SlideShare une entreprise Scribd logo
1  sur  23
Tilani Gunawardena
Algorithms: K Nearest Neighbors
1
Algorithms: K Nearest Neighbors
2
Simple Analogy..
• Tell me about your friends(who your
neighbors are) and I will tell you who you are.
3
Instance-based Learning
Its very similar to a
Desktop!!
4
KNN – Different names
• K-Nearest Neighbors
• Memory-Based Reasoning
• Example-Based Reasoning
• Instance-Based Learning
• Lazy Learning
5
What is KNN?
• A powerful classification algorithm used in pattern
recognition.
• K nearest neighbors stores all available cases and
classifies new cases based on a similarity measure(e.g
distance function)
• One of the top data mining algorithms used today.
• A non-parametric lazy learning algorithm (An Instance-
based Learning method).
6
KNN: Classification Approach
• An object (a new instance) is classified by a
majority votes for its neighbor classes.
• The object is assigned to the most common class
amongst its K nearest neighbors.(measured by a
distant function )
7
8
Distance Measure
Training
Records
Test
Record
Compute
Distance
Choose k of the
“nearest” records
9
Distance measure for Continuous
Variables
10
Distance Between Neighbors
• Calculate the distance between new example
(E) and all examples in the training set.
• Euclidean distance between two examples.
– X = [x1,x2,x3,..,xn]
– Y = [y1,y2,y3,...,yn]
– The Euclidean distance between X and Y is defined
as:
11


n
i
ii yxYXD
1
2
)(),(
K-Nearest Neighbor Algorithm
• All the instances correspond to points in an n-dimensional
feature space.
• Each instance is represented with a set of numerical
attributes.
• Each of the training data consists of a set of vectors and a
class label associated with each vector.
• Classification is done by comparing feature vectors of
different K nearest points.
• Select the K-nearest examples to E in the training set.
• Assign E to the most common class among its K-nearest
neighbors.
12
3-KNN: Example(1)
Distance from John
sqrt [(35-37)2+(35-50)2 +(3-
2)2]=15.16
sqrt [(22-37)2+(50-50)2 +(2-
2)2]=15
sqrt [(63-37)2+(200-50)2 +(1-
2)2]=152.23
sqrt [(59-37)2+(170-50)2 +(1-
2)2]=122
sqrt [(25-37)2+(40-50)2 +(4-
2)2]=15.74
13
Customer Age Income No.
credit
cards
Class
George 35 35K 3 No
Rachel 22 50K 2 Yes
Steve 63 200K 1 No
Tom 59 170K 1 No
Anne 25 40K 4 Yes
John 37 50K 2 ? YES
How to choose K?
• If K is too small it is sensitive to noise points.
• Larger K works well. But too large K may include majority
points from other classes.
• Rule of thumb is K < sqrt(n), n is number of examples.
14
X
15
X X X
(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor
K-nearest neighbors of a record x are data points
that have the k smallest distance to x
16
KNN Feature Weighting
• Scale each feature by its importance for
classification
• Can use our prior knowledge about which features
are more important
• Can learn the weights wk using cross‐validation (to
be covered later)
17
Feature Normalization
• Distance between neighbors could be dominated
by some attributes with relatively large numbers.
 e.g., income of customers in our previous example.
• Arises when two features are in different scales.
• Important to normalize those features.
– Mapping values to numbers between 0 – 1.
18
Nominal/Categorical Data
• Distance works naturally with numerical attributes.
• Binary value categorical data attributes can be regarded as 1
or 0.
19
KNN Classification
$0
$50,000
$100,000
$150,000
$200,000
$250,000
0 10 20 30 40 50 60 70
Non-Default
Default
Age
Loan$
20
KNN Classification – Distance
Age Loan Default Distance
25 $40,000 N 102000
35 $60,000 N 82000
45 $80,000 N 62000
20 $20,000 N 122000
35 $120,000 N 22000
52 $18,000 N 124000
23 $95,000 Y 47000
40 $62,000 Y 80000
60 $100,000 Y 42000
48 $220,000 Y 78000
33 $150,000 Y 8000
48 $142,000 ?
2
21
2
21 )()( yyxxD 
21
KNN Classification – Standardized Distance
Age Loan Default Distance
0.125 0.11 N 0.7652
0.375 0.21 N 0.5200
0.625 0.31 N 0.3160
0 0.01 N 0.9245
0.375 0.50 N 0.3428
0.8 0.00 N 0.6220
0.075 0.38 Y 0.6669
0.5 0.22 Y 0.4437
1 0.41 Y 0.3650
0.7 1.00 Y 0.3861
0.325 0.65 Y 0.3771
0.7 0.61 ?
MinMax
MinX
Xs



22
Strengths of KNN
• Very simple and intuitive.
• Can be applied to the data from any distribution.
• Good classification if the number of samples is large enough.
23
Weaknesses of KNN
• Takes more time to classify a new example.
• need to calculate and compare distance from new example
to all other examples.
• Choosing k may be tricky.
• Need large number of samples for accuracy.

Contenu connexe

Tendances

K means clustering
K means clusteringK means clustering
K means clusteringkeshav goyal
 
Unsupervised learning
Unsupervised learningUnsupervised learning
Unsupervised learningamalalhait
 
Feature selection
Feature selectionFeature selection
Feature selectionDong Guo
 
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...Simplilearn
 
Machine Learning-Linear regression
Machine Learning-Linear regressionMachine Learning-Linear regression
Machine Learning-Linear regressionkishanthkumaar
 
2.3 bayesian classification
2.3 bayesian classification2.3 bayesian classification
2.3 bayesian classificationKrish_ver2
 
Machine Learning with Decision trees
Machine Learning with Decision treesMachine Learning with Decision trees
Machine Learning with Decision treesKnoldus Inc.
 
Introduction to Machine Learning with SciKit-Learn
Introduction to Machine Learning with SciKit-LearnIntroduction to Machine Learning with SciKit-Learn
Introduction to Machine Learning with SciKit-LearnBenjamin Bengfort
 
Dimensionality Reduction
Dimensionality ReductionDimensionality Reduction
Dimensionality Reductionmrizwan969
 
Support Vector Machine ppt presentation
Support Vector Machine ppt presentationSupport Vector Machine ppt presentation
Support Vector Machine ppt presentationAyanaRukasar
 
Machine Learning With Logistic Regression
Machine Learning  With Logistic RegressionMachine Learning  With Logistic Regression
Machine Learning With Logistic RegressionKnoldus Inc.
 

Tendances (20)

Decision tree
Decision treeDecision tree
Decision tree
 
K Nearest Neighbor Algorithm
K Nearest Neighbor AlgorithmK Nearest Neighbor Algorithm
K Nearest Neighbor Algorithm
 
Clustering
ClusteringClustering
Clustering
 
KNN
KNNKNN
KNN
 
K means clustering
K means clusteringK means clustering
K means clustering
 
Unsupervised learning
Unsupervised learningUnsupervised learning
Unsupervised learning
 
Feature selection
Feature selectionFeature selection
Feature selection
 
Cnn
CnnCnn
Cnn
 
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
 
Clustering in Data Mining
Clustering in Data MiningClustering in Data Mining
Clustering in Data Mining
 
Machine Learning-Linear regression
Machine Learning-Linear regressionMachine Learning-Linear regression
Machine Learning-Linear regression
 
2.3 bayesian classification
2.3 bayesian classification2.3 bayesian classification
2.3 bayesian classification
 
Machine Learning with Decision trees
Machine Learning with Decision treesMachine Learning with Decision trees
Machine Learning with Decision trees
 
Knn 160904075605-converted
Knn 160904075605-convertedKnn 160904075605-converted
Knn 160904075605-converted
 
Machine learning clustering
Machine learning clusteringMachine learning clustering
Machine learning clustering
 
Introduction to Machine Learning with SciKit-Learn
Introduction to Machine Learning with SciKit-LearnIntroduction to Machine Learning with SciKit-Learn
Introduction to Machine Learning with SciKit-Learn
 
Dimensionality Reduction
Dimensionality ReductionDimensionality Reduction
Dimensionality Reduction
 
Support Vector Machine ppt presentation
Support Vector Machine ppt presentationSupport Vector Machine ppt presentation
Support Vector Machine ppt presentation
 
Presentation on K-Means Clustering
Presentation on K-Means ClusteringPresentation on K-Means Clustering
Presentation on K-Means Clustering
 
Machine Learning With Logistic Regression
Machine Learning  With Logistic RegressionMachine Learning  With Logistic Regression
Machine Learning With Logistic Regression
 

Similaire à K Nearest Neighbors

knn is the k nearest algorithm ppt that includes all about knn, its adv and d...
knn is the k nearest algorithm ppt that includes all about knn, its adv and d...knn is the k nearest algorithm ppt that includes all about knn, its adv and d...
knn is the k nearest algorithm ppt that includes all about knn, its adv and d...BootNeck1
 
Lecture slides week14-15
Lecture slides week14-15Lecture slides week14-15
Lecture slides week14-15Shani729
 
Data Mining Lecture_10(b).pptx
Data Mining Lecture_10(b).pptxData Mining Lecture_10(b).pptx
Data Mining Lecture_10(b).pptxSubrata Kumer Paul
 
K- Nearest Neighbor Approach
K- Nearest Neighbor ApproachK- Nearest Neighbor Approach
K- Nearest Neighbor ApproachKumud Arora
 
Classification_Algorithms_Student_Data_Presentation
Classification_Algorithms_Student_Data_PresentationClassification_Algorithms_Student_Data_Presentation
Classification_Algorithms_Student_Data_PresentationMadeleine Organ
 
Clasification approaches
Clasification approachesClasification approaches
Clasification approachesgscprasad1111
 
k-Nearest Neighbors with brief explanation.pptx
k-Nearest Neighbors with brief explanation.pptxk-Nearest Neighbors with brief explanation.pptx
k-Nearest Neighbors with brief explanation.pptxgamingzonedead880
 

Similaire à K Nearest Neighbors (20)

knn is the k nearest algorithm ppt that includes all about knn, its adv and d...
knn is the k nearest algorithm ppt that includes all about knn, its adv and d...knn is the k nearest algorithm ppt that includes all about knn, its adv and d...
knn is the k nearest algorithm ppt that includes all about knn, its adv and d...
 
Lecture slides week14-15
Lecture slides week14-15Lecture slides week14-15
Lecture slides week14-15
 
Data Mining Lecture_10(b).pptx
Data Mining Lecture_10(b).pptxData Mining Lecture_10(b).pptx
Data Mining Lecture_10(b).pptx
 
K-Nearest Neighbor(KNN)
K-Nearest Neighbor(KNN)K-Nearest Neighbor(KNN)
K-Nearest Neighbor(KNN)
 
K- Nearest Neighbor Approach
K- Nearest Neighbor ApproachK- Nearest Neighbor Approach
K- Nearest Neighbor Approach
 
KNN presentation.pdf
KNN presentation.pdfKNN presentation.pdf
KNN presentation.pdf
 
K nearest neighbours
K nearest neighboursK nearest neighbours
K nearest neighbours
 
07 learning
07 learning07 learning
07 learning
 
Classification_Algorithms_Student_Data_Presentation
Classification_Algorithms_Student_Data_PresentationClassification_Algorithms_Student_Data_Presentation
Classification_Algorithms_Student_Data_Presentation
 
Clasification approaches
Clasification approachesClasification approaches
Clasification approaches
 
Knn
KnnKnn
Knn
 
Knn
KnnKnn
Knn
 
Measures of Dispersion.pptx
Measures of Dispersion.pptxMeasures of Dispersion.pptx
Measures of Dispersion.pptx
 
Knn
KnnKnn
Knn
 
K Nearest neighbour
K Nearest neighbourK Nearest neighbour
K Nearest neighbour
 
knn-1.pptx
knn-1.pptxknn-1.pptx
knn-1.pptx
 
k-Nearest Neighbors with brief explanation.pptx
k-Nearest Neighbors with brief explanation.pptxk-Nearest Neighbors with brief explanation.pptx
k-Nearest Neighbors with brief explanation.pptx
 
TunUp final presentation
TunUp final presentationTunUp final presentation
TunUp final presentation
 
Data Mining Lecture_5.pptx
Data Mining Lecture_5.pptxData Mining Lecture_5.pptx
Data Mining Lecture_5.pptx
 
Fa18_P2.pptx
Fa18_P2.pptxFa18_P2.pptx
Fa18_P2.pptx
 

Plus de Tilani Gunawardena PhD(UNIBAS), BSc(Pera), FHEA(UK), CEng, MIESL

Plus de Tilani Gunawardena PhD(UNIBAS), BSc(Pera), FHEA(UK), CEng, MIESL (20)

BlockChain.pptx
BlockChain.pptxBlockChain.pptx
BlockChain.pptx
 
Introduction to data mining and machine learning
Introduction to data mining and machine learningIntroduction to data mining and machine learning
Introduction to data mining and machine learning
 
Introduction to cloud computing
Introduction to cloud computingIntroduction to cloud computing
Introduction to cloud computing
 
Data analytics
Data analyticsData analytics
Data analytics
 
Hadoop Eco system
Hadoop Eco systemHadoop Eco system
Hadoop Eco system
 
Parallel Computing on the GPU
Parallel Computing on the GPUParallel Computing on the GPU
Parallel Computing on the GPU
 
evaluation and credibility-Part 2
evaluation and credibility-Part 2evaluation and credibility-Part 2
evaluation and credibility-Part 2
 
evaluation and credibility-Part 1
evaluation and credibility-Part 1evaluation and credibility-Part 1
evaluation and credibility-Part 1
 
Machine Learning and Data Mining
Machine Learning and Data MiningMachine Learning and Data Mining
Machine Learning and Data Mining
 
Decision tree
Decision treeDecision tree
Decision tree
 
kmean clustering
kmean clusteringkmean clustering
kmean clustering
 
Covering algorithm
Covering algorithmCovering algorithm
Covering algorithm
 
Hierachical clustering
Hierachical clusteringHierachical clustering
Hierachical clustering
 
Assosiate rule mining
Assosiate rule miningAssosiate rule mining
Assosiate rule mining
 
Big data in telecom
Big data in telecomBig data in telecom
Big data in telecom
 
Cloud Computing
Cloud ComputingCloud Computing
Cloud Computing
 
MapReduce
MapReduceMapReduce
MapReduce
 
Cheetah:Data Warehouse on Top of MapReduce
Cheetah:Data Warehouse on Top of MapReduceCheetah:Data Warehouse on Top of MapReduce
Cheetah:Data Warehouse on Top of MapReduce
 
Pig Experience
Pig ExperiencePig Experience
Pig Experience
 
Interpreting the Data:Parallel Analysis with Sawzall
Interpreting the Data:Parallel Analysis with SawzallInterpreting the Data:Parallel Analysis with Sawzall
Interpreting the Data:Parallel Analysis with Sawzall
 

Dernier

Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...Amil baba
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
Philosophy of china and it's charactistics
Philosophy of china and it's charactisticsPhilosophy of china and it's charactistics
Philosophy of china and it's charactisticshameyhk98
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxannathomasp01
 
Basic Intentional Injuries Health Education
Basic Intentional Injuries Health EducationBasic Intentional Injuries Health Education
Basic Intentional Injuries Health EducationNeilDeclaro1
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsNbelano25
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 

Dernier (20)

Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Philosophy of china and it's charactistics
Philosophy of china and it's charactisticsPhilosophy of china and it's charactistics
Philosophy of china and it's charactistics
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Basic Intentional Injuries Health Education
Basic Intentional Injuries Health EducationBasic Intentional Injuries Health Education
Basic Intentional Injuries Health Education
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf arts
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 

K Nearest Neighbors

  • 1. Tilani Gunawardena Algorithms: K Nearest Neighbors 1
  • 2. Algorithms: K Nearest Neighbors 2
  • 3. Simple Analogy.. • Tell me about your friends(who your neighbors are) and I will tell you who you are. 3
  • 4. Instance-based Learning Its very similar to a Desktop!! 4
  • 5. KNN – Different names • K-Nearest Neighbors • Memory-Based Reasoning • Example-Based Reasoning • Instance-Based Learning • Lazy Learning 5
  • 6. What is KNN? • A powerful classification algorithm used in pattern recognition. • K nearest neighbors stores all available cases and classifies new cases based on a similarity measure(e.g distance function) • One of the top data mining algorithms used today. • A non-parametric lazy learning algorithm (An Instance- based Learning method). 6
  • 7. KNN: Classification Approach • An object (a new instance) is classified by a majority votes for its neighbor classes. • The object is assigned to the most common class amongst its K nearest neighbors.(measured by a distant function ) 7
  • 8. 8
  • 10. Distance measure for Continuous Variables 10
  • 11. Distance Between Neighbors • Calculate the distance between new example (E) and all examples in the training set. • Euclidean distance between two examples. – X = [x1,x2,x3,..,xn] – Y = [y1,y2,y3,...,yn] – The Euclidean distance between X and Y is defined as: 11   n i ii yxYXD 1 2 )(),(
  • 12. K-Nearest Neighbor Algorithm • All the instances correspond to points in an n-dimensional feature space. • Each instance is represented with a set of numerical attributes. • Each of the training data consists of a set of vectors and a class label associated with each vector. • Classification is done by comparing feature vectors of different K nearest points. • Select the K-nearest examples to E in the training set. • Assign E to the most common class among its K-nearest neighbors. 12
  • 13. 3-KNN: Example(1) Distance from John sqrt [(35-37)2+(35-50)2 +(3- 2)2]=15.16 sqrt [(22-37)2+(50-50)2 +(2- 2)2]=15 sqrt [(63-37)2+(200-50)2 +(1- 2)2]=152.23 sqrt [(59-37)2+(170-50)2 +(1- 2)2]=122 sqrt [(25-37)2+(40-50)2 +(4- 2)2]=15.74 13 Customer Age Income No. credit cards Class George 35 35K 3 No Rachel 22 50K 2 Yes Steve 63 200K 1 No Tom 59 170K 1 No Anne 25 40K 4 Yes John 37 50K 2 ? YES
  • 14. How to choose K? • If K is too small it is sensitive to noise points. • Larger K works well. But too large K may include majority points from other classes. • Rule of thumb is K < sqrt(n), n is number of examples. 14 X
  • 15. 15
  • 16. X X X (a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor K-nearest neighbors of a record x are data points that have the k smallest distance to x 16
  • 17. KNN Feature Weighting • Scale each feature by its importance for classification • Can use our prior knowledge about which features are more important • Can learn the weights wk using cross‐validation (to be covered later) 17
  • 18. Feature Normalization • Distance between neighbors could be dominated by some attributes with relatively large numbers.  e.g., income of customers in our previous example. • Arises when two features are in different scales. • Important to normalize those features. – Mapping values to numbers between 0 – 1. 18
  • 19. Nominal/Categorical Data • Distance works naturally with numerical attributes. • Binary value categorical data attributes can be regarded as 1 or 0. 19
  • 20. KNN Classification $0 $50,000 $100,000 $150,000 $200,000 $250,000 0 10 20 30 40 50 60 70 Non-Default Default Age Loan$ 20
  • 21. KNN Classification – Distance Age Loan Default Distance 25 $40,000 N 102000 35 $60,000 N 82000 45 $80,000 N 62000 20 $20,000 N 122000 35 $120,000 N 22000 52 $18,000 N 124000 23 $95,000 Y 47000 40 $62,000 Y 80000 60 $100,000 Y 42000 48 $220,000 Y 78000 33 $150,000 Y 8000 48 $142,000 ? 2 21 2 21 )()( yyxxD  21
  • 22. KNN Classification – Standardized Distance Age Loan Default Distance 0.125 0.11 N 0.7652 0.375 0.21 N 0.5200 0.625 0.31 N 0.3160 0 0.01 N 0.9245 0.375 0.50 N 0.3428 0.8 0.00 N 0.6220 0.075 0.38 Y 0.6669 0.5 0.22 Y 0.4437 1 0.41 Y 0.3650 0.7 1.00 Y 0.3861 0.325 0.65 Y 0.3771 0.7 0.61 ? MinMax MinX Xs    22
  • 23. Strengths of KNN • Very simple and intuitive. • Can be applied to the data from any distribution. • Good classification if the number of samples is large enough. 23 Weaknesses of KNN • Takes more time to classify a new example. • need to calculate and compare distance from new example to all other examples. • Choosing k may be tricky. • Need large number of samples for accuracy.

Notes de l'éditeur

  1. Based on similarity function “tell me who your neighbors are, and I’ll tell you who you are” Simplest Algorithms
  2. KNN stattistical estimation Pattern recognition in the beginning of 1970
  3. Algorithm
  4. Weight and hight of people and we assume Red : female Blue: Male So we have new measurement of hight and weight … K=1,female ,we assigned class =female K=5 3 female, 2 males K=odd K=6 we have ties
  5. Although there are other possible choices, most instance-based learners use Euclid- ean distance.
  6. Although there are other possible choices, most instance-based learners use Euclid- ean distance. Other distance metrics may be more appropriate in special circumstances. If we have too many points Sum the squared differences and we get the square roots In Manhanttan distances : get absoulte values Min-ko-waski distance= Different distance measure .. We use the common one
  7. N-feature size
  8. This single number K is given prior to the testing phase and this number decides how many neighbors influence the classification.
  9. If the sample set is finite.. Historically the optomal K for mpst datasets has been between 3-10 . That produces much better results than 1NN
  10. Some configurations over data before applying KNN Different attributes are often measured on different scales, Numerical: Here the difference between two values is just the numerical difference between them, and it is this difference that is squared and added to yield the distance functio Nominal: the difference between two values that are not the same is often taken to be 1, whereas if the values are the same the difference is 0. No scaling is required in this case because only the values 0 and 1 are used.
  11. For attributes with more than two values, binary indicator variables are used as an implicit solution. Ex: In a customers’ Bank field with 3 values, Bank1 – 100 Bank2 – 010 Bank3 - 001
  12. That’s price to pay
  13. Robust: strong and healthy; vigorou