
1  sur  16
T.Chhay



                                            kMlaMgkat;TTwg nigm:Um:g;Bt;kñúgFñwm
                                            Shear and bending moment in beam
     1> RbePTFñwm Types of beams
       FñwmKWCaeRKOgbgÁúMepþk rWesÞIedk EdlrgnUvbnÞúkbBaÄr ¬EkgeTAnwgGkS½beNþayrbs;va¦ EdleFVIeGayva
rgnUgkarBt;.
       xageRkamCaTMrg;énRbePTFñwmEdleyIgnwgCYbRbTH³
                                   P                                                   P


                                              w                                                 w




                                   (a) Simple beam              Deflected shape        (b) Fixed beam

                                                                                       P
                                        P

                                              w                                                 w




                               (c) Cantilever beam                                (d) Propped cantilever beam


                                                        P
                                       P                                                   P
                                                                    w




                                                     (e) Overhanging beam

                      P                                     P                                       P


                                    w




                                                     (f) Continuous beam


kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm                                                                                72
T.Chhay



           FñwmEdlGacTTYlnUvbnÞúk)an luHRtaEtxøÜnvamanlMnwgCamunsin.
           edIm,IdwgfaFñwmmYymanlMnwgeyIgGacrktamsmIkarxageRkam
            n = r −e− f
           Edl       - cMnYnGBaØatielIs (redundancy)
                        n

                  r - cMnYnRbtikmμTMr (reaction of support)

                  e - cMnYnsmIkarlMnwgsþaTic (equilibrium equation) man 3

                   f - cMnYnsnøak; ¬EdltMélm:Um:g;esμIsUnü¦

           kñúgkrNI n < 0 FñwmKμanlMnwg Unstable beam
           kñúgkrNI n = 0 FñwmmanlMnwgkMNt;edaysmIkarsþaTic
                                   statically determinate beam, geometrically stable
           kñúgkrNI n > 0 FñwmmanlMnwgminGackMNt;edaysmIkarsþaTic
                                   statically determinate beam, geometrically stable
]TahrN_³
                                                   n = r −e− f
                                                   r = 3 , e = 3, f = 0
                                                  ⇒n=0       FñwmmanlMnwgkMNt;edaysmIkarsþaTic
                                                    n =r −e− f
                                                    r = 4 , e = 3, f = 0
                                                    ⇒ n =1   FñwmmanlMnwgminGackMNt;edaysmIkarsþaTic 1dWeRk
                                                    n = r −e− f
                                                    r = 6 , e = 3, f = 1
                                                  ⇒n=2     FñwmmanlMnwgminGackMNt;edaysmIkarsþaTic 2dWeRk
                                                    n = r −e− f
                                                   r = 6 , e = 3, f = 2
                                                  ⇒ n =1   FñwmmanlMnwgminGackMNt;edaysmIkarsþaTic 1dWeRk
     2> kMlaMgkat;TTwg nigm:Um:g;Bt; Shear force and bending moment
         viFIsaRsþedIm,IedaHRsay kMlaMgkat;TTwg nigm:Umg; KWBak;Bn§½eTAnwgsmIkarlMnwgsþaTicrbs;Fñwm.
                                                       :
sMrab;FñwmEdlkMNt;edaysmIkarsþaTic CadMbUgeKRtUvkMNt;RbtikmμTMCamunsin. RbsinebIFñwmTaMgmUlman
lMnwgenaH)ann½yfa RKb;Ggát;TaMgGs;rbs;Fñwmk¾manlMnwgEdr. RbsinebIeyIgkat;FñwmCakMNat;enaH smIkar
lMnwgsþaTicGaceGayeyIgkMNt;)annUvkMlaMgkat;TTwg nigm:Um:g;EdlekIteLIgedaysarkMlaMgxageRkA.
GaRsy½edaybnÞúk niglkçxNÐTMr kMlaMgkat;TTwg nigm:Um:g;Bt;ERbRbYltamRbEvgrbs;Fñwm.
kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm                                                                              73
T.Chhay



      k> niymn½y Definition
      kMlaMgkat;TTwg V Rtg;muxkat;samBaØNamYyénr)ar KWCaplbUkBiCKNiténkMlaMgTaMgLayEdl
EkgnwgGkS½r)ar ehIysßitenAxageqVg b¤xagsþaMénmuxkat;enaH.
            V = ∑ Qi =         ∑Q          j
                   left        right

       m:Um:g;Bt; M Rtg;muxkat;samBaØNamYyénr)ar KWCaplbUkBiCKNiténm:Um:g;TaMgGs;EdlenAxageqVg
b¤xagsþaMénmuxkat;enaH.
            M = ∑ Mi = ∑ M j
                     left          right


         x> karkMNt;sBaØa Sign convention
         RbsinebIr)armYyRtUv)ankat; enaHvanwgmankMlaMgkat;TTwgxagkñúgedIm,ITb;nwgkMlaMgxageRkAeGay
manlMnwg kMlaMgkat;TTwgEdleFVIeGaykMNat;r)arvilRsbTisRTnicnaLikaman sBaØaviC¢man. pÞúymkvij
ebIkMlaMgkat;enaH eFVIeGaykMNat;r)arvilRcasTisRTnicnaLikaman sBaØaGviC¢man.
         sMrab;krNIm:Um:g;Bt;vij ral;m:Umg;TaMgLayNaEdleFVIeGaykMNat;r)arrgkMlaMgsgát;xagelI man
sBaØaviC¢man pÞúymkvijm:Um:g;TMagLayNa EdleFVIeGaykMNat;r)arrgkMlaMgsgát;EpñkxageRkam mansBaØa
GviC¢man.
                                   Cutting                                Cutting
                                    plane                                  plane
                                               V
                                                         External force




               External force
                                                                                    V

                               (a) Positive shear (+)                (b) Negative shear (-)




                             (c) Positive moment (+)                (b) Negative moment (-)


       K> TMnak;TMngDIepr:g;EsülrvagbnÞúkBRgay kMlaMgkat;TTwg nigm:Um:g;Bt;
       eKmanbnÞúkBRgay w( x) manGMeBIelIr)ar.edayr)arenaHCar)armanlMnwgsþaTic eKkat;r)arenaH
mYykg; EdlmanRbEvg Δx mksikSa.

kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm                                                                     74
T.Chhay



        eyIgeXIjfaRtg;muxkat; O r)armankMlaMgkñúg V nigm:Um:g;Bt; M ÉRtg;muxkat; O' r)armankMlaMg
kñúg V + ΔV nigm:Um:g;Bt; M + ΔM . edayr)ar
manlMnwgenaH kMNat; Δx k¾RtUvmanlMnwg.
⇒ ∑Y = 0
                                                                                             w(x)
⇒ V − w( x)Δx − V − ΔV = 0
                                                                                                              X
⇒ − w( x)Δx − ΔV = 0                                                                    Δx




  ΔV
⇒        = − w(x)                                                                        w(x)
   Δx
         ΔV
⇒ lim        = − w( x)
  Δx → 0 Δx
                                                                       M                               M+ΔM
   dV
⇔        = − w(x)
   dx                                                                          O                O'
                                                                                                     V+ΔV
mü:ageTot ∑ M          o   =0                                              V

               Δx
⇒ + ( w( x).Δx. ) + (V + ΔV )Δx − M − ΔM + M = 0                                   Δx

               2
                    Δx
edaytMélénGgÁ   Δx.
                    2
                                   mantMéltUcq¶ayebIeRbobeFobeTAnwgGgÁdéT enaH Δx. Δ2x → 0
⇒ VΔx + ΔV .Δx − ΔM = 0
dUcKña edaytMélénGgÁ Δx.ΔV mantMéltUcq¶ayebIeRbobeFobeTAnwgGgÁdéT enaH Δx.ΔV → 0
  ΔM
⇒        =V
   Δx
        ΔM
⇒ lim       =V
  Δx → 0 Δx

  dM
⇒        =V
   dx
]TahrN¾³ kMNt;RbtikmμTMrsMrab;FñwmdUcbgðajkñúgrUb.
                                      20kN        30kN
                                             2m          3m
     w=12kN/m

                A                                             B
             2m                              8m


                                   Beam diagram



kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm                                                                              75
T.Chhay



dMeNaHRsay³
                      W =60kN             20kN        30kN
                                                 2m                3m
     w=12kN/m

                A           0.5m                                        B
             2m                                  8m
                      RA                                                    RB
                                    Load diagram

kMNt;bnÞúkcMcMnucsmmUl nwgbnÞúkBRgayesμIelIRbEvg 5m
W = w × l = 12 × 5 = 60kN
TItaMgénbnÞúkcMcMnucsmmUl
      l 5
c=     = = 2.5m
      2 2
BIdüaRkambnÞúkkMNt;RbtikmμRtg;TMr B edayeFVIplbUkm:Um:g;Rtg;TMr A
edaysnμt; m:Um:g;bUk kalNaTisedAvilRcasTisRTnicnaLika
∑ M A = + RB × 8 − 30 × 5 − 20 × 3 − 60 × 0.5 = 0

⇒ RB = +30kN ↑
sMrab;RbtikmμRtg;TMr ARtUv)ankMNt;edayeFVIplbUkm:Um:g;Rtg;TMr B
∑ M B = − R A × 8 + 30 × 3 + 20 × 5 + 60 × 7.5 = 0

⇒ R A = +80kN ↑
epÞógpÞat;edayeFVIplbUkkMlaMgtamGkS½ ∑Y = 0
∑Y = 30 − 60 − 20 − 30 − 80 = 0   RtwmRtUv
]TahrN¾³ düaRkambnÞúkRtUv)anbgðajkñúgrUb. kMNt;kMlaMgkat;TTwg nigm:Um:g;Bt;
k> Rtg;cMnuc 5m BIcugTMrxageqVg
x> Rtg;cMnuc 12m BIcugTMrxageqVg
                                   20kN                                     10kN
                       0.3m                           0.7m                                              15kN
                                                                                   w=30kN/m

           A                                                                                  B
                                                             15m                                   3m

           RA                                                                                 RB


kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm                                                                               76
T.Chhay



dMeNaHRsay³
BIdüaRkambnÞúkkMNt;RbtikmμRtg;TMr B edayeFVIplbUkm:Um:g;Rtg;TMr A
edaysnμt; m:Um:g;bUk kalNaTisedAvilRcasTisRTnicnaLika
                                                                      15
∑ M A = + RB × 15 − 15 × 18 − 10 × 10 − 20 × 3 − (30 × 15) ×             =0
                                                                       2
⇒ RB = +253.7 kN ↑
sMrab;RbtikmμRtg;TMr ARtUv)ankMNt;edayeFVIplbUkm:Um:g;Rtg;TMr B
∑ M B = − R A × 15 − 15 × 3 + 10 × 5 + 20 × 12 + 450 × 7.5 = 0

⇒ R A = +241.3kN ↑
epÞógpÞat;edayeFVIplbUkkMlaMgtamGkS½ ∑Y = 0
∑Y = +253.7 + 241.7 − 15 − 10 − 20 − 450 = 0                 RtwmRtUv
k> Rtg;cMnuc 5m BIcugTMrxageqVg
                                           20kN              Cutting plane
                                   0.3m           0.2m
                             w=30kN/m                             Internal resisting shear
                                                                    M
                      A                                  x
                                          5m                 V            Internal resisting moment

                     RA =241.3kN

eyIgkat;FñwmenAcMnuc 5m BIcugTMrxageqVg ¬tagedayGkSr x ¦ ehIyeyIgcat;TukEpñkxageqVgénmuxkat;CaGgÁ
esrI (FBD) . kMlaMgkat;TTwgTTYl)anedayeFVIplbUkkMlaMgbBaÄrEdlmanGMeBIelIGgÁesrIesμIsUnü
∑ Y = 0 ⇒ +241.7 − 20 − 30 × 5 − V = 0

             ⇒ V = +71.3kN ↓
ehIym:Um:g;Bt;EdlekItBIkMlaMgxageRkARtg;muxkat; (x) )anBIeFVIplbUkm:Um:g;eFobcMnucNamYyesμIsUnü
edaysnμt;m:Umg;EdleFVIeGayFñwmrgkarsgát;EfñkxagelImansBaØabUk
                                               5
∑ M A = 0 ⇒ + M − 20 × 3 − 30 × 5 ×              − 71.3 × 5 = 0
                                               2

⇒ M = +791.5kN .m
x> Rtg;cMnuc 12m BIcugTMrxageqVg



kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm                                                                      77
T.Chhay


                        20kN                            10kN              Cutting plane
             0.3m                   0.7m                       0.2m
                                   w=30kN/m                                   Internal resisting shear
                                                                                M
A                                                                     x
                                   12m                                    V           Internal resisting moment

RA =241.3kN




eyIgkat;FñwmenAcMnuc 12m BIcugTMrxageqVg ¬tagedayGkSr x ¦ ehIyeyIgcat;TukEpñkxageqVgénmuxkat;Ca
GgÁesrI (FBD) . kMlaMgkat;TTwgTTYl)anedayeFVIplbUkkMlaMgbBaÄrEdlmanGMeBIelIGgÁesrIesμIsUnü
∑ Y = 0 ⇒ +241.7 − 20 − 30 × 12 − 10 − V = 0

             ⇒ V = −148.3kN ↓
       rW V = +148.3kN ↑
ehIym:Um:g;Bt;EdlekItBIkMlaMgxageRkARtg;muxkat; (x) )anBIeFVIplbUkm:Um:g;eFobcMnucNamYyesμIsUnü
edaysnμt;m:Umg;EdleFVIeGayFñwmrgkarsgát;EfñkxagelImansBaØabUk
                                           12
∑ M A = 0 ⇒ + M − 20 × 3 − 30 × 12 ×          − 10 × 10 + 148.3 × 12 = 0
                                            2

⇒ M = +540.4kN .m
***  cMNaM³ kñúgkrNIEdleKcg;dwgkMlaMgkat;TTwgRtg;TItaMgbnÞúkcMcMnuc eKRtUvkat;FñwmcMnYnBIrdg mþgxagmux
bnÞúkcMcMnuc nigmþgeTotxageRkaybnÞúkcMcMnuc. ehIytMélénkMlaMgkat;TTwgTaMgBIrmantMélxusKñaesμInwgtMél
énbnÞúkcMcMnucenaH.
     3> düaRkamkMlaMgkat;TTwg nigm:Um:g;Bt; Shear force and bending moment diagram
             düaRkamkMlaMgkat;TTwg nigdüaRkamm:Um:g;Bt;mansar³sMxan;kñúgkardwgBIbMErbMrYlkMlaMgkat;TTwg
nigm:Um:g;Bt;tamRbEvgrbs;Fñwm nigGaceGayeyIgdwgBITItaMgEdlkMlaMgkat; nigm:Um:g;Bt;mantMélGtibrma.
edIm,IKUrdüaRkamkMlaMgkat;TTwg nigdüaRkamm:Um:g;Bt;sMrab;FñwmsþaTic eyIgGaceRbIviFImuxkat;. EtCadMbUgeyIg
RtUvkMNt;RbtikmμTMrCamunsin rYcehIyeTIbeyIgcab;epþImkat;FñwmCakMNat;². CaTUeTAeyIgRtUvkat;FñwmenAcenøaH
kMlaMgcMcMnucBIr Rtg;TItaMg x BITMreTaHxageqVgb¤xagsþaM rYceTIbGnuvtþsmIkarkMlaMgsþaTicsMrab;ral;kMNat;
nImYy².
]TahrN¾³
cUrsg;düaRkamkMlaMgkat;TTwg nigdüaRkamm:Um:g;Bt;sMrab;FñwmrgbnÞúkxageRkam


kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm                                                                                  78
T.Chhay



                           15kN               10kN
                    2m                               2m
                                                              w=4kN/m

     A                        C               D           B                E
                                     6m                           2m



dMeNaHRsay³
kMNt;RbtikmμRtg;TMr A edayeFVIplbUkm:Um:g;Rtg;TMr B = 0
edaysnμt;kMlaMgEdleFVIeGayvilRsbTisRTnicnaLika mansBaØaGviC¢man
                                                          2
⇒ ∑ M B = 0 ⇒ −( R A × 6) + (15 × 4) + (10 × 2) − (4 × 2 × ) = 0
                                                          2
⇒ R A = 12kN
kMNt;RbtikmμRtg;TMr B edayeFVIplbUkm:Um:g;Rtg;TMr A = 0
edaysnμt;kMlaMgEdleFVIeGayvilRsbTisRTnicnaLika mansBaØaGviC¢man
                                                            2
∑ M A = 0 ⇒ −(15 × 2) − (10 × 4) + ( RB × 6) − [4 × 2 × (6 + )] = 0
                                                            2
⇒ RB = 21kN
epÞógpÞat;edayeFVIplbUkkMlaMgtamGkS½ ∑ Y = 0
∑Y = +12 + 21 − 15 − 10 − (4 × 2) = 0   RtwmRtUv
sikSakMlaMgkat;TTwg nigm:Um:g;
- muxkat; (1 − 1) BI A → C 0 ≤ x ≤ 2m                                  0            1
                                                                                x        M
∑ Y = 0 ⇒ 12 − V1−1 = 0
⇒ V1−1 = 12kN            efr CasmIkarbnÞat;efrRsbGkS½ X           A
∑ M A = 0 ⇒ M 1−1 − V .x = 0
                                                                                    1V
⇒ M 1−1 = 12 x         CasmIkarbnÞat;Edlmanrag ax + b
                                                                    RA
ebI x = 0m ⇒ M = 0kN .m   A
                                                                            15kN
ebI x = 2m ⇒ M = 24kN.m   C
                                                                         2m    0        x1
                                                                                                 M
- muxkat; (2 − 2) BI C → D 0 ≤ x ≤ 2m
                                                              A             C
∑ Y = 0 ⇒ 12 − 15 − V2−2 = 0
                                                                                             V
⇒ V2−2 = −3kN             efr CasmIkarbnÞat;efrRsbGkS½ X                                 1
                                                               RA
∑ M A = 0 ⇒ M 2−2 − V .( 2 + x) − 15 × 2 = 0


kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm                                                                     79
T.Chhay



⇒ M 2−2 = −3 x + 24                CasmIkarbnÞat;Edlmanrag ax + b
ebI x = 0m ⇒ M = 24kN.m     C                                                     15kN          10kN
                                                                                                   0   x1
ebI x = 2m ⇒ M = 18kN .m    D
                                                                             2m
                                                                                                                M

- muxkat; (3 − 3) BI D → B 0 ≤ x ≤ 2m                            A                C             D
                                                                                          4m                V
∑ Y = 0 ⇒ 12 − 15 − 10 − V3−3 = 0                                                                       1

⇒ V3−3 = −13kN                  efr CasmIkarbnÞat;efrRsbGkS½ X      RA


∑ M A = 0 ⇒ M 3−3 − V .(4 + x) − 15 × 2 − 10 × 4 = 0
⇒ M 1−1 = −13 x + 18               CasmIkarbnÞat;Edlmanrag ax + b
ebI x = 0m ⇒ M              D   = 18kN .m

ebI x = 2m ⇒ M              B   = −8kN .m
                            18
M 3−3 = 0 ⇒ x =                m
                            13
- muxkat; (4 − 4) BI E → B                  0 ≤ x ≤ 2m

∑ Y = 0 ⇒ V4−4 − 4 x = 0
                                                                                  4
⇒ V4−4 = 4.xkN              CasmIkarbnÞat;Edlmanrag ax + b               M            w=4kN/m
ebI x = 0m ⇒ V          E   = 0kN .m

ebI x = 2m ⇒ V          E   = 8kN .m                                                  x        0 E
                                                 x                                4
∑ M E = 0 ⇒ M 4− 4 + V . x − 4 × x ×               =0                        V
                                                 2
⇒ M 4− 4 = 2 x 2 − 8 x             CasmIkarbnÞat;Edlmanrag ax + b
ebI x = 0m ⇒ M = 0kN.m      E


ebI x = 2m ⇒ M = −8kN .m    B


düaRkamkMlaMgkat; nigdüaRkamm:Um:g;Bt;RtUv)ansg;edaytMélEdl)ansikSatammuxkat;mYy²
eyIg)an




kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm                                                                            80
T.Chhay



                    +12kN

                                                           +8kN


                                                                          Shear diagram
                                             C       D        B       E
                           A                                                 V (kN)
                                   -3kN




                                                 -13kN


                                                             -8kN

                                             C       D                E   Moment diagram
                           A
                                                                  B         M (kN.m)



                                                   +18kN
                                   +24kN




     4> düaRkamkMlaMgkat;TTwg edayeRbIdüaRkambnÞúk
     Shear diagram by using Load diagram
          CaTUeTAsMrab;FñwmsþaTickMNt; munnwgkMNt;rkkMlaMgkat;TTwgeKRtUv rkRbtikmμTMrCamunsin b¤bMElg
FñwmKMrU eTACaGgÁesrI b¤eTACadüaRkambnÞúk. kMlaMgkat;TTwgesμInwg plbUkrvagbnÞúkcMcMnuc nigRkLaépÞénbnÞúk
BRgayEpñkxageqVg b¤EpñkxagsþaM.
            V = ∑ ( Pext + SQ ) = ∑ ( Pext + S Q )
                   left              right


        enAeBldüaRkambnÞúk CabnÞúkcMcMnuc enaHdüaRkamkMlaMgkat;TTwgmanragCabnÞat;efrRsbGkS½énRb
EvgFñwm. enAeBldüaRkambnÞúk CabnÞúkBRgayesμI enaHdüaRkamkMlaMgkat;TTwgmanragCabnÞat;eRTtsmIkardW
eRkTI1. ebIdüaRkambnÞúk CabnÞúkBRgayminesμI enaHdüaRkamkMlaMgkat;TTwgmanragCa)a:ra:bUlsmIkardWeRk
TI2.
]TahrN¾³ edayeRbIlT§pldüaRkambnÞúkén]TahrN¾xagelI cUrsg;düaRkamkMlaMgkat;TTwg.
dMeNaHRsay³
V A = +12kN
VC = 12 − 15 = −3kN

VD = 12 − 15 − 10 = −13kN

kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm                                                                     81
T.Chhay



VB = 12 − 15 − 10 + 21 = +8kN

VE = 12 − 15 − 10 + 21 − 4 × 2 = 0kN

     5> düaRkamm:Um:g;Bt; edayeRbIdüaRkamkMlaMgkat;TTWg
     Bending moment diagram by using Shear diagram
         eKGacsg;düaRkamm:Um:g;Bt;edayeRbIdüaRkamkMlaMgkat;edaypÞal; edaymin)ac;eRbIviFImuxkat;. m:Um:g;
Bt;esμInwgplbUkrvagRklaépÞéndüaRkamkMlaMgkat;TTwg nigm:Um:g;xageRkA EpñkxageqVgb¤EpñkxagsþaM.
            M = ∑ ( SV + M ext ) = ∑ ( SV + M ext )
                    left              right


         enAeBldüaRkamkMlaMgkat;TTwgmanragCabnÞat;efr enaHdüaRkamm:Um:g;manragCabnÞat;eRTtsmIkar
dWeRkTI1. enAeBldüaRkamkMlaMgkat;TTwgmanragCabnÞat;eRTtsmIkardWeRkTI1 enaHdüaRkamm:Um:g;Bt;man
ragCa)a:ra:bUlsmIkardWeRkTI2. ebIdüaRkamkMlaMgkat;TTwgmanragCa)a:ra:bUlsmIkardWeRkTI2 enaHdüaRkam
m:Um:g;Bt;manragCa)a:ra:bUlsmIkardWeRkTI3.
]TahrN¾³ edayeRbIlT§pldüaRkamkMlaMgkat;TTwgén]TahrN¾xagelI cUrsg;düaRkamm:Um:g;Bt;.
dMeNaHRsay³
edaysarFñwmenaHminrgm:Um:g;xageRkAdUcenH
m:Um:g;Bt;esμInwgplbUkRkLaépÞéndüaRkamkMlaMgkat;TTwgEpñkxageqVgb¤EpñkxagsþaM
M = 0 edayenAEpñkxageqVgcMnuc A KμankMlaMgkat;TTwg
    A


M C = 12 × 2 = +24kN .m

M D = 12 × 2 − 3 × 2 = +18kN .m

M B = 12 × 2 − 3 × 2 − 13 × 2 = −8kN .m
                                   2
M E = 12 × 2 − 3 × 2 − 13 × 2 + 8 × = 0 KN .m
                                   2
     6> viFItMrYtpl            Method of superposition

       viFItMrYtpl RtUv)aneRbIsMrab;sMrYlkñúgkarsikSadüaRkamkMlaMgkat;TTwg nigdüaRkamm:Um:g;Bt; sMrab;Fñwm
TaMgLayNaEdlrgkMlaMgeRkAeRcIn. edIm,IsMrYlkñúgkaredaHRsay KWeKRtUvedaHRsaykMlaMgkat; nigm:Um:g;Bt;
kñúgkrNIbnÞúknImYy² rYcehIyeTIbeKeFVIplbUkBiCKNitlT§plEdl)an.




kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm                                                                       82
T.Chhay



]TahrN¾³
                                                                  15kN
               15kN

                                                             1m
          1m

                                   w=4kN/m               A                              B
                                                 =   +                   3m
 A                                           B
                        3m                                                    w=4kN/m

                                                         A                              B
                                                                         3m




kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm                                                            83
T.Chhay



lMhat;³
cUrsg;düaRkamm:Um:g; kMlaMgkat;TTwg nigkMlaMgtamGkS½³
1>



2>



3>



4>




5>



6>




kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm                        84
T.Chhay



7>




8>




9>



10>




11>




12>




kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm   85
T.Chhay



13>



14>



15>




16>




17>



18>




kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm   86
T.Chhay



19>



20>



21>


22>



23>




24>




kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm   87

Contenu connexe

Plus de Chhay Teng

Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-camChhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basicsChhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryoutChhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapesChhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shapeChhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shapeChhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shapeChhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shapeChhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shapeChhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipnChhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angleChhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upeChhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upnChhay Teng
 
11 dimension and properties table of u
11 dimension and properties table of u11 dimension and properties table of u
11 dimension and properties table of uChhay Teng
 
Construction permit (kh)
Construction permit (kh)Construction permit (kh)
Construction permit (kh)Chhay Teng
 
Concrete price and proportion
Concrete price and proportionConcrete price and proportion
Concrete price and proportionChhay Teng
 
Roof preparation
Roof preparationRoof preparation
Roof preparationChhay Teng
 
Cement knowledge revised 160110
Cement knowledge revised 160110Cement knowledge revised 160110
Cement knowledge revised 160110Chhay Teng
 
standard materials price list 2011 (PP)
standard materials price list 2011 (PP)standard materials price list 2011 (PP)
standard materials price list 2011 (PP)Chhay Teng
 

Plus de Chhay Teng (20)

Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 
11 dimension and properties table of u
11 dimension and properties table of u11 dimension and properties table of u
11 dimension and properties table of u
 
Construction permit (kh)
Construction permit (kh)Construction permit (kh)
Construction permit (kh)
 
Concrete price and proportion
Concrete price and proportionConcrete price and proportion
Concrete price and proportion
 
Roof preparation
Roof preparationRoof preparation
Roof preparation
 
Cement knowledge revised 160110
Cement knowledge revised 160110Cement knowledge revised 160110
Cement knowledge revised 160110
 
standard materials price list 2011 (PP)
standard materials price list 2011 (PP)standard materials price list 2011 (PP)
standard materials price list 2011 (PP)
 

8.shear and bending moment in beam10

  • 1. T.Chhay kMlaMgkat;TTwg nigm:Um:g;Bt;kñúgFñwm Shear and bending moment in beam 1> RbePTFñwm Types of beams FñwmKWCaeRKOgbgÁúMepþk rWesÞIedk EdlrgnUvbnÞúkbBaÄr ¬EkgeTAnwgGkS½beNþayrbs;va¦ EdleFVIeGayva rgnUgkarBt;. xageRkamCaTMrg;énRbePTFñwmEdleyIgnwgCYbRbTH³ P P w w (a) Simple beam Deflected shape (b) Fixed beam P P w w (c) Cantilever beam (d) Propped cantilever beam P P P w (e) Overhanging beam P P P w (f) Continuous beam kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm 72
  • 2. T.Chhay FñwmEdlGacTTYlnUvbnÞúk)an luHRtaEtxøÜnvamanlMnwgCamunsin. edIm,IdwgfaFñwmmYymanlMnwgeyIgGacrktamsmIkarxageRkam n = r −e− f Edl - cMnYnGBaØatielIs (redundancy) n r - cMnYnRbtikmμTMr (reaction of support) e - cMnYnsmIkarlMnwgsþaTic (equilibrium equation) man 3 f - cMnYnsnøak; ¬EdltMélm:Um:g;esμIsUnü¦ kñúgkrNI n < 0 FñwmKμanlMnwg Unstable beam kñúgkrNI n = 0 FñwmmanlMnwgkMNt;edaysmIkarsþaTic statically determinate beam, geometrically stable kñúgkrNI n > 0 FñwmmanlMnwgminGackMNt;edaysmIkarsþaTic statically determinate beam, geometrically stable ]TahrN_³ n = r −e− f r = 3 , e = 3, f = 0 ⇒n=0 FñwmmanlMnwgkMNt;edaysmIkarsþaTic n =r −e− f r = 4 , e = 3, f = 0 ⇒ n =1 FñwmmanlMnwgminGackMNt;edaysmIkarsþaTic 1dWeRk n = r −e− f r = 6 , e = 3, f = 1 ⇒n=2 FñwmmanlMnwgminGackMNt;edaysmIkarsþaTic 2dWeRk n = r −e− f r = 6 , e = 3, f = 2 ⇒ n =1 FñwmmanlMnwgminGackMNt;edaysmIkarsþaTic 1dWeRk 2> kMlaMgkat;TTwg nigm:Um:g;Bt; Shear force and bending moment viFIsaRsþedIm,IedaHRsay kMlaMgkat;TTwg nigm:Umg; KWBak;Bn§½eTAnwgsmIkarlMnwgsþaTicrbs;Fñwm. : sMrab;FñwmEdlkMNt;edaysmIkarsþaTic CadMbUgeKRtUvkMNt;RbtikmμTMCamunsin. RbsinebIFñwmTaMgmUlman lMnwgenaH)ann½yfa RKb;Ggát;TaMgGs;rbs;Fñwmk¾manlMnwgEdr. RbsinebIeyIgkat;FñwmCakMNat;enaH smIkar lMnwgsþaTicGaceGayeyIgkMNt;)annUvkMlaMgkat;TTwg nigm:Um:g;EdlekIteLIgedaysarkMlaMgxageRkA. GaRsy½edaybnÞúk niglkçxNÐTMr kMlaMgkat;TTwg nigm:Um:g;Bt;ERbRbYltamRbEvgrbs;Fñwm. kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm 73
  • 3. T.Chhay k> niymn½y Definition kMlaMgkat;TTwg V Rtg;muxkat;samBaØNamYyénr)ar KWCaplbUkBiCKNiténkMlaMgTaMgLayEdl EkgnwgGkS½r)ar ehIysßitenAxageqVg b¤xagsþaMénmuxkat;enaH. V = ∑ Qi = ∑Q j left right m:Um:g;Bt; M Rtg;muxkat;samBaØNamYyénr)ar KWCaplbUkBiCKNiténm:Um:g;TaMgGs;EdlenAxageqVg b¤xagsþaMénmuxkat;enaH. M = ∑ Mi = ∑ M j left right x> karkMNt;sBaØa Sign convention RbsinebIr)armYyRtUv)ankat; enaHvanwgmankMlaMgkat;TTwgxagkñúgedIm,ITb;nwgkMlaMgxageRkAeGay manlMnwg kMlaMgkat;TTwgEdleFVIeGaykMNat;r)arvilRsbTisRTnicnaLikaman sBaØaviC¢man. pÞúymkvij ebIkMlaMgkat;enaH eFVIeGaykMNat;r)arvilRcasTisRTnicnaLikaman sBaØaGviC¢man. sMrab;krNIm:Um:g;Bt;vij ral;m:Umg;TaMgLayNaEdleFVIeGaykMNat;r)arrgkMlaMgsgát;xagelI man sBaØaviC¢man pÞúymkvijm:Um:g;TMagLayNa EdleFVIeGaykMNat;r)arrgkMlaMgsgát;EpñkxageRkam mansBaØa GviC¢man. Cutting Cutting plane plane V External force External force V (a) Positive shear (+) (b) Negative shear (-) (c) Positive moment (+) (b) Negative moment (-) K> TMnak;TMngDIepr:g;EsülrvagbnÞúkBRgay kMlaMgkat;TTwg nigm:Um:g;Bt; eKmanbnÞúkBRgay w( x) manGMeBIelIr)ar.edayr)arenaHCar)armanlMnwgsþaTic eKkat;r)arenaH mYykg; EdlmanRbEvg Δx mksikSa. kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm 74
  • 4. T.Chhay eyIgeXIjfaRtg;muxkat; O r)armankMlaMgkñúg V nigm:Um:g;Bt; M ÉRtg;muxkat; O' r)armankMlaMg kñúg V + ΔV nigm:Um:g;Bt; M + ΔM . edayr)ar manlMnwgenaH kMNat; Δx k¾RtUvmanlMnwg. ⇒ ∑Y = 0 w(x) ⇒ V − w( x)Δx − V − ΔV = 0 X ⇒ − w( x)Δx − ΔV = 0 Δx ΔV ⇒ = − w(x) w(x) Δx ΔV ⇒ lim = − w( x) Δx → 0 Δx M M+ΔM dV ⇔ = − w(x) dx O O' V+ΔV mü:ageTot ∑ M o =0 V Δx ⇒ + ( w( x).Δx. ) + (V + ΔV )Δx − M − ΔM + M = 0 Δx 2 Δx edaytMélénGgÁ Δx. 2 mantMéltUcq¶ayebIeRbobeFobeTAnwgGgÁdéT enaH Δx. Δ2x → 0 ⇒ VΔx + ΔV .Δx − ΔM = 0 dUcKña edaytMélénGgÁ Δx.ΔV mantMéltUcq¶ayebIeRbobeFobeTAnwgGgÁdéT enaH Δx.ΔV → 0 ΔM ⇒ =V Δx ΔM ⇒ lim =V Δx → 0 Δx dM ⇒ =V dx ]TahrN¾³ kMNt;RbtikmμTMrsMrab;FñwmdUcbgðajkñúgrUb. 20kN 30kN 2m 3m w=12kN/m A B 2m 8m Beam diagram kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm 75
  • 5. T.Chhay dMeNaHRsay³ W =60kN 20kN 30kN 2m 3m w=12kN/m A 0.5m B 2m 8m RA RB Load diagram kMNt;bnÞúkcMcMnucsmmUl nwgbnÞúkBRgayesμIelIRbEvg 5m W = w × l = 12 × 5 = 60kN TItaMgénbnÞúkcMcMnucsmmUl l 5 c= = = 2.5m 2 2 BIdüaRkambnÞúkkMNt;RbtikmμRtg;TMr B edayeFVIplbUkm:Um:g;Rtg;TMr A edaysnμt; m:Um:g;bUk kalNaTisedAvilRcasTisRTnicnaLika ∑ M A = + RB × 8 − 30 × 5 − 20 × 3 − 60 × 0.5 = 0 ⇒ RB = +30kN ↑ sMrab;RbtikmμRtg;TMr ARtUv)ankMNt;edayeFVIplbUkm:Um:g;Rtg;TMr B ∑ M B = − R A × 8 + 30 × 3 + 20 × 5 + 60 × 7.5 = 0 ⇒ R A = +80kN ↑ epÞógpÞat;edayeFVIplbUkkMlaMgtamGkS½ ∑Y = 0 ∑Y = 30 − 60 − 20 − 30 − 80 = 0 RtwmRtUv ]TahrN¾³ düaRkambnÞúkRtUv)anbgðajkñúgrUb. kMNt;kMlaMgkat;TTwg nigm:Um:g;Bt; k> Rtg;cMnuc 5m BIcugTMrxageqVg x> Rtg;cMnuc 12m BIcugTMrxageqVg 20kN 10kN 0.3m 0.7m 15kN w=30kN/m A B 15m 3m RA RB kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm 76
  • 6. T.Chhay dMeNaHRsay³ BIdüaRkambnÞúkkMNt;RbtikmμRtg;TMr B edayeFVIplbUkm:Um:g;Rtg;TMr A edaysnμt; m:Um:g;bUk kalNaTisedAvilRcasTisRTnicnaLika 15 ∑ M A = + RB × 15 − 15 × 18 − 10 × 10 − 20 × 3 − (30 × 15) × =0 2 ⇒ RB = +253.7 kN ↑ sMrab;RbtikmμRtg;TMr ARtUv)ankMNt;edayeFVIplbUkm:Um:g;Rtg;TMr B ∑ M B = − R A × 15 − 15 × 3 + 10 × 5 + 20 × 12 + 450 × 7.5 = 0 ⇒ R A = +241.3kN ↑ epÞógpÞat;edayeFVIplbUkkMlaMgtamGkS½ ∑Y = 0 ∑Y = +253.7 + 241.7 − 15 − 10 − 20 − 450 = 0 RtwmRtUv k> Rtg;cMnuc 5m BIcugTMrxageqVg 20kN Cutting plane 0.3m 0.2m w=30kN/m Internal resisting shear M A x 5m V Internal resisting moment RA =241.3kN eyIgkat;FñwmenAcMnuc 5m BIcugTMrxageqVg ¬tagedayGkSr x ¦ ehIyeyIgcat;TukEpñkxageqVgénmuxkat;CaGgÁ esrI (FBD) . kMlaMgkat;TTwgTTYl)anedayeFVIplbUkkMlaMgbBaÄrEdlmanGMeBIelIGgÁesrIesμIsUnü ∑ Y = 0 ⇒ +241.7 − 20 − 30 × 5 − V = 0 ⇒ V = +71.3kN ↓ ehIym:Um:g;Bt;EdlekItBIkMlaMgxageRkARtg;muxkat; (x) )anBIeFVIplbUkm:Um:g;eFobcMnucNamYyesμIsUnü edaysnμt;m:Umg;EdleFVIeGayFñwmrgkarsgát;EfñkxagelImansBaØabUk 5 ∑ M A = 0 ⇒ + M − 20 × 3 − 30 × 5 × − 71.3 × 5 = 0 2 ⇒ M = +791.5kN .m x> Rtg;cMnuc 12m BIcugTMrxageqVg kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm 77
  • 7. T.Chhay 20kN 10kN Cutting plane 0.3m 0.7m 0.2m w=30kN/m Internal resisting shear M A x 12m V Internal resisting moment RA =241.3kN eyIgkat;FñwmenAcMnuc 12m BIcugTMrxageqVg ¬tagedayGkSr x ¦ ehIyeyIgcat;TukEpñkxageqVgénmuxkat;Ca GgÁesrI (FBD) . kMlaMgkat;TTwgTTYl)anedayeFVIplbUkkMlaMgbBaÄrEdlmanGMeBIelIGgÁesrIesμIsUnü ∑ Y = 0 ⇒ +241.7 − 20 − 30 × 12 − 10 − V = 0 ⇒ V = −148.3kN ↓ rW V = +148.3kN ↑ ehIym:Um:g;Bt;EdlekItBIkMlaMgxageRkARtg;muxkat; (x) )anBIeFVIplbUkm:Um:g;eFobcMnucNamYyesμIsUnü edaysnμt;m:Umg;EdleFVIeGayFñwmrgkarsgát;EfñkxagelImansBaØabUk 12 ∑ M A = 0 ⇒ + M − 20 × 3 − 30 × 12 × − 10 × 10 + 148.3 × 12 = 0 2 ⇒ M = +540.4kN .m *** cMNaM³ kñúgkrNIEdleKcg;dwgkMlaMgkat;TTwgRtg;TItaMgbnÞúkcMcMnuc eKRtUvkat;FñwmcMnYnBIrdg mþgxagmux bnÞúkcMcMnuc nigmþgeTotxageRkaybnÞúkcMcMnuc. ehIytMélénkMlaMgkat;TTwgTaMgBIrmantMélxusKñaesμInwgtMél énbnÞúkcMcMnucenaH. 3> düaRkamkMlaMgkat;TTwg nigm:Um:g;Bt; Shear force and bending moment diagram düaRkamkMlaMgkat;TTwg nigdüaRkamm:Um:g;Bt;mansar³sMxan;kñúgkardwgBIbMErbMrYlkMlaMgkat;TTwg nigm:Um:g;Bt;tamRbEvgrbs;Fñwm nigGaceGayeyIgdwgBITItaMgEdlkMlaMgkat; nigm:Um:g;Bt;mantMélGtibrma. edIm,IKUrdüaRkamkMlaMgkat;TTwg nigdüaRkamm:Um:g;Bt;sMrab;FñwmsþaTic eyIgGaceRbIviFImuxkat;. EtCadMbUgeyIg RtUvkMNt;RbtikmμTMrCamunsin rYcehIyeTIbeyIgcab;epþImkat;FñwmCakMNat;². CaTUeTAeyIgRtUvkat;FñwmenAcenøaH kMlaMgcMcMnucBIr Rtg;TItaMg x BITMreTaHxageqVgb¤xagsþaM rYceTIbGnuvtþsmIkarkMlaMgsþaTicsMrab;ral;kMNat; nImYy². ]TahrN¾³ cUrsg;düaRkamkMlaMgkat;TTwg nigdüaRkamm:Um:g;Bt;sMrab;FñwmrgbnÞúkxageRkam kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm 78
  • 8. T.Chhay 15kN 10kN 2m 2m w=4kN/m A C D B E 6m 2m dMeNaHRsay³ kMNt;RbtikmμRtg;TMr A edayeFVIplbUkm:Um:g;Rtg;TMr B = 0 edaysnμt;kMlaMgEdleFVIeGayvilRsbTisRTnicnaLika mansBaØaGviC¢man 2 ⇒ ∑ M B = 0 ⇒ −( R A × 6) + (15 × 4) + (10 × 2) − (4 × 2 × ) = 0 2 ⇒ R A = 12kN kMNt;RbtikmμRtg;TMr B edayeFVIplbUkm:Um:g;Rtg;TMr A = 0 edaysnμt;kMlaMgEdleFVIeGayvilRsbTisRTnicnaLika mansBaØaGviC¢man 2 ∑ M A = 0 ⇒ −(15 × 2) − (10 × 4) + ( RB × 6) − [4 × 2 × (6 + )] = 0 2 ⇒ RB = 21kN epÞógpÞat;edayeFVIplbUkkMlaMgtamGkS½ ∑ Y = 0 ∑Y = +12 + 21 − 15 − 10 − (4 × 2) = 0 RtwmRtUv sikSakMlaMgkat;TTwg nigm:Um:g; - muxkat; (1 − 1) BI A → C 0 ≤ x ≤ 2m 0 1 x M ∑ Y = 0 ⇒ 12 − V1−1 = 0 ⇒ V1−1 = 12kN efr CasmIkarbnÞat;efrRsbGkS½ X A ∑ M A = 0 ⇒ M 1−1 − V .x = 0 1V ⇒ M 1−1 = 12 x CasmIkarbnÞat;Edlmanrag ax + b RA ebI x = 0m ⇒ M = 0kN .m A 15kN ebI x = 2m ⇒ M = 24kN.m C 2m 0 x1 M - muxkat; (2 − 2) BI C → D 0 ≤ x ≤ 2m A C ∑ Y = 0 ⇒ 12 − 15 − V2−2 = 0 V ⇒ V2−2 = −3kN efr CasmIkarbnÞat;efrRsbGkS½ X 1 RA ∑ M A = 0 ⇒ M 2−2 − V .( 2 + x) − 15 × 2 = 0 kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm 79
  • 9. T.Chhay ⇒ M 2−2 = −3 x + 24 CasmIkarbnÞat;Edlmanrag ax + b ebI x = 0m ⇒ M = 24kN.m C 15kN 10kN 0 x1 ebI x = 2m ⇒ M = 18kN .m D 2m M - muxkat; (3 − 3) BI D → B 0 ≤ x ≤ 2m A C D 4m V ∑ Y = 0 ⇒ 12 − 15 − 10 − V3−3 = 0 1 ⇒ V3−3 = −13kN efr CasmIkarbnÞat;efrRsbGkS½ X RA ∑ M A = 0 ⇒ M 3−3 − V .(4 + x) − 15 × 2 − 10 × 4 = 0 ⇒ M 1−1 = −13 x + 18 CasmIkarbnÞat;Edlmanrag ax + b ebI x = 0m ⇒ M D = 18kN .m ebI x = 2m ⇒ M B = −8kN .m 18 M 3−3 = 0 ⇒ x = m 13 - muxkat; (4 − 4) BI E → B 0 ≤ x ≤ 2m ∑ Y = 0 ⇒ V4−4 − 4 x = 0 4 ⇒ V4−4 = 4.xkN CasmIkarbnÞat;Edlmanrag ax + b M w=4kN/m ebI x = 0m ⇒ V E = 0kN .m ebI x = 2m ⇒ V E = 8kN .m x 0 E x 4 ∑ M E = 0 ⇒ M 4− 4 + V . x − 4 × x × =0 V 2 ⇒ M 4− 4 = 2 x 2 − 8 x CasmIkarbnÞat;Edlmanrag ax + b ebI x = 0m ⇒ M = 0kN.m E ebI x = 2m ⇒ M = −8kN .m B düaRkamkMlaMgkat; nigdüaRkamm:Um:g;Bt;RtUv)ansg;edaytMélEdl)ansikSatammuxkat;mYy² eyIg)an kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm 80
  • 10. T.Chhay +12kN +8kN Shear diagram C D B E A V (kN) -3kN -13kN -8kN C D E Moment diagram A B M (kN.m) +18kN +24kN 4> düaRkamkMlaMgkat;TTwg edayeRbIdüaRkambnÞúk Shear diagram by using Load diagram CaTUeTAsMrab;FñwmsþaTickMNt; munnwgkMNt;rkkMlaMgkat;TTwgeKRtUv rkRbtikmμTMrCamunsin b¤bMElg FñwmKMrU eTACaGgÁesrI b¤eTACadüaRkambnÞúk. kMlaMgkat;TTwgesμInwg plbUkrvagbnÞúkcMcMnuc nigRkLaépÞénbnÞúk BRgayEpñkxageqVg b¤EpñkxagsþaM. V = ∑ ( Pext + SQ ) = ∑ ( Pext + S Q ) left right enAeBldüaRkambnÞúk CabnÞúkcMcMnuc enaHdüaRkamkMlaMgkat;TTwgmanragCabnÞat;efrRsbGkS½énRb EvgFñwm. enAeBldüaRkambnÞúk CabnÞúkBRgayesμI enaHdüaRkamkMlaMgkat;TTwgmanragCabnÞat;eRTtsmIkardW eRkTI1. ebIdüaRkambnÞúk CabnÞúkBRgayminesμI enaHdüaRkamkMlaMgkat;TTwgmanragCa)a:ra:bUlsmIkardWeRk TI2. ]TahrN¾³ edayeRbIlT§pldüaRkambnÞúkén]TahrN¾xagelI cUrsg;düaRkamkMlaMgkat;TTwg. dMeNaHRsay³ V A = +12kN VC = 12 − 15 = −3kN VD = 12 − 15 − 10 = −13kN kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm 81
  • 11. T.Chhay VB = 12 − 15 − 10 + 21 = +8kN VE = 12 − 15 − 10 + 21 − 4 × 2 = 0kN 5> düaRkamm:Um:g;Bt; edayeRbIdüaRkamkMlaMgkat;TTWg Bending moment diagram by using Shear diagram eKGacsg;düaRkamm:Um:g;Bt;edayeRbIdüaRkamkMlaMgkat;edaypÞal; edaymin)ac;eRbIviFImuxkat;. m:Um:g; Bt;esμInwgplbUkrvagRklaépÞéndüaRkamkMlaMgkat;TTwg nigm:Um:g;xageRkA EpñkxageqVgb¤EpñkxagsþaM. M = ∑ ( SV + M ext ) = ∑ ( SV + M ext ) left right enAeBldüaRkamkMlaMgkat;TTwgmanragCabnÞat;efr enaHdüaRkamm:Um:g;manragCabnÞat;eRTtsmIkar dWeRkTI1. enAeBldüaRkamkMlaMgkat;TTwgmanragCabnÞat;eRTtsmIkardWeRkTI1 enaHdüaRkamm:Um:g;Bt;man ragCa)a:ra:bUlsmIkardWeRkTI2. ebIdüaRkamkMlaMgkat;TTwgmanragCa)a:ra:bUlsmIkardWeRkTI2 enaHdüaRkam m:Um:g;Bt;manragCa)a:ra:bUlsmIkardWeRkTI3. ]TahrN¾³ edayeRbIlT§pldüaRkamkMlaMgkat;TTwgén]TahrN¾xagelI cUrsg;düaRkamm:Um:g;Bt;. dMeNaHRsay³ edaysarFñwmenaHminrgm:Um:g;xageRkAdUcenH m:Um:g;Bt;esμInwgplbUkRkLaépÞéndüaRkamkMlaMgkat;TTwgEpñkxageqVgb¤EpñkxagsþaM M = 0 edayenAEpñkxageqVgcMnuc A KμankMlaMgkat;TTwg A M C = 12 × 2 = +24kN .m M D = 12 × 2 − 3 × 2 = +18kN .m M B = 12 × 2 − 3 × 2 − 13 × 2 = −8kN .m 2 M E = 12 × 2 − 3 × 2 − 13 × 2 + 8 × = 0 KN .m 2 6> viFItMrYtpl Method of superposition viFItMrYtpl RtUv)aneRbIsMrab;sMrYlkñúgkarsikSadüaRkamkMlaMgkat;TTwg nigdüaRkamm:Um:g;Bt; sMrab;Fñwm TaMgLayNaEdlrgkMlaMgeRkAeRcIn. edIm,IsMrYlkñúgkaredaHRsay KWeKRtUvedaHRsaykMlaMgkat; nigm:Um:g;Bt; kñúgkrNIbnÞúknImYy² rYcehIyeTIbeKeFVIplbUkBiCKNitlT§plEdl)an. kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm 82
  • 12. T.Chhay ]TahrN¾³ 15kN 15kN 1m 1m w=4kN/m A B = + 3m A B 3m w=4kN/m A B 3m kMlaMgTTwg nigm:Um:g;Bt;kñúgFñwm 83