SlideShare une entreprise Scribd logo
1  sur  5
Télécharger pour lire hors ligne
The International Journal Of Engineering And Science (IJES)
||Volume||2 ||Issue|| 9||Pages|| 26-30||2013||
ISSN(e): 2319 – 1813 ISSN(p): 2319 – 1805
www.theijes.com The IJES Page 26
Electronic Pest Control Devices: A Review of their Necessity,
Controversies and a submission of Design Considerations
Ibrahim, A.G., Oyedum, O.D., Awojoyogbe, O.B., Okeke, S.S.N.
Department of Physics, Federal University of Technology, Minna, Nigeria.
---------------------------------------------------ABSTRACT-------------------------------------------------------
The use of Electronic Pest Control Devices has been bedeviled by lots of controversies bothering on their
effectiveness. The arguments are that they are ineffective, partially effective or very effective. This work
reviewed the underlying factors that led to the introduction of Electronic Pest Control Devices, their advantages
over other pest control measures, and examined the controversies surrounding their usage. Investigation reveals
that habituation is the reason behind the controversy while delay of habituation by the introduction of
variability is a way out of the controversy. Design considerations and practices to technically fortify the device
and aid in the delay of habituation were also proffered.
KEYWORDS: Pests, conventional pesticides, habituation, design considerations.
----------------------------------------------------------------------------------------------------------------------------------------
Date of Submission: 15, August, 2013 Date of Acceptance: 30, September 2013
---------------------------------------------------------------------------------------------------------------------------------------
I. INTRODUCTION
The continuing population explosion has confronted mankind with many problems, including the major
one of imminent starvation. To cope with this challenge, aggressive agriculture was embarked upon at the turn
of the nineteenth century. Agricultural mechanization led to the production of more crops for the populace.
Storage programs were vigorously pursued to avoid wastage of surpluses. Then came the advent of pest
infestation which also underwent population explosion to become a formidable enemy and threat to food
sufficiency. Pests, in this light are unwanted animals that interfere with domesticated plants and animals [1].
They are insects, birds or rodents that cause damage to sown seeds, seedlings, fruits, seeds, flowers, buds,
leaves, roots, and tubers of crops either in the field or in the store. Pests are estimated to consume 33 percent of
crops grown in the United States. On a worldwide basis, pests consume approximately 35 percent of crops [2].
This represents an annual loss to pests of about $18.2 billion in the United State alone [3], while estimates of
annual losses of cereals to the red-billed quelea range from at least $1 million in Somalia to $ 6.3 million in the
Sudan.
II. CONVENTIONAL PESTICIDES
In order to devise an effective means to control the various pests that take such a heavy toll of our
agricultural crops, pesticides were developed. Pesticides are chemicals designed to combat the attack of various
pests on agricultural and horticultural crops. They are believed to affect the central nervous system of pests,
resulting in their death. With the manufacture of the first synthetic organic pesticides called DDT (1,1,1-
trichloro-2,2-bis-ethane) in 1942, it was estimated to have reduced losses to pest by half. More improvements in
pesticides performance were recorded year after year. The acceptance of this technology by farmers led to more
research and development in the pesticide sub sector which led to the introduction of a variety of pesticides. As
at now, pesticide production is a $32 billion industry with its application standing at more than 5 billion pounds
annually [4]. The story in developing and underdeveloped world where pesticides now flood the market attest to
the acceptance and wide scale use of pesticides and its dividends. Researchers have shown that a lot of
economic losses would be incurred without pesticide use and substantiated the resultant increases in yield from
pesticide use [5]. In Ghana, which is the world’s premier cocoa exporting country, the application of pesticides
has almost tripled the yield and in Pakistan, extensive use of pesticides on sugar crop increased the yield by 30
percent. The United Nations Food and Agricultural Organization (FAO) have estimated that without the use of
pesticides, some 50 percent of total cotton production in developing countries will be destroyed by pests. It is
clear that pesticides may be the single most important factors in improving food production in the
underdeveloped countries [6].
Electronic Pest Control Devices: A Review of their Necessity…
www.theijes.com The IJES Page 27
2.1 The Drawbacks
Ideally, a pesticide must be deadly to the targeted pests but not to non-target species, including man.
Unfortunately, this is not the case. Their usage has cause havoc on human and other life forms [7]. While some
results claim that, in the environment most pesticides undergo photochemical transformation to produce
metabolites which are relatively non-toxic to both human beings and the environment [8], most say otherwise.
There is now overwhelming evidence that some of these chemicals do pose a potential risk to humans and other
life forms and unwanted side effects to the environment [9 and 10]. Pesticides are known to move from treated
area by drift at the time of application and subsequently end up in the atmosphere or in the soil [11]. Pesticides
collected on the target may be washed off later by rain or in some cases by overhead irrigation. Some estimates
have suggested that up to 80% of total pesticides applied to the plant may eventually reach the soil.
Contamination of soil in this manner has caused major changes in the population of non targeted organisms
[12]. The economic impact of pesticides in non-target species (including humans) has been estimated at
approximately $8 billion annually in developing countries [7]. For example, earthworm numbers have been
reduced to over 60% following application of benony [13]. This potential danger of pollution from pesticides
was put forward by Carson (1963) just a little above half a century of its use. Surface water contamination,
ground water contamination, soil contamination and air contamination were the major primary link of toxicity
[7]. The aftermaths of this contamination on target and non target organisms of the ecosystem include resistance
to chemicals [14], chemical and biological degradation [15], accumulation along food chain [16], effect on fish
[17], birds [18] and finally possible toxicity to man. The short and long term effect to the person using the
pesticide and to the public that consumes the food grown using pesticides includes mutation, cancers, abnormal
birth to mention just a few [19]. Records of death and diseases due to pesticide poisoning stands at about 1
million per year [20].
2.2 The Way Forward in Pest Control
Non-chemical pest control methods have been advocated as the best way to reduce pesticide
contamination in our environment [7]. These pesticide-free alternatives to raising food include biological
control, genetic control, cultural practices, physical control and the broad based integrated pest management. All
these methods have their challenges from either being ineffective to being too sophisticated, but physical control
of pests is most friendly. Physical control means the physical elimination of pest or physical alteration of the
environment to make it inimical or inaccessible to the pest [1]. This type is divided into two categories: The
physical method may involve the use of physical hand picking, use of barriers and the use of traps and secondly
the environmental manipulation method. The later engages ecological factors against pests. Temperature,
relative humidity, dehydration and sound among others have been manipulated against pests with some level of
success.
III. ELECTRONIC PEST CONTROL
Electronic pest control refers to the various means of repelling pests using electrically powered devices.
Such devices are either known as electronic pest repellers, electronic pest chasers, electronic pest deterrent,
electronic pesticides or generally as electronic pest control devices. They form part of the physical pest control
methods which only recently became popular due to their environmentally friendly nature which is their
advantage over the conventional pesticides. There are basically two types of electronic pest control devices
widely available: The Ultrasonic devices and the Electromagnetic types. Ultrasonic devices operate by
transmitting high frequency sound waves greater than 20,000 Hz. While some animals such as dogs, bats,
rodents, birds and insects can hear well into the ultrasonic range. The human ear lacks the capacity to hear such
sound. Ultrasonic devices are designed and constructed to emit sound of this frequency, when targeted at pests;
they make them uncomfortable within the area of coverage thereby repelling them away from the area without
affecting the environment and non-target organisms, including man. Electromagnetic devices are fitted into
home wirings and emit electromagnetic waves which are inimical to pests. The advantages of this method over
other pest control methods includes the fact that they are cheap, eco-system friendly, environmentally friendly
and have no known risk to humans [21].
3.1 Electronic Pest Control Devices, the Controversies
Controversies however surround the effectiveness of electronic pesticides. While some agree that
ultrasonic sound devices do have a repellent effect on various insects such as crickets and cockroaches, others
say that ultrasonic sound have little or no effect on some pests such as ants or spider [22]. The US Federal Trade
Commission had sanctioned a manufacturer of such devices on grounds of ineffectiveness [23]. However, work
from independent researchers shows that the device successfully repelled rodents from a protected area in 13 out
of 17 sites studied. This represents an 81.3% success rate [24]. Others report that the device repelled rodents
from the immediate area of the device for a few minutes to a few days, but later the pest resumed normal
Electronic Pest Control Devices: A Review of their Necessity…
www.theijes.com The IJES Page 28
activities. Thus, concluding that electronic pest control devices have a partial effect on pests. Nevertheless,
others attest that electronic pest control devices have helped in solving their pest problems and can be rated as
being effective [25].
3.2 Way Forward for Electronic Pest Control Devices
From arguments on all sides of the controversy, it is clear that, the idea of electronic pesticides are not
a failure neither is theirs eco-friendly nature in contention; but that they only have a partial or temporary effect
on pests. Rather than dwell on the controversy, a number of researchers concluded that based on the mixed
results, more research is needed to improve these devices [22]. Accordingly, “ultrasound” is being re-examined
in the light of modern electronic technology. Taking advantage of the increased awareness of the biology of
pests, their response to artificial sounds and vibrations, their hearing range and electronic knowhow, these
controversies can be cleared by further fortifying the device. The major reason for this claims and counter
claims is a single factor: “habituation”. Habituation is what makes a person or animal to become familiar to
something through prolonged and regular exposure [26 and 27]. It is an important defensive mechanism in
animals and an initial response to a new stimulus. The claim of some users that electronic pesticides have a
temporary or partial effect on pests is due largely to the fact that, on receiving the initial ultrasonic stimulus,
pests get repelled at first instance, but gradually become familiar with the stimulus and later completely adjust
and resume normal activities. This agrees with the observation that it becomes ineffective after a few weeks.
Habituation to electronic pest deterrents occurs because they depend on repeated exposure, operating
continuously. This occurrence will continue until an antidote for habituation is discovered and electronically
incorporated into the design. A lasting antidote for habituation is punishment or reward. So long as no physical
harm befalls the pest on sensing the ultrasound signal, they are bound to habituate, finding no need to keep off
feeding when no punishment is involved. Such harm as striking or killing may not only generate more
controversies as in chemical pesticides but may also be difficult to achieve electronically. The way forward
therefore is to delay habituation.
IV. DESIGN CONSIDERATIONS
Electronic pesticides currently in use which are at the centre of this controversy are not technically
fortified and not well handled to slow down the rate of habituation. Below are some design considerations and
practices to technically fortify electronic pest control device and aid in the delay of habituation.
4.1 Specificity
Nearly all electronic pesticides claim to control more than one pest. Others are even intended to control
insects rodents and birds. But the theory behind these devices is to target the hearing range of these pests and
operates within the range [28]. From the biology of pests, hearing range differs from insect to insect or from
rodent to rodent [29] or specie to specie [30]. Therefore, for a device to be effective, it must target a pest,
identify its hearing range and be specifically designed for the targeted pest and a few others that may share same
auditory biology. Specificity goes beyond a target pest, but location also. The specie of weaver birds at work in
a farm in the U.S may differ from those devastating farms in northern Nigeria. Environment plays a major role
in the biology of even same species of animals [31]. Therefore, for an electronic pest control device to be
effective, it must be both pest specific and site specific.
4.2 Variability
Animals, pests inclusive, exhibit habituation [32]. They tend to become familiar with the initial scaring
effect of an electronic pesticide [22]. The practicable remedy for habituation advocated in this work is
variability. Habituation begins gradually but, depending on the target pest, might take up to months [33].
Weaver birds, for instance, take about two months to fully habituate. There is therefore a need to always
introduce unpredictable parameter changes; for instance, change in frequency, pitch, intensity, incorporated
sound and so on. Changes in stimulus tend to delay habituation [34], as a variation introduced further fortifies
the device’s efficacy followed by a gradual habituation and then another variation. By so doing, complete
habituation is delayed and in farm situation, this delay may be long enough to last up to the end of harvest.
4.3 Propagative Power
Existing electronic pest control devices are propelled by simple low power amplifiers. Thus, they have
a low power output resulting in small area of coverage. In some cases, just a few meters away from the stand
might be secured while pests further away have a field day feasting on farm produce. Ultrasound can travel a
distance of about 300 meters in the atmosphere depending on the frequency of propagation, but with a high-
power built-in amplifier, the reach will increase and the magnitude of disturbance responsible for the scary
effect is further increased and propagated to farther distances.
Electronic Pest Control Devices: A Review of their Necessity…
www.theijes.com The IJES Page 29
4.3 Tripping System
The rate of habituation can be delayed by judicious use of electronic pest control devices. Rather than
having these devices operating continuously or at regular intervals, they should be activated only when the pests
are actively present on the farm. For instance, weaver birds feed all through the hours of daylight. It makes no
sense having an electronic device operating continuously all through the night as repeated (or continuous)
presentation of a stimulus will cause a decrease in reaction to the stimulus thereby initiating habituation [32].
Active pest period noted during field survey should be considered and accommodated in designing an electronic
pest control device incorporated with features capable of identifying such periods or even sensing pest activities
and then tripping on and off when necessary.
4.4 Field Study
When a farm or any place infested by pest is identified, an electronic pesticide should not be applied
until an intensive field study is first carried out. Such a study will reveal the type and specie of pest, hearing
range, threshold sound hearing capacity, stage(s) of attack, behaviour of the pest to various test parameters such
as sound, light, smell, images and their respective times for habituation. The outcome of such a survey will be
useful in designing an electronic device using parameters of interest that will be effective on that farm against
the targeted pest. The existing approach which is devoid of field study contributes to the controversy
surrounding the efficacy of electronic pesticides because shortly the pesticides are introduced and they begin to
work, the pests later habituate, prompting the conclusion about the inefficiency of the device. With thorough
field studies, effective scaring parameter can be identified and some variability introduced to further fortify the
device.
4.5 Timeliness
Electronic pesticide does a better job when introduced at the right time. A targeted pest severely attacks
at specific stages of crop development. For instance, milking, fruiting, ripe/matured grain stage and so on. These
stages when identified during field survey serve as guide to timely introduce the device. This helps to take care
of habituation as the pests are stopped at a damaging stage by a yet effective device, so that by the time
habituation sets in the crop should have passed the critical stage of vulnerability. This is more effective than a
case where the device is stationed on a farm all through the farming season. In such cases, the pests get familiar
with the device and may completely habituate even before greater damage begins. The rate of habituation also
differs. For instance it takes two to four weeks for song birds to completely habituate to sound [33]. A user is
therefore guaranteed of a better pest cover at delicate crop stage within this period. As part of timeliness, it is
also advocated that crops be harvested at the instance of maturity. Farmers should not delay in harvesting, even
at the presence of an electronic pesticide on their farm, as habituation can set in at such point leading to
significant losses.
V. CONCLUSION
Looking at the economic impact of conventional pesticides to non-target species (including humans)
and its benefit vis-à-vis that of electronic pest control devices, the path of safety can be drawn by weighing all
the risks against the benefits on both sides. The safety associated with electronic pest control devices cannot be
overemphasized. The controversy trailing its usage can be overcome by judiciously implementing the design
considerations proffered in this work. The focus of further research is on how these ideas can be implemented to
put forward an effective electronic design for electronic pest control devices capable of surmounting the
challenge of pest infestation and settling the controversies surrounding the efficacy of such applications.
REFERENCES
[1]. R. Kurma, Insect Pest Control, Arnold Ltd, Great Britain. 1999, 15.
[2]. D.J. Elias, Pests with backbones. Cerescope, 21: 1988, 29-34.
[3]. E. Enger, Environmental Science. A Study of Interrelationships, McGraw-Hill, Newyork. 1995, 329.
[4]. U.S EPA, Report on the Environment: 2007 Science Report (SAB Review Draft)
[5]. J.P.G Webster, R.G Bowles and N.T Williams, Estimating the Economic Benefits of Alternative
[6]. Pesticide Usage Scenarios: Wheat Production in the United Kingdom. Crop Production. 18, 1999, 83.
[7]. E.S Steven, L. Zhen and Z. David, The Economics of Pesticides and Pest Control. International Review of
Environmental and Resource Economics. 1, 2007, 271–326.
[8]. M.W. Aktar, G. Sengupta and A. Chowdhury, Impact of Pesticides use in Agriculture: Their Benefitand Hazards.
Interdisciplinary Toxicology. 2(1), 2009, 1–12.
[9]. R.K Kole, H. Banerjee, A. Bhattacharyya, A. Chowdhury and N. AdityaChaudhury, Photo Transformation of some Pesticides. J
Indian Chem Soc. 76, 1999, 595–600.
[10]. G. Forget, T. Goodman and A. de Villiers, Impact of Pesticide Use on Health in Developing Countries. IDRC, Ottawa. 1993, 2.
[11]. [S.O. Igbedioh, Effects of Agricultural Pesticides on Humans, Animals and Higher Plants in Developing
[12]. Countries. Arch Environ Health. 46, 1991, 218.
Electronic Pest Control Devices: A Review of their Necessity…
www.theijes.com The IJES Page 30
[13]. G. Mathew, Pesticides Application Methods, Longman Group, England. 1992, 18.
[14]. U.S EPA, Spray Drift of Pesticides, Office of Pesticide Programs, Washington, DC. 1999.
[15]. B. Cooke, P. Herrington, and N. Morgan, Pesticides Fall-Out and Orchard Earthworm. Rep long Res Stn, Ashton. 1974, 105-
106.
[16]. S.R. Palumbi, Humans as the World’s Greatest Evolutionary Force, Science 293, 2001, 1786–1790.
[17]. C. Savonen, Soil microorganisms object of new OSU service. Good Fruit Grower. 1997.
[18]. S. Tanabe, F. Gondaira, A.N. Subramanian, A. Ramesh, D. Mohan, P. Kumaran, V.K, Venugopalan and R. Tatsukawa,
Specific Pattern of Persistent Organochlorine Residues in Human Breast Milk from South India. J Agric Food Chem.
38, 1990, 899–903.
[19]. T.M. Shafiei and H.H. Costa, The Susceptibility and Resistance of Fry and Fingerlings of Oreochromis
[20]. mossambicus Peters to some pesticides commonly used in Sri Lanka. J Appl Ichthyol. 6, 1990, 73–80.
[21]. R.A. Liroff, Balancing risks of DDT and Malaria in the global POPs treaty. Pesticide Safety News. 4, 2000, 3.
[22]. A. Brouwer, M.P. Longnecker, L.S. Birnbaum, J. Cogliano, P. Kostyniak, J. Moore, S. Schantz and G. Winneke,
Characterization of Potential Endocrine Related Health Effects at Lowdose Levels of Exposure to PCBs. Environ Health
Perspect. 107, 1999. 639.
[23]. Environews Forum, Killer Environment. Environ Health Perspect. 107, 1999, 62.
[24]. J. Hangiandreou, Physics Tutorial for Residents: Topics in US: B-mode US: Basic Concepts and New Technology
Radiographics 23 (4): 2003, 1019.
[25]. B. Subramanyam, Ultrasound and Arthropod Pest Control: Hearing is Believing! (pdf). Kansas State University. 2001.
[26]. US FTC, Analysis of Proposed Consent Order to Aid Public Comment In the Matter of Global Instruments Ltd., and Charles
Patterson". Federal Trade Commission 2003.
[27]. Victor Pest, Rodent Repellents http://www.victorpest.com/advice/all-about/victor-repellents/types-of- repellents. Retrieved
2009-10-22.
[28]. R.J. Lawrence,
[29]. http://www.selfgrowth.com/articles/electronic_pest_control_and_ultrasonic_pest_control_vs_traditional_chemical_pesticides.ht
ml.
[30]. A. Kruse, R. Stripling and D. Clayton, Context-Specific Habituation of the Zenk Gene Response to Song in Adult Zebra
Finches. Neurobiology of Learning and Memory. 82, 2004, 99–108.
[31]. M.E. Bouton, A Simple form of Learning and Behavior: A contemporary synthesis. MA,Sinauer: Sunderland. 2007.
[32]. T. Leighton, What is Ultrasound? Progress in Biophysics and Molecular Biology. 93 (1-3), 2007, 3–83.
[33]. M. Gotfrit, Range of human hearing. Zen Audio Project. 1995
[34]. T. Condon, Frequency Range of Dog Hearing, In Elert, Glenn. The Physics Factbook.
http://hypertextbook.com/facts/2003/TimCondon.shtml. Retrieved 2008-10-22. 2003
[35]. Y. Yoshikuni, T.E. Ferrin and J.D. Keasling, (2006). Designed divergent evolution of Enzyme Function.
http://www.sciencedirect.com/science/article/pii/S0079610706000812. Retrieved 16 November 2011.
[36]. H. Rankin, T. Abrams, R. Barry, S. Bhatnagar, D. Clayton, J. Colombo and R. Thompson, Habituation Revisited: An Updated
and Revised Description of the Behavioral Characteristics of Habituation. Neurobiology of Learning and Memory 92 (2), 2009,
135–138.
[37]. M.A Harris and R.E. Lemon, Songs of Song Sparrows: Reactions of Males to Songs of Different Localities. The Condor. 76,
1974, 33–44.
[38]. N.B. Turk-Browne, B.J. Scholl and M.M. Chun, Babies and Brains: Habituation in Infant Cognition and Functional
Neuroimaging. Frontiers in Human Neuroscience 2, 2008, 1–11.
.

Contenu connexe

Tendances

Hazardous Effects of Pesticide Diazinon on Living Organisms
Hazardous Effects of Pesticide Diazinon on Living OrganismsHazardous Effects of Pesticide Diazinon on Living Organisms
Hazardous Effects of Pesticide Diazinon on Living Organismsijtsrd
 
uniyo.prsttn.rev1
uniyo.prsttn.rev1uniyo.prsttn.rev1
uniyo.prsttn.rev1A-G, Yunuss
 
Legal measures of insect pest management for slideshare
Legal measures of insect pest management for slideshareLegal measures of insect pest management for slideshare
Legal measures of insect pest management for slideshareBishnu prasad joshi
 
Pesticide Effects
Pesticide Effects Pesticide Effects
Pesticide Effects Manish Singh
 
Pesticide use and toxicity down By Mr Allah Dad Khan Agriculture Expert Khyb...
Pesticide use and toxicity down  By Mr Allah Dad Khan Agriculture Expert Khyb...Pesticide use and toxicity down  By Mr Allah Dad Khan Agriculture Expert Khyb...
Pesticide use and toxicity down By Mr Allah Dad Khan Agriculture Expert Khyb...Mr.Allah Dad Khan
 
What Does removals Mean?
What Does removals Mean?What Does removals Mean?
What Does removals Mean?iratechum6945
 
A survey of Insect Vectors Associated with Solid Refuse Dumpsite in Urban Kat...
A survey of Insect Vectors Associated with Solid Refuse Dumpsite in Urban Kat...A survey of Insect Vectors Associated with Solid Refuse Dumpsite in Urban Kat...
A survey of Insect Vectors Associated with Solid Refuse Dumpsite in Urban Kat...umar musa
 
Genetic Technologies: Environment Protection Act (Law and Technology)
Genetic Technologies: Environment Protection Act (Law and Technology)Genetic Technologies: Environment Protection Act (Law and Technology)
Genetic Technologies: Environment Protection Act (Law and Technology)MrityunjaySaraswat
 
Pesticides and Biomagnification
Pesticides and BiomagnificationPesticides and Biomagnification
Pesticides and BiomagnificationOhMiss
 
Agricultural inputs, list of agricultural inputs and Insecticide used in Bang...
Agricultural inputs, list of agricultural inputs and Insecticide used in Bang...Agricultural inputs, list of agricultural inputs and Insecticide used in Bang...
Agricultural inputs, list of agricultural inputs and Insecticide used in Bang...MD. ZANE ALAM
 
BenReynardNeonicotinoidsCapstonePoster
BenReynardNeonicotinoidsCapstonePosterBenReynardNeonicotinoidsCapstonePoster
BenReynardNeonicotinoidsCapstonePosterBenjamin Reynard
 
INTELLECTUAL PROPERTY RIGHTS IN BIOTECHNOLOGY
INTELLECTUAL PROPERTY RIGHTS IN BIOTECHNOLOGYINTELLECTUAL PROPERTY RIGHTS IN BIOTECHNOLOGY
INTELLECTUAL PROPERTY RIGHTS IN BIOTECHNOLOGYNamitha M R
 
Pesticides Degradation Through Microorganisms (Biodegradtion)
Pesticides Degradation Through Microorganisms (Biodegradtion)Pesticides Degradation Through Microorganisms (Biodegradtion)
Pesticides Degradation Through Microorganisms (Biodegradtion)SaLim AyuBi
 

Tendances (20)

Legal control.
Legal control.   Legal control.
Legal control.
 
Hazardous Effects of Pesticide Diazinon on Living Organisms
Hazardous Effects of Pesticide Diazinon on Living OrganismsHazardous Effects of Pesticide Diazinon on Living Organisms
Hazardous Effects of Pesticide Diazinon on Living Organisms
 
uniyo.prsttn.rev1
uniyo.prsttn.rev1uniyo.prsttn.rev1
uniyo.prsttn.rev1
 
Legal measures of insect pest management for slideshare
Legal measures of insect pest management for slideshareLegal measures of insect pest management for slideshare
Legal measures of insect pest management for slideshare
 
Pesticides
PesticidesPesticides
Pesticides
 
Pesticide Effects
Pesticide Effects Pesticide Effects
Pesticide Effects
 
Abuses of agrochemic
Abuses of agrochemicAbuses of agrochemic
Abuses of agrochemic
 
Pesticide use and toxicity down By Mr Allah Dad Khan Agriculture Expert Khyb...
Pesticide use and toxicity down  By Mr Allah Dad Khan Agriculture Expert Khyb...Pesticide use and toxicity down  By Mr Allah Dad Khan Agriculture Expert Khyb...
Pesticide use and toxicity down By Mr Allah Dad Khan Agriculture Expert Khyb...
 
Pesticides (2)
Pesticides (2)Pesticides (2)
Pesticides (2)
 
What Does removals Mean?
What Does removals Mean?What Does removals Mean?
What Does removals Mean?
 
A survey of Insect Vectors Associated with Solid Refuse Dumpsite in Urban Kat...
A survey of Insect Vectors Associated with Solid Refuse Dumpsite in Urban Kat...A survey of Insect Vectors Associated with Solid Refuse Dumpsite in Urban Kat...
A survey of Insect Vectors Associated with Solid Refuse Dumpsite in Urban Kat...
 
Genetic Technologies: Environment Protection Act (Law and Technology)
Genetic Technologies: Environment Protection Act (Law and Technology)Genetic Technologies: Environment Protection Act (Law and Technology)
Genetic Technologies: Environment Protection Act (Law and Technology)
 
Pesticides and Biomagnification
Pesticides and BiomagnificationPesticides and Biomagnification
Pesticides and Biomagnification
 
Agricultural inputs, list of agricultural inputs and Insecticide used in Bang...
Agricultural inputs, list of agricultural inputs and Insecticide used in Bang...Agricultural inputs, list of agricultural inputs and Insecticide used in Bang...
Agricultural inputs, list of agricultural inputs and Insecticide used in Bang...
 
Biosafety Regulations of Asian Countries 2013
Biosafety Regulations of Asian Countries 2013Biosafety Regulations of Asian Countries 2013
Biosafety Regulations of Asian Countries 2013
 
Pesticides
PesticidesPesticides
Pesticides
 
BenReynardNeonicotinoidsCapstonePoster
BenReynardNeonicotinoidsCapstonePosterBenReynardNeonicotinoidsCapstonePoster
BenReynardNeonicotinoidsCapstonePoster
 
INTELLECTUAL PROPERTY RIGHTS IN BIOTECHNOLOGY
INTELLECTUAL PROPERTY RIGHTS IN BIOTECHNOLOGYINTELLECTUAL PROPERTY RIGHTS IN BIOTECHNOLOGY
INTELLECTUAL PROPERTY RIGHTS IN BIOTECHNOLOGY
 
Bioprospecting
Bioprospecting Bioprospecting
Bioprospecting
 
Pesticides Degradation Through Microorganisms (Biodegradtion)
Pesticides Degradation Through Microorganisms (Biodegradtion)Pesticides Degradation Through Microorganisms (Biodegradtion)
Pesticides Degradation Through Microorganisms (Biodegradtion)
 

En vedette

The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
 The International Journal of Engineering and Science (The IJES) The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 

En vedette (19)

The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
 The International Journal of Engineering and Science (The IJES) The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 

Similaire à The International Journal of Engineering and Science (The IJES)

2[Unit VI and VII, Body Section You will find the body pa.docx
2[Unit VI and VII, Body Section You will find the body pa.docx2[Unit VI and VII, Body Section You will find the body pa.docx
2[Unit VI and VII, Body Section You will find the body pa.docxrobert345678
 
7aConsidering the Hazards of pesticides and its Direct impact on h.pdf
7aConsidering the Hazards of pesticides and its Direct impact on h.pdf7aConsidering the Hazards of pesticides and its Direct impact on h.pdf
7aConsidering the Hazards of pesticides and its Direct impact on h.pdfankkitextailes
 
Impact of pesticides on environment and health
Impact of pesticides on environment and health Impact of pesticides on environment and health
Impact of pesticides on environment and health home
 
Presence of Pesticides in Fruits and vegetables
Presence of Pesticides in Fruits and vegetables Presence of Pesticides in Fruits and vegetables
Presence of Pesticides in Fruits and vegetables Jyotismat Raul
 
Pheromones Technology Applications In Egypt
Pheromones Technology Applications In EgyptPheromones Technology Applications In Egypt
Pheromones Technology Applications In EgyptAbdallah Albeltagy
 
Global trade and Invasive insects
Global trade and Invasive insectsGlobal trade and Invasive insects
Global trade and Invasive insectsSafeena Majeed
 
Pest control services in bangalore
Pest control services in bangalorePest control services in bangalore
Pest control services in bangaloreBlenkey kahna
 
Economics of pesticide use, its impact and policies
Economics of pesticide use, its impact and policiesEconomics of pesticide use, its impact and policies
Economics of pesticide use, its impact and policiesAlmaszabeen Badekhan
 
Pesticides impact on environment & biopesticides.pptx
Pesticides impact on environment & biopesticides.pptxPesticides impact on environment & biopesticides.pptx
Pesticides impact on environment & biopesticides.pptxRenuJangid3
 
Harmful Pesticides And How Smallholder Women Farmers Can Protect Themselves.
Harmful Pesticides And How Smallholder Women Farmers Can Protect Themselves.Harmful Pesticides And How Smallholder Women Farmers Can Protect Themselves.
Harmful Pesticides And How Smallholder Women Farmers Can Protect Themselves.Donald ofoegbu
 
Harmful pesticides and how smallholder women farmers can do
Harmful pesticides and how smallholder women farmers can doHarmful pesticides and how smallholder women farmers can do
Harmful pesticides and how smallholder women farmers can doDonald ofoegbu
 
Relatório ONU denuncia mito de que pesticidas são essenciais para alimentar o...
Relatório ONU denuncia mito de que pesticidas são essenciais para alimentar o...Relatório ONU denuncia mito de que pesticidas são essenciais para alimentar o...
Relatório ONU denuncia mito de que pesticidas são essenciais para alimentar o...Carol Daemon
 
Organic pest management
Organic pest managementOrganic pest management
Organic pest managementksksolanki7
 
Crop protection and pest management and pesticides
Crop protection and pest management and pesticidesCrop protection and pest management and pesticides
Crop protection and pest management and pesticideslimashaharini
 
Indigeneous technology vs pesticide by arpit
Indigeneous technology vs pesticide by arpitIndigeneous technology vs pesticide by arpit
Indigeneous technology vs pesticide by arpitDHANUKA AGRI ACADEMY
 
Integrated pest management (ipm)
Integrated pest management (ipm)Integrated pest management (ipm)
Integrated pest management (ipm)Snehal mane
 

Similaire à The International Journal of Engineering and Science (The IJES) (20)

D211420
D211420D211420
D211420
 
2[Unit VI and VII, Body Section You will find the body pa.docx
2[Unit VI and VII, Body Section You will find the body pa.docx2[Unit VI and VII, Body Section You will find the body pa.docx
2[Unit VI and VII, Body Section You will find the body pa.docx
 
7aConsidering the Hazards of pesticides and its Direct impact on h.pdf
7aConsidering the Hazards of pesticides and its Direct impact on h.pdf7aConsidering the Hazards of pesticides and its Direct impact on h.pdf
7aConsidering the Hazards of pesticides and its Direct impact on h.pdf
 
Impact of pesticides on environment and health
Impact of pesticides on environment and health Impact of pesticides on environment and health
Impact of pesticides on environment and health
 
Presence of Pesticides in Fruits and vegetables
Presence of Pesticides in Fruits and vegetables Presence of Pesticides in Fruits and vegetables
Presence of Pesticides in Fruits and vegetables
 
Pheromones Technology Applications In Egypt
Pheromones Technology Applications In EgyptPheromones Technology Applications In Egypt
Pheromones Technology Applications In Egypt
 
Toxicity Hazards
Toxicity HazardsToxicity Hazards
Toxicity Hazards
 
Global trade and Invasive insects
Global trade and Invasive insectsGlobal trade and Invasive insects
Global trade and Invasive insects
 
Pest control services in bangalore
Pest control services in bangalorePest control services in bangalore
Pest control services in bangalore
 
Economics of pesticide use, its impact and policies
Economics of pesticide use, its impact and policiesEconomics of pesticide use, its impact and policies
Economics of pesticide use, its impact and policies
 
Lecture-Notes-IPDM.pdf
Lecture-Notes-IPDM.pdfLecture-Notes-IPDM.pdf
Lecture-Notes-IPDM.pdf
 
ENTO 231_L.No.5_Integrated Pest Management.ppt
ENTO 231_L.No.5_Integrated Pest Management.pptENTO 231_L.No.5_Integrated Pest Management.ppt
ENTO 231_L.No.5_Integrated Pest Management.ppt
 
Pesticides impact on environment & biopesticides.pptx
Pesticides impact on environment & biopesticides.pptxPesticides impact on environment & biopesticides.pptx
Pesticides impact on environment & biopesticides.pptx
 
Harmful Pesticides And How Smallholder Women Farmers Can Protect Themselves.
Harmful Pesticides And How Smallholder Women Farmers Can Protect Themselves.Harmful Pesticides And How Smallholder Women Farmers Can Protect Themselves.
Harmful Pesticides And How Smallholder Women Farmers Can Protect Themselves.
 
Harmful pesticides and how smallholder women farmers can do
Harmful pesticides and how smallholder women farmers can doHarmful pesticides and how smallholder women farmers can do
Harmful pesticides and how smallholder women farmers can do
 
Relatório ONU denuncia mito de que pesticidas são essenciais para alimentar o...
Relatório ONU denuncia mito de que pesticidas são essenciais para alimentar o...Relatório ONU denuncia mito de que pesticidas são essenciais para alimentar o...
Relatório ONU denuncia mito de que pesticidas são essenciais para alimentar o...
 
Organic pest management
Organic pest managementOrganic pest management
Organic pest management
 
Crop protection and pest management and pesticides
Crop protection and pest management and pesticidesCrop protection and pest management and pesticides
Crop protection and pest management and pesticides
 
Indigeneous technology vs pesticide by arpit
Indigeneous technology vs pesticide by arpitIndigeneous technology vs pesticide by arpit
Indigeneous technology vs pesticide by arpit
 
Integrated pest management (ipm)
Integrated pest management (ipm)Integrated pest management (ipm)
Integrated pest management (ipm)
 

Dernier

How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 

Dernier (20)

How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 

The International Journal of Engineering and Science (The IJES)

  • 1. The International Journal Of Engineering And Science (IJES) ||Volume||2 ||Issue|| 9||Pages|| 26-30||2013|| ISSN(e): 2319 – 1813 ISSN(p): 2319 – 1805 www.theijes.com The IJES Page 26 Electronic Pest Control Devices: A Review of their Necessity, Controversies and a submission of Design Considerations Ibrahim, A.G., Oyedum, O.D., Awojoyogbe, O.B., Okeke, S.S.N. Department of Physics, Federal University of Technology, Minna, Nigeria. ---------------------------------------------------ABSTRACT------------------------------------------------------- The use of Electronic Pest Control Devices has been bedeviled by lots of controversies bothering on their effectiveness. The arguments are that they are ineffective, partially effective or very effective. This work reviewed the underlying factors that led to the introduction of Electronic Pest Control Devices, their advantages over other pest control measures, and examined the controversies surrounding their usage. Investigation reveals that habituation is the reason behind the controversy while delay of habituation by the introduction of variability is a way out of the controversy. Design considerations and practices to technically fortify the device and aid in the delay of habituation were also proffered. KEYWORDS: Pests, conventional pesticides, habituation, design considerations. ---------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 15, August, 2013 Date of Acceptance: 30, September 2013 --------------------------------------------------------------------------------------------------------------------------------------- I. INTRODUCTION The continuing population explosion has confronted mankind with many problems, including the major one of imminent starvation. To cope with this challenge, aggressive agriculture was embarked upon at the turn of the nineteenth century. Agricultural mechanization led to the production of more crops for the populace. Storage programs were vigorously pursued to avoid wastage of surpluses. Then came the advent of pest infestation which also underwent population explosion to become a formidable enemy and threat to food sufficiency. Pests, in this light are unwanted animals that interfere with domesticated plants and animals [1]. They are insects, birds or rodents that cause damage to sown seeds, seedlings, fruits, seeds, flowers, buds, leaves, roots, and tubers of crops either in the field or in the store. Pests are estimated to consume 33 percent of crops grown in the United States. On a worldwide basis, pests consume approximately 35 percent of crops [2]. This represents an annual loss to pests of about $18.2 billion in the United State alone [3], while estimates of annual losses of cereals to the red-billed quelea range from at least $1 million in Somalia to $ 6.3 million in the Sudan. II. CONVENTIONAL PESTICIDES In order to devise an effective means to control the various pests that take such a heavy toll of our agricultural crops, pesticides were developed. Pesticides are chemicals designed to combat the attack of various pests on agricultural and horticultural crops. They are believed to affect the central nervous system of pests, resulting in their death. With the manufacture of the first synthetic organic pesticides called DDT (1,1,1- trichloro-2,2-bis-ethane) in 1942, it was estimated to have reduced losses to pest by half. More improvements in pesticides performance were recorded year after year. The acceptance of this technology by farmers led to more research and development in the pesticide sub sector which led to the introduction of a variety of pesticides. As at now, pesticide production is a $32 billion industry with its application standing at more than 5 billion pounds annually [4]. The story in developing and underdeveloped world where pesticides now flood the market attest to the acceptance and wide scale use of pesticides and its dividends. Researchers have shown that a lot of economic losses would be incurred without pesticide use and substantiated the resultant increases in yield from pesticide use [5]. In Ghana, which is the world’s premier cocoa exporting country, the application of pesticides has almost tripled the yield and in Pakistan, extensive use of pesticides on sugar crop increased the yield by 30 percent. The United Nations Food and Agricultural Organization (FAO) have estimated that without the use of pesticides, some 50 percent of total cotton production in developing countries will be destroyed by pests. It is clear that pesticides may be the single most important factors in improving food production in the underdeveloped countries [6].
  • 2. Electronic Pest Control Devices: A Review of their Necessity… www.theijes.com The IJES Page 27 2.1 The Drawbacks Ideally, a pesticide must be deadly to the targeted pests but not to non-target species, including man. Unfortunately, this is not the case. Their usage has cause havoc on human and other life forms [7]. While some results claim that, in the environment most pesticides undergo photochemical transformation to produce metabolites which are relatively non-toxic to both human beings and the environment [8], most say otherwise. There is now overwhelming evidence that some of these chemicals do pose a potential risk to humans and other life forms and unwanted side effects to the environment [9 and 10]. Pesticides are known to move from treated area by drift at the time of application and subsequently end up in the atmosphere or in the soil [11]. Pesticides collected on the target may be washed off later by rain or in some cases by overhead irrigation. Some estimates have suggested that up to 80% of total pesticides applied to the plant may eventually reach the soil. Contamination of soil in this manner has caused major changes in the population of non targeted organisms [12]. The economic impact of pesticides in non-target species (including humans) has been estimated at approximately $8 billion annually in developing countries [7]. For example, earthworm numbers have been reduced to over 60% following application of benony [13]. This potential danger of pollution from pesticides was put forward by Carson (1963) just a little above half a century of its use. Surface water contamination, ground water contamination, soil contamination and air contamination were the major primary link of toxicity [7]. The aftermaths of this contamination on target and non target organisms of the ecosystem include resistance to chemicals [14], chemical and biological degradation [15], accumulation along food chain [16], effect on fish [17], birds [18] and finally possible toxicity to man. The short and long term effect to the person using the pesticide and to the public that consumes the food grown using pesticides includes mutation, cancers, abnormal birth to mention just a few [19]. Records of death and diseases due to pesticide poisoning stands at about 1 million per year [20]. 2.2 The Way Forward in Pest Control Non-chemical pest control methods have been advocated as the best way to reduce pesticide contamination in our environment [7]. These pesticide-free alternatives to raising food include biological control, genetic control, cultural practices, physical control and the broad based integrated pest management. All these methods have their challenges from either being ineffective to being too sophisticated, but physical control of pests is most friendly. Physical control means the physical elimination of pest or physical alteration of the environment to make it inimical or inaccessible to the pest [1]. This type is divided into two categories: The physical method may involve the use of physical hand picking, use of barriers and the use of traps and secondly the environmental manipulation method. The later engages ecological factors against pests. Temperature, relative humidity, dehydration and sound among others have been manipulated against pests with some level of success. III. ELECTRONIC PEST CONTROL Electronic pest control refers to the various means of repelling pests using electrically powered devices. Such devices are either known as electronic pest repellers, electronic pest chasers, electronic pest deterrent, electronic pesticides or generally as electronic pest control devices. They form part of the physical pest control methods which only recently became popular due to their environmentally friendly nature which is their advantage over the conventional pesticides. There are basically two types of electronic pest control devices widely available: The Ultrasonic devices and the Electromagnetic types. Ultrasonic devices operate by transmitting high frequency sound waves greater than 20,000 Hz. While some animals such as dogs, bats, rodents, birds and insects can hear well into the ultrasonic range. The human ear lacks the capacity to hear such sound. Ultrasonic devices are designed and constructed to emit sound of this frequency, when targeted at pests; they make them uncomfortable within the area of coverage thereby repelling them away from the area without affecting the environment and non-target organisms, including man. Electromagnetic devices are fitted into home wirings and emit electromagnetic waves which are inimical to pests. The advantages of this method over other pest control methods includes the fact that they are cheap, eco-system friendly, environmentally friendly and have no known risk to humans [21]. 3.1 Electronic Pest Control Devices, the Controversies Controversies however surround the effectiveness of electronic pesticides. While some agree that ultrasonic sound devices do have a repellent effect on various insects such as crickets and cockroaches, others say that ultrasonic sound have little or no effect on some pests such as ants or spider [22]. The US Federal Trade Commission had sanctioned a manufacturer of such devices on grounds of ineffectiveness [23]. However, work from independent researchers shows that the device successfully repelled rodents from a protected area in 13 out of 17 sites studied. This represents an 81.3% success rate [24]. Others report that the device repelled rodents from the immediate area of the device for a few minutes to a few days, but later the pest resumed normal
  • 3. Electronic Pest Control Devices: A Review of their Necessity… www.theijes.com The IJES Page 28 activities. Thus, concluding that electronic pest control devices have a partial effect on pests. Nevertheless, others attest that electronic pest control devices have helped in solving their pest problems and can be rated as being effective [25]. 3.2 Way Forward for Electronic Pest Control Devices From arguments on all sides of the controversy, it is clear that, the idea of electronic pesticides are not a failure neither is theirs eco-friendly nature in contention; but that they only have a partial or temporary effect on pests. Rather than dwell on the controversy, a number of researchers concluded that based on the mixed results, more research is needed to improve these devices [22]. Accordingly, “ultrasound” is being re-examined in the light of modern electronic technology. Taking advantage of the increased awareness of the biology of pests, their response to artificial sounds and vibrations, their hearing range and electronic knowhow, these controversies can be cleared by further fortifying the device. The major reason for this claims and counter claims is a single factor: “habituation”. Habituation is what makes a person or animal to become familiar to something through prolonged and regular exposure [26 and 27]. It is an important defensive mechanism in animals and an initial response to a new stimulus. The claim of some users that electronic pesticides have a temporary or partial effect on pests is due largely to the fact that, on receiving the initial ultrasonic stimulus, pests get repelled at first instance, but gradually become familiar with the stimulus and later completely adjust and resume normal activities. This agrees with the observation that it becomes ineffective after a few weeks. Habituation to electronic pest deterrents occurs because they depend on repeated exposure, operating continuously. This occurrence will continue until an antidote for habituation is discovered and electronically incorporated into the design. A lasting antidote for habituation is punishment or reward. So long as no physical harm befalls the pest on sensing the ultrasound signal, they are bound to habituate, finding no need to keep off feeding when no punishment is involved. Such harm as striking or killing may not only generate more controversies as in chemical pesticides but may also be difficult to achieve electronically. The way forward therefore is to delay habituation. IV. DESIGN CONSIDERATIONS Electronic pesticides currently in use which are at the centre of this controversy are not technically fortified and not well handled to slow down the rate of habituation. Below are some design considerations and practices to technically fortify electronic pest control device and aid in the delay of habituation. 4.1 Specificity Nearly all electronic pesticides claim to control more than one pest. Others are even intended to control insects rodents and birds. But the theory behind these devices is to target the hearing range of these pests and operates within the range [28]. From the biology of pests, hearing range differs from insect to insect or from rodent to rodent [29] or specie to specie [30]. Therefore, for a device to be effective, it must target a pest, identify its hearing range and be specifically designed for the targeted pest and a few others that may share same auditory biology. Specificity goes beyond a target pest, but location also. The specie of weaver birds at work in a farm in the U.S may differ from those devastating farms in northern Nigeria. Environment plays a major role in the biology of even same species of animals [31]. Therefore, for an electronic pest control device to be effective, it must be both pest specific and site specific. 4.2 Variability Animals, pests inclusive, exhibit habituation [32]. They tend to become familiar with the initial scaring effect of an electronic pesticide [22]. The practicable remedy for habituation advocated in this work is variability. Habituation begins gradually but, depending on the target pest, might take up to months [33]. Weaver birds, for instance, take about two months to fully habituate. There is therefore a need to always introduce unpredictable parameter changes; for instance, change in frequency, pitch, intensity, incorporated sound and so on. Changes in stimulus tend to delay habituation [34], as a variation introduced further fortifies the device’s efficacy followed by a gradual habituation and then another variation. By so doing, complete habituation is delayed and in farm situation, this delay may be long enough to last up to the end of harvest. 4.3 Propagative Power Existing electronic pest control devices are propelled by simple low power amplifiers. Thus, they have a low power output resulting in small area of coverage. In some cases, just a few meters away from the stand might be secured while pests further away have a field day feasting on farm produce. Ultrasound can travel a distance of about 300 meters in the atmosphere depending on the frequency of propagation, but with a high- power built-in amplifier, the reach will increase and the magnitude of disturbance responsible for the scary effect is further increased and propagated to farther distances.
  • 4. Electronic Pest Control Devices: A Review of their Necessity… www.theijes.com The IJES Page 29 4.3 Tripping System The rate of habituation can be delayed by judicious use of electronic pest control devices. Rather than having these devices operating continuously or at regular intervals, they should be activated only when the pests are actively present on the farm. For instance, weaver birds feed all through the hours of daylight. It makes no sense having an electronic device operating continuously all through the night as repeated (or continuous) presentation of a stimulus will cause a decrease in reaction to the stimulus thereby initiating habituation [32]. Active pest period noted during field survey should be considered and accommodated in designing an electronic pest control device incorporated with features capable of identifying such periods or even sensing pest activities and then tripping on and off when necessary. 4.4 Field Study When a farm or any place infested by pest is identified, an electronic pesticide should not be applied until an intensive field study is first carried out. Such a study will reveal the type and specie of pest, hearing range, threshold sound hearing capacity, stage(s) of attack, behaviour of the pest to various test parameters such as sound, light, smell, images and their respective times for habituation. The outcome of such a survey will be useful in designing an electronic device using parameters of interest that will be effective on that farm against the targeted pest. The existing approach which is devoid of field study contributes to the controversy surrounding the efficacy of electronic pesticides because shortly the pesticides are introduced and they begin to work, the pests later habituate, prompting the conclusion about the inefficiency of the device. With thorough field studies, effective scaring parameter can be identified and some variability introduced to further fortify the device. 4.5 Timeliness Electronic pesticide does a better job when introduced at the right time. A targeted pest severely attacks at specific stages of crop development. For instance, milking, fruiting, ripe/matured grain stage and so on. These stages when identified during field survey serve as guide to timely introduce the device. This helps to take care of habituation as the pests are stopped at a damaging stage by a yet effective device, so that by the time habituation sets in the crop should have passed the critical stage of vulnerability. This is more effective than a case where the device is stationed on a farm all through the farming season. In such cases, the pests get familiar with the device and may completely habituate even before greater damage begins. The rate of habituation also differs. For instance it takes two to four weeks for song birds to completely habituate to sound [33]. A user is therefore guaranteed of a better pest cover at delicate crop stage within this period. As part of timeliness, it is also advocated that crops be harvested at the instance of maturity. Farmers should not delay in harvesting, even at the presence of an electronic pesticide on their farm, as habituation can set in at such point leading to significant losses. V. CONCLUSION Looking at the economic impact of conventional pesticides to non-target species (including humans) and its benefit vis-à-vis that of electronic pest control devices, the path of safety can be drawn by weighing all the risks against the benefits on both sides. The safety associated with electronic pest control devices cannot be overemphasized. The controversy trailing its usage can be overcome by judiciously implementing the design considerations proffered in this work. The focus of further research is on how these ideas can be implemented to put forward an effective electronic design for electronic pest control devices capable of surmounting the challenge of pest infestation and settling the controversies surrounding the efficacy of such applications. REFERENCES [1]. R. Kurma, Insect Pest Control, Arnold Ltd, Great Britain. 1999, 15. [2]. D.J. Elias, Pests with backbones. Cerescope, 21: 1988, 29-34. [3]. E. Enger, Environmental Science. A Study of Interrelationships, McGraw-Hill, Newyork. 1995, 329. [4]. U.S EPA, Report on the Environment: 2007 Science Report (SAB Review Draft) [5]. J.P.G Webster, R.G Bowles and N.T Williams, Estimating the Economic Benefits of Alternative [6]. Pesticide Usage Scenarios: Wheat Production in the United Kingdom. Crop Production. 18, 1999, 83. [7]. E.S Steven, L. Zhen and Z. David, The Economics of Pesticides and Pest Control. International Review of Environmental and Resource Economics. 1, 2007, 271–326. [8]. M.W. Aktar, G. Sengupta and A. Chowdhury, Impact of Pesticides use in Agriculture: Their Benefitand Hazards. Interdisciplinary Toxicology. 2(1), 2009, 1–12. [9]. R.K Kole, H. Banerjee, A. Bhattacharyya, A. Chowdhury and N. AdityaChaudhury, Photo Transformation of some Pesticides. J Indian Chem Soc. 76, 1999, 595–600. [10]. G. Forget, T. Goodman and A. de Villiers, Impact of Pesticide Use on Health in Developing Countries. IDRC, Ottawa. 1993, 2. [11]. [S.O. Igbedioh, Effects of Agricultural Pesticides on Humans, Animals and Higher Plants in Developing [12]. Countries. Arch Environ Health. 46, 1991, 218.
  • 5. Electronic Pest Control Devices: A Review of their Necessity… www.theijes.com The IJES Page 30 [13]. G. Mathew, Pesticides Application Methods, Longman Group, England. 1992, 18. [14]. U.S EPA, Spray Drift of Pesticides, Office of Pesticide Programs, Washington, DC. 1999. [15]. B. Cooke, P. Herrington, and N. Morgan, Pesticides Fall-Out and Orchard Earthworm. Rep long Res Stn, Ashton. 1974, 105- 106. [16]. S.R. Palumbi, Humans as the World’s Greatest Evolutionary Force, Science 293, 2001, 1786–1790. [17]. C. Savonen, Soil microorganisms object of new OSU service. Good Fruit Grower. 1997. [18]. S. Tanabe, F. Gondaira, A.N. Subramanian, A. Ramesh, D. Mohan, P. Kumaran, V.K, Venugopalan and R. Tatsukawa, Specific Pattern of Persistent Organochlorine Residues in Human Breast Milk from South India. J Agric Food Chem. 38, 1990, 899–903. [19]. T.M. Shafiei and H.H. Costa, The Susceptibility and Resistance of Fry and Fingerlings of Oreochromis [20]. mossambicus Peters to some pesticides commonly used in Sri Lanka. J Appl Ichthyol. 6, 1990, 73–80. [21]. R.A. Liroff, Balancing risks of DDT and Malaria in the global POPs treaty. Pesticide Safety News. 4, 2000, 3. [22]. A. Brouwer, M.P. Longnecker, L.S. Birnbaum, J. Cogliano, P. Kostyniak, J. Moore, S. Schantz and G. Winneke, Characterization of Potential Endocrine Related Health Effects at Lowdose Levels of Exposure to PCBs. Environ Health Perspect. 107, 1999. 639. [23]. Environews Forum, Killer Environment. Environ Health Perspect. 107, 1999, 62. [24]. J. Hangiandreou, Physics Tutorial for Residents: Topics in US: B-mode US: Basic Concepts and New Technology Radiographics 23 (4): 2003, 1019. [25]. B. Subramanyam, Ultrasound and Arthropod Pest Control: Hearing is Believing! (pdf). Kansas State University. 2001. [26]. US FTC, Analysis of Proposed Consent Order to Aid Public Comment In the Matter of Global Instruments Ltd., and Charles Patterson". Federal Trade Commission 2003. [27]. Victor Pest, Rodent Repellents http://www.victorpest.com/advice/all-about/victor-repellents/types-of- repellents. Retrieved 2009-10-22. [28]. R.J. Lawrence, [29]. http://www.selfgrowth.com/articles/electronic_pest_control_and_ultrasonic_pest_control_vs_traditional_chemical_pesticides.ht ml. [30]. A. Kruse, R. Stripling and D. Clayton, Context-Specific Habituation of the Zenk Gene Response to Song in Adult Zebra Finches. Neurobiology of Learning and Memory. 82, 2004, 99–108. [31]. M.E. Bouton, A Simple form of Learning and Behavior: A contemporary synthesis. MA,Sinauer: Sunderland. 2007. [32]. T. Leighton, What is Ultrasound? Progress in Biophysics and Molecular Biology. 93 (1-3), 2007, 3–83. [33]. M. Gotfrit, Range of human hearing. Zen Audio Project. 1995 [34]. T. Condon, Frequency Range of Dog Hearing, In Elert, Glenn. The Physics Factbook. http://hypertextbook.com/facts/2003/TimCondon.shtml. Retrieved 2008-10-22. 2003 [35]. Y. Yoshikuni, T.E. Ferrin and J.D. Keasling, (2006). Designed divergent evolution of Enzyme Function. http://www.sciencedirect.com/science/article/pii/S0079610706000812. Retrieved 16 November 2011. [36]. H. Rankin, T. Abrams, R. Barry, S. Bhatnagar, D. Clayton, J. Colombo and R. Thompson, Habituation Revisited: An Updated and Revised Description of the Behavioral Characteristics of Habituation. Neurobiology of Learning and Memory 92 (2), 2009, 135–138. [37]. M.A Harris and R.E. Lemon, Songs of Song Sparrows: Reactions of Males to Songs of Different Localities. The Condor. 76, 1974, 33–44. [38]. N.B. Turk-Browne, B.J. Scholl and M.M. Chun, Babies and Brains: Habituation in Infant Cognition and Functional Neuroimaging. Frontiers in Human Neuroscience 2, 2008, 1–11. .