SlideShare une entreprise Scribd logo
1  sur  13
Télécharger pour lire hors ligne
FAST 8
1
/ fujii@cr.scphys.kyoto-u.ac.jp
Justin Albury, Jose Bellido, Ladislav Chytka, John Farmer, Petr Hamal, Pavel Horvath, Miroslav
Hrabovsky, Jiri Kvita, Max Malacari, Dusan Mandat, Massimo Mastrodicasa, John Matthews, Stanislav
Michal, Xiaochen Ni, Libor Nozka, Miroslav Palatka, Miroslav Pech, Paolo Privitera, Petr Schovanek,
Francesco Salamida, Radomir Smida, Stan Thomas, Petr Travnicek, Martin Vacula
FAST Collaboration
2019 2019 9 17
FAST North @ Utah, USA FAST South @Argentina
Fine pixelated camera
Low-cost and simplified telescope
✦ Target : > 1019.5 eV, ultra-high energy cosmic rays (UHECR) and neutral particles
✦ Huge target volume ⇒ Fluorescence detector array
Too expensive to cover a huge area
2
Smaller optics and single or a few pixels
Fluorescence detector Array of Single-pixel Telescopes
Segmented mirror telescope
Variable angles of elevation – steps.
15 deg 45 deg
3
✦ Each telescope: 4 PMTs, 30°×30° field-of-view (FoV)
✦ Reference design: 1 m2 aperture, 15°×15° FoV
per photo-multiplier tube (PMT)
✦ Each station: 12 telescopes, 48 PMTs, 30°×360°
FoV
✦ Deploy on a triangle grid with 20 km spacing, like
“Surface Detector Array”
✦ With 500 stations, a ground coverage is 150,000 km2
20 km
Fluorescence detector Array of Single-pixel Telescopes
ce Detectors
ope Array:700 km2
ale) 3
Pierre Auger: 3000 km2 Telescope Array:700 km2
(not drawn to scale) 3
Telescope Array (TA) Pierre Auger Observatory (Auger)
56 EeV
16
56 EeV zenith 500
1
2
3
1
3 2
PhotonsatdiaphragmPhotonsatdiaphragm
Photonsatdiaphragm
FAST(10%)
60 stations
17,000 km2
5 years: 5100 events (E > 57 EeV),
650 events (E > 100 EeV)
- Directional anisotropy on arrival directions,
energy spectrum, mass composition
Reference: T. Fujii et al., Astropart.Phys. 74 (2016) 64-72
www.fast-project.org
700 km2 3000 km2
1. Detector development for future project
2. Cross-calibration of Energy and Xmax
scales in current UHECR observatories
5
FAST fluorescence telescope
Reference: D. Mandat et al., JINST 12, T07001 (2017)
Wavelength [nm]
260 280 300 320 340 360 380 400 420
Efficiency[%]
0
10
20
30
40
50
60
70
80
90
100
Mirror reflectivity
Filter transmission
Total efficiency
Figure 5. The typical spectral reflectance of the FAST mirror between 260 nm and 420 nm, along w
spectral transmission of the UV band-pass filter. The resultant total optical e ciency is shown in blac
filter used on the Cherenkov telescope of the MAGIC [18] observatory. The filter is constructed
a number of small segments in order to fit the FAST prototype’s octagonal aperture. The indiv
segments are fit together using brass “U” and “H” profiles, resulting in an aperture of 1 m2 in
6 Telescope support structure
The telescope’s mechanical support structure was built from commercially available alum
profiles. This allows for straightforward assembly/disassembly, and easy packing and transpo
to their light weight, while also providing an extremely stable and rigid platform for the
✦ 4 PMTs (20 cm, 8 dynodes R5912-03MOD, base
E7694-01)
✦ 1 m2 aperture of the UV band-pass filter (ZWB3),
segmented mirror of 1.6 m diameter
✦ Total 3 telescopes installed at TA site by October 2018
✦ Total 553 hours by September 2019
FAST observation set-up
6
✦ Remote controlling observation
✦ Synchronized operation with
external triggers from
Telescope Array fluorescence
detector (TA FD)
✦ 80% FoV of TA FD
TA FD FoV (12 telescopes, 33°×108°)
FAST FoV (3 telescopes, 30°×90°)
5. Run a Minuit SIMPLEX fitter to
determine the optimal aerosol
horizontal attenuation length and
scale height, letting the absolute
calibration float (the shape of the
trace should be more heavily
dependent on the atmospheric
composition than its
normalisation)
Time bins [100 ns]
0 100 200 300 400 500 600 700 800 900 1000
/100nsp.e.N
0
5
10
15
20
25
260 CLF shots from 2018/09/12 05:27:04.764472000
Summed trace
PMT 4
PMT 5
PMT 6
PMT 7
260 CLF shots from 2018/09/12 05:27:04.764472000
Time bins [100 ns]
0 100 200 300 400 500 600 700 800 900 1000
/100nsp.e.N
0
5
10
15
20
25 Measured trace
Best fit
= 0.51 kmaerH
= 16.28 kmaerL
Norm. = 0.76
VAOD = 0.03
/ndf = 0.922χ
NOTES:
- Hmix is not currently being used

- Hmol is set to 8 km

- Lmol is set to 14.2 km at sea-level,
suitable for a laser of 355 nm
wavelength

- Jitter in laser energy not yet taken
into account

- Telescope PSF not yet taken into
account

- PMT collection efficiency non-
uniformity not yet taken into account
Example of a decent fit. Typically the fit isn’t so
PRELIMINARY
Vertical laser signal
(280 shot average)
Vertical laser
at a distance
of 21 km
Azimuth [deg]
Elevation[deg]
Azimuth [deg]
Elevation[deg]
FAST 1
FAST 2
FA
ST
3
CLF direction
-2018/05/15
Time bin [100 ns]
200 250 300 350 400
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
0
50
100
150
200
250
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
0
50
100
150
200
Data
Simulation
Time bin [100 ns]
150 200 250 300 350 400 450 500
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
0
50
100
150
200
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
4 / 9
UHECR signal and reconstruction
7
FAST waveform + expected signal from top-down reconstruction
(Data, simulation by the best-fit parameters)
FAST top-down reconstruction (Preliminary)
Zenith Azimuth Core(X) Core(Y) Xmax Energy
59.8 deg -96.7 deg 7.9 km -9.0 km 842 g/cm2 17.3 EeV
TA FD
(Preliminary)
Energy: 19.0 EeV
Rp: 6.1 km
Coincidence shower search between TA FD and FAST
8
16 16.5 17 17.5 18 18.5 19 19.5 20
log(E(eV))
1
10
2
10
Impactparameter[km]
TA FD events
Single-hit PMT (FAST)
Multi-hit PMTs
Preliminary
✦ Data period: 2018/Oct/06 - 2019/Jan/14, 52 hours with 3 FAST prototypes
✦ Event number: 236 (TA FD) -> 37 (significant signals with FAST, S/N > 6σ, Δt > 500 ns)
✦ The shower parameters are reconstructed by TA FD monocular analysis.
16 16.5 17 17.5 18 18.5 19 19.5 20
log(E(eV))
2
10
3
10
4
10
5
10
s]µTime-averagebrightness[pe/
TA FD events
Single-hit PMT (FAST)
Multi-hit PMTs
Preliminary
16 16.5 17 17.5 18 18.5 19 19.5 20
log(E(eV)
1
10
2
10
Entries
TA FD events
Single-hit PMT (FAST)
Multi-hit PMTs
Preliminary
✦ Maximum detectable impact parameter: ~20 km at 1019.5 eV with brighter signal showers
✦ 2 events above 10 EeV in 52 hours → ~25 events/year (15% duty cycle)
Highest energy event
9
Event 2: SD: 15.8 EeV, Zen: 36.15◦
, Azi: 18.0◦
, Core(5.002,
-4.461), Date: 20190110, Time: 063617.657363 FD: 19.95 EeV,
Zen: 33.2◦
, Azi: 35.8◦
, Core(6.12, -5.26), Date: 20190110,
Time: 063617.657398690
Event 4: SD: 1.32 EeV, Zen: 39.07◦
, Azi: -4.84◦
, Core(9.045,
-2.982), Date: 20190110, Time: 070221.485684 FD: 1.86 EeV,
Zen: 33.9◦
, Azi: 10.0◦
, Core(9.8, -3.91), Date: 20190110, Time:
070221.485723180
FAST top-down reconstruction (Preliminary)
Zenith Azimuth Core(X) Core(Y) Xmax Energy
33.9 deg 19.3 deg 4.6 km -4.7 km 808 g/cm2 18.8 EeV
FAST dataTA data
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
TA SD (Preliminary)
Zenith Azimuth Core(X) Core(Y) Energy
36.2 deg 18.0 deg 5.0 km -4.5 km 15.8 EeV
TA FD (Preliminary)
33.2 deg 35.8 deg 6.1 km -5.3 km 20.0 EeV
Event 14: SD: 12.3 EeV, Zen: 4.53◦
, Azi: 88.34◦
, Core(8.801,
-9.219), Date: 20190111, Time: 081213.261353 FD: 11.22 EeV,
Zen: 5.2◦
, Azi: 106.0◦
, Core(8.73, -9.26), Date: 20190111,
Time: 081213.261375409
Event 15: SD: 1.88 EeV, Zen: 36.65◦
, Azi: -35.8◦
, Core(6.097,
-3.238), Date: 20190111, Time: 084640.976253 FD: 1.70 EeV,
Zen: 31.0◦
, Azi: -27.9◦
, Core(7.76, -4.61), Date: 20190111,
Time: 084640.976304421
Second highest energy event
10
Best fit comparison (Preliminary - SIMPLEX only)
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
0 200 400 60
/100nspeN
30−
20−
10−
0
10
20
30
40
50
0 200 400 60
/100nspeN
30−
20−
10−
0
10
20
30
40
50
3 / 15
Best fit comparison (Preliminary - SIMPLEX only)
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
3 / 15
FAST top-down reconstruction (Preliminary)
Zenith Azimuth Core(X) Core(Y) Xmax Energy
3.3 deg 110.5 deg 8.7 km -9.2 km 830 g/cm2 10.3 EeV
TA data
TA SD (Preliminary)
Zenith Azimuth Core(X) Core(Y) Energy
4.5 deg 88.3 deg 8.8 km -9.2 km 12.3 EeV
TA FD (Preliminary)
5.2 deg 106.0 deg 8.7 km -9.3 km 11.2 EeV
FAST data
Pierre Auger: 3000 km2 Telescope Array:700 km2
(not drawn to scale) 3
Installation of 1st FAST telescope in Auger
11
FD (Los Leones)
LIDAR dome
FAST
Pierre Auger Observatory
Malargue, Argentina
Start observation from April 11th, 2019
Time [100 ns]
360 380 400 420 440 460 480 500
/100nsp.e.N
50
0
50
100
150
200
250
300
PMT 0
PMT 1
PMT 2
PMT 3
Time (100 ns)
0 1002003004005006007008009001000
/(100ns)p.e.N
20
10
0
10
20
30
40
PMT 0
Time (100 ns)
0 1002003004005006007008009001000
/(100ns)p.e.N
20
10
0
10
20
30
40
PMT 2
Time (100 ns)
0 1002003004005006007008009001000
/(100ns)p.e.N
0
50
100
150
200
250
300
350
PMT 1
Time (100 ns)
0 1002003004005006007008009001000
/(100ns)p.e.N
0
200
400
600
800
1000
1200
PMT 3
Cherenkov-dominated signal Horizontal laser signal
Time [100 ns]
360 380 400 420 440 460 480 500
/100nsp.e.N
0
50
100
150
200
250
300
PMT 0
PMT 1
PMT 2
PMT 3
Total 86 hours
observation time
by September 2019
PMT calibration using light sources
12
Time [100 ns]
0 100 200 300 400 500 600 700 800 900 1000
/100nsp.e.N
0
500
1000
1500
2000
2500
3000
3500
4000 PMT 0
PMT 1
PMT 2
PMT 3
PMT 4
PMT 5
PMT 6
PMT 7
PMT 8
PMT 9
PMT 10
PMT 11
Time [100 ns]
0 100 200 300 400 500 600 700 800 900 1000
/100nsp.e.N
0
500
1000
1500
2000
2500
3000
PMT 0
PMT 1
PMT 2
PMT 3
PMT 4
PMT 5
PMT 6
PMT 7
PMT 8
PMT 9
PMT 10
PMT 11
Variable angles of elevation – steps.
construction is still in development
15 deg 45 deg
Joint Laboratory of Optics Olomouc – March 2014
Integrated sphere at aperture
UV-LED flasher at mirror center
Plan to do the same calibration
at Auger (November 2019)
PMT calibration at TA
(September 2019)
Time [100 ns/bin]
Summary and future plans
13
Fluorescence detector Array of Single-pixel Telescopes
(FAST)
10×statistics compared to Auger and TA×4 with Xmax
Directional anisotropy on arrival direction, energy
spectrum and mass composition
Installed three telescopes at Telescope Array site and one
telescope at Pierre Auger Observatory
Stable observation with remote controlling
UHECR detections, and their reconstruction method
implemented.
We will continue to operate the telescopes and search for
UHECR in coincidence with current observatories.
PMT calibration using the same light sources at TA and Auger
2nd telescope installation to be discussed at Auger meeting in
November 2019
http://www.fast-project.org
Argentina
Utah, USA

Contenu connexe

Plus de Toshihiro FUJII

A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...Toshihiro FUJII
 
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Toshihiro FUJII
 
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画Toshihiro FUJII
 
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Toshihiro FUJII
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究Toshihiro FUJII
 
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告Toshihiro FUJII
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...Toshihiro FUJII
 
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告Toshihiro FUJII
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告Toshihiro FUJII
 
The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -Toshihiro FUJII
 
Future Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE PhotonFuture Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE PhotonToshihiro FUJII
 
FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価Toshihiro FUJII
 
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...Toshihiro FUJII
 
A Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence DetectorsA Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence DetectorsToshihiro FUJII
 
Development of a prototype for Fluorescence detector Array of Single-pixel Te...
Development of a prototype for Fluorescence detector Array of Single-pixel Te...Development of a prototype for Fluorescence detector Array of Single-pixel Te...
Development of a prototype for Fluorescence detector Array of Single-pixel Te...Toshihiro FUJII
 
First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...Toshihiro FUJII
 
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) projectFluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) projectToshihiro FUJII
 
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発Toshihiro FUJII
 

Plus de Toshihiro FUJII (18)

A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
 
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
 
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
 
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
 
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
 
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
 
The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -
 
Future Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE PhotonFuture Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE Photon
 
FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価
 
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
 
A Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence DetectorsA Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence Detectors
 
Development of a prototype for Fluorescence detector Array of Single-pixel Te...
Development of a prototype for Fluorescence detector Array of Single-pixel Te...Development of a prototype for Fluorescence detector Array of Single-pixel Te...
Development of a prototype for Fluorescence detector Array of Single-pixel Te...
 
First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...
 
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) projectFluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
 
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
 

Dernier

Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfSumit Kumar yadav
 

Dernier (20)

Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 

FAST実験8:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測報告

  • 1. FAST 8 1 / fujii@cr.scphys.kyoto-u.ac.jp Justin Albury, Jose Bellido, Ladislav Chytka, John Farmer, Petr Hamal, Pavel Horvath, Miroslav Hrabovsky, Jiri Kvita, Max Malacari, Dusan Mandat, Massimo Mastrodicasa, John Matthews, Stanislav Michal, Xiaochen Ni, Libor Nozka, Miroslav Palatka, Miroslav Pech, Paolo Privitera, Petr Schovanek, Francesco Salamida, Radomir Smida, Stan Thomas, Petr Travnicek, Martin Vacula FAST Collaboration 2019 2019 9 17 FAST North @ Utah, USA FAST South @Argentina
  • 2. Fine pixelated camera Low-cost and simplified telescope ✦ Target : > 1019.5 eV, ultra-high energy cosmic rays (UHECR) and neutral particles ✦ Huge target volume ⇒ Fluorescence detector array Too expensive to cover a huge area 2 Smaller optics and single or a few pixels Fluorescence detector Array of Single-pixel Telescopes Segmented mirror telescope Variable angles of elevation – steps. 15 deg 45 deg
  • 3. 3 ✦ Each telescope: 4 PMTs, 30°×30° field-of-view (FoV) ✦ Reference design: 1 m2 aperture, 15°×15° FoV per photo-multiplier tube (PMT) ✦ Each station: 12 telescopes, 48 PMTs, 30°×360° FoV ✦ Deploy on a triangle grid with 20 km spacing, like “Surface Detector Array” ✦ With 500 stations, a ground coverage is 150,000 km2 20 km Fluorescence detector Array of Single-pixel Telescopes ce Detectors ope Array:700 km2 ale) 3 Pierre Auger: 3000 km2 Telescope Array:700 km2 (not drawn to scale) 3 Telescope Array (TA) Pierre Auger Observatory (Auger) 56 EeV 16 56 EeV zenith 500 1 2 3 1 3 2 PhotonsatdiaphragmPhotonsatdiaphragm Photonsatdiaphragm FAST(10%) 60 stations 17,000 km2 5 years: 5100 events (E > 57 EeV), 650 events (E > 100 EeV) - Directional anisotropy on arrival directions, energy spectrum, mass composition Reference: T. Fujii et al., Astropart.Phys. 74 (2016) 64-72 www.fast-project.org 700 km2 3000 km2
  • 4. 1. Detector development for future project 2. Cross-calibration of Energy and Xmax scales in current UHECR observatories
  • 5. 5 FAST fluorescence telescope Reference: D. Mandat et al., JINST 12, T07001 (2017) Wavelength [nm] 260 280 300 320 340 360 380 400 420 Efficiency[%] 0 10 20 30 40 50 60 70 80 90 100 Mirror reflectivity Filter transmission Total efficiency Figure 5. The typical spectral reflectance of the FAST mirror between 260 nm and 420 nm, along w spectral transmission of the UV band-pass filter. The resultant total optical e ciency is shown in blac filter used on the Cherenkov telescope of the MAGIC [18] observatory. The filter is constructed a number of small segments in order to fit the FAST prototype’s octagonal aperture. The indiv segments are fit together using brass “U” and “H” profiles, resulting in an aperture of 1 m2 in 6 Telescope support structure The telescope’s mechanical support structure was built from commercially available alum profiles. This allows for straightforward assembly/disassembly, and easy packing and transpo to their light weight, while also providing an extremely stable and rigid platform for the ✦ 4 PMTs (20 cm, 8 dynodes R5912-03MOD, base E7694-01) ✦ 1 m2 aperture of the UV band-pass filter (ZWB3), segmented mirror of 1.6 m diameter ✦ Total 3 telescopes installed at TA site by October 2018 ✦ Total 553 hours by September 2019
  • 6. FAST observation set-up 6 ✦ Remote controlling observation ✦ Synchronized operation with external triggers from Telescope Array fluorescence detector (TA FD) ✦ 80% FoV of TA FD TA FD FoV (12 telescopes, 33°×108°) FAST FoV (3 telescopes, 30°×90°) 5. Run a Minuit SIMPLEX fitter to determine the optimal aerosol horizontal attenuation length and scale height, letting the absolute calibration float (the shape of the trace should be more heavily dependent on the atmospheric composition than its normalisation) Time bins [100 ns] 0 100 200 300 400 500 600 700 800 900 1000 /100nsp.e.N 0 5 10 15 20 25 260 CLF shots from 2018/09/12 05:27:04.764472000 Summed trace PMT 4 PMT 5 PMT 6 PMT 7 260 CLF shots from 2018/09/12 05:27:04.764472000 Time bins [100 ns] 0 100 200 300 400 500 600 700 800 900 1000 /100nsp.e.N 0 5 10 15 20 25 Measured trace Best fit = 0.51 kmaerH = 16.28 kmaerL Norm. = 0.76 VAOD = 0.03 /ndf = 0.922χ NOTES: - Hmix is not currently being used - Hmol is set to 8 km - Lmol is set to 14.2 km at sea-level, suitable for a laser of 355 nm wavelength - Jitter in laser energy not yet taken into account - Telescope PSF not yet taken into account - PMT collection efficiency non- uniformity not yet taken into account Example of a decent fit. Typically the fit isn’t so PRELIMINARY Vertical laser signal (280 shot average) Vertical laser at a distance of 21 km Azimuth [deg] Elevation[deg] Azimuth [deg] Elevation[deg] FAST 1 FAST 2 FA ST 3 CLF direction
  • 7. -2018/05/15 Time bin [100 ns] 200 250 300 350 400 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 0 50 100 150 200 250 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 0 50 100 150 200 Data Simulation Time bin [100 ns] 150 200 250 300 350 400 450 500 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 0 50 100 150 200 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation 4 / 9 UHECR signal and reconstruction 7 FAST waveform + expected signal from top-down reconstruction (Data, simulation by the best-fit parameters) FAST top-down reconstruction (Preliminary) Zenith Azimuth Core(X) Core(Y) Xmax Energy 59.8 deg -96.7 deg 7.9 km -9.0 km 842 g/cm2 17.3 EeV TA FD (Preliminary) Energy: 19.0 EeV Rp: 6.1 km
  • 8. Coincidence shower search between TA FD and FAST 8 16 16.5 17 17.5 18 18.5 19 19.5 20 log(E(eV)) 1 10 2 10 Impactparameter[km] TA FD events Single-hit PMT (FAST) Multi-hit PMTs Preliminary ✦ Data period: 2018/Oct/06 - 2019/Jan/14, 52 hours with 3 FAST prototypes ✦ Event number: 236 (TA FD) -> 37 (significant signals with FAST, S/N > 6σ, Δt > 500 ns) ✦ The shower parameters are reconstructed by TA FD monocular analysis. 16 16.5 17 17.5 18 18.5 19 19.5 20 log(E(eV)) 2 10 3 10 4 10 5 10 s]µTime-averagebrightness[pe/ TA FD events Single-hit PMT (FAST) Multi-hit PMTs Preliminary 16 16.5 17 17.5 18 18.5 19 19.5 20 log(E(eV) 1 10 2 10 Entries TA FD events Single-hit PMT (FAST) Multi-hit PMTs Preliminary ✦ Maximum detectable impact parameter: ~20 km at 1019.5 eV with brighter signal showers ✦ 2 events above 10 EeV in 52 hours → ~25 events/year (15% duty cycle)
  • 9. Highest energy event 9 Event 2: SD: 15.8 EeV, Zen: 36.15◦ , Azi: 18.0◦ , Core(5.002, -4.461), Date: 20190110, Time: 063617.657363 FD: 19.95 EeV, Zen: 33.2◦ , Azi: 35.8◦ , Core(6.12, -5.26), Date: 20190110, Time: 063617.657398690 Event 4: SD: 1.32 EeV, Zen: 39.07◦ , Azi: -4.84◦ , Core(9.045, -2.982), Date: 20190110, Time: 070221.485684 FD: 1.86 EeV, Zen: 33.9◦ , Azi: 10.0◦ , Core(9.8, -3.91), Date: 20190110, Time: 070221.485723180 FAST top-down reconstruction (Preliminary) Zenith Azimuth Core(X) Core(Y) Xmax Energy 33.9 deg 19.3 deg 4.6 km -4.7 km 808 g/cm2 18.8 EeV FAST dataTA data Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation TA SD (Preliminary) Zenith Azimuth Core(X) Core(Y) Energy 36.2 deg 18.0 deg 5.0 km -4.5 km 15.8 EeV TA FD (Preliminary) 33.2 deg 35.8 deg 6.1 km -5.3 km 20.0 EeV
  • 10. Event 14: SD: 12.3 EeV, Zen: 4.53◦ , Azi: 88.34◦ , Core(8.801, -9.219), Date: 20190111, Time: 081213.261353 FD: 11.22 EeV, Zen: 5.2◦ , Azi: 106.0◦ , Core(8.73, -9.26), Date: 20190111, Time: 081213.261375409 Event 15: SD: 1.88 EeV, Zen: 36.65◦ , Azi: -35.8◦ , Core(6.097, -3.238), Date: 20190111, Time: 084640.976253 FD: 1.70 EeV, Zen: 31.0◦ , Azi: -27.9◦ , Core(7.76, -4.61), Date: 20190111, Time: 084640.976304421 Second highest energy event 10 Best fit comparison (Preliminary - SIMPLEX only) Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation 0 200 400 60 /100nspeN 30− 20− 10− 0 10 20 30 40 50 0 200 400 60 /100nspeN 30− 20− 10− 0 10 20 30 40 50 3 / 15 Best fit comparison (Preliminary - SIMPLEX only) Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation 3 / 15 FAST top-down reconstruction (Preliminary) Zenith Azimuth Core(X) Core(Y) Xmax Energy 3.3 deg 110.5 deg 8.7 km -9.2 km 830 g/cm2 10.3 EeV TA data TA SD (Preliminary) Zenith Azimuth Core(X) Core(Y) Energy 4.5 deg 88.3 deg 8.8 km -9.2 km 12.3 EeV TA FD (Preliminary) 5.2 deg 106.0 deg 8.7 km -9.3 km 11.2 EeV FAST data
  • 11. Pierre Auger: 3000 km2 Telescope Array:700 km2 (not drawn to scale) 3 Installation of 1st FAST telescope in Auger 11 FD (Los Leones) LIDAR dome FAST Pierre Auger Observatory Malargue, Argentina Start observation from April 11th, 2019 Time [100 ns] 360 380 400 420 440 460 480 500 /100nsp.e.N 50 0 50 100 150 200 250 300 PMT 0 PMT 1 PMT 2 PMT 3 Time (100 ns) 0 1002003004005006007008009001000 /(100ns)p.e.N 20 10 0 10 20 30 40 PMT 0 Time (100 ns) 0 1002003004005006007008009001000 /(100ns)p.e.N 20 10 0 10 20 30 40 PMT 2 Time (100 ns) 0 1002003004005006007008009001000 /(100ns)p.e.N 0 50 100 150 200 250 300 350 PMT 1 Time (100 ns) 0 1002003004005006007008009001000 /(100ns)p.e.N 0 200 400 600 800 1000 1200 PMT 3 Cherenkov-dominated signal Horizontal laser signal Time [100 ns] 360 380 400 420 440 460 480 500 /100nsp.e.N 0 50 100 150 200 250 300 PMT 0 PMT 1 PMT 2 PMT 3 Total 86 hours observation time by September 2019
  • 12. PMT calibration using light sources 12 Time [100 ns] 0 100 200 300 400 500 600 700 800 900 1000 /100nsp.e.N 0 500 1000 1500 2000 2500 3000 3500 4000 PMT 0 PMT 1 PMT 2 PMT 3 PMT 4 PMT 5 PMT 6 PMT 7 PMT 8 PMT 9 PMT 10 PMT 11 Time [100 ns] 0 100 200 300 400 500 600 700 800 900 1000 /100nsp.e.N 0 500 1000 1500 2000 2500 3000 PMT 0 PMT 1 PMT 2 PMT 3 PMT 4 PMT 5 PMT 6 PMT 7 PMT 8 PMT 9 PMT 10 PMT 11 Variable angles of elevation – steps. construction is still in development 15 deg 45 deg Joint Laboratory of Optics Olomouc – March 2014 Integrated sphere at aperture UV-LED flasher at mirror center Plan to do the same calibration at Auger (November 2019) PMT calibration at TA (September 2019) Time [100 ns/bin]
  • 13. Summary and future plans 13 Fluorescence detector Array of Single-pixel Telescopes (FAST) 10×statistics compared to Auger and TA×4 with Xmax Directional anisotropy on arrival direction, energy spectrum and mass composition Installed three telescopes at Telescope Array site and one telescope at Pierre Auger Observatory Stable observation with remote controlling UHECR detections, and their reconstruction method implemented. We will continue to operate the telescopes and search for UHECR in coincidence with current observatories. PMT calibration using the same light sources at TA and Auger 2nd telescope installation to be discussed at Auger meeting in November 2019 http://www.fast-project.org Argentina Utah, USA