SlideShare une entreprise Scribd logo
1  sur  106
T.Chhay




               V.   karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl
                             Shear and Torsion Strength Design

1> esckþIepþIm                Introduction
            CMBUkenHnwgBN’naBIdMeNIrkarsikSaKNnamuxkat;ebtugeRbkugRtaMgedIm,ITb;Tl;kMlaMgkat; nigkM
laMgrmYlEdlekItBIkMlaMgGnuvtþn_xageRkA. edaysarersIusþg;Tajrbs;ebtugexSayCagersIusþg;sgát;
rbs;va karsikSaKNnasMrab;kMlaMgkat; nigkMlaMgrmYlkøayCaerOgsMxan;sMrab;RKb;RbePTeRKOgbgÁúM
ebtugTaMgGs;.
            karEbgEckrvagkar)ak;rbs;FñwmebtugeRbkugRtaMgeRkamGMeBIkMlaMgkat; b¤bnSMkMlaMgkat; nigkM
laMgrmYl KWxusBIkar)ak;eRkamGMeBIkMlaMgBt;begáag. va)ak;y:agelOnedaymin)anRbkasGsnñCamun
RKb;RKan; ehIysñameRbHGgát;RTUgEdlekItmanmanTMhMFMCagsñameRbHedaysarGMeBIkMlaMgBt;begáag.
TaMgkMlaMgkat; nigkMlaMgrmYlbegáItCakugRtaMgkat;. kugRtaMgenHGacegáItCakugRtaMgTajem (principal
tensile stress) enARtg;muxkat;eRKaHfñak;EdlGacnwgmantMélFMCagersIusþg;Tajrbs;ebtug. cMNaMfa

bøg;ekagrgkar)ak;edaykarrmYlKWbNþalmkBIm:Um:g;rmYlEdl)ak;bEnßmBIelI. kugRtaMgenAkñúgFñwmFmμta
minRtwmEtekIteLIgedaysarkMlaMgkat;edaypÞal; (direct shear) b¤kMlaMgrmYlsuT§ (pure torsion)
b:ueNÑaHeT b:uEnþvak¾ekIteLIgedaysarbnSMénkMlaMg nigm:Um:g;xageRkA. kMlaMgTaMgenaHbegáIteGayman
kugRtaMgTajGgát;RTUg (diagonal tension stress) b¤kugRtaMgTajedaysarkarbegáag (flexural shear
stress) enAkñúgGgát;. kugRtaMgkMlaMgkat;edaypÞal; b¤kugRtaMgrmYlsuT§ekItmanEtenAkñúgRbB½n§eRKOg

bgÁúMxøHb:ueNÑaH dUcCakrNI corbel b¤ bracket EdlBak;B½n§nwgkMlaMgkat;edaypÞal; b¤ cantilever
balcony EdlTak;TgCaBiessnwgkMlaMgrmYlsuT§enAelIFñwmTMr.



2> kareFVIkarrbs;Fñwm               homogeneous      eRkamGMeBIkMlaMgkat;
       Behavior of Homogeneous Beams in Shear
      BicarNaFatuGnnþtUcBIr A1 nig A2 rbs;FñwmctuekaNenAkñúgrUbTI 5>1 (a) EdlplitBIsMPar³
EdlmanlkçN³sac;mYy (homogeneous), lkçN³esμIsac; (isotropic) nig linearly elastic. rUbTI
5>2 (b) bgðajBIkarBRgaykugRtaMgBt; nigkarBRgaykugRtaMgkat;elIkMBs;rbs;muxkat;. kugRtaMg


Shear and Torsion Strength Design                                                        214
NPIC




TajEkg (tensile normal stress) ft nigkugRtaMgkat; v CatMélenAkñúgFatu A1 enAelIkat;bøg; a − a
Rtg;cMgay y BIG½kSNWt.




        BIeKalkarN_ classical emkanic eKGacsresrkugRtaMgEkg (normal stress) f nigkugRtaMg
kat; v sMrab;Fatu A1 dUcxageRkam³
                         My
                      f =                                                                (5.1)
                          I
nig                  v=
                        VA y VQ
                         Ib
                            =
                              Ib
                                                                                         (5.2)

Edl        M   nig V = m:Um:g;Bt; nigkMlaMgkat;enARtg;muxkat; a − a
                    A = RkLaépÞrbs;muxkat;enARtg;bøg;Edlkat;tamTIRbCMuTMgn;rbs;Fatu A1

                    y = cMgayBIFatuGnnþtUceTAG½kSNWt

                    y = cMgayBITIRbCMuTMgn;rbs; A eTAG½kSNWt


karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                          215
T.Chhay




                   m:Um:g;niclPaBrbs;muxkat;
                    I=

               Q = m:Um:g;sþaTicrbs;RkLaépÞmuxkat;EdlenABIxagelI b¤BIxageRkamG½kSNWt

               b = TTwgrbs;Fñwm

      rUbTI 5>2 bgðajBIkugRtaMgxagkñúgEdlmanGMeBIelIFatuGnnþtUc A1 nig A2 . edayeRbIrgVg;m:
(Mohr’s cicle) enAkñúgrUbTI 5>2(b) kugRtaMgemsMrab;Fatu A1 enAkñúgtMbn;TajxageRkamG½kSNWtkøayCa
                                             2
                                       ⎛f ⎞
                     f t (max)
                                   f
                                 = t + ⎜ t ⎟ + v2
                                   2   ⎝2⎠
                                                      kugRtaMgTajem               (5.3a)

                                             2
                                            ⎛f ⎞
                     f c (max ) =
                                    ft
                                    2
                                       − ⎜ t ⎟ + v2
                                            ⎝2⎠
                                                      kugRtaMgsgát;em             (5.3b)

nig                 tan 2θ max      =
                                         v
                                       ft / 2




Shear and Torsion Strength Design                                                    216
NPIC




3> kareFVIkarrbs;FñwmebtugGarem:CalkçN³minEmnsac;mYy
       Behavior of Concrete Beams as Nonhomogeneous Sections
       kareFVIkarrbs;FñwmebtugGarem: nigFñwmebtugeRbkugRtaMgxusBIFñwmEdk EdlersIusþg;Tajrbs;
ebtugmantMélRbEhlmYyPaKdb;énersIusþg;sgát;rbs;ebtug. ersIusþg;sgát; fc enAkñúgFatu A2 énrUbTI
5>2(b) EdlenAxagelIG½kSNWtkarBareRbH edaysarkugRtaMgemGtibrmaenAkñúgFatuGnnþtUcCakugRtaMg
sgát;. sMrab;Fatu A1 EdlenAxageRkamG½kSNWt kugRtaMgemGtibrmaCakugRtaMgTaj dUcenHnwgekItman

karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                  217
T.Chhay




sñameRbH. edaysarm:Um:g;Bt; dUcKñanwgkugRtaMgTajfycuH ehIykugRtaMgkat;ekIneLIgkñúgTisedAeTArk
TMr enaHkugRtaMgTajem ft (max ) nwgeFVIGMeBIelIbøg;RbEhl 45o Rtg;muxkat;Ek,rTMr dUceXIjenAkñúgrUbTI
5>3. edaysarersIusþg;Tajrbs;ebtugtUc sñameRbHGgát;RTUgekItmantambøg;Ekgnwgbøg;énkugRtaMg
Tajem ehIysñameRbHenHeKeGayeQμaHfa sñameRbHGgát;RTUgTaj (diagonal tension crack). edIm,I
karBarsñameRbHEbbenHBITIkEnøgcMh (opening) eKRtUvdak;EdkTajGgát;RTUgBiess.
        RbsinebIeKsnμt; ft EdlenAEk,rTMrénrUbTI 5>3 esμIsUnü enaHFatuGnnþtUcnwgesÞIrkøayeTACa
sßanPaBénkugRtaMgkat;suT§ ehIykugRtaMgTajemEdleRbIsmIkar 5.3a nwgesμInwgkugRtaMgkMlaMgkat; v
enAelIbøg; 45o . vaCakugRtaMgTajGgát;RTUgEdlbgáeGaymansñameRbHeRTt.
        karyl;y:agc,as;las;BI correct shear mechanism enAkñúgebtugGarem:enAminTan;RKb;RKan;
enAeLIgeT. b:uEnþ viFIén ACI-ASCE Joint Committee 426 pþl;nUveKalkarN_mUldæanEdl)anBI
lT§plénkarBiesaFy:ageRcInsn§wksn§ab;.




4> FñwmebtugEdlKμanEdkTajGgát;RTUg
       Concrete Beams without Diagonal Tension Reinforcement
       enAkñúgtMbn;énm:Um:g;Bt;FM sñameRbHekItmanesÞIrEtEkgnwgG½kSrbs;Fñwm. sñameRbHTaMgenHman
eQμaHfa sñameRbHBt;begáag (flexural crack). enAkñúgtMbn;kMlaMgkat;FMedaysarkMlaMgTajGgát;RTUg
sñameRbHeRTtekItmanbnþBI flexural crack ehIyRtUv)aneKehAfasñameRbHkMlaMgkat;begáag (flexural
shear crack). rUbTI 5>4 bgðajBIRbePTsñameRbHEdlrMBwgnwgekItmanenAkñúgebtugGarem:edayman b¤

KμanEdkTajGgát;RTUgRKb;RKan;.

Shear and Torsion Strength Design                                                        218
NPIC




       enAkñúgFñwmeRbkugRtaMg muxkat;esÞIrEtrgkugRtaMgsgát;TaMgGs;eRkamGMeBIbnÞúkeFVIkar (service
load). BIrUbTI 5>2 (c) nig (d) kugRtaMgemsMrab;Fatu A2 KW

                  f t (max ) = − c + ( f c / 2)2 + v 2
                                 f
                                 2
                                                        kugRtaMgTajem                 (5.4a)

                  f c (max ) = − c − ( f c / 2)2 + v 2
                                 f
                                  2
                                                        kugRtaMgsgát;em               (5.4b)

nig              tan 2θ max =
                                     v
                                   f /2  c




     k> KMrU)ak;rbs;FñwmEdlKμanEdkTajGgát;RTUg
            Modes of Failure of Beams without Diagonal Tension Reinforcement
        pleFobElVgkat;elIkMBs; (slenderness ratio) rbs;FñwmkMNt;nUvKMrU)ak;rbs;Fñwm. rUbTI 5>5
bgðajBIkar)ak;sMrab;EdnkMNt;én slenderness ratio epSg². RbEvgElVgkMlaMgkat; (shear span) a
sMrab;bnÞúkcMcMnucCacMgayrvagcMnucénkarGnuvtþbnÞúk nigépÞénTMr. sMrab;bnÞúkBRgay shear span lc Ca
clear beam span. CaeKalkarN_ KMrUénkar)ak;manbIEbbKW kar)ak;edaykarbegáag (flexural failure),

kar)ak;edaykMlaMgTajGgát;RTUg (diagonal tension failure) nigkar)ak;edaybnSMkarkat; nigkarsgát;
(shear compression failure or web shear). Fñwmkan;EtRsav kareFVIkarrbs;vakan;EtxiteTArklkçN³

begáagdUckarerobrab;xageRkam.


karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                      219
T.Chhay




     x> kar)ak;edaykarBt;begáag                      Flexural Failure [F]
        sMrab; flexural failure sñameRbHeRcInEtQrelIRbEvgmYyPaKbIEpñkkNþalrbs;Fñwm ehIyEkg
eTAnwgExSénkugRtaMgem. sñameRbHenHekItBIkugRtaMgkMlaMgkat; v tUc nigkugRtaMgBt; f FM EdlbegáIt
nUvkugRtaMgem ft (max ) esÞIrEtedk. enAkñúgKMrU)ak;EbbenHsñameRbHbBaÄrtUcb:unsréssk;cab;epþImekIt
manenAtMbn;kNþalElVgeRkamGMeBIrbs;bnÞúkRtwm 50% én failure load. edaysarbnÞúkxageRkAekIn
eLIg sñameRbHbEnßmekItmanenAtMbn;kNþalrbs;ElVg ehIysñameRbHdMbUgrIkFM ehIymanTisedAeq<aH
eTArkG½kSNWt CamYynwgkarekIneLIgPaBdabrbs;FñwmKYreGaykt;sMKal;. RbsinebIFñwmenHCa under-
reinforced member kar)ak;rbs;vaekIteLIgkñúglkçN³ ductile eday longitudinal flexural rein-

forcement eFVIkareTAdl; yield. kareFVIkarRbePTenHpþl;nUvkarRbkasGasnñénkarrlMrbs;Fñwm.

pleFobElVgkat;elIkMBs;sMrab;kareFVIkarenHmantMélFMCag 5.5 sMrab;krNIbnÞúkcMcMnuc nigFMCag 16
sMrab;bnÞúkBRgay.

     K> kar)ak;edaykMlaMgTajGgát;RTUg
            Diagonal Tension Failure [Flexure shear, FS]
         kar)ak;edaykMlaMgTajGgát;RTUgekItmanRbsinebIersIusþg;kMlaMgTajGgát;RTUgrbs;FñwmtUcCag
ersIusþg;Bt;begáagrbs;va. pleFobElVgkat;elIkMBs;mantMélkNþalEdlERbRbYlcenøaH 2.5 eTA 5.5
sMrab;krNIbnÞúkcMcMnuc. eKKitFñwmEbbenHCa intermidate slenderness. sñameRbHcab;epþImCamYykar
ekIteLIgén flexural crack bBaÄresþIg²enAkNþalElVg nigbnþedaykar)at;bg;PaBs¥itrvagEdkCamYy
nwgebtugEdlB½T§CMuvijvaenARtg;TMr. bnÞab;mkeTot edayminmankarRbkasGsnñRKb;RKan;BIkarekItman
kar)ak; sñameRbHGgát;RTUgBIr b¤bIekItmanenARtg;RbEhl 1.5d eTA 2d éncMgayBIépÞénTMrkñúgkrNIFñwm
ebtugGarem: nigCaTUeTAekItmanRtg;RbEhlmYyPaKbYnénElVgkñúgkrNIFñwmeRbkugRtaMg. enAeBlEdl
vaenAzitezr sñameRbHGgát;RTUgmYykñúgcMeNamenaHrIkhMkøayCasñameRbHTajGgát;RTUgem ehIylat
sn§wgeTArksréssgát;xagelIrbs;Fñwm dUceXIjenAkñúgrUbTI 5>5(b) nig 5>5(c). cMNaMfa flexural
crack minlatrIkraleTArkeTArkG½kSNWtenAkúñgkrNIKrU)ak;RsYyEbbenHeT. KMrU)ak;enHmanPaBdab
                                                      M
tUcCagKMrU)ak;elIkmunenAeBl)ak;.
         eTaHbICakMlaMgkat;xageRkAGtibrmaenARtg;TMrkþI TItaMgeRKaHfñak;rbs;kugRtaMgTajemGtibrma
minsßitenARtg;TMreT. vaRtUv)ankat;bnßyenARtg;mxkat;enaH edaysarkMlaMgsgát;FMrbs;EdkeRbkug
                                                 u
RtaMgbEnßmBIelIkMlaMgsgát;bBaÄrénRbtikmμrbs;FñwmenARtg;TMr. vaCamUlehtuEdlsñameRbHGgát;RTUg
Shear and Torsion Strength Design                                                      220
NPIC




EdlenAzitezrmanTItaMgq¶aycUlmkkñúgElVgRbEhlmYyPaKbYnénElVgsMrab;FñwmeRbkugRtaMgEdlman
søab ehIyTItaMgenHGaRs½ynwgTMhMénkMlaMgeRbkugRtaMg nigPaBERbRbYlrbs;cMNakp©it. CarYm
diagonal tension failure CalT§plénbnSMrbs;kugRtaMgBt; nigkugRtaMgkat; edayKitnUvkarcUlrYmrbs;

bgÁúMbBaÄrrbs;kMlaMgeRbkugRtaMg nigRtUv)ankt;sMKal;edaysñameRbHbegáag nigsñameRbHGgát;RTUg.
CakarRbesIr eKehAvafa flexure shear sMrab;FñwmeRbkugRtaMg ehIyvamanlkçN³gayRsYlBnül;Ca
web shear Edlnwgerobrab;enAeBlbnÞab;.




karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                  221
T.Chhay




     X> kar)ak;edaybnSMkarkat; nigkarsgát;
              Shear Compression Failure [Web Shear, WS]
          FñwmEdlRbQm shear compression failure EtgmanpleFobElVgkat;elIkMBs; 2.5 sMrab;
krNIbnÞúkcMcMnuc nigtUcCag 5.0 sMrab;bnÞúkBRgay. dUckñúgkrNIkar)ak;edaykMlaMgTajGgát;RTUg
sñameRbHedaysarkarBt;esþIg²mYycMnYncab;epþImekItmanenAkNþalElVg ehIybBaÄb;karrIkral
edaysarkar)at;bg; PaBs¥itrvagEdkbeNþayCamYynwgebtugEdlB½T§CMuvijvaenARtg;TMr. bnÞab;mk
sñameRbHeRTtEdlmanlkçN³ecaTCagsñameRbHkñμúgkrNIkar)ak;edaykMlaMgTajGgát;RTUgekIteLIg
Pøam² nigbnþrIkraleq<aHeTArkG½kSNWt. GRtaénkarrIkralrbs;vaRtUv)ankat;bnßyedaysarkarEbk
rbs;ebtugenAelIsréssgát;xagelI nigkarEbgEckkugRtaMgeLIgvijenAkñúgtMbn;xagelI. kar)ak;Pøam²
ekIteLIgedaysarsñameRbHGgát;RTUgemrYmpSMngtMbn;ebtugEbk dUcbgðajenAkñúgrUbTI 5>5(c). eKKit
                                             w
fakar)ak;RbePTenHmanlkçN³minsUvRsYydUckar)ak;edaysar diagonal tension failure edaysar
karBRgaykugRtaMgeLIgvij. CakarBit vaCaRbePTénkar)ak;EdlmanlkçN³RsYyedaymankarRbkas
GasnñEdlmanEdnkMNt; ehIyeKRtUveCosvagkarsikSaKNnaEbbenHdac;xat.
          FñwmebtugminmanlkçN³sac;mYy (homogeneous) ehIyCaTUeTAkarBRgayersIusþg;rbs;ebtug
enAelIElVgTaMgmUlmanlkçN³minesμIKñaeT. dUcenH eKminGacrMBwgBIkarekIteLIgénsñameRbHGgát;RTUg
enAelIcugTaMgsgçagrbs;Fñwm)aneT. ehIyedaysarlkçN³TaMgenH karbnSMCan;Kñaénkar)ak;edaykar
Bt; nigkar)ak;edaykMlaMgTajGgát;RTUg CamYynwgkar)ak;edaysarkMlaMgTajGgát;RTUg nigkar)ak;
edaybnSMkMlaMgkat; nigkMlaMgsgát;GacekItmanenAeBlpleFobElVgkat;elIkMBs;Can;Kña. RbsinebI
eKdak;EdkkMlaMgkat; (shear reinforcement) smrmü eKGackat;bnßykar)ak;edaylkçN³RsYyrbs;
Ggát;edkCamYynwgfvikarbEnßmtictYc.
          kar)ak;PaKeRcInEtgEt)ak;edaykMlaMgTajGgát;RTUg EdlCabnSMénT§iBlrbs;karBt;begáag
nigkarkat;. RbePTénkar)ak;edaybnSMkMlaMgkat; nigkMlaMgsgát; ¬CalT§plénkarEbkénépÞsgát;xag
elIrbs;ebtug nigkar)at;bg;lT§PaBTb;Tl;kMlaMgBt;¦ naMdl;karEbgEcksøabrgkarTajecjBIRTnug
sMrab;muxkat;mansøabedaysarsñameRbHeRTtlatsn§wgeTArkTMr. karEbkénFñwmrbs;muxkat;eFVIeGay
FñwmeFVIkardUcnwgFñÚ (tied arch). CakarRbesIr eKKYrehARbePTénkar)ak;enHCa kar)ak;kMlaMgRTnug
(web-shear failure) sMrab;FñwmeRbkugRtaMg eKcaM)ac;kMNt;lT§PaBénbnSMkMlaMgBt; nigkMlaMgkat; nig

lT§PaBkMlaMgkat;RTnugrbs;muxkat;Rtg;TItaMgeRKaHfñak;edIm,IkMNt;ersIusþg;kMlaMgkat;rbs;muxkat;eb-
tug.

Shear and Torsion Strength Design                                                     222
NPIC




         karEbgEckkugRtaMgkat;tamTisedkGtibrmaenAkñúgmuxkat;eRbHrbs;muxkat;mansøabRtUv)an
bgðajenAkñúgrUbTI 5>6. edaysarkarpøas;bþÚrTTwgmuxkat;y:agrh½senARtg;RCug A dUcenHeKcaM)ac;
RtYtBinitülT§PaBrbs;muxkat;enARtg;TItaMgeRKaHfñak;tambeNþayElVg CaBiesssMrab;kar)ak;edaysar
kMlaMgkat;RTnug (web-shear failure).




5> kugRtaMgkat; nigkugRtaMgemenAkñúgFñwmeRbkugRtaMg
       Shear and Principal Stresses in Prestressed Beams
          dUcEdl)anerobrab;enAkñúgEpñk 4/ flexure shear enAkñúgFñwmebtugeRbkugRtaMgrYmbBa©ÚlTaMgT§i-
BlénkMlaMgeRbkugRtaMgsgát;EdlGnuvtþBIxageRkA. bgÁúMkMlaMgbBaÄrrbs;kMlaMgEdkeRbkugRtaMgkat;
bnßykugRtaMgbBaÄrEdlekIteLIgedaybnÞúkTTwgG½kSxageRkA (external transverse load) ehIy net
transverse load EdlFñwmRtUvTTYlmantMéltUcKYreGaykt;sMKal;sMrab;FñwmeRbkugRtaMgCagsMrab;Fñwm

ebtugGarem:.
          elIsBIenH kMlaMgsgát;rbs;EdkeRbkugRtaMg ¬eTaHbIenAkñúgkrNI straight tendon¦ kat;bnßy
T§iBlrbs; tensile flexural stresses y:ageRcIn dUcenHkarrIkraldalén flecural cracking nigTMhMén
flexural cracking enAkñúgFñwmeRbkugRtaMgRtUv)ankat;bnßy. CalT§pl kMlaMgkat; nigkugRtaMgemenA

kñúgFñwmeRbkugRtaMgmantMéltUcCagkMlaMgkat; nigkugRtaMgemenAkñúgFñwmebtugGarem:xøaMgNas;. dUcenH
smIkarmUldæanEdlbegáIteLIgsMrab;kMlaMgkat;enAkñúgebtugeRbkugRtaMgmanlkçN³dUcKñanwgsmIkarmUl
dæanEdlbegáIteLIgsMrab;ebtugeRbkugRtaMg. rUbTI 5>7 bgðajBIkarcUlrYmrbs;bgÁúMbBaÄrrbs;kMlaMgeRb
kugRtaMgenAkñúgEpñkEdlminmanlMnwg b¤kMlaMgkat;bBaÄr V PaKeRcInEdlekItedaybnÞúkTTwgG½kSxag
eRkA. kMlaMgkat;suT§ (net shearing force) Vc EdlTb;Tl;edayebtugKW
                     Vc = V − V p                                                       (5.5)


karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                         223
T.Chhay




BIsmIkar 5.2 kugRtaMgkat;ÉktþasuT§ v enARtg;kMBs;Nak¾edayrbs;muxkat;KW
                           Vc Q
                    vc =                                                             (5.6)
                            Ib
karEbgEckkugRtaMgsréssgát; fc EdlbNþalBIm:Um:g;Bt;xageRkAKW
                              Pe Pe ec M T c
                     fc = −      ±    m                                              (5.7)
                              Ac   Ic   Ic
ehIyBIsmIkar 5.4a kugRtaMgTajemKW
                     f 't =   ( f c / 2)2 + vc2 −   fc
                                                                                     (5.8)
                                                    2



     k>     Flexural-Shear Strength
         edIm,IsikSaKNnasMrab;kMlaMgkat; eKcaM)ac;kMNt;faetI flexural shear b¤ web shear lubedIm,I
eFVIkareRCIserIsersIusþg;kat; Vc rbs;ebtug. sñameRbHeRTtEdlmanlMnwg (inclined stabilized crack)
enAcMgay d / 2 BI flexural crack EdlekItmanenAeBlrg first cracking load enAkñúgkrNI flexure
shear RtUv)anbgðajenAkñúgrUbTI 5>8. RbsinebI kMBs;RbsiT§PaBCa d p ¬kMBs;BIsréssgát;eTATIRbCMu

TMgn;rbs;EdkeRbkugRtaMgbeNþay¦ bMErbMrYlm:Um:g;rvagmuxkat; @ nig # KW
                                    Vd p
                    M − M cr ≅                                                       (5.9a)
                                      2
b¤                  V=
                               M cr
                           M /V − d p / 2
                                                                                     (5.9b)



Shear and Torsion Strength Design                                                       224
NPIC




Edl V CakMlaMgkat;enARtg;muxkat;EdlBicarNa. lT§plénkarBiesFCaeRcInbgðajfaeKRtUvkar
kMlaMgkat;bBaÄrbEnßmEdlmanTMhM 0.6bwd p f 'c sMrab;xñat US nig bwd p f 'c / 20 sMrab;xñat SI
edIm,IeFVIeGaymansñameRbHeRTtenAkñúgrUbTI 5>8 eBjelj. dUcenH kMlaMgkat;bBaÄrsrubEdleFVIGMeBI
enARtg;bøg;elx @ rbs;rUbTI 5>8 KW
                Vci =
                           M cr
                      M /V − d / 2
                                    + 0.6bw d p f 'c + Vd       ¬xñat US¦ (5.10)
                                           p


                     Vci =
                                  M cr
                              M /V − d p / 2
                                             +
                                               bw d p f 'c
                                                    20
                                                           + Vd   ¬xñat SI¦

karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                 225
T.Chhay




Edl Vd CakMlaMgkat;bBaÄrEdlbNþalBITMgn;pÞal;. bgÁúMbBaÄr V p rbs;kMlaMgeRbkugRtaMgminRtUv)an
KitbBa©ÚlenAkñúgsmIkar 5.10 eT edaysarvamanTMhMtUctambeNþaymuxkat;ElVgEdlEdkeRbkugRtaMg
minecatxøaMg.
        tMélrbs; V enAkñúgsmIkar 5.10 KWCakMlaMgkat;emKuN Vi enARtg;muxkat;EdlBicarNaEdl
bNþalBIbnÞúkxageRkAEdlekIteLIgtMNalKñaCamYynwgm:Um:g;Gtibrma M max EdlekIteLIgenARtg;mux
kat;enaH
                Vci = 0.6λ f 'c bw d p − Vd +
                                               Vi
                                                  (M cr ) ≥ 1.7λ f 'c bwd p ¬xñat US¦ (5.11)
                                              M               max
                             λ f 'c bw d p                            λ f 'c bw d p
                     Vci =
                                    20
                                             − Vd +
                                                       Vi
                                                      M max
                                                            (M cr ) ≥
                                                                           7
                                                                                      ¬xñat SI¦
                         ≤ 5.0λ f 'c bw d p      ¬xñat US¦
                         ≤ 0.42λ f 'c bw d p

Edl             sMrab;ebtugTMgn;Fmμta
          λ = 1 .0
          = 0.85 sMrab; sand-lightweight concrete

          = 0.70 sMrab; all-lightweight concrete

       Vd = kMlaMgkat;Rtg;muxkat;EdlbNþalBIbnÞúkefrEdlKμanemKuN

       Vci = ersIusþg;kMlaMgkat;Fmμta (nominal shear strength) Edlpþl;eGayedayebtugenAeBl

             EdlsñameRbHkMlaMgTajekItBIbnSMénkMlaMgkat;bBaÄr nigm:U:m:g;
       Vi = kMlaMgkat;emKuNRtg;muxkat;EdlbnÞúkxageRkAekIteLIgenAeBlCamYyKñanwg M max

       sMrab;ebtugTMgn;Rsal λ = f ct / 6.7 f 'c sMrab;xñat US nig λ = fct / 0.556 f 'c sMrab;xñat
SI RbsinebIeKsÁal; tensile splitting strength f ct . cMNaMfatMélrbs; f 'c minKYrFMCag 100 psi

(0.69MPa ) .
       smIkarsMrab; M cr ¬m:Um:g;EdlbegáIt flexural cracking EdlbNþalBIbnÞúkxageRkA¦ RtUv)an
eGayeday
               M cr = c (6 f 'c + f ce − f d )          ¬xñat US¦
                        I
                                                                                     (5.12)
                        y       t

                     M cr
                              I
                                    (
                             = c 0.5 f 'c + f ce − f d
                               yt
                                                          )           ¬xñat IS¦
          enAkñúg ACI Code eKeRbI        f pe   CMnYseGay      f ce




Shear and Torsion Strength Design                                                                 226
NPIC




Edl            ersIusþg;sgát;rbs;ebtugEdlbNþalBIeRbkugRtaMgRbsiT§PaBeRkaykMhatbg;enARtg;
           f ce =

                srésxageRkAbMputrbs;muxkat;EdlkugRtaMgTajRtUv)anbgáeLIgedaybnÞúkxageRkA.
                enARtg;TIRbCMuTMgn; fce = f c .
         f d = kugRtaMgEdlbNþalBIbnÞúkGefrKμanemKuNenARtg;srésxageRkAbMputrbs;muxkat;Edl

                bNþalEtBIbnÞúkpÞal;EdlkugRtaMgTajRtUv)anbgáedaybnÞúkxageRkA.
         yt = cMgayBIG½kSTIRbCMuTMgn;eTAsrésrgkarTajxageRkA

ehIy M cr = EpñkxøHrbs;m:Um:g;énbnÞúkxageRkAEdlbgáeGaymansñameRbH. CakarsMrYl eKGacCMnYs
Sb CMnYseGay I c / yt .

        rUbTI 5>9 bgðajBIdüaRkamrbs;smIkar 5.10 CamYynwgTinñn½yénkarBiesaF.




       cMNaMfa eKeRbIkarsikSaKNnadUcKñaEdlGnuvtþsMrab;muxkat;cak;Rsab; sMrab;karsikSaKNna
kMlaMgkat;énmuxkat;smas. BIeRBaHkarsikSaKNnasMrab;kMlaMgkat;KWQrelIsßanPaBkMNt;edA
eBl)ak;eRkamGMeBIbnÞúkemKuN. eTaHbICa muxkat;TaMgmUlrbs;muxkat;smasTb;Tl;nwgkMlaMgkat;
smasdUcmuxkat;Edlcak;kñúgeBlEtmYy (monolithic section) k¾eday k¾karKNnaersIusþg;kMlaMg
karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                  227
T.Chhay




kat; Vc KYrQrelIlkçN³rbs;muxkat;cak;Rsab; edaysarersIusþg;kMlaMgkat;PaKeRcInpþl;eGayeday
RTnugrbs;muxkat;cak;Rsab;. dUcenH fce nig f d enAkñúgsmIkar 5.12 RtUv)anKNnaedayeRbIragFrNI
maRtrbs;muxkat;cak;Rsab;.

     x> ersIusþg;kMlaMgkat;RTnug                Web-Shear Strength
   sñameRbHkMlaMgkat;RTnug (web-shear crack) enAkñúgFñwmeRbkugRtaMgekIteLIgedaysarkugRtaMg
EdlminGackMNt;)an (indeterminate stress) EdlCakarRbesIreKKYrKNnavaedaykugRtaMgTajemenA
Rtg;bøg;eRKaHfñak;BIsmIkar 5.8. eKGaccat;TukkugRtaMgkat; vc CakugRtaMgkat;RTnug vcw nigmantMél
GtibrmaenAEk,rTIRbCMuTMgn; cgc énmuxkat;EdlsñameRbHGgát;RTUgCak;EsþgekItman dUckarBiesaFeTA
dl;kar)ak;CaeRcIn)anbgðaj. RbsinebIeKCMnYs vc sMrab; vcw nig fc sMrab; f c ¬EdlCakugRtaMgeb-
tug fc EdlbNþalBIeRbkugRtaMgRbsiT§PaBenARtg;nIv:U cgc¦ enAkñúgsmIkar smIkarEdleGaykugRtaMg
TajemenAkñúgebtugesμInwgersIusþg;TajpÞal; (direct tensile strength) køayCa
                       ( f c / 2) + vcw − f2c
                     f 't =          2
                                                                                  (5.13)

Edl vcw = Vcw / (bwd p ) CakugRtaMgkat;enAkñúgebtugEdlbNþalBIbnÞúkTaMgGs;EdleFVIeGayman
ersIusþg;kMlaMgkat;bBaÄrFmμta Vcw enAkñúgRTnug. edaHRsayrk vcw enAkñúgsmIkar 5.13
                    vcw = f 't 1 + f c / f 't                                       (5.14a)

edayeRbI f 't = 3.5 f 'c psi(0.3 f 'c MPa) CatMéld¾smrmüsMrab;kugRtaMgTajedayQrelIlT§pl
énkarBiesaFCaeRcIn smIkar 5.14(a) køayCa
                vcw = 3.5 f 'c ⎛ 1 + f c / 3.5 f 'c ⎞
                               ⎜
                               ⎝
                                                     ⎟
                                                     ⎠
                                                             ¬xñat US¦              (5.14b)

                vcw = 0.3 f 'c ⎛ 1 + f c / 0.3 f 'c ⎞
                               ⎜
                               ⎝
                                                     ⎟
                                                     ⎠
                                                             ¬xñat SI¦
EdleyIgGacsMrYl)andUcxageRkam
                vcw = 3.5 f 'c + 0.3 f c                     ¬xñat US¦              (5.14c)

                vcw = 0.3( f 'c + f c )                      ¬xñat SI¦
enAkñúg ACI Code eKeRbI f pc CMnYseGay f c . nimitþsBaØaEdleRbIenATIenHKWcg;bBa¢ak;favaCakugRtaMg
enAkñúgebtugminEmnenAkñúgEdkeRbkugRtaMgeT. ersIusþg;kMlaMgkat;Fmμta Vcw EdleGayedayebtugenA
eBlsñameRbHGgát;RTUgekItBIkugRtaMgTajemd¾FMenAkñúgRTnugkøayCa
                Vcw = (3.5λ f 'c + 0.3 f c )bw d p + V p     ¬xñat US¦              (5.15)


Shear and Torsion Strength Design                                                      228
NPIC




                          (            )
                     Vcw = 0.3 λ f 'c + f c bw d p + V p       ¬xñat SI¦
Edl V p = bgÁúMbBaÄrénkMlaMgeRbkugRtaMgRbsiT§PaBenARtg;muxkat;BiessEdlcUlrYmnwgersIusþg;
               FmμtabEnßm
         λ = 1.0 sMrab;ebtugTMgn;Fmμta nigmantMéltUcCagenHsMrab;ebtugTMgn;Rsal
         d p = cMgayBIsréssgát;xageRkAeTATMRbCMuTMng;rbs;EdkeRbkugRtaMg b¤ 0.8h edayykmYy

               NaEdlFMCag
        ACI Code yktMél f c CakugRtaMgsgát;pÁÜbrbs;ebtugenARt;gTIRbCMuTMgn;rbs;muxkat; b¤Rtg;

kEnøgEdlkat;KñarvagRTnug nigsøabenAeBlEdlTIRbCMuTMgn;sßitenAkñúgsøab. enAkñúgkrNImuxkat;smas
eKKNna f c edayQrelIkugRtaMgEdlekIteLIgedaykMlaMgeRbkugRtaMg nigm:Um:g;EdlTb;Tl;eday
Ggát;cak;Rsab;EdleFVIkarEtÉg. düaRkaménTMnak;TMngrvagkugRtaMgkat;RTnugFmμta (nominal web
shear stress) vcw nigkugRtaMgsgát;rbs;ebtugRtg;TIRbCMuTMgn;RtUv)aneGayenAkñúgrUbTI 5>10. cMNaMfa

PaBdUcKñarvagExSekagénsmIkar 5.14b nig c bgðajfasmIkar 5.14c RtUv)anEktMrUvBIsmIkar 5.14b
edIm,IeGaymanlkçN³bnÞat;. Code GnuBaØateGayeRbIemKuN 1.0 CMnYseGayemKuN 0.3 sMrab;tYTIBIr
énsmIkar 5.15.




karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                     229
T.Chhay




      K> karRtYtBinitütMélrbs;V nigV sMrab;KNnaersIusþg;ebtugRTnugV
                                            ci         cw                                              c

          Controlling Values of Vci and Vcw for the Determination of the
          Web Concrete Strength Vc
          ACI Code      mansmIkarbEnßmsMrab;kMNt;Vci nig Vcw edIm,IeRCIserIstMél Vc EdlRtUvkarenA
kñúgkarKNna³
(a)     enAkñúgGgát;eRbkugRtaMgEdlmuxkat;enAcMgay h / 2 BIépÞénTMrenAEk,rcugénGgát;CagRbEvgepÞr
        rbs;EdkeRbkugRtaMg enaHeKRtUvBicarNatMéleRbkugRtaMgkat;bnßyenAeBlKNna Vcw . tMél
        Vcw enHRtUv)anKitCaEdlGtibrmarbs; Vc enAkñúgsmIkar
                          ⎛                 Vu d p ⎞
                    Vcw = ⎜ 0.6λ f 'c + 700
                          ⎜                        ⎟bw d p ≥ 2λ f 'c bw d p
                          ⎝                  Mu ⎟  ⎠
                                                            ≤ 5λ f 'c bw d p     ¬xñat US¦    (5.16)
                          ⎛                Vu d p ⎞
                    Vcw = ⎜ 0.05λ f 'c + 5
                          ⎜                       ⎟bw d p ≥ 0.2λ f 'c bw d p
                          ⎝                 Mu ⎟  ⎠
                                                            ≤ 0.4λ f 'c bw d p   ¬xñat SI¦
          tMél Vu d p / M u minGacFMCag 1.0 eT.
(b)       enAkñúgGgát;eRbkugRtaMgEdl bonding rbs; tendon xøHmin)anBnøÚtdl;cugrbs;Ggát; enaHeKRtUv
          KiteRbkugRtaMgkat;bnßyenAeBlkMNt; Vc edayeRbIsmIkar 5.16 b¤eRbItMéltUcCageKkñúg
          cMeNamtMél Vc EdlTTYl)anBIsmIkar 5.11 nigBIsmIkar 5.15. dUcKña tMélrbs; Vcw Edl
          KNnaedayeRbIeRbkugRtaMgkat;bnßyRtUvyktMélGtibrmaénsmIkar 5.16.
(c)       eKGaceRbIsmIkar 5.16 kñúgkarkMNt; Vc sMrab;Ggát;EdlkMlaMgeRbkugRtaMgRbsiT§PaBmintUc
          Cag 40% énersIusþg;Tajrbs;EdkrgkarBt; (flexural reinforcement) ebImindUcenaHeT luH
          RtaEteKGnuvtþkarviPaKlMGitedayeRbIsmIkar 5.11 sMrab; Vci nigsmIkar 5.15 sMrab; Vcw
          ehIyedayeRCIserIsyktMéltUcCageKéntMélTaMgBIrCatMélkMNt; Vc edIm,IeRbICaersIusþg;
          rbs;RTnugkñúgkarKNnaEdkRTnug.
(d)       bøg;dMbUgsMrab;ersuIsþg;kat;FmμtaEdlRtUvkarsrub (total required nominal shear strength)
          Vn = Vu / φ EdlRtUv)aneRbIsMrab;KNnaEdkRTnugk¾sßitenARtg;cMgay h / 2 BIépÞrbs;TMr.




Shear and Torsion Strength Design                                                            230
NPIC




6> EdkkMlaMgkat;RTnug Web-Shear Reinforcement
  k> Web Steel Planar Truss Analogy
        edIm,IkarBarsñameRbHGgát;RTUgenAkñúgGgát;eRbkugRtaMg eTaHbIekIteLIgedaysar flexural-
shear b¤ web-shear action k¾eday eKRtUvdak;EdkBRgwgtamTMrg;énExSditEdlBN’naBIKnøgrbs;kug

RtaMgTajenAkñúgrUbTI 5>3. b:uEnþdMeNaHRsayEbbenHRtUv)anRcanecal ehIyTMrg;epSgeTotrbs;Edk
RtUv)anécñRbDiteLIgedIm,ITb;Tl;nwgkugRtaMgTajenARtg;bøg;)ak;edaysarkMlaMgkat;eRKaHfñak; (critical
shear failure plane).




karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                       231
T.Chhay




Shear and Torsion Strength Design   232
NPIC




        KMrUénkar)ak;edaykMlaMgkat;eFVIeGayFñwmman stimulated arched section rgkarsgát;enAEpñk
xagelI ehIyRtUv)ancgP¢ab;KñaenAEpñkxageRkamedayEdkTaj dUceXIjenAkñúgrUbTI 5>11(a). Rbsin
ebIeKBinitüEtFatusgát;EdlbgðajenAkñúgrUbTI 5>11 (b) eKGacKitvaCaGgát;sgát; enAkñúg truss RtIekaN
dUcbgðajenAkñúgrUbTI 5>11 (c) EdlmanBhuekaNénkMlaMg Cc / Tb nig Ts EdltMNageGaykMlaMg
EdlmanGMeBIeTAelIGgát;rbs; truss dUcenHeKGacehAvafa truss analogy. kMlaMg Cc kMlaMgsgát;enA
kñúg simulated concrete strut, kMlaMg Tb CakMeNInkMlaMgTajénEdkTaj beNþayem ehIy Ts CakMlaMg
enAkñúgEdkBt; (bent bar). rUbTI 5>12 (a) bgðajBI analogy truss sMrab; krNIénkareRbIEdkkgbBaÄr
(vertical stirrup) CMnYseGayEdkeRTt CamYynwgBhuekaNkMlaMgEdlmankMlaMgTajbBaÄr Ts CMnYs

eGaykMlaMgTajeRTtenAkñúgrUbTI 5>11 (c).
        EdkkMlaMgkat;mantYnaTIsMxan;bYn³
         - vaTb;Tl;EpñkxøHénkMlaMgkat;emKuNxageRkA Vu
         - vaRKb;RKgkarrIkFMénsñameRbHGgát;RTUg
         - vaeFVIeGayEdkbeNþayemsßitcMTItaMg dUcenHeKGacdak;Edk dowel EdlcaM)ac;edIm,IRT
                flexural load
          - vapþl;nUv confinement xøHdl;ebtugenAkñúgtMbn;sgát; RbsinebIeKeRbIEdkkgkñúgTMrg;biTCit

     x> Web Steel Planar Resistance
       RbsinebI Vc ¬ersIusþg;kMlaMgkat;FmμtaénRTnugebtugsuT§¦ mantMéltUcCagkMlaMgbBaÄrsrub
Fmμta Vu / φ = Vn eKRtUvdak;EdkRTnugedIm,ITb;Tl;nUvPaBxusKñaénkMlaMgTaMgBIr. dUcenH
                     Vs = Vn − Vc                                                        (5.17)
enATIenH Vc CatMéltUcCageKén Vci nig Vcw . eKGackMNt; Vc BIsmIkar 5.11 b¤ 5.15 ehIyeKkMNt;
Vs BIsmIkarlMnwgenAkñúg analogous triangular truss. BIsmIkar 5.11(c)
                     Vs = Ts sin α = Cc sin β                                            (5.18a)
Edl Ts CakMlaMgpÁÜbénEdkkgRTnugTaMgGs;EdlEkgnwgbøg;sñameRbHGgát;RTUg ehIy n CacMnYnénKM
lat s . RbsinebI s1 = ns enAkñúgGgát;rgkarTajxageRkamrbs; analogous truss enaH
                     s1 = jd (cot α + cot β )                                            (5.18b)
snμt;fa édXñas;        jd ≅ d    / kMlaMgEdkkgkñúgmYyÉktþaRbEvgBIsmIkar 5.18a nig b Edlman s1 = ns
nwgkøayCa


karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                          233
T.Chhay



                    Ts Ts   V           1
                      =   = s                                                       (5.18c)
                    s1 ns sin α d (cos α + cos β )
       RbsinebIeKmanEdkkgeRTtcMnYn n Edlman analoguos truss chord RbEvg s1 ehIyRbsin
ebI Av CaRkLaépÞénEdkkgeRTtmYy enaH
                    Ts = nAv f y                                                    (5.19a)

dUcenH              nAv =
                                        Vs ns
                             d sin α (cot β + cot α ) f y
                                                                                    (5.19b)

b:uEnþGacsnμt;fa enAkñúgkrNI)ak;edaykMlaMgTajGgát;RTUg (diagonal tension failure) Ggát;RTUgrgkar
sgát;manmMu β = 45o dUcenHsmIkar 5.19b nwgkøayCa
                            Av f y d
                    Vs =               [sin α (1 + cot α )]
                               s
                            Av f y d
b¤            Vs =
                     s
                         (sin α + cos α )                                           (5.20a)

edaHRsayrk s edayeRbI Vs = Vu − Vc
                           Av f y d
                    s=                 (sin α + cos α )                             (5.20b)
                         Vu − Vc
RbsinebIEdkRTnugeRTtpÁúMeLIgedayEdkeTal b¤RkuménEdkeTalEdlEdkTaMgenARtUv)anBt; nigRtUv)an
dak;enAcMgaydUcKñaBIépÞénTMr enaH
               Vs = Av f y sin α ≤ 3.0 f 'c bw d     ¬xñat US¦
               Vs = Av f y sin α ≤ 0.25 f 'c bw d    ¬xñat SI¦
RbsinebIeKeRbIEdkkgbBaÄr mMu α nwgesμInwg 90o enaHeK)an
                            Av f y d
                    Vs =                                                            (5.21a)
                              s
                             Av f y dAvφf y d
b¤              s=               =
                   (Vu / φ ) − Vc Vu − φVc
                                                                                   (5.21b)

enAkñúgsmIkar 5.21a nig b/ d p CacMgayBIsréssgát;xageRkAbMputeTAkan;TIRbCMuTMgn;rbs;EdkeRbkug
RtaMg ehIy d CacMgayBIsréssgát;xageRkAbMputeTATIRbCMuTMgn;rbs;EdkFmμta. tMélrbs; d p min
RtUvtUcCag 0.80h eT.




Shear and Torsion Strength Design                                                     234
NPIC




     K> EdlkMNt;énTMhM nigKMlatrbs;Edkkg
          Limitation on Size and Spacing of Stirrups
       smIkar 5.20 nig 5.21 eGaynUvTMnak;TMngRcasKñarvagKMlatEdkkg nigkMlaMgkat; b¤kugRtaMg
kat;EdlvaRtUvTb;Tl;. enAeBlEdl s fycuH (Vu − Vc ) nwgekIneLIg. edIm,IeGayEdkkgbBaÄrTb;Tl;
sñameRbHGgát;RTUg dUcbgðajenAkñúgrUbTI 5>11 (c) eKRtUvGnuvtþEdnkMNt;KMlatGtibrmasMrab;Edkkg
bBaÄrdUcxageRkam³
       (a) smax ≤ 3 h ≤ 24in.(60cm) Edl h CakMBs;srubrbs;muxkat;
                   4

       (b) RbsinebI Vs > 4λ f 'c bw d p ¬xñat US¦ Vs > λ f 'c bw d p / 3 ¬xñat SI¦ eKRtUvkat;

           bnßyKMlatGtibrmarbs; (a) Bak;kNþal ¬ smax ≤ 83 h ≤ 12in.(30cm)
       (c) RbsinebI Vs > 8λ f 'c bw d p ¬xñat US¦ Vs > 2λ f 'c bw d p / 3 ¬xñat SI¦

           eKRtUvBRgIkmuxkat;.
       (d) RbsinebI Vu = φVn > φVc / 2 / eKRtUvdak;EdkkMlaMgkat;Gb,brma. eKKNnaRkLaépÞ

           EdkGb,brmaenHedaysmIkar
                       Av = 0.75 f 'c w
                                        b s
                                         f
                                               b¤ Av = 50fbws edayykmYyNaEdlFMCag
                                                      y          y

               RbsinebIkMlaMgeRbkugRtaMgRbsiT§PaB Pe FMCag b¤esμInwg 40% énersIusþg;Tajrbs;EdkBt;
               (flexural reinforcement) enaH
                                        A ps f pu s   dp
                                Av =                                                 (5.22b)
                                         80 f y d     bw

           Edlvapþl;nUv Av Gb,brmaRtUvkartUcCag ehIyEdleKGaceRbIvaCMnYs)an.
       (e) edIm,IRbsiT§PaB EdkRTnugRtUvEtmanRbEvgbgáb; (development lengt) RtUvkareBjelj.

           enHmann½yfaEdkkgRtUvBnøÚtcUleTAkñúgEpñkrgkarsgát; nigEpñkrgkarTajrbs;muxkat;/
           RtUvkarkMras;ebtugkarBarEdk (clear concrete cover) tUc nigeKGaceRbITMBk; 90o b¤
           135o enAkñúgtMbn;sgát;.

       rUbTI 5>13 bgðajBIdüaRkaménkardak;EdkkgRTnugeTAtamtMbn;énRbEvgElVgrbs;FñwmeRbkug
RtaMgEdlrgGMeBIénbnÞúkBRgayesμI. épÞqUtCakMlaMgkat;elIs Vs EdlRtUvkarEdkRTnug.




karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                       235
T.Chhay




7> ersIusþg;kMlaMgkat;edkenAkñúgeRKOgbgÁúMsmas
       Horizontal Shear Strength in Composite Construction
      snμt;fakMlaMgkat;tamTisedkepÞreBjeljRtg;épÞb:HénkEnøgEdlCYbKña.

     k> eRkamGMeBIbnÞúkeFVIkar          Service-Load Level
          eKGackMNt;kugRtaMgkat;tamTisedkGtibrma vh BIeKalkarN_mUldæanrbs;emkanic
                           VQ
                    vh =                                                             (5.23)
                           I c bv
Edl       V=   kugRtaMgkat;KNnaKμanemKuN (unfactored design vertical shear) EdleFVIGMeBIelImux
               kat;smas
          Q = m:Um:g;RkLaépÞeFob cgc énkMNt;muxkat;EdlenABIxagelI b¤BIxageRkam cgc

          I c = m:Um:g;niclPaBénmuxkat;smasTaMgmUl

          bv = TTwgRtg;kEnøgb:Hrbs;muxkat;RTnugénGgát;cak;Rsab; b¤TTwgénmuxkat;EdleKKNna

                kMlaMgkat;edk
Shear and Torsion Strength Design                                                       236
NPIC




           eKGacsMrYlsmIkar 5.23 dUcxageRkam
                               V
                     vh =                                                             (5.24)
                             bv d pc

Edl d pc CakMBs;RbsiT§PaBBIsréssgát;xageRkAénmuxkat;smaseTATIRbCMuTMgn; cgc rbs;EdkeRbkug
RtaMg.

     x> Ultimate-Load Level
Direct Method: sMrab;kar)ak;enAkñúgsßanPaBkMNt; eKGacEkERbsmIkar 5.24 edayCMnYs V
eday Vu dUcenHeyIgTTYl)an
                               Vu
                     vuh =                                                            (5.25a)
                              bv d pc

b¤ sMrab;ersIusþg;kMlaMgkat;bBaÄrFmμta Vn
                              Vu / φ   V
                     vnh =           = n                                              (5.25b)
                              bv d pc bv d pc

Edl φ = 0.75 / RbsinebI Vnh CaersIusþg;kMlaMgkat;edkFmμta enaH Vu ≤ Vnh ehIyersIusþg;kMlaMgkat;
FmμtasrubKW
                     Vnh = vnhbv d pc                                                 (5.25c)

ACI Code   kMNt; vnh Rtwm 80 psi(0.55MPa ) RbsinebIeKmineRbIEdkEdkrgcaM (dowel) b¤EdkkgbBaÄr
ehIyépÞ b:HmanlkçN³eRKIm b¤RbsinebIeKeRbIEdkkgbBaÄrGb,brma b:uEnþépÞb:HminmanlkçN³eRKIm.
vnh GaceTAdl; 500 psi (3.45MPa ) EteKRtUveRbI friction theory CamYynwgkarsnμt;xageRkam

     (a)     enAeBlEdlminmanEdkkgbBaÄr b:uEnþépÞb:HénGgát;cak;Rsab;manlkçN³eRKIm
             enaHeKeRbI
                                Vnh ≤ 80 Ac ≤ 80bv d pc                               (5.26a)

                  Edl Ac CaRkLaépÞrbs;ebtugEdlTb;Tl;kMlaMgkat; = bv d pc
       (b)        enAeBlEdleKeRbIEdkkgGb,brma Edl Ac = 50(bws ) / f y b:uEnþépÞb:Hrbs;Ggát;cak;
                  Rsab;minmanlkçN³eRKIm
                                vnh ≤ 80bv d pc

     (c)        RbsinebIépÞb:Hrbs;Ggát;cak;Rsab;manlkçN³eRKImEdlmankMBs; 1 / 4in.(6mm) ehIy
                EdkbBaÄrGb,brmaenAkñúg (b) RtUv)andak; enaHeKeRbI
                                Vnh ≤ 500bv d pc                                      (5.26b)


karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                       237
T.Chhay




     (d)       RbsinebIkMlaMgkat;emKuN Vu > φ (500bv d pc )/ eKGaceRbI shear friction theory edIm,I
               KNnaEdk dowel. enAkñúgkrNIenH kMlaMgkat;edkTaMgGs;RtUv)anKitedaybøg;EkgEdl
                              Vnh = μAvf f y                                             (5.27)

             Edl Avf = RkLaépÞén shear-friction reinforcement/ in.2
                   f y = design yield strength/ minRtUvelIs 60,000 psi (414 MPa )

                  μ = emKuNkkit
                      = 1.0λ sMrab;ebtugEdlcak;elIépÞebtugEdlmaneRKIm

                      = 0.6λ sMrab;ebtugEdlcak;elIépÞebtugEdlminmaneRKIm

                  λ = emKuNsMrab;RbePTebtug
enAkñúgkrNITaMgGs; ersIusþg;kat;Fmμta Vn ≤ 0.20 f 'c Acc ≤ 800 Acc Edl Acc CaRkLaépÞb:Hrbs;
ebtugEdlTb;Tl;nwgkMlaMgkat;epÞr (shear transfer). cMNaMfa enAkñúgkrNICaeRcIn kugRtaMgkat; vuh
EdlTTYl)anBIkMlaMgkat;emKuNGt;FMCag 500 psi(3.45MPa ) eT. dUcenH eKmincaM)ac;RtUvkareRbIEt
shear friction theory kñúgkarKNnaEdkrgcaM (dowel) sMrab;skmμPaBsmas (composite action)

enaHeT.
        KMlatGnuBaØatGtibrmaénEdkrgcaM (dowel) b¤ tie sMrab;kMlaMgkat;edkKWtMéltUcCageKkñúg
cMeNam 4 dgénTMhMtUcCageKénmuxkat;TMr nig 24in.(60cm) .

Basic Method: ACI Code GnuBaØateGayeRbIviFIepSgeTotEdlkMlaMgkat;edkRtUv)anGegát
edayKNnabMErbMrYlCak;EsþgénkMlaMgsgát; b¤kMlaMgTajenAkñúgbøg;NamYy nigedayepþrkMlaMgkat;edk
enaHeTAGgát;EdlCaTMr. eKCMnYsRkLaépÞb:H Acc sMrab; bv d pc enAkñúgsmIkar 5.25b nig c enaHeK
TTYl)an
                      Vnh = vnh Acc                                                      (5.28)
Edl Vnh ≥ Fh / kMlaMgkat;edk ehIyy:agehacNas;vaRtUvesμInwgkMlaMgsgát; C b¤kMlaMgTaj T enA
kñúgrUbTI 5>14. ¬emIlsmIkar 5.30 sMrab;tMélrbs; Fh ¦
          eKGackMNt;RkLaépÞb:H Acc dUcxageRkam
                     Acc = bv lvh                                                        (5.29)
Edl lvh CaRbEvgkMlaMgkat;edk (horizontal shear length) EdlkMNt;enAkñúgrUbTI 5.15(a) nig (b)
sMrab;Ggát;TMrsamBaØ nigsMrab;Ggát;TMrCab; erogKña.

Shear and Torsion Strength Design                                                          238
NPIC




karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl   239
T.Chhay




     K> karKNnaEdkrgcaMskmμsmas
          Design of Composite-Action Dowel Reinforcement
        Edk tie sMrab;kMlaMgkat;edkGacpSMeLIgBIr)arEdkeTal (single bars or wires)/ BIEdkkgeCIg
eRcIn (multiple leg stirrup) b¤BI vertical legs of welded wire fabric. KMlatrbs;vaminGacFMCagbYn
dgénTMhMEdltUcCageKénGgát;TMr b¤ 24in.(60cm) edayykmYyNaEdltUcCageK. RbsinebI μ Ca
emKuNkMlaMgkkit enaHeKGackMNt;kMlaMgkat;edkFmμta Fh enAkñúgrUbTI 5>14 dUcxageRkam
                    Fh = μAvf f y ≤ Vnh                                             (5.30)

tMél ACI rbs; μ KWQrelIersIusþg;kkit-kMlaMgkat;kMNt; (limit shear-friction strength) 800 psi
(5.5MPa ) ¬vaCatMélEdlmanlkçN³suvtßiPaBbnþicEdlbgðajedaykarBiesaF¦. viTüasßanebtugeRb
kugRtaMg (Prestressed Concrete Institute) ENnaM μe = 2.9 CMnYseGay μ = 1.0λ sMrab;ebtug
Edlcak;elIépÞebtugeRKIm ehIykMlaMgkat;KNnaGtibrma (maximum design shear force)
                    Vu ≤ 0.25λ2 f 'c Ac ≤ 1,000λ2 Acc                               (5.31a)
CamYynwgRkLaépÞcM)ac;rbs;Edkkkit-kMlaMgkat; (shear-friction steel)
                              Vuh
                     Avf =                                                          (5.31b)
                             φf y μ e

b¤                   Avh =
                             Vnh     F
                                   = h
                             μe f y μe f y
                                                                                    (5.31c)

edayeRbItMél PCI EdlminsUvsuvtßiPaB smIkar 5.31c køayCa
                    Fh ≤ μ e Avf f y ≤ Vnh                                          (5.32)
                        λ               2
CamYynwg μe = 1,000F bv I vh ≤ 2.9
                         h

Edl bvlvh = Acc / EdkGb,brmaKW
                            50bv s 50bv lvh
                     Av =         =                                                 (5.33)
                              fy     fy



8> CMhanKNnaEdkRTnugsMrab;kMlaMgkat;
       Web Reinforcement Design Procedure for Shear
         xageRkamCakarsegçbBICMhanénkarKNnaEdkRTnugsMrab;kMlaMgkat;³
     !> kMNt;tMélersIusþg;kMlaMgkat;FmμtaEdlRtUvkar Vn = Vu / φ enARtg;cMgay h / 2 BIépÞénTMr Edl
        φ = 0.75 .



Shear and Torsion Strength Design                                                      240
NPIC




     @> KNnaersIusþg;kMlaMgkat;Fmμta (nominal shear strength) Vc EdlRTnugmanedayeRbIviFImYy
        kñúgcMeNamviFIBIrxageRkam³
        (a)     ACI conservative method RbsinebI f pe > 0.40 f pu
                               ⎛              700Vu d p ⎞
                          Vc = ⎜ 0.60λ f 'c +
                               ⎜                        ⎟bw d p ¬xñat US¦
                                                        ⎟
                                       ⎝        M        u    ⎠
                                       ⎛ λ f 'c    V d⎞
                                  Vc = ⎜
                                       ⎜ 20
                                                + 5 u ⎟bw d p
                                                   Mu ⎟
                                                                                 ¬xñat SI¦
                                       ⎝              ⎠
                     Edl 2λ         f 'c bw d p ≤ Vc ≤ 5λ f 'c bw d p       sMrab;xñat US
                            λ f 'c bw d p / 5 ≤ Vc ≤ 0.4λ           f 'c bw d p sMrab;xñat SI
                            Vu d p
                                     ≤ 1.0
                              Mu
                    ehIyeKKNna Vu enARtg;muxkat;dUcKñasMrab;karKNna M u .
                    RbsinebIersIusþg;eRcokTajmFüm (average tensile splitting strength) fct sMrab;
                    ebtugTMgn;Rsal enaH λ = fct / 6.7 f 'c sMrab;xñat US b¤ λ = fct / 0.556 f 'c
                    sMrab;xñat SI CamYynwg f 'c Gt;FMCag 100 psi(0.67MPa ) .
         (b)        Detailed analysis Edl Vc CatMéltUcCageKkñúgcMeNam Vci nig Vcw

¬xñat US¦            1.7λ f 'c bw d p ≤ Vci = 0.60λ f 'c bw d p + Vd +
                                                                                    Vi
                                                                                   M max
                                                                                         (M cr ) ≤ 5.0λ f 'c bwd p
                      λ f 'c bw d p                 λ f 'c bw d p
¬xñat SI¦                    7
                                        ≤ Vci =
                                                         20
                                                                    + Vd +
                                                                              Vi
                                                                             M max
                                                                                   (M cr ) ≤ 0.4λ f 'c bwd p

¬xñat US¦                     (                         )
                     Vcw = 3.5λ f 'c + 0.3 f c bw d p + V p

¬xñat SI¦                     (               )
                     Vcw = 0.3 λ f 'c + f c bw d p + V p

                     edayeRbItMélNaEdlFMCageKkñúgcMeNam d p nig 0.8h
                     Edl M cr = (I c / yt )(6λ f 'c + fce − f d )       ¬xñat US¦
                            M cr = (I c / yt )(0.5λ f 'c + f ce − f d ) ¬xñat SI¦
                     b¤ M cr = Sb (6λ f 'c + fce − f d )                ¬xñat US¦
                            M cr = Sb (0.5λ f 'c + f ce − f d )         ¬xñat SI¦
                            Vi = kMlaMgkat;emKuNEdlbNþalBIbnÞúkGnuvtþn_BIxageRkAEdlekItmankñúg

                                  eBldMNalKñaCamYynwg M max


karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                                          241
T.Chhay




                                kugRtaMgsgát;enAkñúgebtugeRkayekItmankMhatbg;TaMgGs;enARtg;
                                f ce =

                                srésxageRkArbs;muxkat;EdlbnÞúkxageRkAbgáeGaymankugRtaMgTaj.
                                f ce køayCa f c sMrab;kugRtaMgenARtg;TIRbCMuTMgn;rbs;muxkat;.

     #> RbsinebI Vu / φ ≤ Vc / 2 vaminRtUvkarEdkRTnugeT. RbsinebI Vc / 2 < Vu / φ < Vc vaRtUvkar
        EdkGb,brma. RbsinebI Vu / φ > Vc nig
        RbsinebI         Vs = Vu / φ − Vc ≤ 8λ f 'c bw d p        ¬xñat US¦
                         Vs = Vu / φ − Vc ≤ 2λ f 'c bw d p / 3 ¬xñat SI¦

        eKRtUvKNnaEdkRTnug.
        RbsinebI         Vs = Vu / φ − Vc > 8λ f 'c bw d p b¤ Vs > φ (Vc + 8λ f 'c bw d p ) ¬xñat US¦

                         Vs = Vu / φ − Vc > 2λ f 'c bw d p / 3 ¬xñat SI¦

        eKRtUvtMeLIgmuxkat;.
     $> KNnaEdkRTnugGb,brmaEdlRtUvkar. KMlatKW s ≤ 0.75h b¤ 24in.(60cm) edayykmYyNa
        EdltUcCageK.
                 Av min = 0.75 f 'c w b¤ Av min =               ¬US¦ edayykmYyNaEdlFMCag
                                        b s             50bw s
                                         f          y     f                   y

                     Av min =       f 'c
                                            bw s
                                           16 f y
                                                    b¤ Av min = 50fbws ¬SI¦ edayykmYyNaEdlFMCag
                                                                          y

          RbsinebI                           /
                       f pe ≥ 0.40 f pu Av min            EdlmanlkçN³suvtßiPaBticCagCatMéltUcCageKkñúg
          cMeNam
                            A ps f pu s      dp
                     Av =
                            80 f y d p       bw

         Edl d p ≥ 0.80h
          CamYynwg Av min = 0.75                         f 'c
                                                                bw s
                                                                 fy
                                                                       b¤ Av min = 50fbws ¬US¦
                                                                                      y

                               Av min =          f 'c
                                                         bw s
                                                        16 f y
                                                                  b¤ Av min = 50fbws ¬SI¦
                                                                                  y

     %> KNnaTMhM nigKMlatEdkRTnugEdlRtUvkar. RbsinebI
                                                            ¬xñat US¦
                              Vs = (Vu / φ − Vc ) ≤ 4λ f 'c bw d p

                       Vs = Vu / φ − Vc ≤ λ f 'c bw d p / 3 ¬xñat SI¦
         enaHKMlatEdkkg s EdlRtUvkarKWesμInwgtMélEdlKNnaedaysmIkarEdleGayenAkñúgCMhan ^.

Shear and Torsion Strength Design                                                                  242
NPIC




         EtRbsinebI
                                                                ¬xñat US¦
                                Vs = (Vu / φ − Vc ) > 4λ f 'c bw d p

                         Vs = Vu / φ − Vc > λ f 'c bw d p / 3   ¬xñat SI¦
        enaHKMlatEdkkg s EdlRtUvkarKWesμInwgBak;kNþaléntMélEdlKNnaedaysmIkarEdleGay
        enAkñúgCMhan ^.
     ^> s = (VAvφf)y− V = VAv −yφdVp ≤ 0.75h ≤ 24in.(60cm) ≥ s Gb,brmaEdl)anBICMhan $
                    dp        f
               u       c    u      c

     &> sg; shear envelope enAelIElVgFñwm nigKUsbBa¢ak;tMbn;EdlRtUvkarEdkRTnug
     *> KUrBRgayEdkRTnugtambeNþayElVgedayeRbIEdkkgTMhM #3 b¤ #4 tamEdlcUlcitþ b:uEnþEdk
        kgminRtUvmanTMhMFMCag #6 eT.
     (> KNnaEdkrgcaM (dowel reinforcement) bBaÄrkñúgkrNImuxkat;smas
        (a) Vnh ≤ 80bv d pc sMrab;TaMgépÞb:HeRKImedayKμanEdkrgcaM b¤Edk tie bBaÄr nigsMrab;TaMgépÞb:H

           EdlmineRKImb:uEnþeRbIEdk tie bBaÄrGb,brma. eRbI
                             50bw s 50bv I vh
                      Av =         =
                               fy     fy

         (b) Vnh ≤ 500bw d pcsMrab;épÞeRKImEdlmanecjk,alfμkMBs; 1 / 4in.(6mm)
         (c) sMrab;krNIEdl Vnh > 500bw d pc / KNnaEdk tie bBaÄrsMrab; Vnh = Avf f y μ

                   Edl Avf = RkLaépÞrbs;EdkrgcaMEdlmanlkçN³kkit (frictional steel dowel)
                          μ = emKuNkkit = 1.0λ sMrab;épÞEdlmanlkçN³eRKIm Edl λ = 1.0 sMrab;
                              ebtugTMgn;Fmμta. sMrab;RKb;krNITaMgGs; Vn ≤ Vnh ≤ 0.2 f 'c Acc
                               ≤ 800 Acc Edl Acc = bv lvh .

             viFIepSgeToténkarKNnaRkLaépÞEdkrgcaM Avf KWedayKNnakMlaMgedk Fh enARtg;épÞkkit
             rbs;ebtugEdl
                                Fh ≤ μ e Avf f y ≤ Vnh
                                       1,000λ2bv lvh
             Edl                μe =
                                            Fh
                                                     ≤ 2.9

                     rUbTI 5>16 bgðajBICMhanKNnaEdl)anerobrab;xagelICaTMrg; flowchart.



karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                          243
T.Chhay




Shear and Torsion Strength Design   244
NPIC




9> kugRtaMgTajemenAkñúgmuxkat;mansøab nigKNnaEdkrgcaMbBaÄrenA
   kñúgmuxkat;smas
       Principal Tensile Stresses in Flanged Sections and Design of
       Dowel-Action Vertical Steel in Composite Sections
]TahrN_ 5>1³ FñwmeRbkugRtaMgmuxkat;GkSr T mankarBRgayénkugRtaMgeFVIkarsgát;dUcbgðajenAkñúg
rUbTI 5>17. kMlaMgkat;bBaÄrxageRkAKNnaEdlKμanemKuN V = 120,000lb(554kN ) ehIykMlaMg
kat;emKuN Vu = 190,000lb(845kN ) .
     (a) KNnakugRtaMgTajemenARtg;G½kSTIRbCMuTMgn; cgc nigenARtg;cMnucRCugEkg A énkEnøgkat;Kña

          rvagsøab nigRTnug nigKNnakugRtaMgkMlaMgkat;edkGtibrmaeRkamGMeBIbnÞúkeFVIkarsMrab;TI
          taMgTaMgenH.
    (b) KNnaersIusþg;kMlaMgkat;edkFmμtaEdlRtUvkarenARtg;épÞGnþrkmμ A − A rvagRTnugEdlcak;

         Rsab; nigsøabEdlcak;enAnwgkEnøg nigKNnaEdkrgcaM b¤Edk tie bBaÄrcaM)ac;edIm,IkarBarkar
         rGildac;enARtg; A − A EdlFanaskmμPaBsmaseBjelj. eRbI ACI direct method nig
         snμt;faépÞb:HmanlkçN³eRKIm. smμtikmμmandUcxageRkam³
                   f 'c sMrab;RTnug = 6,000 psi ebtugTMgn;Fmμta (normal-weigth concrete)

                   f 'c sMrab;søab = 3,000 psi ebtugTMgn;Fmμta (normal-weigth concrete)

                  TTwgsøabRbsiT§PaB bm = 60in.(152.4cm)
         Edl bm CaTTwgEktMrUvEdl)anKitbBa©ÚlPaBxusKñaénm:UDuleGLasÞicrbs;ebtugépñkEdlcak;
Rsab; nigEpñkxagelIEdlcak;enAnwgkEnøg.




karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                   245
T.Chhay




dMeNaHRsay³
kugRtaMgkMlaMgkat;eFVIkaredk
        kugRtaMgkMlaMgkat;edkGtibrma
                           VQ
                    vh =
                           Ibv
          Edl                                              (
                    Q A = 60 × 12(19.32 − 6 ) = 9,590in.3 157,172cm3   )
                                                   12 × (7.32 )2
                    Qcgc = 60 × 12(19.32 − 6 ) +
                                                         2
                                                                           (
                                                                 = 9,912in.3 162,429cm.3   )
          dUcenHkugRtaMgkMlaMgkat;edkeRkamGMeBIbnÞúkeFVIkarKW
                  enARtg;cMnuc A / vh = 120,000 × 9,12 = 235 psi(1.6MPa)
                                         408,240 ×
                                                    590


                  enARtg; cgc / vh = 120,000 × 9,12 = 243 psi(1.7MPa)
                                       408,240 ×
                                                 912


          BIsmIkar 5.13 kugRtaMgTajemEdlRtUvKñaKW
                                               2
                                           ⎛f ⎞
                    enARtg; A /            ⎝ 2 ⎠
                                                     2   f
                                    f 't = ⎜ cA ⎟ + vh − cA
                                                          2
                                                   2
                                        ⎛ 2,160 ⎞
                                                ⎟ + (235) −       = 25 psi (111Pa )
                                                            2,160
                                      = ⎜                2
                                        ⎝ 2 ⎠                 2
                                                       2
                   nigenARtg; cgc / f 't = ⎛ 1,831 ⎞ + (235)2 − 1,831 = 32 psi(221Pa )
                                            ⎜
                                            ⎝ 2 ⎠
                                                   ⎟
                                                                  2
          dUcenH kugRtaMgTajemmantMéltUc nigminbgáeGaymansñameRbHeRkamGMeBIbnÞúkeFVIkareT.
                   eKRtUvRtYtBinitükugRtaMgkMlaMgkat;edk vh = 235 psi enARtg;épÞb:H A − A edIm,IepÞóg
          pÞat;favasßitenAkñúgEdnkMNt;EdlGacTTYlyk)an. GnuelameTAtam AASTHO kugRtaMg
          GnuBaØatGtibrmaKW 160 psi(1.1MPa ) < 235 psi(1.6MPa ) dUcenHkarpþl;eGayCaBiesssMrab;
          EdkrgcaM b¤Edk tie bBaÄrbEnßmRtUv)aneFVIRbsinebIeKGnuvtþtamtMrUvkarrbs; AASTHO.

KNnaEdkrgcaM (Dowel Reinforcement Design)
                    Vu = 190,000lb

                    Vnh   EdlRtUvkar = Vφu = 190.,75 = 253,333lb(1126kN )
                                               0
                                                  000


                    bv = 12in.(30.5cm )      d pc = 57in.(145cm )

          BIsmIkar 5.26b

Shear and Torsion Strength Design                                                              246
NPIC




                      EdlGacman = 500bv d pc = 500 × 12 × 57 = 342,000lb(1520kN )253,333lb
                     Vnh

          BIsmIkar 5.22 a/ 0.75 f 'c = 0.75 6,000 = 58 > 50 dUcenHeRbI 58 enAkñúgsmIkarenaH
                  Av
                  l
                      ÉktþaGb,brma = 58bv = 60,× 12 = 0.0116in.2 / in tambeNþayElVg
                                        f
                                             58
                                                000
                       vh                              y

       dUcenHeRbIEdkkgbBaÄr #3 Edlman Av = 2 × 0.11 = 0.22in.2 ehIy s = 0.22 / 0.0116
= 18.9in.(48cm ) EdlKitBIG½kSeTAG½kS < 24in. dUcenHKWTTYlyk)an (O.K.). EdkRTnugbBaÄrsMrab;

kMlaMgkat;enAkñúgRTnugKYrRtUvkarKMlattUcCagenH. dUcenH BnøÚtEdkkgRTnugTaMgGs;eTAkñúgkMralxNÐ
xagelIEdlcak;enAnwgkEnøg.

10> KNnaEdkrgcaMsMrab;skmμPaBsmas
          Dowel Steel Design for Composite Action
]TahrN_ 5>2³ edayeRbI (a) emKuNkkit ACI nig (b) emKuNkkit PCI cUrKNnaEdkrgcaM (dowel
reinforcement) én]TahrN_ 5>1 sMrab;skmμPaBsmaseBjelj (full composite action) edayviFI
epSgeTot (alternative method). edaysnμt;ElVgRbsiT§PaBrbs;FñwmTMrsamBaØesμInwg 65 ft.(19.8m) .
dMeNaHRsay³ BIrUbTI 5>14 nig 5>17
               Atop = 60 × 12 = 720in.2 (4,645cm 2 )

                     Cc = 0.85 f 'c Atop = 0.85 × 3,000 × 720 = 1,836,000lb(8,167kN )

          snμt; Aps f ps > Cc enAeBlEdleKmineGaykMlaMgeRbkugRtaMg. enaH
                     Fh = 1,836,000lb
                           65 × 12
                     lvh =         = 390in.
                              2
                     bv = 12in.

                     80bv lvh = 80 × 12 × 390 = 374,400lb(1,665kN ) < 1,836,000lb
          dUcenH eKRtUvkarEdk tie bBaÄr.
          sMrab;épÞeRKImEdlmanecjk,alfμkMBs; 1 / 4in.(6mm) nigmanEdkGb,brma
                     Vnh = 500bv d = 50 × 12 × 57 = 342,000
                     Vu
                      φ
                            EdlRtUvkar
                                    =
                                      190,000
                                        0.75
                                                = 253,333lb < Vnh = 342,000

                                           < Fh     EdlGacman = 1,836,000lb

karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                       247
T.Chhay




        eRbI Fh = 253,333lb sMrab;kMNt;EdkskmμPaBsmasEdlRtUvkar (required composite
action reinforcement).



     (a)   edayeRbItMél μ rbs; ACI
           BIsmIkar 5.27 nig μ = 1.0 CamYynwg lvh = 390in.
                   Avf srub =              = 4.2in.2 (26.3cm 2 )
                                253,333
                              1.0 × 60,000
                     Avf   Gb,brma = 50bfvlvh = 50 × 12000390 = 3.90in.2 (25.1cm2 )
                                                   60,
                                                        ×
                                           y

        BI]TahrN_ 5>1 Avf Gb,brma = 0.0116in.2 / in. = 0.139in.2 / 12in. / lub. dUcenHsakl,g
        Edkkg #3 eyIgTTYl)an Av = 2 × 0.11 = 0.22in.2 enaH
                390 × 0.22
                           = 20.42 BIG½kSeTAG½kS < 24in. < tMélGnuBaØatGtibrma 4 × 12 = 48in.
         l A
     s = vh v =
          A   vf   4.2

         dUcenHeRbIEdk tie GkSr U #3 EdlmanKMlat 20in. KitBIG½kSeTAG½kS.
     (b) edayeRbItMél μ e rbs; PCI

                    λ = 1 .0
                          1,000λ2bv lvh
                    μe =                 ≤ 2.9
                               Fh
                          1,000 × 1 × 12 × 390
                       =                       = 2.55 < 2.9
                              1,836,000
           dUcenHeRbI μe = 2.55 . bnÞab;mk BIsmIkar 5.32
                   Avf tMrUvkar =               = 1.66in.2 < Avf Gb,brma = 3.90in.2 lub
                                     253,333
                                  2.55 × 60,000
           dUcenHeRbIEdk tie GkSr U #3 EdlmanKMlat 20in. EdlKitBIG½kSeTAG½kS ¬Ggát;p©it 9.5mm
           KMlat 55cm ¦

11>        Dowel Steel Design for Composite Action in an Inverted T
           Beam
]TahrN_ 5>3³ FñwmGkSr T bRBa©asEdlRTedayTMrsamBaØmanElVgRbsiT§PaB 24 ft (7.23m) . mux
kat;rbs;FñwmenHRtUv)anbgðajenAkñúgrUbTI 5>18 edaymankMralxagelIEdlcak;enAnwgkEnøgkMras; 2in.
(5.1cm) enAelIépÞGt;eRKIm. KNnaEdkkgrgcaMcaM)ac;edIm,IbegáItskmμPaBsmaseBjelj (full


Shear and Torsion Strength Design                                                     248
NPIC




composite behavior)  edaysnμt;fakMlaMgkat;emKuN Vu EdlFñwmRtUvrgenARtg;muxkat;eRKaHfñak;KW
160,000lb(712kN ) . smμtikmμmandUcxageRkam³

              f 'c ¬cak;Rsab;¦ = 6,000 psi (41.4 MPa ) / ebtugTMgn;Fmμta

              f 'c ¬kMralxagelI¦ = 3,000 psi (20.7 MPa ) / ebtugTMgn;Fmμta

      EdkeRbkugRtaMg³ tendon 270k Ggát;p©it 1 / 2in.(12.7mm) cMnYn 12
                      f pu = 270,000 psi (1,862MPa )

                      f ps = 242,000 psi (1,669 MPa )

                  rbs;Edk tie = 60,000 psi(414MPa )
                      fy

edayeRbITaMg ACI direct method nig alternative method CamYynwg μe RbsiT§PaBsMrab;karKNna.




dMeNaHRsay³                     d p = 2 + 2 + 10 + 12 − 3 = 23in.

                                Aps = 12 × 0.153 = 1.836in.2

                                Tn = Aps f ps = 1.836 × 242,000 = 444,312lb(1,976kN )

                                bv = 12in.
                                      24 × 12
                                lvh =         = 144in.
                                         2
                                Atop = 2 × 48 + 2 × 12 = 120in.2

                                Cc = 0.85 f 'cc Atop = 0.85 × 3,000 × 120 = 306,000lb(1,316kN )

                                                                        < Tn = 444,312lb


karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                                 249
T.Chhay




          dUcenH eRbI Fh = 306,000lb(1,361kN ) . bnÞab;mk sMrab;épÞmineRKIm
                  Vnh EdlGacman = 80bv lvh = 80 × 12 × 144 = 138,240lb(615kN )

                                                                 < Cc = 306,000lb
          dUcenH Edk tie EdlRtUvkarcaM)ac;sMrab;begáItskmμPaBsmaseBjeljedayeRbI λ = 1.0 .
     (a) ACI Direct Method
                   tMrUvkar = Vφu = 160.,75 = 213,333lb(949kN )
                    Vnh
                                      0
                                         000


      eRbI μ = 1.0 . bnÞab;mk BIsmIkar 5.26a CamYynwgEdkrgcaM (dowel reinforcement)
eyIgman
              Vnh EdlGacman = 80bv d pc = 80 × 12 × 23 = 22,000lb << Vnh tMrUvkar

      BIsmIkar 5.27 sMrab;épÞEdlmineRKIm μ = 0.6λ = 0.60 . bnÞab;mk
              Avf srubtMrUvkar = n =
                                  V          213,333
                                                        = 5.93in.2
                                  μf      0.60 × 60,000
                                            y

          BIsmIkar 5.22(a)/ 0.75 f 'c = 0.75 6,000 = 58 > 50 dUcenHeRbI 58 enAkñúgsmIkar
                                        58bv lvh 58 × 12 × 144
                  Avf Gb,brmatMrUvkar =         =              = 1.67in.2 < 5.93in.2
                                          f       y 60,000

          dUcenHeRbI Avf = 5.23in.2 (33.7cm2 ) ehIysakl,gEdk tie GkSr U páab; #3 . bnÞab;mk
          Avf = 2 × 0.11 = 0.22in.2 ( .4cm 2 ) nigmanKMlat
                                     1
                          lvh Av 144 × 0.22
                    s=          =           = 5.34in.(13.7cm )
                           Avf     5.93

          KMlatGnuBaØatGtibrmaKW s = 4(2 + 2) = 16in. b¤ 0.75h = 0.75 × 26 = 19.5in. < 24in. .
          dUcenHeRbIEdk tie GkSr U páab; #3 KMlat 5in.(13cm) KitBIG½kSelIG½kSelIElVgTaMgmUl.

     (b) Alternativ Method          edayeRbI μe
                    Fh = 306,000lb
                           1,000λ2bv lvh 1,000 × 1.0 × 12 × 144
                    μe =                =                       = 5.65 > 2.9
                                Fh             306,000
          dUcenHeRbI μe = 2.9 bnÞab;mk BIsmIkar 5.31c eyIgTTYl)an
                  Avf tMrUvkar = h =
                                 F        306,000
                                                     = 1.76in.2
                                μ f     2.9 × 60,000
                                      e y




Shear and Torsion Strength Design                                                       250
NPIC




                      Gb,brmatMrUvkarEdl)anBI (a) = 1.67in.2 < 1.76in.2
                      Avf

          dUcenHeRbI Avf = 1.76in.2 enaHKMlatKW
                      l A 144 × 0.22
                  s = vh v =              = 18in. BIG½kSeTAG½kS
                       A      vf 1.76

          ehIyKMlatGnuBaØatGtibrmaKW
                     s = 4(2 + 2 ) = 16in. < 24in.
          dUcenH eRbIEdk tie GkSr U páab; #3 manKMlat 16in. KitBIG½kSeTAG½kSelIElVgTaMgmUl.

12>       Shear Strength and Web-Shear Steel Design in a Prestressed
          Beam
]TahrN_ 5>4³ KNna bonded beam én]TahrN_ 4>2 edIm,IeGaymansuvtßiPaBRbqaMgnwgkar)ak;
edaykMlaMgkat; ehIyKNnaEdkRTnugtMrUvkar.
dMeNaHRsay³
Tinñn½y nigkarkMNt;ersIusþg;kMlaMgkat;Fmμta (data and nominal shear strength determination)
                      f pu = 270,000 psi (1,862MPa )

                      f y = 60,000 psi (414MPa )

                      f pe = 155,000 psi (1,069MPa )

                      f 'c = 5,000 psiebtugTMgn;Fmμta
                      Aps = tendon Ggát;p©it 1 / 2in.(12.7 mm ) Edlman wire 7 cMnYn 13

                          = 1.99in.2 = (12.8cm 2 )
                      As = 4#6 = 1.76in.2 (11.4cm 2 )
                     RbEvgElVg = 65 ft (19.8m)
                     bnÞúkeFVIkar WL = 1,100 plf (16.1kN / m)
                     bnÞúkeFVIkar WSD = 100 plf (1.46kN / m)
                     bnÞúkeFVIkar WD = 393 plf (5.7kN / m)
                     h = 40in.(101.6cm )
                     d p = 36.16in(91.8cm )

                     d = 37.6in(95.5cm )



karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                        251
T.Chhay




                    bw = 6in.(15cm )

                    ec = 15in.(38cm )

                    ee = 12.5in.(32cm )

                                            (
                    I c = 70,700in.4 18.09 × 106 cm 4        )
                                    (
                     Ac = 377in.2 2,432cm 2          )
                                        (
                    r 2 = 187.5in.2 1,210cm 2            )
                    cb = 18.84in.(48cm )

                    ct = 21.16in.(54cm )

                    Pe = 308,255lb(1.371kN )
          bnÞúkemKuN Wu = 1.2D + 1.6L
                               = 1.2(100 + 393) + 1.6 × 1,100 = 2,352 plf
          kMlaMgkat;enARtg;épÞTMr Vu = Wu L / 2
                                                = (2,352 × 65) / 2 = 76,440lb
          Vn   tMrUvkar = Vu / φ = 76,440 / 0.75 = 101,920lb enARtg;TMr

bøg;enARtg; 12 d p BIépÞénTMr
      !> ersIusþg;kMlaMgkat;Fmμta (nominal shear strength) Vc rbs;RTnug ¬CMhanTI2 nigTI3¦
                    1      36.16
                      dp =        ≅ 1.5 ft
                    2      2 × 12
                    Vn = 101,920 ×
                                    [(65 / 2) − 1.5] = 97,216lb
                                        65 / 2
                    Vu  enARtg;1
                               2
                                 d p = 0.75 × 97,216 = 72,912lb

                     f pe = 155,000 psi

                    0.40 f pu = 0.40 × 270,000 = 108,000 psi (745MPa )

                                < f pe = 155,000 psi (1,069 MPa )

          eRbI ACI alternate method
          edaysar d p > 0.8h / eRbI d p = 36.16in. edaysnμt;faEdkeRbkugRtaMgxøHRtg;rhUtdl;TMr.
          BIsmIkar 5.16


Shear and Torsion Strength Design                                                     252
NPIC




                          ⎛                  Vu d p ⎞
                     Vc = ⎜ 0.60λ f 'c + 700
                          ⎜                         ⎟bw d p ≥ 2λ f 'c bw d p ≤ 5λ f 'c bw d p
                          ⎝                   Mu ⎟  ⎠
                     λ = 1 .0sMrab;ebtugTMgn;Rsal
                                                               Wu (1.5)2
                     M u enARtg; d / 2 BIépÞ = Rbtikmμ × 1.5 −
                                                                   2
                                                                           2,352(1.5)2
                                                        = 76,440 × 1.5 −               = 112,014 ft − lb
                                                                                2
                                                        = 1,344,168in. − lb
                                               Vu d p       72,912 × 36.16
                                                        =                  = 1.96 > 1.0
                                                Mu            1,344,168
          dUcenHeRbI Vu d p / M u = 1.0 enaH
                  Vc Gb,brma = 2λ f 'c bw d p = 2 × 1.0 5,000 × 6 × 36.16 = 30,683lb

                  Vc Gtibrma = 5λ f 'c bw d p = 76,707lb(341kN )

                  Vc = (0.60 × 1.0 5,000 + 700 × 1.0 )6 × 36.16
                      = 161,077lb > Vc Gtibrma = 76,707lb

          bnÞab;mk Vc = 76,707lb / lub. dUcKña Vu / φ > Vc / 2 dUcenH eKRtUvkarEdkRTnug.
                            Vu
                     Vs =        − Vc = 97,216 − 76,707 = 20,509lb
                             φ
                     8λ f 'c bw d p = 8 × 1.0 5,000 × 6 × 36.16 = 122,713lb(546kN )

                                          > Vs = 20,509lb
         dUcenHkMBs;rbs;muxkat;RKb;RKan;.
      @> EdkRTnugGb,brma ¬CMhanTI4¦
         BIsmIkar 5.22b
                  Av
                  s
                     Gb,brma = 80psf fdpu d p
                                A
                                          b       y p        w

                                                1.99 × 270,000    36.16
                                          =                             = 0.0076in.2 / in.
                                              80 × 60,000 × 36.16   6
      #> EdkRTnugtMrUvkar ¬CMhanTI5 nigTI6¦
         BIsmIkar 5.21b
                             Av f y d p
                     s=              ≤ 0.75h ≤ 24in.
                         Vu / φ − Vc

          b¤          Av
                      s
                             V
                         = s =
                                        20,509
                           f y d p 60,000 × 36.16
                                                    = 0.0095in.2 / in.


karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                                          253
T.Chhay




          ¬kMlaMgeRbkugRtaMgKWRtUvFMCag 0.4 × ersIusþg;Taj¦
          EdkRTnugkMlaMgkat; (web-shear steel) EdlRtUvkarGb,brma Av / s = 0.0095in.2 / in. .
          dUcenHsakl,gEdkkgGkSr U #3 / Av = 2 × 0.11 = 0.22in.2 . enaHKMlatGtibrma
                                = 23.2in.(59cm )
                          0.22
                    s=
                         0.0095
          nig 4λ f 'c bwd p = 4 × 1.0 5,000 × 6 × 36.16 = 61,366lb > Vs
          dUcenH eyIgminRtUvkareRbI 12 s . LÚv
                    0.75h = 0.75 × 40.0 = 30.0in.
          dUcenH eRbI web-shear reinforcement #3 KMlat 22in. KitBIG½kSeTAG½kS ¬EdkkgGgát;p©it
          9.5mm KMlat 62cm KitBIG½kSeTAG½kS¦



bøg;EdlminRtUvkarEdkkg
       snμt;fabøg;enHsßitenAcMgay x BITMr. tamRtIekaNdUc
                    1      76,707             65 / 2 − x
                      Vc =        = 101,920 ×
                    2         2                65 / 2
          b¤        65
                    2
                       −x=
                             76,707 65
                            101,920 4
                                     ×

                    x = 20.3 ft (6.11m ) ≈ 244in.
       dUcenHeRbIEdkkgGkSr U #3 KMlat 22in KitBIG½kSeTAG½kSelIRbEvgRbEhl 244in. edayEdk
kgTImYycab;epþImenARtg; 18in. BIépÞénTMr. BRgayEdkkgeTAdl;kNþalElVgRbsinebIeKRtUvkarskmμ-
PaBsmas.

13>       Web-Shear Steel Design by Detailed Procedures
]TahrN_ 5>5³ edaHRsay]TahrN_ 5>4 edaydMeNIrlMGitEdlkMNt;tMélrbs; V CatMéltUcCageK
                                                                              c

én flexure shear Vci nig web shear Vcw . snμt;fa tendon RtUv)an harp enAkNþalElVg. ehIy
snμt;fa f 'c = 6,000 psi .
dMeNaHRsay³ Profile rbs;EdkeRbkugRtaMgRtuv)anbgðajenAkñúgrUbTI 5>19.
bøgenARtg; d / 2 BIépÞrbs;TMr
        BI]TahrN_ 5>4/ Vn = 97,216lb
    !> Flexure-shear cracking, Vci ¬CMhanTI2¦
Shear and Torsion Strength Design                                                      254
NPIC




          BIsmIkar 5.11
                     Vci = 0.60λ f 'c bw d p + Vd +
                                                           Vi
                                                                (M cr ) ≥ 1.7λ f 'c bwd p
                                                          M max
          BIsmIkar 5.12
                     M cr =
                                Ic
                                yt
                                   (
                                   6λ f 'c + f ce − f d   )
          Edl I c / yt = Sb edaysar yt CacMgayBITMRbCMuTMgn;eTAsrésTajxageRkA.
          eyIgman         I c = 70,700in.4

                                cb = 18.84in.

                                Pe = 308,255lb

                                Sb = 3,753in.3

                                r 2 = 187.5in.2
          dUcenHBIsmIkar 4.3b kugRtaMgebtugenARtg;srésxageRkambMputEdlbNþalmkEtBIeRbkug
          RtaMgKW
                                            Pe ⎛ ecb ⎞
                                 f ce = −      ⎜1 + 2 ⎟
                                            Ac ⎝   r ⎠
          ehIycMNakp©itEdkeRbkugRtaMgenARtg; d p / 2 ≅ 1.5 ft BIépÞrbs;TMrKW
                                e = 12.5 + (15 − 12.5)
                                                        1.5
                                                              = 12.62in.
                                                       65 / 2
                                          308,255 ⎛ 12.62 × 18.84 ⎞
          dUcenH        f ce           =−
                                            377 ⎝
                                                  ⎜1 +
                                                           187.5
                                                                     ⎟ ≅ −1,855 psi (12.8MPa )
                                                                     ⎠
          BI]TahrN_ 4>2/ bnÞúkefrKμanemKuNEdlbNþalBITMgn;pÞal; WD = 393 plf (5.7kN / m) KW
                                 WD x(l − x ) 393 × 1.5(65 − 1.5) × 12
                     Md /2 =                 =                         = 224,600in. − lb(25.4kN .m )
                                     2                   2



karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                                255
T.Chhay




          ehIykugRtaMgEdlbNþalBIbnÞúkGefrKμanemKuNenARtg;srésebtugxageRkAbMputEdlkugRtaMg
          TajRtUv)anbegáItedaybnÞúkxageRkAKW
                             M d / 2cb 224,600 × 18.84
                     fd =             =                = 60 psi
                                Ic         70,700
          ehIy                      (
                    M cr = 3,753 6 × 1.0 × 6,000 + 1,855 − 60     )
                         = 8,480,872in. − lb(958kN .m )
                             ⎛l    ⎞       ⎛ 65     ⎞
                    Vd = WD ⎜ − x ⎟ = 393⎜ − 1.5 ⎟ = 12,183lb(54.2kN )
                             ⎝2    ⎠       ⎝ 2      ⎠
                    WSD = 100 plf

                    WL = 1,100 plf

                    WU = 1.2 × 100 + 1.6 × 1,100 = 1,880 plf
          kMlaMgkat;emKuNenARtg;muxkat;EdlbNþalBIbnÞúkGnuvtþn_xageRkAEdlekIteLIgtMNalKñaCa
          mYynwg M max KW
                             ⎛l     ⎞       ⎛ 65       ⎞
                    Vi = WU ⎜ − x ⎟ = 1,880⎜ − 1.5 ⎟ = 58,280lb(259kN )
                             ⎝2     ⎠       ⎝ 2        ⎠
                                           1,880 × 1.5(65 − 1.5)
          nig       M max = U (l − x ) =
                             W x
                                2                    2
                                                                 × 12 = 1,074,420in. − lb(122kN .m )

          dUcenH    Vci = 0.6 × 1.0 6,000 × 6 × 36.16 + 12,183 +
                                                                    58,280
                                                                  1,074,420
                                                                            (8,480,872)

                         = 482,296lb(54.5kN .m )
                    1.7λ f 'c bw d p = 1.7 × 1.0 6,000 × 6 × 36.16 = 28,569lb(127kN )

                                        < Vci = 482,296lb
          dUcenH    Vci = 482,296lb(214.5kN )

    @>    Web-shear cracking, Vcw         ¬CMhanTI2¦
          BIsmIkar 5.15
                           (                   )
                    Vcw = 3.5 f 'c + 0.3 f c bw d p + V p

                     f c = kugRtaMgsgát;enAkñúgebtugRtg; cgc

                                        ≅ 818 psi (5.6 MPa )
                             Pe 308,255
                         =      =
                             Ac   377
                    Vp =    bgÁúMbBaÄrrbs;eRbkugRtaMgRbsiT§PaBenARtg;muxkat;
                         = Pe tan θ
          Edl θ CamMurvag tendon eRTtCamYynwgbøg;edk. dUcenH
Shear and Torsion Strength Design                                                             256
NPIC




                     V p = 308,255
                                           (15 − 12.5) = 1,976lb(8.8kN )
                                           65 / 2 × 12
          dUcenH Vcw = (3.5 6,000 + 0.3 × 818)× 6 × 36.16 + 1,976 = 114,038lb(507kN )
          enAkñúgkrNIenH web-shear cracking manlkçN³lub ¬Edl Vc = Vcw = 114,038lb(507kN )
          RtUv)aneRbIsMrab;KNnaEdkRTnug¦. eRbobeFobtMélenHCamYynwg Vc = 76,707lb(341kN )
          EdlTTYl)anBIsmIkar 5.4 eday alternative method EdlmanlkçN³suvtßiPaBCag.
                  BIsmIkar 5>4
                                  − Vc = (97,216 − 114,038)lb
                             Vu
                     Vs =
                             φ
          dUcenHeKminRtUvkarEdkkgeT elIkElgEt Vu / φ > 12 Vc . dUcenH eyIgKNnatYxageRkaydUc
          xageRkam
                                     = 57,019lb(254kN ) < 97,216lb(432kN )
                      1      114,038
                        Vc =
                      2         2
         edaysar Vu / φ > 12 Vc b:uEnþ < Vc dUcenHeRbIEdkkgGb,brmaenAkñúgkrNIenH
     #> EdkkgGb,brma ¬CMhanTI4¦
         BI]TahrN_ 5>4
                 Av
                 s
                    tMrUvkar = 0.0077in.2 / in.
         dUcenH sakl,gEdkkg #3 /
         eyIgTTYl)an Av = 2 × 0.11 = 0.22in.2 ehIy
                                  = 28.94in.(73cm )
                            0.22
                     s=
                           0.0077
          bnÞab;mkeyIgRtYtBinitü Av Gb,brmaEdlCatMéltUcCageKkñúgcMeNamtMélTaMgBIrxageRkam
                             50bw s
                      Av =
                               fy

          nig         Av =
                             A ps f pu s
                             80 f y d p
                                             dp
                                             bw

          dUcenHKMlatGnuBaØatGtibrma ≤ 0.75h ≤ 24in. . eRbIEdkkgGkSr U #3 EdlmanKMlat 22in.
          KitBIG½kSeTAG½kSelIRbEvg 84in. BIépÞrbs;TMrdUcenAkñúg]TahrN_ 5>4.
          muxkat;sMrab;karerobEdk ¬CMhanTI8¦ RtUv)anbgðajenAkñúgrUbTI 5>20.



karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                  257
T.Chhay




14>      Design of Web Reinforcement for a PCI Double T-Beam
]TahrN_ 5>6³ Fñwm T DubTMrsamBaØ PCI 12 DT 34 manElVg 70 ft (21.3m) . varg service dead
                        edayrYbbBa©ÚlTaMgkMralBIelIbEnßm nig service live load WL = 720 plf .
load 200 plf (29.kN / m )

KNnaEdkkgEdlRtUvkaredIm,IkarBar shear cracking enARtg;muxkat;mYyPaKbYnénElVg 17 ft 6in.
(5.3m ) BITMr edayKNna nominal web-shear strength Vc tam detailed design method. ehIy
KNna dowel reinforcement RbsinebIcaM)ac; edaysnμt;faépÞxagelIrbs;Fñwm T cak;Rsab;Gt;eRKIm.
lkçN³muxkat;RtUv)anbgðajenAkñúgrUbTI 5>21 CamYynwgTinñn½yxageRkam³




Shear and Torsion Strength Design                                                    258
NPIC




Tinñn½yepSgeTot³
         f 'c ¬ebtugcak;Rsab;¦ = 5,000 psi (34.5MPa ) ebtugTMgn;Fmμta

         f 'cc ¬ebtugsMrab;cak;kMralxagelI¦ = 3,000 psi (20.7 MPa ) ebtugTMgn;Fmμta

           f 'ci = 4,000 psi (27.6MPa )
                                                    /
           f pu = 270,000 psi (1,862MPa ) low-relaxation steel

           f ps = 240,000 psi (1,655MPa )

           f pe = 148,000 psi (1,020MPa )

           ee = 11.38in.(28.3cm )

           ec = 21.77in.(57.2cm )
           Aps = strandGgát;p©it 1 / 2in.(12.7mm) cMnYn 18
         f yv sMrab;Edkkg = 60,000 psi (414 MPa )

eRbItMélsMrab;RbEvgRbsiT§PaB d p sMrab;muxkat;kNþalElVgk¾dUcCamuxkat;epSgeTot. cMNaMfa bw
sMrab;RTnugTaMgBIr = 2(4.75 + 7.75) / 2 = 12.5in.(32cm) .
dMeNaHRsay³
          Wu = 1.2(200 + 1,091) + 1.6 × 720 ≅ 2,615 plf (38.15kN / m )
                                 2,615 × 70
          Vu   enARtg;épÞrbs;TMr
                               =
                                      2
                                            = 91,525lb

               enARtg;           BIépÞrbs;TMr
                                          =
                                              1 ⎛           (35 − 17.5) ⎞
          Vn        17 ft 6in.                   ⎜ 91,525 ×             ⎟
                                            0.75 ⎝              35      ⎠
                                                        = 61,017lb(271kN )

karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                     259
T.Chhay




     !> Flexure-shear cracking Vci ¬CMhanTI2¦
                    d p = 34 − 25.77 + 21.77 = 30.0in.(76cm )

                    Pe = 18 × 0.153 × 148,000 = 407,592lb(18,176kN )

                  enARtg;
                    e             BITMr
                              17 ft 6in.   = 11.38 + (21.77 − 11.38)
                                                                     17.5
                                                                      35
                                                                          = 16.58in.

          eRbIlkçN³muxkat;cak;Rsab;sMrab;KNna          f ce   nig f d dUcerobrab;enAkñúgEpñkTI 5
                                Pe ⎛ ecb ⎞      407,592 ⎛ 16.58 × 25.77 ⎞
                     f ce = −      ⎜1 + 2 ⎟ = −         ⎜1 +            ⎟
                                Ac ⎝   r ⎠        978 ⎝       88.0      ⎠

                         = 2,440 psi (16.8MPa )
          eRbIkugRtaMgsgát;srésxageRkAGnuBaØatdUcxageRkam³
          (a)     eRbkugRtaMg + bnÞúkGcié®nþy_ ³ fc = 0.45 f 'c
          (b)     eRbkugRtaMg + bnÞúksrub ¬edayGnuBaØatedayekIneLIg 33% EdlbNþalBI transient
                  load³ f c = 0.60 f 'c ¦.

          cMNaMfaeTaHbICa fce = 0.45 f 'c k¾eday k¾vaminCHT§iBldl;ersIusþg;kMlaMgkat;Edr edaysar
           f ce bNþalmkBIEtkMlaMgeRbkugRtaMgb:ueNÑaH ehIyedaysarkarrYmbBa©ÚlTaMgbnÞúkpÞal;)an

          kat;bnßyvaeGaytUcCag 0.45 f 'c . dUcenHeyIgman
                  bnÞúkpÞal; WD = 1,019 plf
                                WD x(l − x ) 1,019 × 17.5(70 − 17.5)
                    M 17.5 =                =                        × 12
                                    2                   2
                          = 5,617,238in. − lb(634kN .m )
                          Mcb 5,617,238 × 25.77
                     fd =     =                   = 1,682 psi (11.6MPa )
                           Ic        86,072
                                    (
                    M cr = Sb 6.0λ f 'c + f ce − f d   )
                                        (
                           = 3,340 6.0 × 1.0 5,000 + 2,440 − 1,682      )
                           = 3,948,762in. − lb(445kN .m )
          eKKYrcMNaMfaemKuN 6.0 enAkñúgsmIkar cracking moment mantMéltUc edaysareKyk
          modulus of rupture 7.5 . RbsinebIeKeRbI 7.5 enAkñúgsmIkarxagelI enaH cracking

          moment nwgmantMél 4,303,022in. − lb GBa©wgvanwgkat;bnßycMnYnrbs;EdkkgenAkñúgkar

          KNnaenH.
          kMlaMgKμanemKuNEdlbNþalBIbnÞúlpÞal;KW

Shear and Torsion Strength Design                                                                  260
NPIC




                             ⎛l    ⎞        ⎛ 70     ⎞
                     Vd = WD ⎜ − x ⎟ = 1,019⎜ − 17.5 ⎟ = 17,833lb
                             ⎝2    ⎠        ⎝ 2      ⎠
                     WSD = 200 plf

                     WL = 720 plf
          GaMgtg;sIuetbnÞúkxageRkAemKuNKW
                     WU = 1.2 × 200 + 1.6 × 720 = 1,392 plf (20.4kN / m )
                             ⎛l    ⎞        ⎛ 70       ⎞
                     Vi = WU ⎜ − x ⎟ = 1,392⎜ − 17.5 ⎟ = 24,360lb(108kN )
                             ⎝2    ⎠        ⎝ 2        ⎠
                                 ⎛ l − x ⎞ 1,392 × 17.5(70 − 17.5)
                     M max = WU x⎜       ⎟=                        × 12
                                 ⎝ 2 ⎠                2

                            = 7,673,400in. − lb(867 kN .m )

                                                          × (M cr ) ≥ 1.7λ f 'c bw d p
                                                     Vi
                     Vci = 0.6λ f 'c bw d p + V p +
                                                    M max

                         = 0.6 × 1.0 × 5,000 × 12.5 × 30.0 + 17,833 +
                                                                          24,360
                                                                                   (3,948,762)
                                                                        7,673,400

                           = 46,279lb(201kN )
                     1.7λ f 'c bw d p = 1.7 × 1.0 5,000 × 12.5 × 30.0 = 45,078lb < 46,279lb

         dUcenH Vci = 46,279lb lub
     @> Web-shear cracking, Vcw ¬CMhanTI2¦
                                         = 417 psi (2.9MPa )
                              Pe 407,592
                      fc =       =
                              Ac   978
          sMrab;bgÁúMbBaÄrrbs;kMlaMgeRbkugRtaMg
                     VP = Pe tan θ = 407,592
                                                    (21.77 − 11.38) = 10,083lb(44.0kN )
                                                        70 / 2 × 12
                             (                      )
                     Vcw = 3.5λ f 'c + 0.3 f c bw d p + V p

                           = (3.5                         )
                                      5,000 + 0.3 × 417 12.5 × 30.0 + 10,083
                                 nig Vci = 46,279lb
                           = 149,803lb

          Vc CatMéltUcCageKén Vci nig Vcw dUcenH

                     Vc = Vci = 46,279lb
     #> KNnaEdkkg ¬CMhanTI3-8¦
         eyIgman Vc = 46,279lb
         dUcenH      1
                     2
                       Vc = 23,140lb



karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                                261
T.Chhay




              enARtg;muxkat; 17.5 ft BITMr = 61,017lb > Vc > 12 Vc dUcenHeKcaM)ac;KNnaEdkkg.
          Vu / φ

    RbsinebI Vu / φ < Vc > 12 Vc eKRtUvkarRtwmEtEdkkgGb,brma.
        Av
         s
           tMrUvkar = Vnf − Vc = (Vu f/ φd) − Vc = 61,017 −×46,279
                          d                         60,000 30.0
                               y    p        y   p

                        = 0.0082in.2 / in.
          edayeRbI d ≅ d p = 30.0in. nig bw = 12.5in.
                    ⎛ Av ⎞      A ps f pu            dp       18 × 0.153     270,000     30.0
                    ⎜ ⎟       =                           =              ×                    = 0.0080
                    ⎝ s ⎠ min   80 f y d p           bw           80       60,000 × 30.0 12.5

                    0.75 f 'c = 0.75 5,000 = 53
                    ⎛ Av ⎞       53bw 53 × 12.5
          b¤        ⎜ ⎟        =     =          = 0.011in.2 / in.
                    ⎝  s ⎠ min    fy   60,000

          dUcenH tMéltUcCageKéntMélGb,brmaTaMgBIrKW
                    ⎛ Av ⎞
                    ⎜ ⎟        = 0.0080in.2 / in. = 0.010in.2 / ft       sMrab;RTnugTaMgBIr b¤ 0.005in.2 / ft
                    ⎝  s ⎠ min

                                                                         sMrab;RTnugmYy
          sakl,g D5 deformed welded wire fabric mYyCYredayKMlat 10in. KitBIG½kReTAG½kS.
          KMlatGnuBaØatGtibrmaKW 0.75h ≤ 24in. dUcenHeyIgman
                    0.75h = 0.75 × 34 = 25.5in.
         dUcenH TTYlykEdkkg D5 WWF mYyCYrkñúgmYyRsTab;edaymanKMlat 10in. KitBIG½kSeTA
G½kSenARtg;muxkat;énmYyPaKbYnElVg.
         cMNaMfa edayeRbobeFobdMeNaHRsaysMrab; Vci nig Vcw enAkñúg]TahrN_ 5>6 tMélx<s;Cag
eKrbs; Vci sßitenAEk,rTMr ehIyfycuHy:agelOneTArkkNþalElVg enAeBlEdlbMErbMrYlrbs; Vcw
mantMéltUcCag dUcEdleXIjenAkñúgrUbTI 5>13. eKcaM)ac;KNna flexure shear Vci nig web shear
Vcw enAeRcInmuxkat;tambeNþayElVgedIm,IkMNt;karrayEdkkgRbkbedayRbsiT§PaBbMput. kmμviFIkMu

BüÚT½rsMrYlkarKNnatMélTaMgenHelIcenøaHefrNamYy ¬dUcCa 10 énElVg¦ ehIyeKGacsg;düaRkam
                                                         1


RsedogKñanwgdüaRkamenAkñúgrUbTI 5>13 EdlbgðajBIbMErbMrYlénersIusþg;kMlaMgkat;rbs;RTnugtam
beNþayElVg.
    $> KNna dowel steel sMrab; full composite section Edlman topping bEnßm 2in. ¬CMhanTI9¦
RbsinebIeKbEnßm topping EbbenHeTAelI pretopped section enAeBleRkay.

Shear and Torsion Strength Design                                                                     262
NPIC




          muxkat;enARtg; 12 d p BIépÞrbs;TMr
                     d p = 30.0 + 2.0 = 32.0in.

          Vu   enARtg;TMr = 91,525(408kN )
                                    = 1.33 ft (40cm )
                      1      32.0
                        dp =
                      2      2 × 12
                     h / 2 = 17in. = 1.33 ft
                                     ⎛ 35 − 1.33 ⎞
                     Vu = 91,525 × ⎜             ⎟ = 88,047lb(393kN )
                                     ⎝ 35 ⎠
                     Vnh  tMrUvkar V
                                 = u =
                                    φ
                                          88,047
                                           0.75
                                                   = 117,393lb(522kN )

                     bv = 12 ft
                     htopping = 2in.

          BIrUbTI 5>14
                     Cc = 0.85 f 'cc Atop = 0.85 × 3,000 × 12 × 12 × 2 = 734,400lb(3,267kN )

                     Ts = Aps f ps = 18 × 0.153 × 240,000 = 660,960lb(2,940kN )

                                                          < Cc = 734,400lb
          dUcenH     Fh = 660,960lb(2,178kN )
                             70 × 12
                     lvh =           = 420in.(1,067cm )
                                2
                     bv = 144in.(366cm )

                     80bv lvh = 80 × 144 × 420 = 4,838,400lb(21,520kN ) >> 660,960lb
         eKminRtUvkar dowel reinforcement edIm,ITak;enAkñúg topping EdlRtUvbEnßmenAeBleRkay
2in. edIm,I)an full composite action eT. eKTTYlykmuxkat;enH enAeBlvamanlkçN³RKb;RKan;

sMrab; flexurl, PaBdab nigtMrUvkarsMrab;karRKb;RKgsñameRbH.

15>       Brackets and Corbels
          Bracket nig corbel Ca short-haunched cantilever EdllyecjBIépÞxagrbs;ssr b¤
CBa¢aMgebtugedIm,IRTbnÞúkcMcMnucEdlF¶n; b¤Rbtikmμrbs;Fñwm. vaCaFatuy:agsMxan;rbs;eRKOgbgÁúMsMrab;RT
Fñwmcak;Rsab;/ gantry girder nigTMrg;epSgeToténRbB½n§eRKOgbgÁúMcak;Rsab;. ebtugeRbkugRtaMg nigeb
tugcak;Rsab;RtUv)aneRbIy:ageRcIn nigekIneLIgy:agrh½s ehIyElVgkan;EtEvgRtUv)ansagsg; Edl

karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl                                              263
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design
V. shear and torsional strength design

Contenu connexe

Tendances

Appendix b structural steel design based on allowable stress
Appendix  b structural steel design based on allowable stressAppendix  b structural steel design based on allowable stress
Appendix b structural steel design based on allowable stress
Chhay Teng
 
6.beam columns
6.beam columns6.beam columns
6.beam columns
Chhay Teng
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsion
Chhay Teng
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slab
Chhay Teng
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining walls
Chhay Teng
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concrete
Chhay Teng
 
1.introduction
1.introduction1.introduction
1.introduction
Chhay Teng
 
I. basic concepts
I. basic conceptsI. basic concepts
I. basic concepts
Chhay Teng
 
Xvii design of two way slab
Xvii design of two way slabXvii design of two way slab
Xvii design of two way slab
Chhay Teng
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures
Chhay Teng
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loads
Chhay Teng
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking
Chhay Teng
 
7.simple connections
7.simple connections7.simple connections
7.simple connections
Chhay Teng
 
9.composite construction
9.composite construction9.composite construction
9.composite construction
Chhay Teng
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stresses
Chhay Teng
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concrete
Chhay Teng
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
Chhay Teng
 

Tendances (20)

Appendix b structural steel design based on allowable stress
Appendix  b structural steel design based on allowable stressAppendix  b structural steel design based on allowable stress
Appendix b structural steel design based on allowable stress
 
6.beam columns
6.beam columns6.beam columns
6.beam columns
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsion
 
Xiii footings
Xiii footingsXiii footings
Xiii footings
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slab
 
Xviii stairs
Xviii stairsXviii stairs
Xviii stairs
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining walls
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concrete
 
1.introduction
1.introduction1.introduction
1.introduction
 
I. basic concepts
I. basic conceptsI. basic concepts
I. basic concepts
 
Xvii design of two way slab
Xvii design of two way slabXvii design of two way slab
Xvii design of two way slab
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loads
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking
 
7.simple connections
7.simple connections7.simple connections
7.simple connections
 
9.composite construction
9.composite construction9.composite construction
9.composite construction
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stresses
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concrete
 
8. deflection
8. deflection8. deflection
8. deflection
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
 

En vedette

Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structures
Chhay Teng
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension member
Chhay Teng
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design
Chhay Teng
 
Construction work
Construction work Construction work
Construction work
Chhay Teng
 
Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concrete
Chhay Teng
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness method
Chhay Teng
 
4.compression members
4.compression members4.compression members
4.compression members
Chhay Teng
 
3.tension members
3.tension members3.tension members
3.tension members
Chhay Teng
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connections
Chhay Teng
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
Chhay Teng
 
Computer graphic
Computer graphicComputer graphic
Computer graphic
Chhay Teng
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practice
Chhay Teng
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members
Chhay Teng
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
Chhay Teng
 

En vedette (19)

Appendix
AppendixAppendix
Appendix
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structures
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension member
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design
 
Tiling
Tiling Tiling
Tiling
 
Construction work
Construction work Construction work
Construction work
 
Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concrete
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness method
 
4.compression members
4.compression members4.compression members
4.compression members
 
3.tension members
3.tension members3.tension members
3.tension members
 
Euro sq
Euro sqEuro sq
Euro sq
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connections
 
Euron fl
Euron flEuron fl
Euron fl
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
 
Computer graphic
Computer graphicComputer graphic
Computer graphic
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practice
 
Appendix
AppendixAppendix
Appendix
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
 

Similaire à V. shear and torsional strength design

Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and design
Chhay Teng
 
Cement knowledge revised 160110
Cement knowledge revised 160110Cement knowledge revised 160110
Cement knowledge revised 160110
Chhay Teng
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural members
Chhay Teng
 
5. cables and arches
5. cables and arches5. cables and arches
5. cables and arches
Chhay Teng
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structure
Chhay Teng
 
Iv flexural design on reinforced concrete beams
Iv flexural design on reinforced concrete beamsIv flexural design on reinforced concrete beams
Iv flexural design on reinforced concrete beams
Chhay Teng
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tension
Chhay Teng
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded column
Chhay Teng
 
11e.deflection of beam the energy methode10
11e.deflection of beam the energy methode1011e.deflection of beam the energy methode10
11e.deflection of beam the energy methode10
Chhay Teng
 
1.resultants of coplanar force system17
1.resultants of coplanar force system171.resultants of coplanar force system17
1.resultants of coplanar force system17
Chhay Teng
 

Similaire à V. shear and torsional strength design (11)

Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and design
 
Cement knowledge revised 160110
Cement knowledge revised 160110Cement knowledge revised 160110
Cement knowledge revised 160110
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural members
 
5. cables and arches
5. cables and arches5. cables and arches
5. cables and arches
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structure
 
5.beams
5.beams5.beams
5.beams
 
Iv flexural design on reinforced concrete beams
Iv flexural design on reinforced concrete beamsIv flexural design on reinforced concrete beams
Iv flexural design on reinforced concrete beams
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tension
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded column
 
11e.deflection of beam the energy methode10
11e.deflection of beam the energy methode1011e.deflection of beam the energy methode10
11e.deflection of beam the energy methode10
 
1.resultants of coplanar force system17
1.resultants of coplanar force system171.resultants of coplanar force system17
1.resultants of coplanar force system17
 

Plus de Chhay Teng

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
Chhay Teng
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
Chhay Teng
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
Chhay Teng
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
Chhay Teng
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
Chhay Teng
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
Chhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
Chhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
Chhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
Chhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
Chhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
Chhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
Chhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
Chhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
Chhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
Chhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
Chhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
Chhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
Chhay Teng
 

Plus de Chhay Teng (20)

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
 
Type of road
Type of roadType of road
Type of road
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 

V. shear and torsional strength design

  • 1. T.Chhay V. karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl Shear and Torsion Strength Design 1> esckþIepþIm Introduction CMBUkenHnwgBN’naBIdMeNIrkarsikSaKNnamuxkat;ebtugeRbkugRtaMgedIm,ITb;Tl;kMlaMgkat; nigkM laMgrmYlEdlekItBIkMlaMgGnuvtþn_xageRkA. edaysarersIusþg;Tajrbs;ebtugexSayCagersIusþg;sgát; rbs;va karsikSaKNnasMrab;kMlaMgkat; nigkMlaMgrmYlkøayCaerOgsMxan;sMrab;RKb;RbePTeRKOgbgÁúM ebtugTaMgGs;. karEbgEckrvagkar)ak;rbs;FñwmebtugeRbkugRtaMgeRkamGMeBIkMlaMgkat; b¤bnSMkMlaMgkat; nigkM laMgrmYl KWxusBIkar)ak;eRkamGMeBIkMlaMgBt;begáag. va)ak;y:agelOnedaymin)anRbkasGsnñCamun RKb;RKan; ehIysñameRbHGgát;RTUgEdlekItmanmanTMhMFMCagsñameRbHedaysarGMeBIkMlaMgBt;begáag. TaMgkMlaMgkat; nigkMlaMgrmYlbegáItCakugRtaMgkat;. kugRtaMgenHGacegáItCakugRtaMgTajem (principal tensile stress) enARtg;muxkat;eRKaHfñak;EdlGacnwgmantMélFMCagersIusþg;Tajrbs;ebtug. cMNaMfa bøg;ekagrgkar)ak;edaykarrmYlKWbNþalmkBIm:Um:g;rmYlEdl)ak;bEnßmBIelI. kugRtaMgenAkñúgFñwmFmμta minRtwmEtekIteLIgedaysarkMlaMgkat;edaypÞal; (direct shear) b¤kMlaMgrmYlsuT§ (pure torsion) b:ueNÑaHeT b:uEnþvak¾ekIteLIgedaysarbnSMénkMlaMg nigm:Um:g;xageRkA. kMlaMgTaMgenaHbegáIteGayman kugRtaMgTajGgát;RTUg (diagonal tension stress) b¤kugRtaMgTajedaysarkarbegáag (flexural shear stress) enAkñúgGgát;. kugRtaMgkMlaMgkat;edaypÞal; b¤kugRtaMgrmYlsuT§ekItmanEtenAkñúgRbB½n§eRKOg bgÁúMxøHb:ueNÑaH dUcCakrNI corbel b¤ bracket EdlBak;B½n§nwgkMlaMgkat;edaypÞal; b¤ cantilever balcony EdlTak;TgCaBiessnwgkMlaMgrmYlsuT§enAelIFñwmTMr. 2> kareFVIkarrbs;Fñwm homogeneous eRkamGMeBIkMlaMgkat; Behavior of Homogeneous Beams in Shear BicarNaFatuGnnþtUcBIr A1 nig A2 rbs;FñwmctuekaNenAkñúgrUbTI 5>1 (a) EdlplitBIsMPar³ EdlmanlkçN³sac;mYy (homogeneous), lkçN³esμIsac; (isotropic) nig linearly elastic. rUbTI 5>2 (b) bgðajBIkarBRgaykugRtaMgBt; nigkarBRgaykugRtaMgkat;elIkMBs;rbs;muxkat;. kugRtaMg Shear and Torsion Strength Design 214
  • 2. NPIC TajEkg (tensile normal stress) ft nigkugRtaMgkat; v CatMélenAkñúgFatu A1 enAelIkat;bøg; a − a Rtg;cMgay y BIG½kSNWt. BIeKalkarN_ classical emkanic eKGacsresrkugRtaMgEkg (normal stress) f nigkugRtaMg kat; v sMrab;Fatu A1 dUcxageRkam³ My f = (5.1) I nig v= VA y VQ Ib = Ib (5.2) Edl M nig V = m:Um:g;Bt; nigkMlaMgkat;enARtg;muxkat; a − a A = RkLaépÞrbs;muxkat;enARtg;bøg;Edlkat;tamTIRbCMuTMgn;rbs;Fatu A1 y = cMgayBIFatuGnnþtUceTAG½kSNWt y = cMgayBITIRbCMuTMgn;rbs; A eTAG½kSNWt karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 215
  • 3. T.Chhay m:Um:g;niclPaBrbs;muxkat; I= Q = m:Um:g;sþaTicrbs;RkLaépÞmuxkat;EdlenABIxagelI b¤BIxageRkamG½kSNWt b = TTwgrbs;Fñwm rUbTI 5>2 bgðajBIkugRtaMgxagkñúgEdlmanGMeBIelIFatuGnnþtUc A1 nig A2 . edayeRbIrgVg;m: (Mohr’s cicle) enAkñúgrUbTI 5>2(b) kugRtaMgemsMrab;Fatu A1 enAkñúgtMbn;TajxageRkamG½kSNWtkøayCa 2 ⎛f ⎞ f t (max) f = t + ⎜ t ⎟ + v2 2 ⎝2⎠ kugRtaMgTajem (5.3a) 2 ⎛f ⎞ f c (max ) = ft 2 − ⎜ t ⎟ + v2 ⎝2⎠ kugRtaMgsgát;em (5.3b) nig tan 2θ max = v ft / 2 Shear and Torsion Strength Design 216
  • 4. NPIC 3> kareFVIkarrbs;FñwmebtugGarem:CalkçN³minEmnsac;mYy Behavior of Concrete Beams as Nonhomogeneous Sections kareFVIkarrbs;FñwmebtugGarem: nigFñwmebtugeRbkugRtaMgxusBIFñwmEdk EdlersIusþg;Tajrbs; ebtugmantMélRbEhlmYyPaKdb;énersIusþg;sgát;rbs;ebtug. ersIusþg;sgát; fc enAkñúgFatu A2 énrUbTI 5>2(b) EdlenAxagelIG½kSNWtkarBareRbH edaysarkugRtaMgemGtibrmaenAkñúgFatuGnnþtUcCakugRtaMg sgát;. sMrab;Fatu A1 EdlenAxageRkamG½kSNWt kugRtaMgemGtibrmaCakugRtaMgTaj dUcenHnwgekItman karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 217
  • 5. T.Chhay sñameRbH. edaysarm:Um:g;Bt; dUcKñanwgkugRtaMgTajfycuH ehIykugRtaMgkat;ekIneLIgkñúgTisedAeTArk TMr enaHkugRtaMgTajem ft (max ) nwgeFVIGMeBIelIbøg;RbEhl 45o Rtg;muxkat;Ek,rTMr dUceXIjenAkñúgrUbTI 5>3. edaysarersIusþg;Tajrbs;ebtugtUc sñameRbHGgát;RTUgekItmantambøg;Ekgnwgbøg;énkugRtaMg Tajem ehIysñameRbHenHeKeGayeQμaHfa sñameRbHGgát;RTUgTaj (diagonal tension crack). edIm,I karBarsñameRbHEbbenHBITIkEnøgcMh (opening) eKRtUvdak;EdkTajGgát;RTUgBiess. RbsinebIeKsnμt; ft EdlenAEk,rTMrénrUbTI 5>3 esμIsUnü enaHFatuGnnþtUcnwgesÞIrkøayeTACa sßanPaBénkugRtaMgkat;suT§ ehIykugRtaMgTajemEdleRbIsmIkar 5.3a nwgesμInwgkugRtaMgkMlaMgkat; v enAelIbøg; 45o . vaCakugRtaMgTajGgát;RTUgEdlbgáeGaymansñameRbHeRTt. karyl;y:agc,as;las;BI correct shear mechanism enAkñúgebtugGarem:enAminTan;RKb;RKan; enAeLIgeT. b:uEnþ viFIén ACI-ASCE Joint Committee 426 pþl;nUveKalkarN_mUldæanEdl)anBI lT§plénkarBiesaFy:ageRcInsn§wksn§ab;. 4> FñwmebtugEdlKμanEdkTajGgát;RTUg Concrete Beams without Diagonal Tension Reinforcement enAkñúgtMbn;énm:Um:g;Bt;FM sñameRbHekItmanesÞIrEtEkgnwgG½kSrbs;Fñwm. sñameRbHTaMgenHman eQμaHfa sñameRbHBt;begáag (flexural crack). enAkñúgtMbn;kMlaMgkat;FMedaysarkMlaMgTajGgát;RTUg sñameRbHeRTtekItmanbnþBI flexural crack ehIyRtUv)aneKehAfasñameRbHkMlaMgkat;begáag (flexural shear crack). rUbTI 5>4 bgðajBIRbePTsñameRbHEdlrMBwgnwgekItmanenAkñúgebtugGarem:edayman b¤ KμanEdkTajGgát;RTUgRKb;RKan;. Shear and Torsion Strength Design 218
  • 6. NPIC enAkñúgFñwmeRbkugRtaMg muxkat;esÞIrEtrgkugRtaMgsgát;TaMgGs;eRkamGMeBIbnÞúkeFVIkar (service load). BIrUbTI 5>2 (c) nig (d) kugRtaMgemsMrab;Fatu A2 KW f t (max ) = − c + ( f c / 2)2 + v 2 f 2 kugRtaMgTajem (5.4a) f c (max ) = − c − ( f c / 2)2 + v 2 f 2 kugRtaMgsgát;em (5.4b) nig tan 2θ max = v f /2 c k> KMrU)ak;rbs;FñwmEdlKμanEdkTajGgát;RTUg Modes of Failure of Beams without Diagonal Tension Reinforcement pleFobElVgkat;elIkMBs; (slenderness ratio) rbs;FñwmkMNt;nUvKMrU)ak;rbs;Fñwm. rUbTI 5>5 bgðajBIkar)ak;sMrab;EdnkMNt;én slenderness ratio epSg². RbEvgElVgkMlaMgkat; (shear span) a sMrab;bnÞúkcMcMnucCacMgayrvagcMnucénkarGnuvtþbnÞúk nigépÞénTMr. sMrab;bnÞúkBRgay shear span lc Ca clear beam span. CaeKalkarN_ KMrUénkar)ak;manbIEbbKW kar)ak;edaykarbegáag (flexural failure), kar)ak;edaykMlaMgTajGgát;RTUg (diagonal tension failure) nigkar)ak;edaybnSMkarkat; nigkarsgát; (shear compression failure or web shear). Fñwmkan;EtRsav kareFVIkarrbs;vakan;EtxiteTArklkçN³ begáagdUckarerobrab;xageRkam. karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 219
  • 7. T.Chhay x> kar)ak;edaykarBt;begáag Flexural Failure [F] sMrab; flexural failure sñameRbHeRcInEtQrelIRbEvgmYyPaKbIEpñkkNþalrbs;Fñwm ehIyEkg eTAnwgExSénkugRtaMgem. sñameRbHenHekItBIkugRtaMgkMlaMgkat; v tUc nigkugRtaMgBt; f FM EdlbegáIt nUvkugRtaMgem ft (max ) esÞIrEtedk. enAkñúgKMrU)ak;EbbenHsñameRbHbBaÄrtUcb:unsréssk;cab;epþImekIt manenAtMbn;kNþalElVgeRkamGMeBIrbs;bnÞúkRtwm 50% én failure load. edaysarbnÞúkxageRkAekIn eLIg sñameRbHbEnßmekItmanenAtMbn;kNþalrbs;ElVg ehIysñameRbHdMbUgrIkFM ehIymanTisedAeq<aH eTArkG½kSNWt CamYynwgkarekIneLIgPaBdabrbs;FñwmKYreGaykt;sMKal;. RbsinebIFñwmenHCa under- reinforced member kar)ak;rbs;vaekIteLIgkñúglkçN³ ductile eday longitudinal flexural rein- forcement eFVIkareTAdl; yield. kareFVIkarRbePTenHpþl;nUvkarRbkasGasnñénkarrlMrbs;Fñwm. pleFobElVgkat;elIkMBs;sMrab;kareFVIkarenHmantMélFMCag 5.5 sMrab;krNIbnÞúkcMcMnuc nigFMCag 16 sMrab;bnÞúkBRgay. K> kar)ak;edaykMlaMgTajGgát;RTUg Diagonal Tension Failure [Flexure shear, FS] kar)ak;edaykMlaMgTajGgát;RTUgekItmanRbsinebIersIusþg;kMlaMgTajGgát;RTUgrbs;FñwmtUcCag ersIusþg;Bt;begáagrbs;va. pleFobElVgkat;elIkMBs;mantMélkNþalEdlERbRbYlcenøaH 2.5 eTA 5.5 sMrab;krNIbnÞúkcMcMnuc. eKKitFñwmEbbenHCa intermidate slenderness. sñameRbHcab;epþImCamYykar ekIteLIgén flexural crack bBaÄresþIg²enAkNþalElVg nigbnþedaykar)at;bg;PaBs¥itrvagEdkCamYy nwgebtugEdlB½T§CMuvijvaenARtg;TMr. bnÞab;mkeTot edayminmankarRbkasGsnñRKb;RKan;BIkarekItman kar)ak; sñameRbHGgát;RTUgBIr b¤bIekItmanenARtg;RbEhl 1.5d eTA 2d éncMgayBIépÞénTMrkñúgkrNIFñwm ebtugGarem: nigCaTUeTAekItmanRtg;RbEhlmYyPaKbYnénElVgkñúgkrNIFñwmeRbkugRtaMg. enAeBlEdl vaenAzitezr sñameRbHGgát;RTUgmYykñúgcMeNamenaHrIkhMkøayCasñameRbHTajGgát;RTUgem ehIylat sn§wgeTArksréssgát;xagelIrbs;Fñwm dUceXIjenAkñúgrUbTI 5>5(b) nig 5>5(c). cMNaMfa flexural crack minlatrIkraleTArkeTArkG½kSNWtenAkúñgkrNIKrU)ak;RsYyEbbenHeT. KMrU)ak;enHmanPaBdab M tUcCagKMrU)ak;elIkmunenAeBl)ak;. eTaHbICakMlaMgkat;xageRkAGtibrmaenARtg;TMrkþI TItaMgeRKaHfñak;rbs;kugRtaMgTajemGtibrma minsßitenARtg;TMreT. vaRtUv)ankat;bnßyenARtg;mxkat;enaH edaysarkMlaMgsgát;FMrbs;EdkeRbkug u RtaMgbEnßmBIelIkMlaMgsgát;bBaÄrénRbtikmμrbs;FñwmenARtg;TMr. vaCamUlehtuEdlsñameRbHGgát;RTUg Shear and Torsion Strength Design 220
  • 8. NPIC EdlenAzitezrmanTItaMgq¶aycUlmkkñúgElVgRbEhlmYyPaKbYnénElVgsMrab;FñwmeRbkugRtaMgEdlman søab ehIyTItaMgenHGaRs½ynwgTMhMénkMlaMgeRbkugRtaMg nigPaBERbRbYlrbs;cMNakp©it. CarYm diagonal tension failure CalT§plénbnSMrbs;kugRtaMgBt; nigkugRtaMgkat; edayKitnUvkarcUlrYmrbs; bgÁúMbBaÄrrbs;kMlaMgeRbkugRtaMg nigRtUv)ankt;sMKal;edaysñameRbHbegáag nigsñameRbHGgát;RTUg. CakarRbesIr eKehAvafa flexure shear sMrab;FñwmeRbkugRtaMg ehIyvamanlkçN³gayRsYlBnül;Ca web shear Edlnwgerobrab;enAeBlbnÞab;. karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 221
  • 9. T.Chhay X> kar)ak;edaybnSMkarkat; nigkarsgát; Shear Compression Failure [Web Shear, WS] FñwmEdlRbQm shear compression failure EtgmanpleFobElVgkat;elIkMBs; 2.5 sMrab; krNIbnÞúkcMcMnuc nigtUcCag 5.0 sMrab;bnÞúkBRgay. dUckñúgkrNIkar)ak;edaykMlaMgTajGgát;RTUg sñameRbHedaysarkarBt;esþIg²mYycMnYncab;epþImekItmanenAkNþalElVg ehIybBaÄb;karrIkral edaysarkar)at;bg; PaBs¥itrvagEdkbeNþayCamYynwgebtugEdlB½T§CMuvijvaenARtg;TMr. bnÞab;mk sñameRbHeRTtEdlmanlkçN³ecaTCagsñameRbHkñμúgkrNIkar)ak;edaykMlaMgTajGgát;RTUgekIteLIg Pøam² nigbnþrIkraleq<aHeTArkG½kSNWt. GRtaénkarrIkralrbs;vaRtUv)ankat;bnßyedaysarkarEbk rbs;ebtugenAelIsréssgát;xagelI nigkarEbgEckkugRtaMgeLIgvijenAkñúgtMbn;xagelI. kar)ak;Pøam² ekIteLIgedaysarsñameRbHGgát;RTUgemrYmpSMngtMbn;ebtugEbk dUcbgðajenAkñúgrUbTI 5>5(c). eKKit w fakar)ak;RbePTenHmanlkçN³minsUvRsYydUckar)ak;edaysar diagonal tension failure edaysar karBRgaykugRtaMgeLIgvij. CakarBit vaCaRbePTénkar)ak;EdlmanlkçN³RsYyedaymankarRbkas GasnñEdlmanEdnkMNt; ehIyeKRtUveCosvagkarsikSaKNnaEbbenHdac;xat. FñwmebtugminmanlkçN³sac;mYy (homogeneous) ehIyCaTUeTAkarBRgayersIusþg;rbs;ebtug enAelIElVgTaMgmUlmanlkçN³minesμIKñaeT. dUcenH eKminGacrMBwgBIkarekIteLIgénsñameRbHGgát;RTUg enAelIcugTaMgsgçagrbs;Fñwm)aneT. ehIyedaysarlkçN³TaMgenH karbnSMCan;Kñaénkar)ak;edaykar Bt; nigkar)ak;edaykMlaMgTajGgát;RTUg CamYynwgkar)ak;edaysarkMlaMgTajGgát;RTUg nigkar)ak; edaybnSMkMlaMgkat; nigkMlaMgsgát;GacekItmanenAeBlpleFobElVgkat;elIkMBs;Can;Kña. RbsinebI eKdak;EdkkMlaMgkat; (shear reinforcement) smrmü eKGackat;bnßykar)ak;edaylkçN³RsYyrbs; Ggát;edkCamYynwgfvikarbEnßmtictYc. kar)ak;PaKeRcInEtgEt)ak;edaykMlaMgTajGgát;RTUg EdlCabnSMénT§iBlrbs;karBt;begáag nigkarkat;. RbePTénkar)ak;edaybnSMkMlaMgkat; nigkMlaMgsgát; ¬CalT§plénkarEbkénépÞsgát;xag elIrbs;ebtug nigkar)at;bg;lT§PaBTb;Tl;kMlaMgBt;¦ naMdl;karEbgEcksøabrgkarTajecjBIRTnug sMrab;muxkat;mansøabedaysarsñameRbHeRTtlatsn§wgeTArkTMr. karEbkénFñwmrbs;muxkat;eFVIeGay FñwmeFVIkardUcnwgFñÚ (tied arch). CakarRbesIr eKKYrehARbePTénkar)ak;enHCa kar)ak;kMlaMgRTnug (web-shear failure) sMrab;FñwmeRbkugRtaMg eKcaM)ac;kMNt;lT§PaBénbnSMkMlaMgBt; nigkMlaMgkat; nig lT§PaBkMlaMgkat;RTnugrbs;muxkat;Rtg;TItaMgeRKaHfñak;edIm,IkMNt;ersIusþg;kMlaMgkat;rbs;muxkat;eb- tug. Shear and Torsion Strength Design 222
  • 10. NPIC karEbgEckkugRtaMgkat;tamTisedkGtibrmaenAkñúgmuxkat;eRbHrbs;muxkat;mansøabRtUv)an bgðajenAkñúgrUbTI 5>6. edaysarkarpøas;bþÚrTTwgmuxkat;y:agrh½senARtg;RCug A dUcenHeKcaM)ac; RtYtBinitülT§PaBrbs;muxkat;enARtg;TItaMgeRKaHfñak;tambeNþayElVg CaBiesssMrab;kar)ak;edaysar kMlaMgkat;RTnug (web-shear failure). 5> kugRtaMgkat; nigkugRtaMgemenAkñúgFñwmeRbkugRtaMg Shear and Principal Stresses in Prestressed Beams dUcEdl)anerobrab;enAkñúgEpñk 4/ flexure shear enAkñúgFñwmebtugeRbkugRtaMgrYmbBa©ÚlTaMgT§i- BlénkMlaMgeRbkugRtaMgsgát;EdlGnuvtþBIxageRkA. bgÁúMkMlaMgbBaÄrrbs;kMlaMgEdkeRbkugRtaMgkat; bnßykugRtaMgbBaÄrEdlekIteLIgedaybnÞúkTTwgG½kSxageRkA (external transverse load) ehIy net transverse load EdlFñwmRtUvTTYlmantMéltUcKYreGaykt;sMKal;sMrab;FñwmeRbkugRtaMgCagsMrab;Fñwm ebtugGarem:. elIsBIenH kMlaMgsgát;rbs;EdkeRbkugRtaMg ¬eTaHbIenAkñúgkrNI straight tendon¦ kat;bnßy T§iBlrbs; tensile flexural stresses y:ageRcIn dUcenHkarrIkraldalén flecural cracking nigTMhMén flexural cracking enAkñúgFñwmeRbkugRtaMgRtUv)ankat;bnßy. CalT§pl kMlaMgkat; nigkugRtaMgemenA kñúgFñwmeRbkugRtaMgmantMéltUcCagkMlaMgkat; nigkugRtaMgemenAkñúgFñwmebtugGarem:xøaMgNas;. dUcenH smIkarmUldæanEdlbegáIteLIgsMrab;kMlaMgkat;enAkñúgebtugeRbkugRtaMgmanlkçN³dUcKñanwgsmIkarmUl dæanEdlbegáIteLIgsMrab;ebtugeRbkugRtaMg. rUbTI 5>7 bgðajBIkarcUlrYmrbs;bgÁúMbBaÄrrbs;kMlaMgeRb kugRtaMgenAkñúgEpñkEdlminmanlMnwg b¤kMlaMgkat;bBaÄr V PaKeRcInEdlekItedaybnÞúkTTwgG½kSxag eRkA. kMlaMgkat;suT§ (net shearing force) Vc EdlTb;Tl;edayebtugKW Vc = V − V p (5.5) karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 223
  • 11. T.Chhay BIsmIkar 5.2 kugRtaMgkat;ÉktþasuT§ v enARtg;kMBs;Nak¾edayrbs;muxkat;KW Vc Q vc = (5.6) Ib karEbgEckkugRtaMgsréssgát; fc EdlbNþalBIm:Um:g;Bt;xageRkAKW Pe Pe ec M T c fc = − ± m (5.7) Ac Ic Ic ehIyBIsmIkar 5.4a kugRtaMgTajemKW f 't = ( f c / 2)2 + vc2 − fc (5.8) 2 k> Flexural-Shear Strength edIm,IsikSaKNnasMrab;kMlaMgkat; eKcaM)ac;kMNt;faetI flexural shear b¤ web shear lubedIm,I eFVIkareRCIserIsersIusþg;kat; Vc rbs;ebtug. sñameRbHeRTtEdlmanlMnwg (inclined stabilized crack) enAcMgay d / 2 BI flexural crack EdlekItmanenAeBlrg first cracking load enAkñúgkrNI flexure shear RtUv)anbgðajenAkñúgrUbTI 5>8. RbsinebI kMBs;RbsiT§PaBCa d p ¬kMBs;BIsréssgát;eTATIRbCMu TMgn;rbs;EdkeRbkugRtaMgbeNþay¦ bMErbMrYlm:Um:g;rvagmuxkat; @ nig # KW Vd p M − M cr ≅ (5.9a) 2 b¤ V= M cr M /V − d p / 2 (5.9b) Shear and Torsion Strength Design 224
  • 12. NPIC Edl V CakMlaMgkat;enARtg;muxkat;EdlBicarNa. lT§plénkarBiesFCaeRcInbgðajfaeKRtUvkar kMlaMgkat;bBaÄrbEnßmEdlmanTMhM 0.6bwd p f 'c sMrab;xñat US nig bwd p f 'c / 20 sMrab;xñat SI edIm,IeFVIeGaymansñameRbHeRTtenAkñúgrUbTI 5>8 eBjelj. dUcenH kMlaMgkat;bBaÄrsrubEdleFVIGMeBI enARtg;bøg;elx @ rbs;rUbTI 5>8 KW Vci = M cr M /V − d / 2 + 0.6bw d p f 'c + Vd ¬xñat US¦ (5.10) p Vci = M cr M /V − d p / 2 + bw d p f 'c 20 + Vd ¬xñat SI¦ karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 225
  • 13. T.Chhay Edl Vd CakMlaMgkat;bBaÄrEdlbNþalBITMgn;pÞal;. bgÁúMbBaÄr V p rbs;kMlaMgeRbkugRtaMgminRtUv)an KitbBa©ÚlenAkñúgsmIkar 5.10 eT edaysarvamanTMhMtUctambeNþaymuxkat;ElVgEdlEdkeRbkugRtaMg minecatxøaMg. tMélrbs; V enAkñúgsmIkar 5.10 KWCakMlaMgkat;emKuN Vi enARtg;muxkat;EdlBicarNaEdl bNþalBIbnÞúkxageRkAEdlekIteLIgtMNalKñaCamYynwgm:Um:g;Gtibrma M max EdlekIteLIgenARtg;mux kat;enaH Vci = 0.6λ f 'c bw d p − Vd + Vi (M cr ) ≥ 1.7λ f 'c bwd p ¬xñat US¦ (5.11) M max λ f 'c bw d p λ f 'c bw d p Vci = 20 − Vd + Vi M max (M cr ) ≥ 7 ¬xñat SI¦ ≤ 5.0λ f 'c bw d p ¬xñat US¦ ≤ 0.42λ f 'c bw d p Edl sMrab;ebtugTMgn;Fmμta λ = 1 .0 = 0.85 sMrab; sand-lightweight concrete = 0.70 sMrab; all-lightweight concrete Vd = kMlaMgkat;Rtg;muxkat;EdlbNþalBIbnÞúkefrEdlKμanemKuN Vci = ersIusþg;kMlaMgkat;Fmμta (nominal shear strength) Edlpþl;eGayedayebtugenAeBl EdlsñameRbHkMlaMgTajekItBIbnSMénkMlaMgkat;bBaÄr nigm:U:m:g; Vi = kMlaMgkat;emKuNRtg;muxkat;EdlbnÞúkxageRkAekIteLIgenAeBlCamYyKñanwg M max sMrab;ebtugTMgn;Rsal λ = f ct / 6.7 f 'c sMrab;xñat US nig λ = fct / 0.556 f 'c sMrab;xñat SI RbsinebIeKsÁal; tensile splitting strength f ct . cMNaMfatMélrbs; f 'c minKYrFMCag 100 psi (0.69MPa ) . smIkarsMrab; M cr ¬m:Um:g;EdlbegáIt flexural cracking EdlbNþalBIbnÞúkxageRkA¦ RtUv)an eGayeday M cr = c (6 f 'c + f ce − f d ) ¬xñat US¦ I (5.12) y t M cr I ( = c 0.5 f 'c + f ce − f d yt ) ¬xñat IS¦ enAkñúg ACI Code eKeRbI f pe CMnYseGay f ce Shear and Torsion Strength Design 226
  • 14. NPIC Edl ersIusþg;sgát;rbs;ebtugEdlbNþalBIeRbkugRtaMgRbsiT§PaBeRkaykMhatbg;enARtg; f ce = srésxageRkAbMputrbs;muxkat;EdlkugRtaMgTajRtUv)anbgáeLIgedaybnÞúkxageRkA. enARtg;TIRbCMuTMgn; fce = f c . f d = kugRtaMgEdlbNþalBIbnÞúkGefrKμanemKuNenARtg;srésxageRkAbMputrbs;muxkat;Edl bNþalEtBIbnÞúkpÞal;EdlkugRtaMgTajRtUv)anbgáedaybnÞúkxageRkA. yt = cMgayBIG½kSTIRbCMuTMgn;eTAsrésrgkarTajxageRkA ehIy M cr = EpñkxøHrbs;m:Um:g;énbnÞúkxageRkAEdlbgáeGaymansñameRbH. CakarsMrYl eKGacCMnYs Sb CMnYseGay I c / yt . rUbTI 5>9 bgðajBIdüaRkamrbs;smIkar 5.10 CamYynwgTinñn½yénkarBiesaF. cMNaMfa eKeRbIkarsikSaKNnadUcKñaEdlGnuvtþsMrab;muxkat;cak;Rsab; sMrab;karsikSaKNna kMlaMgkat;énmuxkat;smas. BIeRBaHkarsikSaKNnasMrab;kMlaMgkat;KWQrelIsßanPaBkMNt;edA eBl)ak;eRkamGMeBIbnÞúkemKuN. eTaHbICa muxkat;TaMgmUlrbs;muxkat;smasTb;Tl;nwgkMlaMgkat; smasdUcmuxkat;Edlcak;kñúgeBlEtmYy (monolithic section) k¾eday k¾karKNnaersIusþg;kMlaMg karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 227
  • 15. T.Chhay kat; Vc KYrQrelIlkçN³rbs;muxkat;cak;Rsab; edaysarersIusþg;kMlaMgkat;PaKeRcInpþl;eGayeday RTnugrbs;muxkat;cak;Rsab;. dUcenH fce nig f d enAkñúgsmIkar 5.12 RtUv)anKNnaedayeRbIragFrNI maRtrbs;muxkat;cak;Rsab;. x> ersIusþg;kMlaMgkat;RTnug Web-Shear Strength sñameRbHkMlaMgkat;RTnug (web-shear crack) enAkñúgFñwmeRbkugRtaMgekIteLIgedaysarkugRtaMg EdlminGackMNt;)an (indeterminate stress) EdlCakarRbesIreKKYrKNnavaedaykugRtaMgTajemenA Rtg;bøg;eRKaHfñak;BIsmIkar 5.8. eKGaccat;TukkugRtaMgkat; vc CakugRtaMgkat;RTnug vcw nigmantMél GtibrmaenAEk,rTIRbCMuTMgn; cgc énmuxkat;EdlsñameRbHGgát;RTUgCak;EsþgekItman dUckarBiesaFeTA dl;kar)ak;CaeRcIn)anbgðaj. RbsinebIeKCMnYs vc sMrab; vcw nig fc sMrab; f c ¬EdlCakugRtaMgeb- tug fc EdlbNþalBIeRbkugRtaMgRbsiT§PaBenARtg;nIv:U cgc¦ enAkñúgsmIkar smIkarEdleGaykugRtaMg TajemenAkñúgebtugesμInwgersIusþg;TajpÞal; (direct tensile strength) køayCa ( f c / 2) + vcw − f2c f 't = 2 (5.13) Edl vcw = Vcw / (bwd p ) CakugRtaMgkat;enAkñúgebtugEdlbNþalBIbnÞúkTaMgGs;EdleFVIeGayman ersIusþg;kMlaMgkat;bBaÄrFmμta Vcw enAkñúgRTnug. edaHRsayrk vcw enAkñúgsmIkar 5.13 vcw = f 't 1 + f c / f 't (5.14a) edayeRbI f 't = 3.5 f 'c psi(0.3 f 'c MPa) CatMéld¾smrmüsMrab;kugRtaMgTajedayQrelIlT§pl énkarBiesaFCaeRcIn smIkar 5.14(a) køayCa vcw = 3.5 f 'c ⎛ 1 + f c / 3.5 f 'c ⎞ ⎜ ⎝ ⎟ ⎠ ¬xñat US¦ (5.14b) vcw = 0.3 f 'c ⎛ 1 + f c / 0.3 f 'c ⎞ ⎜ ⎝ ⎟ ⎠ ¬xñat SI¦ EdleyIgGacsMrYl)andUcxageRkam vcw = 3.5 f 'c + 0.3 f c ¬xñat US¦ (5.14c) vcw = 0.3( f 'c + f c ) ¬xñat SI¦ enAkñúg ACI Code eKeRbI f pc CMnYseGay f c . nimitþsBaØaEdleRbIenATIenHKWcg;bBa¢ak;favaCakugRtaMg enAkñúgebtugminEmnenAkñúgEdkeRbkugRtaMgeT. ersIusþg;kMlaMgkat;Fmμta Vcw EdleGayedayebtugenA eBlsñameRbHGgát;RTUgekItBIkugRtaMgTajemd¾FMenAkñúgRTnugkøayCa Vcw = (3.5λ f 'c + 0.3 f c )bw d p + V p ¬xñat US¦ (5.15) Shear and Torsion Strength Design 228
  • 16. NPIC ( ) Vcw = 0.3 λ f 'c + f c bw d p + V p ¬xñat SI¦ Edl V p = bgÁúMbBaÄrénkMlaMgeRbkugRtaMgRbsiT§PaBenARtg;muxkat;BiessEdlcUlrYmnwgersIusþg; FmμtabEnßm λ = 1.0 sMrab;ebtugTMgn;Fmμta nigmantMéltUcCagenHsMrab;ebtugTMgn;Rsal d p = cMgayBIsréssgát;xageRkAeTATMRbCMuTMng;rbs;EdkeRbkugRtaMg b¤ 0.8h edayykmYy NaEdlFMCag ACI Code yktMél f c CakugRtaMgsgát;pÁÜbrbs;ebtugenARt;gTIRbCMuTMgn;rbs;muxkat; b¤Rtg; kEnøgEdlkat;KñarvagRTnug nigsøabenAeBlEdlTIRbCMuTMgn;sßitenAkñúgsøab. enAkñúgkrNImuxkat;smas eKKNna f c edayQrelIkugRtaMgEdlekIteLIgedaykMlaMgeRbkugRtaMg nigm:Um:g;EdlTb;Tl;eday Ggát;cak;Rsab;EdleFVIkarEtÉg. düaRkaménTMnak;TMngrvagkugRtaMgkat;RTnugFmμta (nominal web shear stress) vcw nigkugRtaMgsgát;rbs;ebtugRtg;TIRbCMuTMgn;RtUv)aneGayenAkñúgrUbTI 5>10. cMNaMfa PaBdUcKñarvagExSekagénsmIkar 5.14b nig c bgðajfasmIkar 5.14c RtUv)anEktMrUvBIsmIkar 5.14b edIm,IeGaymanlkçN³bnÞat;. Code GnuBaØateGayeRbIemKuN 1.0 CMnYseGayemKuN 0.3 sMrab;tYTIBIr énsmIkar 5.15. karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 229
  • 17. T.Chhay K> karRtYtBinitütMélrbs;V nigV sMrab;KNnaersIusþg;ebtugRTnugV ci cw c Controlling Values of Vci and Vcw for the Determination of the Web Concrete Strength Vc ACI Code mansmIkarbEnßmsMrab;kMNt;Vci nig Vcw edIm,IeRCIserIstMél Vc EdlRtUvkarenA kñúgkarKNna³ (a) enAkñúgGgát;eRbkugRtaMgEdlmuxkat;enAcMgay h / 2 BIépÞénTMrenAEk,rcugénGgát;CagRbEvgepÞr rbs;EdkeRbkugRtaMg enaHeKRtUvBicarNatMéleRbkugRtaMgkat;bnßyenAeBlKNna Vcw . tMél Vcw enHRtUv)anKitCaEdlGtibrmarbs; Vc enAkñúgsmIkar ⎛ Vu d p ⎞ Vcw = ⎜ 0.6λ f 'c + 700 ⎜ ⎟bw d p ≥ 2λ f 'c bw d p ⎝ Mu ⎟ ⎠ ≤ 5λ f 'c bw d p ¬xñat US¦ (5.16) ⎛ Vu d p ⎞ Vcw = ⎜ 0.05λ f 'c + 5 ⎜ ⎟bw d p ≥ 0.2λ f 'c bw d p ⎝ Mu ⎟ ⎠ ≤ 0.4λ f 'c bw d p ¬xñat SI¦ tMél Vu d p / M u minGacFMCag 1.0 eT. (b) enAkñúgGgát;eRbkugRtaMgEdl bonding rbs; tendon xøHmin)anBnøÚtdl;cugrbs;Ggát; enaHeKRtUv KiteRbkugRtaMgkat;bnßyenAeBlkMNt; Vc edayeRbIsmIkar 5.16 b¤eRbItMéltUcCageKkñúg cMeNamtMél Vc EdlTTYl)anBIsmIkar 5.11 nigBIsmIkar 5.15. dUcKña tMélrbs; Vcw Edl KNnaedayeRbIeRbkugRtaMgkat;bnßyRtUvyktMélGtibrmaénsmIkar 5.16. (c) eKGaceRbIsmIkar 5.16 kñúgkarkMNt; Vc sMrab;Ggát;EdlkMlaMgeRbkugRtaMgRbsiT§PaBmintUc Cag 40% énersIusþg;Tajrbs;EdkrgkarBt; (flexural reinforcement) ebImindUcenaHeT luH RtaEteKGnuvtþkarviPaKlMGitedayeRbIsmIkar 5.11 sMrab; Vci nigsmIkar 5.15 sMrab; Vcw ehIyedayeRCIserIsyktMéltUcCageKéntMélTaMgBIrCatMélkMNt; Vc edIm,IeRbICaersIusþg; rbs;RTnugkñúgkarKNnaEdkRTnug. (d) bøg;dMbUgsMrab;ersuIsþg;kat;FmμtaEdlRtUvkarsrub (total required nominal shear strength) Vn = Vu / φ EdlRtUv)aneRbIsMrab;KNnaEdkRTnugk¾sßitenARtg;cMgay h / 2 BIépÞrbs;TMr. Shear and Torsion Strength Design 230
  • 18. NPIC 6> EdkkMlaMgkat;RTnug Web-Shear Reinforcement k> Web Steel Planar Truss Analogy edIm,IkarBarsñameRbHGgát;RTUgenAkñúgGgát;eRbkugRtaMg eTaHbIekIteLIgedaysar flexural- shear b¤ web-shear action k¾eday eKRtUvdak;EdkBRgwgtamTMrg;énExSditEdlBN’naBIKnøgrbs;kug RtaMgTajenAkñúgrUbTI 5>3. b:uEnþdMeNaHRsayEbbenHRtUv)anRcanecal ehIyTMrg;epSgeTotrbs;Edk RtUv)anécñRbDiteLIgedIm,ITb;Tl;nwgkugRtaMgTajenARtg;bøg;)ak;edaysarkMlaMgkat;eRKaHfñak; (critical shear failure plane). karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 231
  • 19. T.Chhay Shear and Torsion Strength Design 232
  • 20. NPIC KMrUénkar)ak;edaykMlaMgkat;eFVIeGayFñwmman stimulated arched section rgkarsgát;enAEpñk xagelI ehIyRtUv)ancgP¢ab;KñaenAEpñkxageRkamedayEdkTaj dUceXIjenAkñúgrUbTI 5>11(a). Rbsin ebIeKBinitüEtFatusgát;EdlbgðajenAkñúgrUbTI 5>11 (b) eKGacKitvaCaGgát;sgát; enAkñúg truss RtIekaN dUcbgðajenAkñúgrUbTI 5>11 (c) EdlmanBhuekaNénkMlaMg Cc / Tb nig Ts EdltMNageGaykMlaMg EdlmanGMeBIeTAelIGgát;rbs; truss dUcenHeKGacehAvafa truss analogy. kMlaMg Cc kMlaMgsgát;enA kñúg simulated concrete strut, kMlaMg Tb CakMeNInkMlaMgTajénEdkTaj beNþayem ehIy Ts CakMlaMg enAkñúgEdkBt; (bent bar). rUbTI 5>12 (a) bgðajBI analogy truss sMrab; krNIénkareRbIEdkkgbBaÄr (vertical stirrup) CMnYseGayEdkeRTt CamYynwgBhuekaNkMlaMgEdlmankMlaMgTajbBaÄr Ts CMnYs eGaykMlaMgTajeRTtenAkñúgrUbTI 5>11 (c). EdkkMlaMgkat;mantYnaTIsMxan;bYn³ - vaTb;Tl;EpñkxøHénkMlaMgkat;emKuNxageRkA Vu - vaRKb;RKgkarrIkFMénsñameRbHGgát;RTUg - vaeFVIeGayEdkbeNþayemsßitcMTItaMg dUcenHeKGacdak;Edk dowel EdlcaM)ac;edIm,IRT flexural load - vapþl;nUv confinement xøHdl;ebtugenAkñúgtMbn;sgát; RbsinebIeKeRbIEdkkgkñúgTMrg;biTCit x> Web Steel Planar Resistance RbsinebI Vc ¬ersIusþg;kMlaMgkat;FmμtaénRTnugebtugsuT§¦ mantMéltUcCagkMlaMgbBaÄrsrub Fmμta Vu / φ = Vn eKRtUvdak;EdkRTnugedIm,ITb;Tl;nUvPaBxusKñaénkMlaMgTaMgBIr. dUcenH Vs = Vn − Vc (5.17) enATIenH Vc CatMéltUcCageKén Vci nig Vcw . eKGackMNt; Vc BIsmIkar 5.11 b¤ 5.15 ehIyeKkMNt; Vs BIsmIkarlMnwgenAkñúg analogous triangular truss. BIsmIkar 5.11(c) Vs = Ts sin α = Cc sin β (5.18a) Edl Ts CakMlaMgpÁÜbénEdkkgRTnugTaMgGs;EdlEkgnwgbøg;sñameRbHGgát;RTUg ehIy n CacMnYnénKM lat s . RbsinebI s1 = ns enAkñúgGgát;rgkarTajxageRkamrbs; analogous truss enaH s1 = jd (cot α + cot β ) (5.18b) snμt;fa édXñas; jd ≅ d / kMlaMgEdkkgkñúgmYyÉktþaRbEvgBIsmIkar 5.18a nig b Edlman s1 = ns nwgkøayCa karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 233
  • 21. T.Chhay Ts Ts V 1 = = s (5.18c) s1 ns sin α d (cos α + cos β ) RbsinebIeKmanEdkkgeRTtcMnYn n Edlman analoguos truss chord RbEvg s1 ehIyRbsin ebI Av CaRkLaépÞénEdkkgeRTtmYy enaH Ts = nAv f y (5.19a) dUcenH nAv = Vs ns d sin α (cot β + cot α ) f y (5.19b) b:uEnþGacsnμt;fa enAkñúgkrNI)ak;edaykMlaMgTajGgát;RTUg (diagonal tension failure) Ggát;RTUgrgkar sgát;manmMu β = 45o dUcenHsmIkar 5.19b nwgkøayCa Av f y d Vs = [sin α (1 + cot α )] s Av f y d b¤ Vs = s (sin α + cos α ) (5.20a) edaHRsayrk s edayeRbI Vs = Vu − Vc Av f y d s= (sin α + cos α ) (5.20b) Vu − Vc RbsinebIEdkRTnugeRTtpÁúMeLIgedayEdkeTal b¤RkuménEdkeTalEdlEdkTaMgenARtUv)anBt; nigRtUv)an dak;enAcMgaydUcKñaBIépÞénTMr enaH Vs = Av f y sin α ≤ 3.0 f 'c bw d ¬xñat US¦ Vs = Av f y sin α ≤ 0.25 f 'c bw d ¬xñat SI¦ RbsinebIeKeRbIEdkkgbBaÄr mMu α nwgesμInwg 90o enaHeK)an Av f y d Vs = (5.21a) s Av f y dAvφf y d b¤ s= = (Vu / φ ) − Vc Vu − φVc (5.21b) enAkñúgsmIkar 5.21a nig b/ d p CacMgayBIsréssgát;xageRkAbMputeTAkan;TIRbCMuTMgn;rbs;EdkeRbkug RtaMg ehIy d CacMgayBIsréssgát;xageRkAbMputeTATIRbCMuTMgn;rbs;EdkFmμta. tMélrbs; d p min RtUvtUcCag 0.80h eT. Shear and Torsion Strength Design 234
  • 22. NPIC K> EdlkMNt;énTMhM nigKMlatrbs;Edkkg Limitation on Size and Spacing of Stirrups smIkar 5.20 nig 5.21 eGaynUvTMnak;TMngRcasKñarvagKMlatEdkkg nigkMlaMgkat; b¤kugRtaMg kat;EdlvaRtUvTb;Tl;. enAeBlEdl s fycuH (Vu − Vc ) nwgekIneLIg. edIm,IeGayEdkkgbBaÄrTb;Tl; sñameRbHGgát;RTUg dUcbgðajenAkñúgrUbTI 5>11 (c) eKRtUvGnuvtþEdnkMNt;KMlatGtibrmasMrab;Edkkg bBaÄrdUcxageRkam³ (a) smax ≤ 3 h ≤ 24in.(60cm) Edl h CakMBs;srubrbs;muxkat; 4 (b) RbsinebI Vs > 4λ f 'c bw d p ¬xñat US¦ Vs > λ f 'c bw d p / 3 ¬xñat SI¦ eKRtUvkat; bnßyKMlatGtibrmarbs; (a) Bak;kNþal ¬ smax ≤ 83 h ≤ 12in.(30cm) (c) RbsinebI Vs > 8λ f 'c bw d p ¬xñat US¦ Vs > 2λ f 'c bw d p / 3 ¬xñat SI¦ eKRtUvBRgIkmuxkat;. (d) RbsinebI Vu = φVn > φVc / 2 / eKRtUvdak;EdkkMlaMgkat;Gb,brma. eKKNnaRkLaépÞ EdkGb,brmaenHedaysmIkar Av = 0.75 f 'c w b s f b¤ Av = 50fbws edayykmYyNaEdlFMCag y y RbsinebIkMlaMgeRbkugRtaMgRbsiT§PaB Pe FMCag b¤esμInwg 40% énersIusþg;Tajrbs;EdkBt; (flexural reinforcement) enaH A ps f pu s dp Av = (5.22b) 80 f y d bw Edlvapþl;nUv Av Gb,brmaRtUvkartUcCag ehIyEdleKGaceRbIvaCMnYs)an. (e) edIm,IRbsiT§PaB EdkRTnugRtUvEtmanRbEvgbgáb; (development lengt) RtUvkareBjelj. enHmann½yfaEdkkgRtUvBnøÚtcUleTAkñúgEpñkrgkarsgát; nigEpñkrgkarTajrbs;muxkat;/ RtUvkarkMras;ebtugkarBarEdk (clear concrete cover) tUc nigeKGaceRbITMBk; 90o b¤ 135o enAkñúgtMbn;sgát;. rUbTI 5>13 bgðajBIdüaRkaménkardak;EdkkgRTnugeTAtamtMbn;énRbEvgElVgrbs;FñwmeRbkug RtaMgEdlrgGMeBIénbnÞúkBRgayesμI. épÞqUtCakMlaMgkat;elIs Vs EdlRtUvkarEdkRTnug. karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 235
  • 23. T.Chhay 7> ersIusþg;kMlaMgkat;edkenAkñúgeRKOgbgÁúMsmas Horizontal Shear Strength in Composite Construction snμt;fakMlaMgkat;tamTisedkepÞreBjeljRtg;épÞb:HénkEnøgEdlCYbKña. k> eRkamGMeBIbnÞúkeFVIkar Service-Load Level eKGackMNt;kugRtaMgkat;tamTisedkGtibrma vh BIeKalkarN_mUldæanrbs;emkanic VQ vh = (5.23) I c bv Edl V= kugRtaMgkat;KNnaKμanemKuN (unfactored design vertical shear) EdleFVIGMeBIelImux kat;smas Q = m:Um:g;RkLaépÞeFob cgc énkMNt;muxkat;EdlenABIxagelI b¤BIxageRkam cgc I c = m:Um:g;niclPaBénmuxkat;smasTaMgmUl bv = TTwgRtg;kEnøgb:Hrbs;muxkat;RTnugénGgát;cak;Rsab; b¤TTwgénmuxkat;EdleKKNna kMlaMgkat;edk Shear and Torsion Strength Design 236
  • 24. NPIC eKGacsMrYlsmIkar 5.23 dUcxageRkam V vh = (5.24) bv d pc Edl d pc CakMBs;RbsiT§PaBBIsréssgát;xageRkAénmuxkat;smaseTATIRbCMuTMgn; cgc rbs;EdkeRbkug RtaMg. x> Ultimate-Load Level Direct Method: sMrab;kar)ak;enAkñúgsßanPaBkMNt; eKGacEkERbsmIkar 5.24 edayCMnYs V eday Vu dUcenHeyIgTTYl)an Vu vuh = (5.25a) bv d pc b¤ sMrab;ersIusþg;kMlaMgkat;bBaÄrFmμta Vn Vu / φ V vnh = = n (5.25b) bv d pc bv d pc Edl φ = 0.75 / RbsinebI Vnh CaersIusþg;kMlaMgkat;edkFmμta enaH Vu ≤ Vnh ehIyersIusþg;kMlaMgkat; FmμtasrubKW Vnh = vnhbv d pc (5.25c) ACI Code kMNt; vnh Rtwm 80 psi(0.55MPa ) RbsinebIeKmineRbIEdkEdkrgcaM (dowel) b¤EdkkgbBaÄr ehIyépÞ b:HmanlkçN³eRKIm b¤RbsinebIeKeRbIEdkkgbBaÄrGb,brma b:uEnþépÞb:HminmanlkçN³eRKIm. vnh GaceTAdl; 500 psi (3.45MPa ) EteKRtUveRbI friction theory CamYynwgkarsnμt;xageRkam (a) enAeBlEdlminmanEdkkgbBaÄr b:uEnþépÞb:HénGgát;cak;Rsab;manlkçN³eRKIm enaHeKeRbI Vnh ≤ 80 Ac ≤ 80bv d pc (5.26a) Edl Ac CaRkLaépÞrbs;ebtugEdlTb;Tl;kMlaMgkat; = bv d pc (b) enAeBlEdleKeRbIEdkkgGb,brma Edl Ac = 50(bws ) / f y b:uEnþépÞb:Hrbs;Ggát;cak; Rsab;minmanlkçN³eRKIm vnh ≤ 80bv d pc (c) RbsinebIépÞb:Hrbs;Ggát;cak;Rsab;manlkçN³eRKImEdlmankMBs; 1 / 4in.(6mm) ehIy EdkbBaÄrGb,brmaenAkñúg (b) RtUv)andak; enaHeKeRbI Vnh ≤ 500bv d pc (5.26b) karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 237
  • 25. T.Chhay (d) RbsinebIkMlaMgkat;emKuN Vu > φ (500bv d pc )/ eKGaceRbI shear friction theory edIm,I KNnaEdk dowel. enAkñúgkrNIenH kMlaMgkat;edkTaMgGs;RtUv)anKitedaybøg;EkgEdl Vnh = μAvf f y (5.27) Edl Avf = RkLaépÞén shear-friction reinforcement/ in.2 f y = design yield strength/ minRtUvelIs 60,000 psi (414 MPa ) μ = emKuNkkit = 1.0λ sMrab;ebtugEdlcak;elIépÞebtugEdlmaneRKIm = 0.6λ sMrab;ebtugEdlcak;elIépÞebtugEdlminmaneRKIm λ = emKuNsMrab;RbePTebtug enAkñúgkrNITaMgGs; ersIusþg;kat;Fmμta Vn ≤ 0.20 f 'c Acc ≤ 800 Acc Edl Acc CaRkLaépÞb:Hrbs; ebtugEdlTb;Tl;nwgkMlaMgkat;epÞr (shear transfer). cMNaMfa enAkñúgkrNICaeRcIn kugRtaMgkat; vuh EdlTTYl)anBIkMlaMgkat;emKuNGt;FMCag 500 psi(3.45MPa ) eT. dUcenH eKmincaM)ac;RtUvkareRbIEt shear friction theory kñúgkarKNnaEdkrgcaM (dowel) sMrab;skmμPaBsmas (composite action) enaHeT. KMlatGnuBaØatGtibrmaénEdkrgcaM (dowel) b¤ tie sMrab;kMlaMgkat;edkKWtMéltUcCageKkñúg cMeNam 4 dgénTMhMtUcCageKénmuxkat;TMr nig 24in.(60cm) . Basic Method: ACI Code GnuBaØateGayeRbIviFIepSgeTotEdlkMlaMgkat;edkRtUv)anGegát edayKNnabMErbMrYlCak;EsþgénkMlaMgsgát; b¤kMlaMgTajenAkñúgbøg;NamYy nigedayepþrkMlaMgkat;edk enaHeTAGgát;EdlCaTMr. eKCMnYsRkLaépÞb:H Acc sMrab; bv d pc enAkñúgsmIkar 5.25b nig c enaHeK TTYl)an Vnh = vnh Acc (5.28) Edl Vnh ≥ Fh / kMlaMgkat;edk ehIyy:agehacNas;vaRtUvesμInwgkMlaMgsgát; C b¤kMlaMgTaj T enA kñúgrUbTI 5>14. ¬emIlsmIkar 5.30 sMrab;tMélrbs; Fh ¦ eKGackMNt;RkLaépÞb:H Acc dUcxageRkam Acc = bv lvh (5.29) Edl lvh CaRbEvgkMlaMgkat;edk (horizontal shear length) EdlkMNt;enAkñúgrUbTI 5.15(a) nig (b) sMrab;Ggát;TMrsamBaØ nigsMrab;Ggát;TMrCab; erogKña. Shear and Torsion Strength Design 238
  • 27. T.Chhay K> karKNnaEdkrgcaMskmμsmas Design of Composite-Action Dowel Reinforcement Edk tie sMrab;kMlaMgkat;edkGacpSMeLIgBIr)arEdkeTal (single bars or wires)/ BIEdkkgeCIg eRcIn (multiple leg stirrup) b¤BI vertical legs of welded wire fabric. KMlatrbs;vaminGacFMCagbYn dgénTMhMEdltUcCageKénGgát;TMr b¤ 24in.(60cm) edayykmYyNaEdltUcCageK. RbsinebI μ Ca emKuNkMlaMgkkit enaHeKGackMNt;kMlaMgkat;edkFmμta Fh enAkñúgrUbTI 5>14 dUcxageRkam Fh = μAvf f y ≤ Vnh (5.30) tMél ACI rbs; μ KWQrelIersIusþg;kkit-kMlaMgkat;kMNt; (limit shear-friction strength) 800 psi (5.5MPa ) ¬vaCatMélEdlmanlkçN³suvtßiPaBbnþicEdlbgðajedaykarBiesaF¦. viTüasßanebtugeRb kugRtaMg (Prestressed Concrete Institute) ENnaM μe = 2.9 CMnYseGay μ = 1.0λ sMrab;ebtug Edlcak;elIépÞebtugeRKIm ehIykMlaMgkat;KNnaGtibrma (maximum design shear force) Vu ≤ 0.25λ2 f 'c Ac ≤ 1,000λ2 Acc (5.31a) CamYynwgRkLaépÞcM)ac;rbs;Edkkkit-kMlaMgkat; (shear-friction steel) Vuh Avf = (5.31b) φf y μ e b¤ Avh = Vnh F = h μe f y μe f y (5.31c) edayeRbItMél PCI EdlminsUvsuvtßiPaB smIkar 5.31c køayCa Fh ≤ μ e Avf f y ≤ Vnh (5.32) λ 2 CamYynwg μe = 1,000F bv I vh ≤ 2.9 h Edl bvlvh = Acc / EdkGb,brmaKW 50bv s 50bv lvh Av = = (5.33) fy fy 8> CMhanKNnaEdkRTnugsMrab;kMlaMgkat; Web Reinforcement Design Procedure for Shear xageRkamCakarsegçbBICMhanénkarKNnaEdkRTnugsMrab;kMlaMgkat;³ !> kMNt;tMélersIusþg;kMlaMgkat;FmμtaEdlRtUvkar Vn = Vu / φ enARtg;cMgay h / 2 BIépÞénTMr Edl φ = 0.75 . Shear and Torsion Strength Design 240
  • 28. NPIC @> KNnaersIusþg;kMlaMgkat;Fmμta (nominal shear strength) Vc EdlRTnugmanedayeRbIviFImYy kñúgcMeNamviFIBIrxageRkam³ (a) ACI conservative method RbsinebI f pe > 0.40 f pu ⎛ 700Vu d p ⎞ Vc = ⎜ 0.60λ f 'c + ⎜ ⎟bw d p ¬xñat US¦ ⎟ ⎝ M u ⎠ ⎛ λ f 'c V d⎞ Vc = ⎜ ⎜ 20 + 5 u ⎟bw d p Mu ⎟ ¬xñat SI¦ ⎝ ⎠ Edl 2λ f 'c bw d p ≤ Vc ≤ 5λ f 'c bw d p sMrab;xñat US λ f 'c bw d p / 5 ≤ Vc ≤ 0.4λ f 'c bw d p sMrab;xñat SI Vu d p ≤ 1.0 Mu ehIyeKKNna Vu enARtg;muxkat;dUcKñasMrab;karKNna M u . RbsinebIersIusþg;eRcokTajmFüm (average tensile splitting strength) fct sMrab; ebtugTMgn;Rsal enaH λ = fct / 6.7 f 'c sMrab;xñat US b¤ λ = fct / 0.556 f 'c sMrab;xñat SI CamYynwg f 'c Gt;FMCag 100 psi(0.67MPa ) . (b) Detailed analysis Edl Vc CatMéltUcCageKkñúgcMeNam Vci nig Vcw ¬xñat US¦ 1.7λ f 'c bw d p ≤ Vci = 0.60λ f 'c bw d p + Vd + Vi M max (M cr ) ≤ 5.0λ f 'c bwd p λ f 'c bw d p λ f 'c bw d p ¬xñat SI¦ 7 ≤ Vci = 20 + Vd + Vi M max (M cr ) ≤ 0.4λ f 'c bwd p ¬xñat US¦ ( ) Vcw = 3.5λ f 'c + 0.3 f c bw d p + V p ¬xñat SI¦ ( ) Vcw = 0.3 λ f 'c + f c bw d p + V p edayeRbItMélNaEdlFMCageKkñúgcMeNam d p nig 0.8h Edl M cr = (I c / yt )(6λ f 'c + fce − f d ) ¬xñat US¦ M cr = (I c / yt )(0.5λ f 'c + f ce − f d ) ¬xñat SI¦ b¤ M cr = Sb (6λ f 'c + fce − f d ) ¬xñat US¦ M cr = Sb (0.5λ f 'c + f ce − f d ) ¬xñat SI¦ Vi = kMlaMgkat;emKuNEdlbNþalBIbnÞúkGnuvtþn_BIxageRkAEdlekItmankñúg eBldMNalKñaCamYynwg M max karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 241
  • 29. T.Chhay kugRtaMgsgát;enAkñúgebtugeRkayekItmankMhatbg;TaMgGs;enARtg; f ce = srésxageRkArbs;muxkat;EdlbnÞúkxageRkAbgáeGaymankugRtaMgTaj. f ce køayCa f c sMrab;kugRtaMgenARtg;TIRbCMuTMgn;rbs;muxkat;. #> RbsinebI Vu / φ ≤ Vc / 2 vaminRtUvkarEdkRTnugeT. RbsinebI Vc / 2 < Vu / φ < Vc vaRtUvkar EdkGb,brma. RbsinebI Vu / φ > Vc nig RbsinebI Vs = Vu / φ − Vc ≤ 8λ f 'c bw d p ¬xñat US¦ Vs = Vu / φ − Vc ≤ 2λ f 'c bw d p / 3 ¬xñat SI¦ eKRtUvKNnaEdkRTnug. RbsinebI Vs = Vu / φ − Vc > 8λ f 'c bw d p b¤ Vs > φ (Vc + 8λ f 'c bw d p ) ¬xñat US¦ Vs = Vu / φ − Vc > 2λ f 'c bw d p / 3 ¬xñat SI¦ eKRtUvtMeLIgmuxkat;. $> KNnaEdkRTnugGb,brmaEdlRtUvkar. KMlatKW s ≤ 0.75h b¤ 24in.(60cm) edayykmYyNa EdltUcCageK. Av min = 0.75 f 'c w b¤ Av min = ¬US¦ edayykmYyNaEdlFMCag b s 50bw s f y f y Av min = f 'c bw s 16 f y b¤ Av min = 50fbws ¬SI¦ edayykmYyNaEdlFMCag y RbsinebI / f pe ≥ 0.40 f pu Av min EdlmanlkçN³suvtßiPaBticCagCatMéltUcCageKkñúg cMeNam A ps f pu s dp Av = 80 f y d p bw Edl d p ≥ 0.80h CamYynwg Av min = 0.75 f 'c bw s fy b¤ Av min = 50fbws ¬US¦ y Av min = f 'c bw s 16 f y b¤ Av min = 50fbws ¬SI¦ y %> KNnaTMhM nigKMlatEdkRTnugEdlRtUvkar. RbsinebI ¬xñat US¦ Vs = (Vu / φ − Vc ) ≤ 4λ f 'c bw d p Vs = Vu / φ − Vc ≤ λ f 'c bw d p / 3 ¬xñat SI¦ enaHKMlatEdkkg s EdlRtUvkarKWesμInwgtMélEdlKNnaedaysmIkarEdleGayenAkñúgCMhan ^. Shear and Torsion Strength Design 242
  • 30. NPIC EtRbsinebI ¬xñat US¦ Vs = (Vu / φ − Vc ) > 4λ f 'c bw d p Vs = Vu / φ − Vc > λ f 'c bw d p / 3 ¬xñat SI¦ enaHKMlatEdkkg s EdlRtUvkarKWesμInwgBak;kNþaléntMélEdlKNnaedaysmIkarEdleGay enAkñúgCMhan ^. ^> s = (VAvφf)y− V = VAv −yφdVp ≤ 0.75h ≤ 24in.(60cm) ≥ s Gb,brmaEdl)anBICMhan $ dp f u c u c &> sg; shear envelope enAelIElVgFñwm nigKUsbBa¢ak;tMbn;EdlRtUvkarEdkRTnug *> KUrBRgayEdkRTnugtambeNþayElVgedayeRbIEdkkgTMhM #3 b¤ #4 tamEdlcUlcitþ b:uEnþEdk kgminRtUvmanTMhMFMCag #6 eT. (> KNnaEdkrgcaM (dowel reinforcement) bBaÄrkñúgkrNImuxkat;smas (a) Vnh ≤ 80bv d pc sMrab;TaMgépÞb:HeRKImedayKμanEdkrgcaM b¤Edk tie bBaÄr nigsMrab;TaMgépÞb:H EdlmineRKImb:uEnþeRbIEdk tie bBaÄrGb,brma. eRbI 50bw s 50bv I vh Av = = fy fy (b) Vnh ≤ 500bw d pcsMrab;épÞeRKImEdlmanecjk,alfμkMBs; 1 / 4in.(6mm) (c) sMrab;krNIEdl Vnh > 500bw d pc / KNnaEdk tie bBaÄrsMrab; Vnh = Avf f y μ Edl Avf = RkLaépÞrbs;EdkrgcaMEdlmanlkçN³kkit (frictional steel dowel) μ = emKuNkkit = 1.0λ sMrab;épÞEdlmanlkçN³eRKIm Edl λ = 1.0 sMrab; ebtugTMgn;Fmμta. sMrab;RKb;krNITaMgGs; Vn ≤ Vnh ≤ 0.2 f 'c Acc ≤ 800 Acc Edl Acc = bv lvh . viFIepSgeToténkarKNnaRkLaépÞEdkrgcaM Avf KWedayKNnakMlaMgedk Fh enARtg;épÞkkit rbs;ebtugEdl Fh ≤ μ e Avf f y ≤ Vnh 1,000λ2bv lvh Edl μe = Fh ≤ 2.9 rUbTI 5>16 bgðajBICMhanKNnaEdl)anerobrab;xagelICaTMrg; flowchart. karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 243
  • 31. T.Chhay Shear and Torsion Strength Design 244
  • 32. NPIC 9> kugRtaMgTajemenAkñúgmuxkat;mansøab nigKNnaEdkrgcaMbBaÄrenA kñúgmuxkat;smas Principal Tensile Stresses in Flanged Sections and Design of Dowel-Action Vertical Steel in Composite Sections ]TahrN_ 5>1³ FñwmeRbkugRtaMgmuxkat;GkSr T mankarBRgayénkugRtaMgeFVIkarsgát;dUcbgðajenAkñúg rUbTI 5>17. kMlaMgkat;bBaÄrxageRkAKNnaEdlKμanemKuN V = 120,000lb(554kN ) ehIykMlaMg kat;emKuN Vu = 190,000lb(845kN ) . (a) KNnakugRtaMgTajemenARtg;G½kSTIRbCMuTMgn; cgc nigenARtg;cMnucRCugEkg A énkEnøgkat;Kña rvagsøab nigRTnug nigKNnakugRtaMgkMlaMgkat;edkGtibrmaeRkamGMeBIbnÞúkeFVIkarsMrab;TI taMgTaMgenH. (b) KNnaersIusþg;kMlaMgkat;edkFmμtaEdlRtUvkarenARtg;épÞGnþrkmμ A − A rvagRTnugEdlcak; Rsab; nigsøabEdlcak;enAnwgkEnøg nigKNnaEdkrgcaM b¤Edk tie bBaÄrcaM)ac;edIm,IkarBarkar rGildac;enARtg; A − A EdlFanaskmμPaBsmaseBjelj. eRbI ACI direct method nig snμt;faépÞb:HmanlkçN³eRKIm. smμtikmμmandUcxageRkam³ f 'c sMrab;RTnug = 6,000 psi ebtugTMgn;Fmμta (normal-weigth concrete) f 'c sMrab;søab = 3,000 psi ebtugTMgn;Fmμta (normal-weigth concrete) TTwgsøabRbsiT§PaB bm = 60in.(152.4cm) Edl bm CaTTwgEktMrUvEdl)anKitbBa©ÚlPaBxusKñaénm:UDuleGLasÞicrbs;ebtugépñkEdlcak; Rsab; nigEpñkxagelIEdlcak;enAnwgkEnøg. karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 245
  • 33. T.Chhay dMeNaHRsay³ kugRtaMgkMlaMgkat;eFVIkaredk kugRtaMgkMlaMgkat;edkGtibrma VQ vh = Ibv Edl ( Q A = 60 × 12(19.32 − 6 ) = 9,590in.3 157,172cm3 ) 12 × (7.32 )2 Qcgc = 60 × 12(19.32 − 6 ) + 2 ( = 9,912in.3 162,429cm.3 ) dUcenHkugRtaMgkMlaMgkat;edkeRkamGMeBIbnÞúkeFVIkarKW enARtg;cMnuc A / vh = 120,000 × 9,12 = 235 psi(1.6MPa) 408,240 × 590 enARtg; cgc / vh = 120,000 × 9,12 = 243 psi(1.7MPa) 408,240 × 912 BIsmIkar 5.13 kugRtaMgTajemEdlRtUvKñaKW 2 ⎛f ⎞ enARtg; A / ⎝ 2 ⎠ 2 f f 't = ⎜ cA ⎟ + vh − cA 2 2 ⎛ 2,160 ⎞ ⎟ + (235) − = 25 psi (111Pa ) 2,160 = ⎜ 2 ⎝ 2 ⎠ 2 2 nigenARtg; cgc / f 't = ⎛ 1,831 ⎞ + (235)2 − 1,831 = 32 psi(221Pa ) ⎜ ⎝ 2 ⎠ ⎟ 2 dUcenH kugRtaMgTajemmantMéltUc nigminbgáeGaymansñameRbHeRkamGMeBIbnÞúkeFVIkareT. eKRtUvRtYtBinitükugRtaMgkMlaMgkat;edk vh = 235 psi enARtg;épÞb:H A − A edIm,IepÞóg pÞat;favasßitenAkñúgEdnkMNt;EdlGacTTYlyk)an. GnuelameTAtam AASTHO kugRtaMg GnuBaØatGtibrmaKW 160 psi(1.1MPa ) < 235 psi(1.6MPa ) dUcenHkarpþl;eGayCaBiesssMrab; EdkrgcaM b¤Edk tie bBaÄrbEnßmRtUv)aneFVIRbsinebIeKGnuvtþtamtMrUvkarrbs; AASTHO. KNnaEdkrgcaM (Dowel Reinforcement Design) Vu = 190,000lb Vnh EdlRtUvkar = Vφu = 190.,75 = 253,333lb(1126kN ) 0 000 bv = 12in.(30.5cm ) d pc = 57in.(145cm ) BIsmIkar 5.26b Shear and Torsion Strength Design 246
  • 34. NPIC EdlGacman = 500bv d pc = 500 × 12 × 57 = 342,000lb(1520kN )253,333lb Vnh BIsmIkar 5.22 a/ 0.75 f 'c = 0.75 6,000 = 58 > 50 dUcenHeRbI 58 enAkñúgsmIkarenaH Av l ÉktþaGb,brma = 58bv = 60,× 12 = 0.0116in.2 / in tambeNþayElVg f 58 000 vh y dUcenHeRbIEdkkgbBaÄr #3 Edlman Av = 2 × 0.11 = 0.22in.2 ehIy s = 0.22 / 0.0116 = 18.9in.(48cm ) EdlKitBIG½kSeTAG½kS < 24in. dUcenHKWTTYlyk)an (O.K.). EdkRTnugbBaÄrsMrab; kMlaMgkat;enAkñúgRTnugKYrRtUvkarKMlattUcCagenH. dUcenH BnøÚtEdkkgRTnugTaMgGs;eTAkñúgkMralxNÐ xagelIEdlcak;enAnwgkEnøg. 10> KNnaEdkrgcaMsMrab;skmμPaBsmas Dowel Steel Design for Composite Action ]TahrN_ 5>2³ edayeRbI (a) emKuNkkit ACI nig (b) emKuNkkit PCI cUrKNnaEdkrgcaM (dowel reinforcement) én]TahrN_ 5>1 sMrab;skmμPaBsmaseBjelj (full composite action) edayviFI epSgeTot (alternative method). edaysnμt;ElVgRbsiT§PaBrbs;FñwmTMrsamBaØesμInwg 65 ft.(19.8m) . dMeNaHRsay³ BIrUbTI 5>14 nig 5>17 Atop = 60 × 12 = 720in.2 (4,645cm 2 ) Cc = 0.85 f 'c Atop = 0.85 × 3,000 × 720 = 1,836,000lb(8,167kN ) snμt; Aps f ps > Cc enAeBlEdleKmineGaykMlaMgeRbkugRtaMg. enaH Fh = 1,836,000lb 65 × 12 lvh = = 390in. 2 bv = 12in. 80bv lvh = 80 × 12 × 390 = 374,400lb(1,665kN ) < 1,836,000lb dUcenH eKRtUvkarEdk tie bBaÄr. sMrab;épÞeRKImEdlmanecjk,alfμkMBs; 1 / 4in.(6mm) nigmanEdkGb,brma Vnh = 500bv d = 50 × 12 × 57 = 342,000 Vu φ EdlRtUvkar = 190,000 0.75 = 253,333lb < Vnh = 342,000 < Fh EdlGacman = 1,836,000lb karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 247
  • 35. T.Chhay eRbI Fh = 253,333lb sMrab;kMNt;EdkskmμPaBsmasEdlRtUvkar (required composite action reinforcement). (a) edayeRbItMél μ rbs; ACI BIsmIkar 5.27 nig μ = 1.0 CamYynwg lvh = 390in. Avf srub = = 4.2in.2 (26.3cm 2 ) 253,333 1.0 × 60,000 Avf Gb,brma = 50bfvlvh = 50 × 12000390 = 3.90in.2 (25.1cm2 ) 60, × y BI]TahrN_ 5>1 Avf Gb,brma = 0.0116in.2 / in. = 0.139in.2 / 12in. / lub. dUcenHsakl,g Edkkg #3 eyIgTTYl)an Av = 2 × 0.11 = 0.22in.2 enaH 390 × 0.22 = 20.42 BIG½kSeTAG½kS < 24in. < tMélGnuBaØatGtibrma 4 × 12 = 48in. l A s = vh v = A vf 4.2 dUcenHeRbIEdk tie GkSr U #3 EdlmanKMlat 20in. KitBIG½kSeTAG½kS. (b) edayeRbItMél μ e rbs; PCI λ = 1 .0 1,000λ2bv lvh μe = ≤ 2.9 Fh 1,000 × 1 × 12 × 390 = = 2.55 < 2.9 1,836,000 dUcenHeRbI μe = 2.55 . bnÞab;mk BIsmIkar 5.32 Avf tMrUvkar = = 1.66in.2 < Avf Gb,brma = 3.90in.2 lub 253,333 2.55 × 60,000 dUcenHeRbIEdk tie GkSr U #3 EdlmanKMlat 20in. EdlKitBIG½kSeTAG½kS ¬Ggát;p©it 9.5mm KMlat 55cm ¦ 11> Dowel Steel Design for Composite Action in an Inverted T Beam ]TahrN_ 5>3³ FñwmGkSr T bRBa©asEdlRTedayTMrsamBaØmanElVgRbsiT§PaB 24 ft (7.23m) . mux kat;rbs;FñwmenHRtUv)anbgðajenAkñúgrUbTI 5>18 edaymankMralxagelIEdlcak;enAnwgkEnøgkMras; 2in. (5.1cm) enAelIépÞGt;eRKIm. KNnaEdkkgrgcaMcaM)ac;edIm,IbegáItskmμPaBsmaseBjelj (full Shear and Torsion Strength Design 248
  • 36. NPIC composite behavior) edaysnμt;fakMlaMgkat;emKuN Vu EdlFñwmRtUvrgenARtg;muxkat;eRKaHfñak;KW 160,000lb(712kN ) . smμtikmμmandUcxageRkam³ f 'c ¬cak;Rsab;¦ = 6,000 psi (41.4 MPa ) / ebtugTMgn;Fmμta f 'c ¬kMralxagelI¦ = 3,000 psi (20.7 MPa ) / ebtugTMgn;Fmμta EdkeRbkugRtaMg³ tendon 270k Ggát;p©it 1 / 2in.(12.7mm) cMnYn 12 f pu = 270,000 psi (1,862MPa ) f ps = 242,000 psi (1,669 MPa ) rbs;Edk tie = 60,000 psi(414MPa ) fy edayeRbITaMg ACI direct method nig alternative method CamYynwg μe RbsiT§PaBsMrab;karKNna. dMeNaHRsay³ d p = 2 + 2 + 10 + 12 − 3 = 23in. Aps = 12 × 0.153 = 1.836in.2 Tn = Aps f ps = 1.836 × 242,000 = 444,312lb(1,976kN ) bv = 12in. 24 × 12 lvh = = 144in. 2 Atop = 2 × 48 + 2 × 12 = 120in.2 Cc = 0.85 f 'cc Atop = 0.85 × 3,000 × 120 = 306,000lb(1,316kN ) < Tn = 444,312lb karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 249
  • 37. T.Chhay dUcenH eRbI Fh = 306,000lb(1,361kN ) . bnÞab;mk sMrab;épÞmineRKIm Vnh EdlGacman = 80bv lvh = 80 × 12 × 144 = 138,240lb(615kN ) < Cc = 306,000lb dUcenH Edk tie EdlRtUvkarcaM)ac;sMrab;begáItskmμPaBsmaseBjeljedayeRbI λ = 1.0 . (a) ACI Direct Method tMrUvkar = Vφu = 160.,75 = 213,333lb(949kN ) Vnh 0 000 eRbI μ = 1.0 . bnÞab;mk BIsmIkar 5.26a CamYynwgEdkrgcaM (dowel reinforcement) eyIgman Vnh EdlGacman = 80bv d pc = 80 × 12 × 23 = 22,000lb << Vnh tMrUvkar BIsmIkar 5.27 sMrab;épÞEdlmineRKIm μ = 0.6λ = 0.60 . bnÞab;mk Avf srubtMrUvkar = n = V 213,333 = 5.93in.2 μf 0.60 × 60,000 y BIsmIkar 5.22(a)/ 0.75 f 'c = 0.75 6,000 = 58 > 50 dUcenHeRbI 58 enAkñúgsmIkar 58bv lvh 58 × 12 × 144 Avf Gb,brmatMrUvkar = = = 1.67in.2 < 5.93in.2 f y 60,000 dUcenHeRbI Avf = 5.23in.2 (33.7cm2 ) ehIysakl,gEdk tie GkSr U páab; #3 . bnÞab;mk Avf = 2 × 0.11 = 0.22in.2 ( .4cm 2 ) nigmanKMlat 1 lvh Av 144 × 0.22 s= = = 5.34in.(13.7cm ) Avf 5.93 KMlatGnuBaØatGtibrmaKW s = 4(2 + 2) = 16in. b¤ 0.75h = 0.75 × 26 = 19.5in. < 24in. . dUcenHeRbIEdk tie GkSr U páab; #3 KMlat 5in.(13cm) KitBIG½kSelIG½kSelIElVgTaMgmUl. (b) Alternativ Method edayeRbI μe Fh = 306,000lb 1,000λ2bv lvh 1,000 × 1.0 × 12 × 144 μe = = = 5.65 > 2.9 Fh 306,000 dUcenHeRbI μe = 2.9 bnÞab;mk BIsmIkar 5.31c eyIgTTYl)an Avf tMrUvkar = h = F 306,000 = 1.76in.2 μ f 2.9 × 60,000 e y Shear and Torsion Strength Design 250
  • 38. NPIC Gb,brmatMrUvkarEdl)anBI (a) = 1.67in.2 < 1.76in.2 Avf dUcenHeRbI Avf = 1.76in.2 enaHKMlatKW l A 144 × 0.22 s = vh v = = 18in. BIG½kSeTAG½kS A vf 1.76 ehIyKMlatGnuBaØatGtibrmaKW s = 4(2 + 2 ) = 16in. < 24in. dUcenH eRbIEdk tie GkSr U páab; #3 manKMlat 16in. KitBIG½kSeTAG½kSelIElVgTaMgmUl. 12> Shear Strength and Web-Shear Steel Design in a Prestressed Beam ]TahrN_ 5>4³ KNna bonded beam én]TahrN_ 4>2 edIm,IeGaymansuvtßiPaBRbqaMgnwgkar)ak; edaykMlaMgkat; ehIyKNnaEdkRTnugtMrUvkar. dMeNaHRsay³ Tinñn½y nigkarkMNt;ersIusþg;kMlaMgkat;Fmμta (data and nominal shear strength determination) f pu = 270,000 psi (1,862MPa ) f y = 60,000 psi (414MPa ) f pe = 155,000 psi (1,069MPa ) f 'c = 5,000 psiebtugTMgn;Fmμta Aps = tendon Ggát;p©it 1 / 2in.(12.7 mm ) Edlman wire 7 cMnYn 13 = 1.99in.2 = (12.8cm 2 ) As = 4#6 = 1.76in.2 (11.4cm 2 ) RbEvgElVg = 65 ft (19.8m) bnÞúkeFVIkar WL = 1,100 plf (16.1kN / m) bnÞúkeFVIkar WSD = 100 plf (1.46kN / m) bnÞúkeFVIkar WD = 393 plf (5.7kN / m) h = 40in.(101.6cm ) d p = 36.16in(91.8cm ) d = 37.6in(95.5cm ) karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 251
  • 39. T.Chhay bw = 6in.(15cm ) ec = 15in.(38cm ) ee = 12.5in.(32cm ) ( I c = 70,700in.4 18.09 × 106 cm 4 ) ( Ac = 377in.2 2,432cm 2 ) ( r 2 = 187.5in.2 1,210cm 2 ) cb = 18.84in.(48cm ) ct = 21.16in.(54cm ) Pe = 308,255lb(1.371kN ) bnÞúkemKuN Wu = 1.2D + 1.6L = 1.2(100 + 393) + 1.6 × 1,100 = 2,352 plf kMlaMgkat;enARtg;épÞTMr Vu = Wu L / 2 = (2,352 × 65) / 2 = 76,440lb Vn tMrUvkar = Vu / φ = 76,440 / 0.75 = 101,920lb enARtg;TMr bøg;enARtg; 12 d p BIépÞénTMr !> ersIusþg;kMlaMgkat;Fmμta (nominal shear strength) Vc rbs;RTnug ¬CMhanTI2 nigTI3¦ 1 36.16 dp = ≅ 1.5 ft 2 2 × 12 Vn = 101,920 × [(65 / 2) − 1.5] = 97,216lb 65 / 2 Vu enARtg;1 2 d p = 0.75 × 97,216 = 72,912lb f pe = 155,000 psi 0.40 f pu = 0.40 × 270,000 = 108,000 psi (745MPa ) < f pe = 155,000 psi (1,069 MPa ) eRbI ACI alternate method edaysar d p > 0.8h / eRbI d p = 36.16in. edaysnμt;faEdkeRbkugRtaMgxøHRtg;rhUtdl;TMr. BIsmIkar 5.16 Shear and Torsion Strength Design 252
  • 40. NPIC ⎛ Vu d p ⎞ Vc = ⎜ 0.60λ f 'c + 700 ⎜ ⎟bw d p ≥ 2λ f 'c bw d p ≤ 5λ f 'c bw d p ⎝ Mu ⎟ ⎠ λ = 1 .0sMrab;ebtugTMgn;Rsal Wu (1.5)2 M u enARtg; d / 2 BIépÞ = Rbtikmμ × 1.5 − 2 2,352(1.5)2 = 76,440 × 1.5 − = 112,014 ft − lb 2 = 1,344,168in. − lb Vu d p 72,912 × 36.16 = = 1.96 > 1.0 Mu 1,344,168 dUcenHeRbI Vu d p / M u = 1.0 enaH Vc Gb,brma = 2λ f 'c bw d p = 2 × 1.0 5,000 × 6 × 36.16 = 30,683lb Vc Gtibrma = 5λ f 'c bw d p = 76,707lb(341kN ) Vc = (0.60 × 1.0 5,000 + 700 × 1.0 )6 × 36.16 = 161,077lb > Vc Gtibrma = 76,707lb bnÞab;mk Vc = 76,707lb / lub. dUcKña Vu / φ > Vc / 2 dUcenH eKRtUvkarEdkRTnug. Vu Vs = − Vc = 97,216 − 76,707 = 20,509lb φ 8λ f 'c bw d p = 8 × 1.0 5,000 × 6 × 36.16 = 122,713lb(546kN ) > Vs = 20,509lb dUcenHkMBs;rbs;muxkat;RKb;RKan;. @> EdkRTnugGb,brma ¬CMhanTI4¦ BIsmIkar 5.22b Av s Gb,brma = 80psf fdpu d p A b y p w 1.99 × 270,000 36.16 = = 0.0076in.2 / in. 80 × 60,000 × 36.16 6 #> EdkRTnugtMrUvkar ¬CMhanTI5 nigTI6¦ BIsmIkar 5.21b Av f y d p s= ≤ 0.75h ≤ 24in. Vu / φ − Vc b¤ Av s V = s = 20,509 f y d p 60,000 × 36.16 = 0.0095in.2 / in. karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 253
  • 41. T.Chhay ¬kMlaMgeRbkugRtaMgKWRtUvFMCag 0.4 × ersIusþg;Taj¦ EdkRTnugkMlaMgkat; (web-shear steel) EdlRtUvkarGb,brma Av / s = 0.0095in.2 / in. . dUcenHsakl,gEdkkgGkSr U #3 / Av = 2 × 0.11 = 0.22in.2 . enaHKMlatGtibrma = 23.2in.(59cm ) 0.22 s= 0.0095 nig 4λ f 'c bwd p = 4 × 1.0 5,000 × 6 × 36.16 = 61,366lb > Vs dUcenH eyIgminRtUvkareRbI 12 s . LÚv 0.75h = 0.75 × 40.0 = 30.0in. dUcenH eRbI web-shear reinforcement #3 KMlat 22in. KitBIG½kSeTAG½kS ¬EdkkgGgát;p©it 9.5mm KMlat 62cm KitBIG½kSeTAG½kS¦ bøg;EdlminRtUvkarEdkkg snμt;fabøg;enHsßitenAcMgay x BITMr. tamRtIekaNdUc 1 76,707 65 / 2 − x Vc = = 101,920 × 2 2 65 / 2 b¤ 65 2 −x= 76,707 65 101,920 4 × x = 20.3 ft (6.11m ) ≈ 244in. dUcenHeRbIEdkkgGkSr U #3 KMlat 22in KitBIG½kSeTAG½kSelIRbEvgRbEhl 244in. edayEdk kgTImYycab;epþImenARtg; 18in. BIépÞénTMr. BRgayEdkkgeTAdl;kNþalElVgRbsinebIeKRtUvkarskmμ- PaBsmas. 13> Web-Shear Steel Design by Detailed Procedures ]TahrN_ 5>5³ edaHRsay]TahrN_ 5>4 edaydMeNIrlMGitEdlkMNt;tMélrbs; V CatMéltUcCageK c én flexure shear Vci nig web shear Vcw . snμt;fa tendon RtUv)an harp enAkNþalElVg. ehIy snμt;fa f 'c = 6,000 psi . dMeNaHRsay³ Profile rbs;EdkeRbkugRtaMgRtuv)anbgðajenAkñúgrUbTI 5>19. bøgenARtg; d / 2 BIépÞrbs;TMr BI]TahrN_ 5>4/ Vn = 97,216lb !> Flexure-shear cracking, Vci ¬CMhanTI2¦ Shear and Torsion Strength Design 254
  • 42. NPIC BIsmIkar 5.11 Vci = 0.60λ f 'c bw d p + Vd + Vi (M cr ) ≥ 1.7λ f 'c bwd p M max BIsmIkar 5.12 M cr = Ic yt ( 6λ f 'c + f ce − f d ) Edl I c / yt = Sb edaysar yt CacMgayBITMRbCMuTMgn;eTAsrésTajxageRkA. eyIgman I c = 70,700in.4 cb = 18.84in. Pe = 308,255lb Sb = 3,753in.3 r 2 = 187.5in.2 dUcenHBIsmIkar 4.3b kugRtaMgebtugenARtg;srésxageRkambMputEdlbNþalmkEtBIeRbkug RtaMgKW Pe ⎛ ecb ⎞ f ce = − ⎜1 + 2 ⎟ Ac ⎝ r ⎠ ehIycMNakp©itEdkeRbkugRtaMgenARtg; d p / 2 ≅ 1.5 ft BIépÞrbs;TMrKW e = 12.5 + (15 − 12.5) 1.5 = 12.62in. 65 / 2 308,255 ⎛ 12.62 × 18.84 ⎞ dUcenH f ce =− 377 ⎝ ⎜1 + 187.5 ⎟ ≅ −1,855 psi (12.8MPa ) ⎠ BI]TahrN_ 4>2/ bnÞúkefrKμanemKuNEdlbNþalBITMgn;pÞal; WD = 393 plf (5.7kN / m) KW WD x(l − x ) 393 × 1.5(65 − 1.5) × 12 Md /2 = = = 224,600in. − lb(25.4kN .m ) 2 2 karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 255
  • 43. T.Chhay ehIykugRtaMgEdlbNþalBIbnÞúkGefrKμanemKuNenARtg;srésebtugxageRkAbMputEdlkugRtaMg TajRtUv)anbegáItedaybnÞúkxageRkAKW M d / 2cb 224,600 × 18.84 fd = = = 60 psi Ic 70,700 ehIy ( M cr = 3,753 6 × 1.0 × 6,000 + 1,855 − 60 ) = 8,480,872in. − lb(958kN .m ) ⎛l ⎞ ⎛ 65 ⎞ Vd = WD ⎜ − x ⎟ = 393⎜ − 1.5 ⎟ = 12,183lb(54.2kN ) ⎝2 ⎠ ⎝ 2 ⎠ WSD = 100 plf WL = 1,100 plf WU = 1.2 × 100 + 1.6 × 1,100 = 1,880 plf kMlaMgkat;emKuNenARtg;muxkat;EdlbNþalBIbnÞúkGnuvtþn_xageRkAEdlekIteLIgtMNalKñaCa mYynwg M max KW ⎛l ⎞ ⎛ 65 ⎞ Vi = WU ⎜ − x ⎟ = 1,880⎜ − 1.5 ⎟ = 58,280lb(259kN ) ⎝2 ⎠ ⎝ 2 ⎠ 1,880 × 1.5(65 − 1.5) nig M max = U (l − x ) = W x 2 2 × 12 = 1,074,420in. − lb(122kN .m ) dUcenH Vci = 0.6 × 1.0 6,000 × 6 × 36.16 + 12,183 + 58,280 1,074,420 (8,480,872) = 482,296lb(54.5kN .m ) 1.7λ f 'c bw d p = 1.7 × 1.0 6,000 × 6 × 36.16 = 28,569lb(127kN ) < Vci = 482,296lb dUcenH Vci = 482,296lb(214.5kN ) @> Web-shear cracking, Vcw ¬CMhanTI2¦ BIsmIkar 5.15 ( ) Vcw = 3.5 f 'c + 0.3 f c bw d p + V p f c = kugRtaMgsgát;enAkñúgebtugRtg; cgc ≅ 818 psi (5.6 MPa ) Pe 308,255 = = Ac 377 Vp = bgÁúMbBaÄrrbs;eRbkugRtaMgRbsiT§PaBenARtg;muxkat; = Pe tan θ Edl θ CamMurvag tendon eRTtCamYynwgbøg;edk. dUcenH Shear and Torsion Strength Design 256
  • 44. NPIC V p = 308,255 (15 − 12.5) = 1,976lb(8.8kN ) 65 / 2 × 12 dUcenH Vcw = (3.5 6,000 + 0.3 × 818)× 6 × 36.16 + 1,976 = 114,038lb(507kN ) enAkñúgkrNIenH web-shear cracking manlkçN³lub ¬Edl Vc = Vcw = 114,038lb(507kN ) RtUv)aneRbIsMrab;KNnaEdkRTnug¦. eRbobeFobtMélenHCamYynwg Vc = 76,707lb(341kN ) EdlTTYl)anBIsmIkar 5.4 eday alternative method EdlmanlkçN³suvtßiPaBCag. BIsmIkar 5>4 − Vc = (97,216 − 114,038)lb Vu Vs = φ dUcenHeKminRtUvkarEdkkgeT elIkElgEt Vu / φ > 12 Vc . dUcenH eyIgKNnatYxageRkaydUc xageRkam = 57,019lb(254kN ) < 97,216lb(432kN ) 1 114,038 Vc = 2 2 edaysar Vu / φ > 12 Vc b:uEnþ < Vc dUcenHeRbIEdkkgGb,brmaenAkñúgkrNIenH #> EdkkgGb,brma ¬CMhanTI4¦ BI]TahrN_ 5>4 Av s tMrUvkar = 0.0077in.2 / in. dUcenH sakl,gEdkkg #3 / eyIgTTYl)an Av = 2 × 0.11 = 0.22in.2 ehIy = 28.94in.(73cm ) 0.22 s= 0.0077 bnÞab;mkeyIgRtYtBinitü Av Gb,brmaEdlCatMéltUcCageKkñúgcMeNamtMélTaMgBIrxageRkam 50bw s Av = fy nig Av = A ps f pu s 80 f y d p dp bw dUcenHKMlatGnuBaØatGtibrma ≤ 0.75h ≤ 24in. . eRbIEdkkgGkSr U #3 EdlmanKMlat 22in. KitBIG½kSeTAG½kSelIRbEvg 84in. BIépÞrbs;TMrdUcenAkñúg]TahrN_ 5>4. muxkat;sMrab;karerobEdk ¬CMhanTI8¦ RtUv)anbgðajenAkñúgrUbTI 5>20. karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 257
  • 45. T.Chhay 14> Design of Web Reinforcement for a PCI Double T-Beam ]TahrN_ 5>6³ Fñwm T DubTMrsamBaØ PCI 12 DT 34 manElVg 70 ft (21.3m) . varg service dead edayrYbbBa©ÚlTaMgkMralBIelIbEnßm nig service live load WL = 720 plf . load 200 plf (29.kN / m ) KNnaEdkkgEdlRtUvkaredIm,IkarBar shear cracking enARtg;muxkat;mYyPaKbYnénElVg 17 ft 6in. (5.3m ) BITMr edayKNna nominal web-shear strength Vc tam detailed design method. ehIy KNna dowel reinforcement RbsinebIcaM)ac; edaysnμt;faépÞxagelIrbs;Fñwm T cak;Rsab;Gt;eRKIm. lkçN³muxkat;RtUv)anbgðajenAkñúgrUbTI 5>21 CamYynwgTinñn½yxageRkam³ Shear and Torsion Strength Design 258
  • 46. NPIC Tinñn½yepSgeTot³ f 'c ¬ebtugcak;Rsab;¦ = 5,000 psi (34.5MPa ) ebtugTMgn;Fmμta f 'cc ¬ebtugsMrab;cak;kMralxagelI¦ = 3,000 psi (20.7 MPa ) ebtugTMgn;Fmμta f 'ci = 4,000 psi (27.6MPa ) / f pu = 270,000 psi (1,862MPa ) low-relaxation steel f ps = 240,000 psi (1,655MPa ) f pe = 148,000 psi (1,020MPa ) ee = 11.38in.(28.3cm ) ec = 21.77in.(57.2cm ) Aps = strandGgát;p©it 1 / 2in.(12.7mm) cMnYn 18 f yv sMrab;Edkkg = 60,000 psi (414 MPa ) eRbItMélsMrab;RbEvgRbsiT§PaB d p sMrab;muxkat;kNþalElVgk¾dUcCamuxkat;epSgeTot. cMNaMfa bw sMrab;RTnugTaMgBIr = 2(4.75 + 7.75) / 2 = 12.5in.(32cm) . dMeNaHRsay³ Wu = 1.2(200 + 1,091) + 1.6 × 720 ≅ 2,615 plf (38.15kN / m ) 2,615 × 70 Vu enARtg;épÞrbs;TMr = 2 = 91,525lb enARtg; BIépÞrbs;TMr = 1 ⎛ (35 − 17.5) ⎞ Vn 17 ft 6in. ⎜ 91,525 × ⎟ 0.75 ⎝ 35 ⎠ = 61,017lb(271kN ) karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 259
  • 47. T.Chhay !> Flexure-shear cracking Vci ¬CMhanTI2¦ d p = 34 − 25.77 + 21.77 = 30.0in.(76cm ) Pe = 18 × 0.153 × 148,000 = 407,592lb(18,176kN ) enARtg; e BITMr 17 ft 6in. = 11.38 + (21.77 − 11.38) 17.5 35 = 16.58in. eRbIlkçN³muxkat;cak;Rsab;sMrab;KNna f ce nig f d dUcerobrab;enAkñúgEpñkTI 5 Pe ⎛ ecb ⎞ 407,592 ⎛ 16.58 × 25.77 ⎞ f ce = − ⎜1 + 2 ⎟ = − ⎜1 + ⎟ Ac ⎝ r ⎠ 978 ⎝ 88.0 ⎠ = 2,440 psi (16.8MPa ) eRbIkugRtaMgsgát;srésxageRkAGnuBaØatdUcxageRkam³ (a) eRbkugRtaMg + bnÞúkGcié®nþy_ ³ fc = 0.45 f 'c (b) eRbkugRtaMg + bnÞúksrub ¬edayGnuBaØatedayekIneLIg 33% EdlbNþalBI transient load³ f c = 0.60 f 'c ¦. cMNaMfaeTaHbICa fce = 0.45 f 'c k¾eday k¾vaminCHT§iBldl;ersIusþg;kMlaMgkat;Edr edaysar f ce bNþalmkBIEtkMlaMgeRbkugRtaMgb:ueNÑaH ehIyedaysarkarrYmbBa©ÚlTaMgbnÞúkpÞal;)an kat;bnßyvaeGaytUcCag 0.45 f 'c . dUcenHeyIgman bnÞúkpÞal; WD = 1,019 plf WD x(l − x ) 1,019 × 17.5(70 − 17.5) M 17.5 = = × 12 2 2 = 5,617,238in. − lb(634kN .m ) Mcb 5,617,238 × 25.77 fd = = = 1,682 psi (11.6MPa ) Ic 86,072 ( M cr = Sb 6.0λ f 'c + f ce − f d ) ( = 3,340 6.0 × 1.0 5,000 + 2,440 − 1,682 ) = 3,948,762in. − lb(445kN .m ) eKKYrcMNaMfaemKuN 6.0 enAkñúgsmIkar cracking moment mantMéltUc edaysareKyk modulus of rupture 7.5 . RbsinebIeKeRbI 7.5 enAkñúgsmIkarxagelI enaH cracking moment nwgmantMél 4,303,022in. − lb GBa©wgvanwgkat;bnßycMnYnrbs;EdkkgenAkñúgkar KNnaenH. kMlaMgKμanemKuNEdlbNþalBIbnÞúlpÞal;KW Shear and Torsion Strength Design 260
  • 48. NPIC ⎛l ⎞ ⎛ 70 ⎞ Vd = WD ⎜ − x ⎟ = 1,019⎜ − 17.5 ⎟ = 17,833lb ⎝2 ⎠ ⎝ 2 ⎠ WSD = 200 plf WL = 720 plf GaMgtg;sIuetbnÞúkxageRkAemKuNKW WU = 1.2 × 200 + 1.6 × 720 = 1,392 plf (20.4kN / m ) ⎛l ⎞ ⎛ 70 ⎞ Vi = WU ⎜ − x ⎟ = 1,392⎜ − 17.5 ⎟ = 24,360lb(108kN ) ⎝2 ⎠ ⎝ 2 ⎠ ⎛ l − x ⎞ 1,392 × 17.5(70 − 17.5) M max = WU x⎜ ⎟= × 12 ⎝ 2 ⎠ 2 = 7,673,400in. − lb(867 kN .m ) × (M cr ) ≥ 1.7λ f 'c bw d p Vi Vci = 0.6λ f 'c bw d p + V p + M max = 0.6 × 1.0 × 5,000 × 12.5 × 30.0 + 17,833 + 24,360 (3,948,762) 7,673,400 = 46,279lb(201kN ) 1.7λ f 'c bw d p = 1.7 × 1.0 5,000 × 12.5 × 30.0 = 45,078lb < 46,279lb dUcenH Vci = 46,279lb lub @> Web-shear cracking, Vcw ¬CMhanTI2¦ = 417 psi (2.9MPa ) Pe 407,592 fc = = Ac 978 sMrab;bgÁúMbBaÄrrbs;kMlaMgeRbkugRtaMg VP = Pe tan θ = 407,592 (21.77 − 11.38) = 10,083lb(44.0kN ) 70 / 2 × 12 ( ) Vcw = 3.5λ f 'c + 0.3 f c bw d p + V p = (3.5 ) 5,000 + 0.3 × 417 12.5 × 30.0 + 10,083 nig Vci = 46,279lb = 149,803lb Vc CatMéltUcCageKén Vci nig Vcw dUcenH Vc = Vci = 46,279lb #> KNnaEdkkg ¬CMhanTI3-8¦ eyIgman Vc = 46,279lb dUcenH 1 2 Vc = 23,140lb karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 261
  • 49. T.Chhay enARtg;muxkat; 17.5 ft BITMr = 61,017lb > Vc > 12 Vc dUcenHeKcaM)ac;KNnaEdkkg. Vu / φ RbsinebI Vu / φ < Vc > 12 Vc eKRtUvkarRtwmEtEdkkgGb,brma. Av s tMrUvkar = Vnf − Vc = (Vu f/ φd) − Vc = 61,017 −×46,279 d 60,000 30.0 y p y p = 0.0082in.2 / in. edayeRbI d ≅ d p = 30.0in. nig bw = 12.5in. ⎛ Av ⎞ A ps f pu dp 18 × 0.153 270,000 30.0 ⎜ ⎟ = = × = 0.0080 ⎝ s ⎠ min 80 f y d p bw 80 60,000 × 30.0 12.5 0.75 f 'c = 0.75 5,000 = 53 ⎛ Av ⎞ 53bw 53 × 12.5 b¤ ⎜ ⎟ = = = 0.011in.2 / in. ⎝ s ⎠ min fy 60,000 dUcenH tMéltUcCageKéntMélGb,brmaTaMgBIrKW ⎛ Av ⎞ ⎜ ⎟ = 0.0080in.2 / in. = 0.010in.2 / ft sMrab;RTnugTaMgBIr b¤ 0.005in.2 / ft ⎝ s ⎠ min sMrab;RTnugmYy sakl,g D5 deformed welded wire fabric mYyCYredayKMlat 10in. KitBIG½kReTAG½kS. KMlatGnuBaØatGtibrmaKW 0.75h ≤ 24in. dUcenHeyIgman 0.75h = 0.75 × 34 = 25.5in. dUcenH TTYlykEdkkg D5 WWF mYyCYrkñúgmYyRsTab;edaymanKMlat 10in. KitBIG½kSeTA G½kSenARtg;muxkat;énmYyPaKbYnElVg. cMNaMfa edayeRbobeFobdMeNaHRsaysMrab; Vci nig Vcw enAkñúg]TahrN_ 5>6 tMélx<s;Cag eKrbs; Vci sßitenAEk,rTMr ehIyfycuHy:agelOneTArkkNþalElVg enAeBlEdlbMErbMrYlrbs; Vcw mantMéltUcCag dUcEdleXIjenAkñúgrUbTI 5>13. eKcaM)ac;KNna flexure shear Vci nig web shear Vcw enAeRcInmuxkat;tambeNþayElVgedIm,IkMNt;karrayEdkkgRbkbedayRbsiT§PaBbMput. kmμviFIkMu BüÚT½rsMrYlkarKNnatMélTaMgenHelIcenøaHefrNamYy ¬dUcCa 10 énElVg¦ ehIyeKGacsg;düaRkam 1 RsedogKñanwgdüaRkamenAkñúgrUbTI 5>13 EdlbgðajBIbMErbMrYlénersIusþg;kMlaMgkat;rbs;RTnugtam beNþayElVg. $> KNna dowel steel sMrab; full composite section Edlman topping bEnßm 2in. ¬CMhanTI9¦ RbsinebIeKbEnßm topping EbbenHeTAelI pretopped section enAeBleRkay. Shear and Torsion Strength Design 262
  • 50. NPIC muxkat;enARtg; 12 d p BIépÞrbs;TMr d p = 30.0 + 2.0 = 32.0in. Vu enARtg;TMr = 91,525(408kN ) = 1.33 ft (40cm ) 1 32.0 dp = 2 2 × 12 h / 2 = 17in. = 1.33 ft ⎛ 35 − 1.33 ⎞ Vu = 91,525 × ⎜ ⎟ = 88,047lb(393kN ) ⎝ 35 ⎠ Vnh tMrUvkar V = u = φ 88,047 0.75 = 117,393lb(522kN ) bv = 12 ft htopping = 2in. BIrUbTI 5>14 Cc = 0.85 f 'cc Atop = 0.85 × 3,000 × 12 × 12 × 2 = 734,400lb(3,267kN ) Ts = Aps f ps = 18 × 0.153 × 240,000 = 660,960lb(2,940kN ) < Cc = 734,400lb dUcenH Fh = 660,960lb(2,178kN ) 70 × 12 lvh = = 420in.(1,067cm ) 2 bv = 144in.(366cm ) 80bv lvh = 80 × 144 × 420 = 4,838,400lb(21,520kN ) >> 660,960lb eKminRtUvkar dowel reinforcement edIm,ITak;enAkñúg topping EdlRtUvbEnßmenAeBleRkay 2in. edIm,I)an full composite action eT. eKTTYlykmuxkat;enH enAeBlvamanlkçN³RKb;RKan; sMrab; flexurl, PaBdab nigtMrUvkarsMrab;karRKb;RKgsñameRbH. 15> Brackets and Corbels Bracket nig corbel Ca short-haunched cantilever EdllyecjBIépÞxagrbs;ssr b¤ CBa¢aMgebtugedIm,IRTbnÞúkcMcMnucEdlF¶n; b¤Rbtikmμrbs;Fñwm. vaCaFatuy:agsMxan;rbs;eRKOgbgÁúMsMrab;RT Fñwmcak;Rsab;/ gantry girder nigTMrg;epSgeToténRbB½n§eRKOgbgÁúMcak;Rsab;. ebtugeRbkugRtaMg nigeb tugcak;Rsab;RtUv)aneRbIy:ageRcIn nigekIneLIgy:agrh½s ehIyElVgkan;EtEvgRtUv)ansagsg; Edl karKNnaersIusþg;kMlaMgkat; nigersIusþg;kMlaMgrmYl 263