SlideShare une entreprise Scribd logo
1  sur  43
Télécharger pour lire hors ligne
May 2018
Tomaso Aste
&
Tiziana Di Matteo
Probabilistic Modeling with
information filtering networks
T Aste
Financial Computing and Analytics Group
T Aste UCL Sept 2018
Tomaso Aste
Philip TreleavenDenise Gorse
Fabio CaccioliChristopher ClackGuido Germano Giacomo Livan Daniel Fricke Julius Bonart Robert Elliott Smith
Tiziana Di Matteo Paolo Tasca Ariane Chapelle
http://fincomp.cs.ucl.ac.uk/
Nick Firoozye
Daniel Hulme
Jessica James
• Centre for Doctoral Training
• in Financial Computing & Analytics
• Financial Risk Management MSc
• Computational Finance MSc
• Business Analytics MSc
• Centre for Bolckchain Technologies
Mircea Zloteanu
• A lot of them
• Interrelated
• Complex
• Non Stationary
• Unstructured
• Inconsistent
Ø High Dimensions,
hard to parametrize
Ø Multivariate models
Ø Heterogeneous: hard to put
together
Ø Small reliable observation set
Ø Hard to make predictions
and validate
Ø Hard to establish the “truth”
Artificial Intelligence
Sparse multivariate probabilistic
predictive models adaptable and
trainable from few training sets
Networks
Complex multilayered networks
to filter information for sparse
modeling with heterogeneous
data
Blockchain
Community consensus to
establish data consistency
Data Filtering Model & Prediction
T Aste
Machine Learning
Machine learning can be described as a set of
methodologies to automatize the process of
observation/modeling/predicting/testing
To discover laws automatically form (large amount of) data
If something
happens here
What are the
consequences
there?
Prediction
Parsimony
Artificial intelligence aims to find automatically
maps between sets of variables.T Aste UCL Sept 2018
A BW
Predictive modeling
In complex systems these maps are conditional
probabilities.
Prediction is the estimation of the conditional
probability ! "# "$, "& of a (future) event given
the available information about other (past) events
T Aste UCL Sept 2018
Predictive modeling
The conditional probability
is a tool for:
- test hypothesis
- quantify risk
- stress testing
- analyze scenarios
XA
− XB
p(XB
| XA
,XW
)
T Aste UCL Sept 2018
Predictive modeling
The predicted value is the expectation value
E[XB
| XA
−
,XW
−
]= XB
XB
∑ p(XB
| XA
−
,XW
−
)
The predicted uncertainty is the conditional entropy
H(XB
|XA
−
,XW
−
)=− p(XB
|XA
−
,XW
−
)logp(XB
|XA
−
,XW
−
)
XA ,XB
∑
This is the regression and for linear models (multivariate
Gaussian) this is the linear regression formula
T Aste UCL Sept 2018
Predictive modeling
Causality
Is the reduction of uncertainty on variables XB given
the knowledge of the past of variables X
-
A and X
-
W
discounting for the past X-
B
H(XB
|XB
−
,XW
−
)− H(XB
|XA
−
,XB
−
,XW
−
)=TE(XA
→ XB
|XW
−
)
B
B-
A-
W-
Thisis the tranfer entropy that for liner models
(multivariate Gaussians) coincides with
Granger causality
T Aste UCL Sept 2018
Predictive modeling
Big Data – High Dimensions
! "# "$, "& =
! "#, "$, "&
! "$, "&
We must estimate from data the most likely joint
probability ! "#, "$, "& distribution of the system
of events
T Aste UCL Sept 2018
To estimate probability we must estimate a
number of quantities between
High dimensional problem!
N2
2
≤ Quantities to Estimate ≤ N!
Information increases linearly with observations
But model-parameters increase at least with the
square!
“The more you look the less you see”T Aste UCL Sept 2018
Information filtering
We must construct models that
require the estimation of a
smaller number of quantities
T Aste UCL Sept 2018
Graphical models
To construct the joint multivariate distribution we can
make use of the structure of conditional dependency
p(XA
,XB
|XW
)≠ p(XA
|XW
)p(XB
|XW
)
XW
= XAll Variables
{XA
,XB
}
A B
dependent
p(XA
,XB
|XW
)= p(XA
|XW
)p(XB
|XW
)
A B
independent
T Aste UCL Sept 2018
Graphical models
If these inference networks are chordal (or
decomposable) we then have
p(X) =
p(Xcliques
)
cliques
∏
p(Xseparators
)
ks−1
separators
∏
The joint probability distribution can
be estimated form the probability of
cliques and separators
IF THE NETWORK IS SPARSE
Quantities to estimate scale
linearly with the number of
variables!
S. L. Lauritzen, Graphical Models (Oxford:Clarendon, 1996)T Aste UCL Sept 2018
This is great… however to establish conditional
dependency
p(XA
,XB
| XW
) ≠ p(XA
| XW
)p(XB
| XW
)
requires the estimation of the same number of quantities
as computing the entiere joint distribution function!
Building the exact inference network is an impossible
task for a large number of variables
Graphical models
T Aste UCL Sept 2018
Information filtering networks
To solve this problem we propose to build the inference
structure for the graphical model from
Information filtering network
• Massara, Guido Previde, Tiziana Di Matteo, and TA. "Network Filtering for Big Data: Triangulated Maximally Filtered Graph"
Journal of Comlex Networks (2016) arXiv preprint arXiv:1505.02445 (2015).
• Nicoló Musmeci,, Tomaso Aste, and Tiziana Di Matteo. "Relation between financial market structure and the real economy:
comparison between clustering methods." PloS one 10.3 (2015): e0116201.
• F. Pozzi, T. Di Matteo, and TA , “Spread of risk across financial markets: better to invest in the peripheries”, Scientific Reports 3
(2013) 1665.
• W.M. Song, T. Di Matteo and T. Aste, “Hierarchical information clustering by means of topologically embedded graphs”, PLoS
ONE, 7 (2012) e31929
- TA, T. Di Matteo and S. T. Hyde, Complex networks on hyperbolic surfaces Physica A 346 (2005) 20-26.
- M. Tumminello, TA, T. Di Matteo, and R. N. Mantegna, “A tool for filtering information in complex systems”
Proceedings of the National Academy of Sciences of the United States of America 102 (2005) 10421 .
T Aste UCL Sept 2018
Information filtering networks
Connect the nearest vertices
eucleadean distance = most correlated
hyperbolic distance = mutual information
Keep the graph chordal
clique forests
Add other constraints
max clique size (2 = MST)
planarity (TMFG)
information criteria (e.g. Akaike)
These are fast algorithms < O(N2)
(topological & homological measures, betty numbers, cycles and cliques retrieved from construction)
Massara, Guido Previde, Tiziana Di Matteo, and TA. "Network Filtering for Big Data: Triangulated Maximally Filtered Graph"
Journal of Complex Networks (2016) arXiv preprint arXiv:1505.02445 (2015).T Aste UCL Sept 2018
O
bservation
M
odel
Prediction
Parsimony
Predictive modeling
p(XAll
) =
p(Xcliques
)
cliques
∏
p(Xseparators
)
ks−1
separators
∏
T Aste UCL Sept 2018
By constraining the model to reproduce observed
moments while maximizing Shannon-Gibbs entropy
(maximum Entropy method), at the second order, we
have that the model must be a multivariate Gaussian:
LoGo
p(X1
,...XN
) =
1
Z
exp(− Xi
Ji,j
Xj
i, j
∑ )
We keep only the significant interactions
and set to zero (Max Ent.) the uncertain
ones: Ji,j = 0 iff Xi , Xj conditionally
independent
Ji,j is sparse and it has the structure given
by the information filtering network
T Aste UCL Sept 2018
Ji,j is computed form local inversion of the covariance
matrix over the clique forest
Ji,j
= Σ(C)−1
Cliques C
∑ − (kS
−1)Σ(S)−1
Separators S
∑
We obtain a sparse inverse covariance (our graphical
model) by doing local inversions only
Super-fast algorithm O(N) even O(logN) if parallelized
LoGo
W. Barfuss, GP Massara, T Di Matteo & TA “Parsimonious modeling with Information Filtering Networks” Phys Rev E 94, 062306
(2016). arXiv preprint arXiv:1602.07349 (2016).
T Aste UCL Sept 2018
SPARSE CAUSALITY NETWORK RETRIEVAL FROM SHORT TIME SERIES
RidgeSignificant
G-lassoSigificant
LoGoSignificant
0 1 2 3 4 5
p/q
0
0.1
0.2
0.3
0.4
0.5
γ
Ridge
Glasso
LoGo
p=100 variables
Test: Network Retrieval
From simulated time
series with a known
causality structure we
test how LoGo can
discover the causality
links
is our model,
constructed from
observations, able to
discover the ‘real’
causality structure?
T Aste UCL Sept 2018
Test: Network Retrieval
From simulated time
series with a known
causality structure we
test how LoGo can
discover the causality
links
p=100 variables
8 SPARSE CAUSALITY NETWORK RETRIEVAL FROM SHORT TIME SERIES
0 2 4 6 8 10
0
0.5
γ
ridge
0
0.2
0.4
0 2 4 6 8 10
0
0.5
γ
Glasso
0
0.2
0.4
0 1 2 3 4 5
p/q
0
0.5
γ
LoGo
0
0.2
0.4
> 0.5
> 0.5
> 0.5
TP/n
TP/n
TP/n
is our model,
constructed from
observations, able to
discover the ‘real’
causality structure?
T Aste UCL Sept 2018
p=100 variables
Test: Network Retrieval
From simulated time
series with a known
causality structure we
test how LoGo can
discover the causality
links
is our model,
constructed from
observations, able to
discover the ‘real’
causality structure?
T Aste UCL Sept 2018
Observation
Model
Prediction & Testing
p(System)=
p(cliques)
cliques
∏
p(separators)
ks−1
separators
∏
P a s t
F u t u r e
Statistical description
Test: Prediction Likelihood
is our model, constructed from past observations, associated
with a large likelihood for future observations?
T Aste UCL Sept 2018
10-3
10-2
Uncertanty (= 1/data series length)
650
700
750
800
Prediction(=Log-Likelihood)
LoGo - TMFG
State-of-the-art sparse model (G-lasso)
LoGo - MST
Linear Model
Test: Prediction Likelihood
is our model, constructed from past observations, associated
with a large likelihood for future observations?
T Aste UCL Sept 2018
Predictive modeling:
can we predict uncertainty propagation in the global
banking system?
10 Banking Regions
(World Bank Organization)
North America
South America
Africa
Europe
West Asia
Middle East
South Asia
East Asia
Southeast Asia
Australia
4 Industry
classifications
Banks
Diversified
Financial
Insurance
Real Estate
T Aste UCL Sept 2018
The predicted volatility on variables B caused by past of
variables A discounting the contribution from past of B
H(XB
|XB
−
)−H(XB
|XB
−
,XA
−
)=TE(XA
→XB
)
Predictive modeling:
can we predict uncertainty propagation in the global
banking system?
TRANSFER ENTROPY
TE(XA
→XB
)=
1
2
log
Var(XB
|XB
−
)
Var(XB
|XB
−
,XA
−
)
For linear modeling it is the contribution of variable A (past) to the
variance of variable B unexplained form past B
T Aste UCL Sept 2018
Predictive modeling:
can we predict uncertainty propagation in the global
banking system?
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
1990-1992
T Aste UCL Sept 2018
Predictive modeling:
can we predict uncertainty propagation in the global
banking system?
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
1990
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
1995-1997
T Aste UCL Sept 2018
Predictive modeling:
can we predict uncertainty propagation in the global
banking system?
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
1990
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
1995
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
2000-2002
T Aste UCL Sept 2018
Predictive modeling:
can we predict uncertainty propagation in the global
banking system?
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
1990
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
1995
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
2000
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
2005-2007
T Aste UCL Sept 2018
Predictive modeling:
can we predict uncertainty propagation in the global
banking system?
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
1990
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
1995
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
2000
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
2005
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
2010-2012
T Aste UCL Sept 2018
Predictive modeling:
can we predict uncertainty propagation in the global
banking system?
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
1990
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
1995
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
2000
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
2005
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
2010
N America
S America
Africa
Europe W Asia
Mid East
S Asia
E Asia
SE Asia
Aus/NZ
N America
S America
2014-2016
T Aste UCL Sept 2018
1995 2000 2005 2010 2015
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
NA
Change of influence
North America
Centrality proxy computed
as the average fraction
between strength of
vertices in the regions
outside NA associated
with vertices in NA (black
arcs) with respect to the
total strength associated
with vertices outside the
firm’s regions (black and
red arcs)
NA
T Aste UCL Sept 2018
1995 2000 2005 2010 2015
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
EU
NA
Change of influence
Europe
North America
T Aste UCL Sept 2018
1995 2000 2005 2010 2015
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
ASE
EU
NA
Change of influence
East Asia
Europe
North America
T Aste UCL Sept 2018
1995 2000 2005 2010 2015
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
ASE
ASS
EU
ME
NA
Change of influence
East Asia
Europe
North America
South Asia
Middle East
T Aste UCL Sept 2018
1995 2000 2005 2010 2015
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
ASE
ASS
ASSE
EU
ME
NA
Change of influence
East Asia
Europe
North America
South Asia
Middle East
South East Asia
T Aste UCL Sept 2018
1995 2000 2005 2010 2015
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
AF
ASE
ASS
ASSE
AUS
EU
ME
NA
RU
SA
Change of influence
East Asia
Europe
North America
South Asia
Middle East
South East Asia
T Aste UCL Sept 2018
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0.016
Average TE Region -> Bank: LoGo, w 300 3 lagsSubprimemortgagecrisis
Securitizationmarketclosedown
Globalstockmarketsharpfall
USnear-recorddeficit$410billion
NationalizationofNorthernRock
FannieMae/FreddieMacrescue
LehmanBrothersfiledforbankruptcy
BankofEnglandssurprisedinterestratecut
RescueofRBS,Lloyds,andHBOS
IMFapproved$2.1bnloanforIceland
USgovtgaveBankofAmerica$20bnaid
RBSreported£2.1bnloss
12.5%economiccontractioninJapanEuropeansovereigndebtcrisis
UScreditdowngradefromA+toALIBORscandal
CityofDetroitbankruptcyUkranian/Syrian/EgyptunrestEbolaepidemic
BearSternscollapse
IndyMaccollapse
CreditdowngradeofFranceandAustriafromAAAtoAA+
PortugalreceivedbailoutLiquidityinjectionbyUS,CAN,JAP,UK,Swisscentralbanks
NA
EU
AS
Dynamic impact
T Aste UCL Sept 2018
Influence by activity
1995 2000 2005 2010 2015 2020
0
0.2
0.4
0.6
0.8
1
Banks
Diversified Financials
Insurance
real estate
NA
1995 2000 2005 2010 2015 2020
0
0.1
0.2
0.3
0.4
0.5
Banks
Diversified Financials
Insurance
real estate
EU
NA EU
T Aste UCL Sept 2018
Influence by activity
1995 2000 2005 2010 2015 2020
0
0.02
0.04
0.06
0.08
0.1
0.12
Banks
Diversified Financials
Insurance
real estate
ME
1995 2000 2005 2010 2015 2020
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
Banks
Diversified Financials
Insurance
real estate
ASS
Middle East South Asia
T Aste UCL Sept 2018
Networks for Prediction
With p(XB|XA-) we can quantify probability of future events
With p(XB|XA) we can predict impact of unobserved scenarios
and test hypothesis
p(XA,XB) can be constructed from local
probability estimations over an
information filtering network (low dimension problem)
Nodes and edges can be added or removed with local moves
only
Aggregation of risk is straightforward
LoGo works better than state-of-the-art sparse graphical
models and it is faster
T Aste UCL Sept 2018
Si l’ordre satisfait la raison, le désordre fait les délices de l’imagination
http://www.cs.ucl.ac.uk/staff/tomaso_aste/
Thank YOU!
http://fincomp.cs.ucl.ac.uk/
W. Barfuss, GP Massara, T Di Matteo & TA
“Parsimonious modeling with Information Filtering Networks” Phys Rev E 94,
062306 (2016) arXiv preprint arXiv:1602.07349 (2016).
Massara, Guido Previde, Tiziana Di Matteo, and TA. "Network Filtering for Big
Data: Triangulated Maximally Filtered Graph" Journal of Comlex Networks
(2016) arXiv preprint arXiv:1505.02445 (2015).
http://blockchain.cs.ucl.ac.uk/
Tiziana Di Matteo, and TA. ”Sparse causality network retrieval from short time
series” Complexity (2017).
T Aste UCL Sept 2018

Contenu connexe

Tendances

Similarity encoding for learning on dirty categorical variables
Similarity encoding for learning on dirty categorical variablesSimilarity encoding for learning on dirty categorical variables
Similarity encoding for learning on dirty categorical variables
Gael Varoquaux
 
Introduction to advanced Monte Carlo methods
Introduction to advanced Monte Carlo methodsIntroduction to advanced Monte Carlo methods
Introduction to advanced Monte Carlo methods
Christian Robert
 

Tendances (20)

Beyond Triplets: Hyper-Relational Knowledge Graph Embedding for Link Prediction
Beyond Triplets: Hyper-Relational Knowledge Graph Embedding for Link PredictionBeyond Triplets: Hyper-Relational Knowledge Graph Embedding for Link Prediction
Beyond Triplets: Hyper-Relational Knowledge Graph Embedding for Link Prediction
 
Slides barcelona risk data
Slides barcelona risk dataSlides barcelona risk data
Slides barcelona risk data
 
Reproducibility and differential analysis with selfish
Reproducibility and differential analysis with selfishReproducibility and differential analysis with selfish
Reproducibility and differential analysis with selfish
 
[A]BCel : a presentation at ABC in Roma
[A]BCel : a presentation at ABC in Roma[A]BCel : a presentation at ABC in Roma
[A]BCel : a presentation at ABC in Roma
 
Random Forest for Big Data
Random Forest for Big DataRandom Forest for Big Data
Random Forest for Big Data
 
About functional SIR
About functional SIRAbout functional SIR
About functional SIR
 
A short introduction to statistical learning
A short introduction to statistical learningA short introduction to statistical learning
A short introduction to statistical learning
 
Lent Matlab H Ss
Lent Matlab H SsLent Matlab H Ss
Lent Matlab H Ss
 
'ACCOST' for differential HiC analysis
'ACCOST' for differential HiC analysis'ACCOST' for differential HiC analysis
'ACCOST' for differential HiC analysis
 
Intractable likelihoods
Intractable likelihoodsIntractable likelihoods
Intractable likelihoods
 
Application of Boolean pre-algebras to the foundations of Computer Science
Application of Boolean pre-algebras to the foundations of Computer ScienceApplication of Boolean pre-algebras to the foundations of Computer Science
Application of Boolean pre-algebras to the foundations of Computer Science
 
WSC 2011, advanced tutorial on simulation in Statistics
WSC 2011, advanced tutorial on simulation in StatisticsWSC 2011, advanced tutorial on simulation in Statistics
WSC 2011, advanced tutorial on simulation in Statistics
 
Asynchronous Stochastic Optimization, New Analysis and Algorithms
Asynchronous Stochastic Optimization, New Analysis and AlgorithmsAsynchronous Stochastic Optimization, New Analysis and Algorithms
Asynchronous Stochastic Optimization, New Analysis and Algorithms
 
Similarity encoding for learning on dirty categorical variables
Similarity encoding for learning on dirty categorical variablesSimilarity encoding for learning on dirty categorical variables
Similarity encoding for learning on dirty categorical variables
 
A quantum-inspired optimization heuristic for the multiple sequence alignment...
A quantum-inspired optimization heuristic for the multiple sequence alignment...A quantum-inspired optimization heuristic for the multiple sequence alignment...
A quantum-inspired optimization heuristic for the multiple sequence alignment...
 
Introduction to advanced Monte Carlo methods
Introduction to advanced Monte Carlo methodsIntroduction to advanced Monte Carlo methods
Introduction to advanced Monte Carlo methods
 
Graph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype PredictionGraph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype Prediction
 
Reliable ABC model choice via random forests
Reliable ABC model choice via random forestsReliable ABC model choice via random forests
Reliable ABC model choice via random forests
 
Convolutional networks and graph networks through kernels
Convolutional networks and graph networks through kernelsConvolutional networks and graph networks through kernels
Convolutional networks and graph networks through kernels
 
Collective entity linking with WSRM DocEng'19
Collective entity linking with WSRM DocEng'19Collective entity linking with WSRM DocEng'19
Collective entity linking with WSRM DocEng'19
 

Similaire à Probabilistic Modelling with Information Filtering Networks

Analysis of massive data using R (CAEPIA2015)
Analysis of massive data using R (CAEPIA2015)Analysis of massive data using R (CAEPIA2015)
Analysis of massive data using R (CAEPIA2015)
AMIDST Toolbox
 
Your data won’t stay smart forever: exploring the temporal dimension of (big ...
Your data won’t stay smart forever:exploring the temporal dimension of (big ...Your data won’t stay smart forever:exploring the temporal dimension of (big ...
Your data won’t stay smart forever: exploring the temporal dimension of (big ...
Paolo Missier
 
Simulating Multivariate Random Normal Data using Statistical Computing Platfo...
Simulating Multivariate Random Normal Data using Statistical Computing Platfo...Simulating Multivariate Random Normal Data using Statistical Computing Platfo...
Simulating Multivariate Random Normal Data using Statistical Computing Platfo...
ijtsrd
 

Similaire à Probabilistic Modelling with Information Filtering Networks (20)

Predictive Modeling in Insurance in the context of (possibly) big data
Predictive Modeling in Insurance in the context of (possibly) big dataPredictive Modeling in Insurance in the context of (possibly) big data
Predictive Modeling in Insurance in the context of (possibly) big data
 
Slides ub-1
Slides ub-1Slides ub-1
Slides ub-1
 
2018 Modern Math Workshop - Foundations of Statistical Learning Theory: Quint...
2018 Modern Math Workshop - Foundations of Statistical Learning Theory: Quint...2018 Modern Math Workshop - Foundations of Statistical Learning Theory: Quint...
2018 Modern Math Workshop - Foundations of Statistical Learning Theory: Quint...
 
A review of two decades of correlations, hierarchies, networks and clustering...
A review of two decades of correlations, hierarchies, networks and clustering...A review of two decades of correlations, hierarchies, networks and clustering...
A review of two decades of correlations, hierarchies, networks and clustering...
 
La résolution de problèmes à l'aide de graphes
La résolution de problèmes à l'aide de graphesLa résolution de problèmes à l'aide de graphes
La résolution de problèmes à l'aide de graphes
 
Extracting biclusters of similar values with Triadic Concept Analysis
Extracting biclusters of similar values with Triadic Concept AnalysisExtracting biclusters of similar values with Triadic Concept Analysis
Extracting biclusters of similar values with Triadic Concept Analysis
 
Analysis of massive data using R (CAEPIA2015)
Analysis of massive data using R (CAEPIA2015)Analysis of massive data using R (CAEPIA2015)
Analysis of massive data using R (CAEPIA2015)
 
CoopLoc Technical Presentation
CoopLoc Technical PresentationCoopLoc Technical Presentation
CoopLoc Technical Presentation
 
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
 
Dual-time Modeling and Forecasting in Consumer Banking (2016)
Dual-time Modeling and Forecasting in Consumer Banking (2016)Dual-time Modeling and Forecasting in Consumer Banking (2016)
Dual-time Modeling and Forecasting in Consumer Banking (2016)
 
IEEE Datamining 2016 Title and Abstract
IEEE  Datamining 2016 Title and AbstractIEEE  Datamining 2016 Title and Abstract
IEEE Datamining 2016 Title and Abstract
 
G. Barcaroli, The use of machine learning in official statistics
G. Barcaroli, The use of machine learning in official statisticsG. Barcaroli, The use of machine learning in official statistics
G. Barcaroli, The use of machine learning in official statistics
 
Supervised Planetary Unmixing with Optimal Transport
Supervised Planetary Unmixing with Optimal TransportSupervised Planetary Unmixing with Optimal Transport
Supervised Planetary Unmixing with Optimal Transport
 
Kinetic bands versus Bollinger Bands
Kinetic bands versus Bollinger  BandsKinetic bands versus Bollinger  Bands
Kinetic bands versus Bollinger Bands
 
Your data won’t stay smart forever: exploring the temporal dimension of (big ...
Your data won’t stay smart forever:exploring the temporal dimension of (big ...Your data won’t stay smart forever:exploring the temporal dimension of (big ...
Your data won’t stay smart forever: exploring the temporal dimension of (big ...
 
Simulating Multivariate Random Normal Data using Statistical Computing Platfo...
Simulating Multivariate Random Normal Data using Statistical Computing Platfo...Simulating Multivariate Random Normal Data using Statistical Computing Platfo...
Simulating Multivariate Random Normal Data using Statistical Computing Platfo...
 
COMPARISON OF WAVELET NETWORK AND LOGISTIC REGRESSION IN PREDICTING ENTERPRIS...
COMPARISON OF WAVELET NETWORK AND LOGISTIC REGRESSION IN PREDICTING ENTERPRIS...COMPARISON OF WAVELET NETWORK AND LOGISTIC REGRESSION IN PREDICTING ENTERPRIS...
COMPARISON OF WAVELET NETWORK AND LOGISTIC REGRESSION IN PREDICTING ENTERPRIS...
 
20070702 Text Categorization
20070702 Text Categorization20070702 Text Categorization
20070702 Text Categorization
 
diffusion 모델부터 DALLE2까지.pdf
diffusion 모델부터 DALLE2까지.pdfdiffusion 모델부터 DALLE2까지.pdf
diffusion 모델부터 DALLE2까지.pdf
 
Data mining BY Zubair Yaseen
Data mining BY Zubair YaseenData mining BY Zubair Yaseen
Data mining BY Zubair Yaseen
 

Dernier

Abortion pills in Jeddah | +966572737505 | Get Cytotec
Abortion pills in Jeddah | +966572737505 | Get CytotecAbortion pills in Jeddah | +966572737505 | Get Cytotec
Abortion pills in Jeddah | +966572737505 | Get Cytotec
Abortion pills in Riyadh +966572737505 get cytotec
 
Top profile Call Girls In Bihar Sharif [ 7014168258 ] Call Me For Genuine Mod...
Top profile Call Girls In Bihar Sharif [ 7014168258 ] Call Me For Genuine Mod...Top profile Call Girls In Bihar Sharif [ 7014168258 ] Call Me For Genuine Mod...
Top profile Call Girls In Bihar Sharif [ 7014168258 ] Call Me For Genuine Mod...
nirzagarg
 
Computer science Sql cheat sheet.pdf.pdf
Computer science Sql cheat sheet.pdf.pdfComputer science Sql cheat sheet.pdf.pdf
Computer science Sql cheat sheet.pdf.pdf
SayantanBiswas37
 
如何办理英国诺森比亚大学毕业证(NU毕业证书)成绩单原件一模一样
如何办理英国诺森比亚大学毕业证(NU毕业证书)成绩单原件一模一样如何办理英国诺森比亚大学毕业证(NU毕业证书)成绩单原件一模一样
如何办理英国诺森比亚大学毕业证(NU毕业证书)成绩单原件一模一样
wsppdmt
 
+97470301568>>weed for sale in qatar ,weed for sale in dubai,weed for sale in...
+97470301568>>weed for sale in qatar ,weed for sale in dubai,weed for sale in...+97470301568>>weed for sale in qatar ,weed for sale in dubai,weed for sale in...
+97470301568>>weed for sale in qatar ,weed for sale in dubai,weed for sale in...
Health
 
怎样办理圣地亚哥州立大学毕业证(SDSU毕业证书)成绩单学校原版复制
怎样办理圣地亚哥州立大学毕业证(SDSU毕业证书)成绩单学校原版复制怎样办理圣地亚哥州立大学毕业证(SDSU毕业证书)成绩单学校原版复制
怎样办理圣地亚哥州立大学毕业证(SDSU毕业证书)成绩单学校原版复制
vexqp
 
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...
HyderabadDolls
 
Sonagachi * best call girls in Kolkata | ₹,9500 Pay Cash 8005736733 Free Home...
Sonagachi * best call girls in Kolkata | ₹,9500 Pay Cash 8005736733 Free Home...Sonagachi * best call girls in Kolkata | ₹,9500 Pay Cash 8005736733 Free Home...
Sonagachi * best call girls in Kolkata | ₹,9500 Pay Cash 8005736733 Free Home...
HyderabadDolls
 
Top profile Call Girls In Begusarai [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In Begusarai [ 7014168258 ] Call Me For Genuine Models...Top profile Call Girls In Begusarai [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In Begusarai [ 7014168258 ] Call Me For Genuine Models...
nirzagarg
 
Top profile Call Girls In Tumkur [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In Tumkur [ 7014168258 ] Call Me For Genuine Models We...Top profile Call Girls In Tumkur [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In Tumkur [ 7014168258 ] Call Me For Genuine Models We...
nirzagarg
 
Top profile Call Girls In Vadodara [ 7014168258 ] Call Me For Genuine Models ...
Top profile Call Girls In Vadodara [ 7014168258 ] Call Me For Genuine Models ...Top profile Call Girls In Vadodara [ 7014168258 ] Call Me For Genuine Models ...
Top profile Call Girls In Vadodara [ 7014168258 ] Call Me For Genuine Models ...
gajnagarg
 
Gartner's Data Analytics Maturity Model.pptx
Gartner's Data Analytics Maturity Model.pptxGartner's Data Analytics Maturity Model.pptx
Gartner's Data Analytics Maturity Model.pptx
chadhar227
 
Top profile Call Girls In Latur [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Latur [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In Latur [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Latur [ 7014168258 ] Call Me For Genuine Models We ...
gajnagarg
 

Dernier (20)

Abortion pills in Jeddah | +966572737505 | Get Cytotec
Abortion pills in Jeddah | +966572737505 | Get CytotecAbortion pills in Jeddah | +966572737505 | Get Cytotec
Abortion pills in Jeddah | +966572737505 | Get Cytotec
 
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
 
Top profile Call Girls In Bihar Sharif [ 7014168258 ] Call Me For Genuine Mod...
Top profile Call Girls In Bihar Sharif [ 7014168258 ] Call Me For Genuine Mod...Top profile Call Girls In Bihar Sharif [ 7014168258 ] Call Me For Genuine Mod...
Top profile Call Girls In Bihar Sharif [ 7014168258 ] Call Me For Genuine Mod...
 
Computer science Sql cheat sheet.pdf.pdf
Computer science Sql cheat sheet.pdf.pdfComputer science Sql cheat sheet.pdf.pdf
Computer science Sql cheat sheet.pdf.pdf
 
Gomti Nagar & best call girls in Lucknow | 9548273370 Independent Escorts & D...
Gomti Nagar & best call girls in Lucknow | 9548273370 Independent Escorts & D...Gomti Nagar & best call girls in Lucknow | 9548273370 Independent Escorts & D...
Gomti Nagar & best call girls in Lucknow | 9548273370 Independent Escorts & D...
 
Kings of Saudi Arabia, information about them
Kings of Saudi Arabia, information about themKings of Saudi Arabia, information about them
Kings of Saudi Arabia, information about them
 
如何办理英国诺森比亚大学毕业证(NU毕业证书)成绩单原件一模一样
如何办理英国诺森比亚大学毕业证(NU毕业证书)成绩单原件一模一样如何办理英国诺森比亚大学毕业证(NU毕业证书)成绩单原件一模一样
如何办理英国诺森比亚大学毕业证(NU毕业证书)成绩单原件一模一样
 
7. Epi of Chronic respiratory diseases.ppt
7. Epi of Chronic respiratory diseases.ppt7. Epi of Chronic respiratory diseases.ppt
7. Epi of Chronic respiratory diseases.ppt
 
+97470301568>>weed for sale in qatar ,weed for sale in dubai,weed for sale in...
+97470301568>>weed for sale in qatar ,weed for sale in dubai,weed for sale in...+97470301568>>weed for sale in qatar ,weed for sale in dubai,weed for sale in...
+97470301568>>weed for sale in qatar ,weed for sale in dubai,weed for sale in...
 
怎样办理圣地亚哥州立大学毕业证(SDSU毕业证书)成绩单学校原版复制
怎样办理圣地亚哥州立大学毕业证(SDSU毕业证书)成绩单学校原版复制怎样办理圣地亚哥州立大学毕业证(SDSU毕业证书)成绩单学校原版复制
怎样办理圣地亚哥州立大学毕业证(SDSU毕业证书)成绩单学校原版复制
 
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...
 
Sonagachi * best call girls in Kolkata | ₹,9500 Pay Cash 8005736733 Free Home...
Sonagachi * best call girls in Kolkata | ₹,9500 Pay Cash 8005736733 Free Home...Sonagachi * best call girls in Kolkata | ₹,9500 Pay Cash 8005736733 Free Home...
Sonagachi * best call girls in Kolkata | ₹,9500 Pay Cash 8005736733 Free Home...
 
Top profile Call Girls In Begusarai [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In Begusarai [ 7014168258 ] Call Me For Genuine Models...Top profile Call Girls In Begusarai [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In Begusarai [ 7014168258 ] Call Me For Genuine Models...
 
Charbagh + Female Escorts Service in Lucknow | Starting ₹,5K To @25k with A/C...
Charbagh + Female Escorts Service in Lucknow | Starting ₹,5K To @25k with A/C...Charbagh + Female Escorts Service in Lucknow | Starting ₹,5K To @25k with A/C...
Charbagh + Female Escorts Service in Lucknow | Starting ₹,5K To @25k with A/C...
 
Top profile Call Girls In Tumkur [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In Tumkur [ 7014168258 ] Call Me For Genuine Models We...Top profile Call Girls In Tumkur [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In Tumkur [ 7014168258 ] Call Me For Genuine Models We...
 
Top profile Call Girls In Vadodara [ 7014168258 ] Call Me For Genuine Models ...
Top profile Call Girls In Vadodara [ 7014168258 ] Call Me For Genuine Models ...Top profile Call Girls In Vadodara [ 7014168258 ] Call Me For Genuine Models ...
Top profile Call Girls In Vadodara [ 7014168258 ] Call Me For Genuine Models ...
 
Gartner's Data Analytics Maturity Model.pptx
Gartner's Data Analytics Maturity Model.pptxGartner's Data Analytics Maturity Model.pptx
Gartner's Data Analytics Maturity Model.pptx
 
DATA SUMMIT 24 Building Real-Time Pipelines With FLaNK
DATA SUMMIT 24  Building Real-Time Pipelines With FLaNKDATA SUMMIT 24  Building Real-Time Pipelines With FLaNK
DATA SUMMIT 24 Building Real-Time Pipelines With FLaNK
 
Top profile Call Girls In Latur [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Latur [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In Latur [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Latur [ 7014168258 ] Call Me For Genuine Models We ...
 
Dubai Call Girls Peeing O525547819 Call Girls Dubai
Dubai Call Girls Peeing O525547819 Call Girls DubaiDubai Call Girls Peeing O525547819 Call Girls Dubai
Dubai Call Girls Peeing O525547819 Call Girls Dubai
 

Probabilistic Modelling with Information Filtering Networks

  • 1. May 2018 Tomaso Aste & Tiziana Di Matteo Probabilistic Modeling with information filtering networks T Aste
  • 2. Financial Computing and Analytics Group T Aste UCL Sept 2018 Tomaso Aste Philip TreleavenDenise Gorse Fabio CaccioliChristopher ClackGuido Germano Giacomo Livan Daniel Fricke Julius Bonart Robert Elliott Smith Tiziana Di Matteo Paolo Tasca Ariane Chapelle http://fincomp.cs.ucl.ac.uk/ Nick Firoozye Daniel Hulme Jessica James • Centre for Doctoral Training • in Financial Computing & Analytics • Financial Risk Management MSc • Computational Finance MSc • Business Analytics MSc • Centre for Bolckchain Technologies Mircea Zloteanu
  • 3. • A lot of them • Interrelated • Complex • Non Stationary • Unstructured • Inconsistent Ø High Dimensions, hard to parametrize Ø Multivariate models Ø Heterogeneous: hard to put together Ø Small reliable observation set Ø Hard to make predictions and validate Ø Hard to establish the “truth” Artificial Intelligence Sparse multivariate probabilistic predictive models adaptable and trainable from few training sets Networks Complex multilayered networks to filter information for sparse modeling with heterogeneous data Blockchain Community consensus to establish data consistency Data Filtering Model & Prediction T Aste
  • 4. Machine Learning Machine learning can be described as a set of methodologies to automatize the process of observation/modeling/predicting/testing To discover laws automatically form (large amount of) data If something happens here What are the consequences there? Prediction Parsimony Artificial intelligence aims to find automatically maps between sets of variables.T Aste UCL Sept 2018
  • 5. A BW Predictive modeling In complex systems these maps are conditional probabilities. Prediction is the estimation of the conditional probability ! "# "$, "& of a (future) event given the available information about other (past) events T Aste UCL Sept 2018
  • 6. Predictive modeling The conditional probability is a tool for: - test hypothesis - quantify risk - stress testing - analyze scenarios XA − XB p(XB | XA ,XW ) T Aste UCL Sept 2018
  • 7. Predictive modeling The predicted value is the expectation value E[XB | XA − ,XW − ]= XB XB ∑ p(XB | XA − ,XW − ) The predicted uncertainty is the conditional entropy H(XB |XA − ,XW − )=− p(XB |XA − ,XW − )logp(XB |XA − ,XW − ) XA ,XB ∑ This is the regression and for linear models (multivariate Gaussian) this is the linear regression formula T Aste UCL Sept 2018
  • 8. Predictive modeling Causality Is the reduction of uncertainty on variables XB given the knowledge of the past of variables X - A and X - W discounting for the past X- B H(XB |XB − ,XW − )− H(XB |XA − ,XB − ,XW − )=TE(XA → XB |XW − ) B B- A- W- Thisis the tranfer entropy that for liner models (multivariate Gaussians) coincides with Granger causality T Aste UCL Sept 2018
  • 9. Predictive modeling Big Data – High Dimensions ! "# "$, "& = ! "#, "$, "& ! "$, "& We must estimate from data the most likely joint probability ! "#, "$, "& distribution of the system of events T Aste UCL Sept 2018
  • 10. To estimate probability we must estimate a number of quantities between High dimensional problem! N2 2 ≤ Quantities to Estimate ≤ N! Information increases linearly with observations But model-parameters increase at least with the square! “The more you look the less you see”T Aste UCL Sept 2018
  • 11. Information filtering We must construct models that require the estimation of a smaller number of quantities T Aste UCL Sept 2018
  • 12. Graphical models To construct the joint multivariate distribution we can make use of the structure of conditional dependency p(XA ,XB |XW )≠ p(XA |XW )p(XB |XW ) XW = XAll Variables {XA ,XB } A B dependent p(XA ,XB |XW )= p(XA |XW )p(XB |XW ) A B independent T Aste UCL Sept 2018
  • 13. Graphical models If these inference networks are chordal (or decomposable) we then have p(X) = p(Xcliques ) cliques ∏ p(Xseparators ) ks−1 separators ∏ The joint probability distribution can be estimated form the probability of cliques and separators IF THE NETWORK IS SPARSE Quantities to estimate scale linearly with the number of variables! S. L. Lauritzen, Graphical Models (Oxford:Clarendon, 1996)T Aste UCL Sept 2018
  • 14. This is great… however to establish conditional dependency p(XA ,XB | XW ) ≠ p(XA | XW )p(XB | XW ) requires the estimation of the same number of quantities as computing the entiere joint distribution function! Building the exact inference network is an impossible task for a large number of variables Graphical models T Aste UCL Sept 2018
  • 15. Information filtering networks To solve this problem we propose to build the inference structure for the graphical model from Information filtering network • Massara, Guido Previde, Tiziana Di Matteo, and TA. "Network Filtering for Big Data: Triangulated Maximally Filtered Graph" Journal of Comlex Networks (2016) arXiv preprint arXiv:1505.02445 (2015). • Nicoló Musmeci,, Tomaso Aste, and Tiziana Di Matteo. "Relation between financial market structure and the real economy: comparison between clustering methods." PloS one 10.3 (2015): e0116201. • F. Pozzi, T. Di Matteo, and TA , “Spread of risk across financial markets: better to invest in the peripheries”, Scientific Reports 3 (2013) 1665. • W.M. Song, T. Di Matteo and T. Aste, “Hierarchical information clustering by means of topologically embedded graphs”, PLoS ONE, 7 (2012) e31929 - TA, T. Di Matteo and S. T. Hyde, Complex networks on hyperbolic surfaces Physica A 346 (2005) 20-26. - M. Tumminello, TA, T. Di Matteo, and R. N. Mantegna, “A tool for filtering information in complex systems” Proceedings of the National Academy of Sciences of the United States of America 102 (2005) 10421 . T Aste UCL Sept 2018
  • 16. Information filtering networks Connect the nearest vertices eucleadean distance = most correlated hyperbolic distance = mutual information Keep the graph chordal clique forests Add other constraints max clique size (2 = MST) planarity (TMFG) information criteria (e.g. Akaike) These are fast algorithms < O(N2) (topological & homological measures, betty numbers, cycles and cliques retrieved from construction) Massara, Guido Previde, Tiziana Di Matteo, and TA. "Network Filtering for Big Data: Triangulated Maximally Filtered Graph" Journal of Complex Networks (2016) arXiv preprint arXiv:1505.02445 (2015).T Aste UCL Sept 2018
  • 18. By constraining the model to reproduce observed moments while maximizing Shannon-Gibbs entropy (maximum Entropy method), at the second order, we have that the model must be a multivariate Gaussian: LoGo p(X1 ,...XN ) = 1 Z exp(− Xi Ji,j Xj i, j ∑ ) We keep only the significant interactions and set to zero (Max Ent.) the uncertain ones: Ji,j = 0 iff Xi , Xj conditionally independent Ji,j is sparse and it has the structure given by the information filtering network T Aste UCL Sept 2018
  • 19. Ji,j is computed form local inversion of the covariance matrix over the clique forest Ji,j = Σ(C)−1 Cliques C ∑ − (kS −1)Σ(S)−1 Separators S ∑ We obtain a sparse inverse covariance (our graphical model) by doing local inversions only Super-fast algorithm O(N) even O(logN) if parallelized LoGo W. Barfuss, GP Massara, T Di Matteo & TA “Parsimonious modeling with Information Filtering Networks” Phys Rev E 94, 062306 (2016). arXiv preprint arXiv:1602.07349 (2016). T Aste UCL Sept 2018
  • 20. SPARSE CAUSALITY NETWORK RETRIEVAL FROM SHORT TIME SERIES RidgeSignificant G-lassoSigificant LoGoSignificant 0 1 2 3 4 5 p/q 0 0.1 0.2 0.3 0.4 0.5 γ Ridge Glasso LoGo p=100 variables Test: Network Retrieval From simulated time series with a known causality structure we test how LoGo can discover the causality links is our model, constructed from observations, able to discover the ‘real’ causality structure? T Aste UCL Sept 2018
  • 21. Test: Network Retrieval From simulated time series with a known causality structure we test how LoGo can discover the causality links p=100 variables 8 SPARSE CAUSALITY NETWORK RETRIEVAL FROM SHORT TIME SERIES 0 2 4 6 8 10 0 0.5 γ ridge 0 0.2 0.4 0 2 4 6 8 10 0 0.5 γ Glasso 0 0.2 0.4 0 1 2 3 4 5 p/q 0 0.5 γ LoGo 0 0.2 0.4 > 0.5 > 0.5 > 0.5 TP/n TP/n TP/n is our model, constructed from observations, able to discover the ‘real’ causality structure? T Aste UCL Sept 2018
  • 22. p=100 variables Test: Network Retrieval From simulated time series with a known causality structure we test how LoGo can discover the causality links is our model, constructed from observations, able to discover the ‘real’ causality structure? T Aste UCL Sept 2018
  • 23. Observation Model Prediction & Testing p(System)= p(cliques) cliques ∏ p(separators) ks−1 separators ∏ P a s t F u t u r e Statistical description Test: Prediction Likelihood is our model, constructed from past observations, associated with a large likelihood for future observations? T Aste UCL Sept 2018
  • 24. 10-3 10-2 Uncertanty (= 1/data series length) 650 700 750 800 Prediction(=Log-Likelihood) LoGo - TMFG State-of-the-art sparse model (G-lasso) LoGo - MST Linear Model Test: Prediction Likelihood is our model, constructed from past observations, associated with a large likelihood for future observations? T Aste UCL Sept 2018
  • 25. Predictive modeling: can we predict uncertainty propagation in the global banking system? 10 Banking Regions (World Bank Organization) North America South America Africa Europe West Asia Middle East South Asia East Asia Southeast Asia Australia 4 Industry classifications Banks Diversified Financial Insurance Real Estate T Aste UCL Sept 2018
  • 26. The predicted volatility on variables B caused by past of variables A discounting the contribution from past of B H(XB |XB − )−H(XB |XB − ,XA − )=TE(XA →XB ) Predictive modeling: can we predict uncertainty propagation in the global banking system? TRANSFER ENTROPY TE(XA →XB )= 1 2 log Var(XB |XB − ) Var(XB |XB − ,XA − ) For linear modeling it is the contribution of variable A (past) to the variance of variable B unexplained form past B T Aste UCL Sept 2018
  • 27. Predictive modeling: can we predict uncertainty propagation in the global banking system? N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 1990-1992 T Aste UCL Sept 2018
  • 28. Predictive modeling: can we predict uncertainty propagation in the global banking system? N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 1990 N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 1995-1997 T Aste UCL Sept 2018
  • 29. Predictive modeling: can we predict uncertainty propagation in the global banking system? N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 1990 N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 1995 N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 2000-2002 T Aste UCL Sept 2018
  • 30. Predictive modeling: can we predict uncertainty propagation in the global banking system? N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 1990 N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 1995 N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 2000 N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 2005-2007 T Aste UCL Sept 2018
  • 31. Predictive modeling: can we predict uncertainty propagation in the global banking system? N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 1990 N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 1995 N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 2000 N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 2005 N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 2010-2012 T Aste UCL Sept 2018
  • 32. Predictive modeling: can we predict uncertainty propagation in the global banking system? N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 1990 N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 1995 N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 2000 N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 2005 N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 2010 N America S America Africa Europe W Asia Mid East S Asia E Asia SE Asia Aus/NZ N America S America 2014-2016 T Aste UCL Sept 2018
  • 33. 1995 2000 2005 2010 2015 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 NA Change of influence North America Centrality proxy computed as the average fraction between strength of vertices in the regions outside NA associated with vertices in NA (black arcs) with respect to the total strength associated with vertices outside the firm’s regions (black and red arcs) NA T Aste UCL Sept 2018
  • 34. 1995 2000 2005 2010 2015 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 EU NA Change of influence Europe North America T Aste UCL Sept 2018
  • 35. 1995 2000 2005 2010 2015 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ASE EU NA Change of influence East Asia Europe North America T Aste UCL Sept 2018
  • 36. 1995 2000 2005 2010 2015 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ASE ASS EU ME NA Change of influence East Asia Europe North America South Asia Middle East T Aste UCL Sept 2018
  • 37. 1995 2000 2005 2010 2015 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ASE ASS ASSE EU ME NA Change of influence East Asia Europe North America South Asia Middle East South East Asia T Aste UCL Sept 2018
  • 38. 1995 2000 2005 2010 2015 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 AF ASE ASS ASSE AUS EU ME NA RU SA Change of influence East Asia Europe North America South Asia Middle East South East Asia T Aste UCL Sept 2018
  • 39. 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 Average TE Region -> Bank: LoGo, w 300 3 lagsSubprimemortgagecrisis Securitizationmarketclosedown Globalstockmarketsharpfall USnear-recorddeficit$410billion NationalizationofNorthernRock FannieMae/FreddieMacrescue LehmanBrothersfiledforbankruptcy BankofEnglandssurprisedinterestratecut RescueofRBS,Lloyds,andHBOS IMFapproved$2.1bnloanforIceland USgovtgaveBankofAmerica$20bnaid RBSreported£2.1bnloss 12.5%economiccontractioninJapanEuropeansovereigndebtcrisis UScreditdowngradefromA+toALIBORscandal CityofDetroitbankruptcyUkranian/Syrian/EgyptunrestEbolaepidemic BearSternscollapse IndyMaccollapse CreditdowngradeofFranceandAustriafromAAAtoAA+ PortugalreceivedbailoutLiquidityinjectionbyUS,CAN,JAP,UK,Swisscentralbanks NA EU AS Dynamic impact T Aste UCL Sept 2018
  • 40. Influence by activity 1995 2000 2005 2010 2015 2020 0 0.2 0.4 0.6 0.8 1 Banks Diversified Financials Insurance real estate NA 1995 2000 2005 2010 2015 2020 0 0.1 0.2 0.3 0.4 0.5 Banks Diversified Financials Insurance real estate EU NA EU T Aste UCL Sept 2018
  • 41. Influence by activity 1995 2000 2005 2010 2015 2020 0 0.02 0.04 0.06 0.08 0.1 0.12 Banks Diversified Financials Insurance real estate ME 1995 2000 2005 2010 2015 2020 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 Banks Diversified Financials Insurance real estate ASS Middle East South Asia T Aste UCL Sept 2018
  • 42. Networks for Prediction With p(XB|XA-) we can quantify probability of future events With p(XB|XA) we can predict impact of unobserved scenarios and test hypothesis p(XA,XB) can be constructed from local probability estimations over an information filtering network (low dimension problem) Nodes and edges can be added or removed with local moves only Aggregation of risk is straightforward LoGo works better than state-of-the-art sparse graphical models and it is faster T Aste UCL Sept 2018
  • 43. Si l’ordre satisfait la raison, le désordre fait les délices de l’imagination http://www.cs.ucl.ac.uk/staff/tomaso_aste/ Thank YOU! http://fincomp.cs.ucl.ac.uk/ W. Barfuss, GP Massara, T Di Matteo & TA “Parsimonious modeling with Information Filtering Networks” Phys Rev E 94, 062306 (2016) arXiv preprint arXiv:1602.07349 (2016). Massara, Guido Previde, Tiziana Di Matteo, and TA. "Network Filtering for Big Data: Triangulated Maximally Filtered Graph" Journal of Comlex Networks (2016) arXiv preprint arXiv:1505.02445 (2015). http://blockchain.cs.ucl.ac.uk/ Tiziana Di Matteo, and TA. ”Sparse causality network retrieval from short time series” Complexity (2017). T Aste UCL Sept 2018