SlideShare une entreprise Scribd logo
1  sur  19
Télécharger pour lire hors ligne
Toshihiro Fujii (Kyoto University)
fujii@cr.scphys.kyoto-u.ac.jp
Latest results of ultra-high-energy cosmic ray
measurements with prototypes of the Fluorescence
detector Array of Single-pixel Telescopes (FAST)
Justin Albury, Jose Bellido, Ladislav Chytka, John Farmer, Petr Hamal, Pavel Horvath, Miroslav Hrabovsky, Hidetoshi Kubo, Jiri Kvita,
Max Malacari, Dusan Mandat, Massimo Mastrodicasa, John Matthews, Stanislav Michal, Xiaochen Ni, Seiya Nozaki, Libor Nozka, Tomohiko Oka,
Miroslav Palatka, Miroslav Pech, Paolo Privitera, Petr Schovanek, Francesco Salamida, Radomir Smida, Stan Thomas, Akimichi Taketa,
Kenta Terauchi, Petr Travnicek, Martin Vacula, Seokhyun Yoo
(FAST Collaboration)
ICRC 2021, July 21th, 2021
ICRC 2021
THE ASTROPARTICLE PHYSICS CONFERENCE
Berlin | Germany
ONLINE ICRC 2021
THE ASTROPARTICLE PHYSICS CONFERENCE
Berlin | Germany
37th
International
Cosmic Ray Conference
12–23 July 2021
Ultra-high-energy cosmic ray
(UHECR) sky
2
→ Extragalactic cosmic rays
NASA/DOE/Fermi Collaboration
GAIA Collaboration
J. Biteau, TF et al., EPJ Web of Conferences 210, 01005 (2019)
A. di Matteo, TF et al., PoS ICRC2019 (2020) 439, using a different color contour
"Ankle" energies (EAuger>8.86 EeV, ETA>10 EeV)
Optical
γ-rays
UHECR sky above cutoff
3
"Cutoff" energies (EAuger>40 EeV: 842 events in 13.3 yr, ETA>52.3 EeV: 127 events in 9 yr)
● Intriguing intermediate anisotropies: Active galactic nuclei, Starburst galaxies
● No excess from the Virgo cluster, Virgo scandal
● Challenges to mass composition and galactic/extragalactic magnetic fields
→ Need more statistic with mass composition sensitivity to identify UHECR sources
J. Biteau, TF et al., EPJ Web of Conferences 210, 01005 (2019)
A. di Matteo, TF et al., PoS ICRC2019 (2020) 439, using a different color contour
Fine pixelated camera
Low-cost and simplified telescope
✦ Target : > 1019.5 eV, ultrahigh-energy cosmic rays, neutrino and gamma rays
✦ Huge target volume ⇒ Fluorescence detector array
Too expensive to cover a huge area
4
Smaller optics and single or few pixels
Fluorescence detector Array of Single-pixel Telescopes
Segmented mirror telescope
Variable angles of elevation – steps.
15 deg 45 deg
5
10
− 5
− 0 5 10
x [km]
10
−
5
−
0
5
10
y[km]
Simulation
E = 40 EeV
θ = 50°
20 km FAST telescope
4 PMTs (20 cm diameter)
1 m2 aperture (UV filter)
Segmented mirror
in 1.6 m diameter
0 200 400 600 800 1000
Time bin [100 ns]
20
−
0
20
40
60
80
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
40
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
40
50
60
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
20
−
0
20
40
60
80
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
40
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
40
50
60
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
40
−
20
−
0
20
40
60
80
100
120
140
160
180
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
20
−
0
20
40
60
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
20
−
0
20
40
60
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
40
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
20
−
0
20
40
60
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
40
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
40
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
40
−
20
−
0
20
40
60
80
100
120
140
160
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
50
−
0
50
100
150
200
250
300
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
20
−
0
20
40
60
/
100
ns
pe
N
Segmented mirror telescope
Variable angles of elevation – steps.
construction is still in development
15 deg 45 deg
Joint Laboratory of Optics Olomouc – March 2014
7
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
40
−
20
−
0
20
40
60
80
/
100
ns
pe
N
12 telescopes / station
500 stations
→ 150,000 km2
Time
p.e.
/
100
ns
100 µs
Fluorescence detector Array of Single-pixel Telescopes
PMT waveform
0 µs
Field measurements to validate the FAST concept
6
1
in Astroparticle Physics
P. Privitera in UHECR 2012
EUSO-TA optics
+
Single-pixel camera
Time (100 ns)
0 100 200 300 400 500 600 700 800
/
(100
ns)
p.e.
N
0
50
100
150
200
250
300
350
Data
Simulation
Time (100 ns)
0 100 200 300 400 500 600 700 800
/
(100
ns)
p.e.
N
-20
0
20
40
60
80
Cosmic Ray
(1 EeV, 2 km)
Vertical laser
(~ 30 EeV)
Feb. 2012
Sep. 2017
Apr. 2014
Oct. 2016
Oct. 2018
Apr. 2019
FAST@TA FAST@Auger
@TA
@Auger
T. Fujii et al., Astroparticle Physics 74 (2016) 64-72
M. Malacari et al., Astroparticle Physics 119 (2020) 102430
D. Mandat et al., JINST 12, T07001 (2017)
Atmospheric monitoring studies
7
A distant laser detected with FAST
Star extinctions measured with all sky camera
er photo-multiplier tubes at the detector plane and a segmented mirror of 1.6 m in
er. In October 2016, September 2017, and September 2018 three such prototypes
stalled at the Black Rock Mesa (BRM) site of the Telescope Array experiment
al Utah, USA [3, 4]. All three telescopes have been steadily taking data since
tion. Collected data include measurements of air showers, as well as vertical
aces from the Telescope Array’s Central Laser Facility (CLF) [5]. The cloud
e and atmospheric transparency are two of the largest systematic uncertainties
fluorescence technique, making robust atmospheric monitoring an essential task
xt-generation cosmic ray observatory [6]. We present an instrument capable of
ng monitoring of these important atmospheric parameters.
Figure 1. Left: The FASCam installed atop one of the FAST telescope huts at the
Black Rock Mesa site of the Telescope Array experiment in central Utah, USA. The
small instrument in the plastic tube next to the FASCam is a Sky Quality Monitor
(SQM-LE). Right: The field of view of the FASCam with the FAST telescope field
of view indicated. The grid splits the image into 30 ⇥ 30 regions in azimuth and
elevation.
FASCam
ASCam is an astronomical cooled CCD camera equipped with a 360 ⇥ 90
h and elevation) lens and a set of filters installed in the internal filter wheel
Johnson R, Johnson V, Johnson B, Baader UV). The camera is mounted in a
oof UV-resistant housing and connected to an IP65 plastic box located inside
ST hut that includes the electronics (PC, heating, power source). The FASCam
s nightly full-sky images, along with measurements of the cloud coverage and
atmospheric extinction. The FASCam UV filter transmittance is similar to that
FASCam 5
FASCam 4
Figure 2. The waterproof body of the FASCam is built from aluminum sheets
equipped with a glass UV-VIS transparent lens cover at the top of the box (top-left
and center image). The G2-4000 astronomical camera is placed inside the aluminum
box (top- right) and the cables are routed out of the box using IP65 stainless electrical
glands. The G2-4000 camera is equipped with an internal five position filter wheel and
mechanical shutter (bottom-left). The lens of the FASCam is a Sigma 4.5/2.8 EX DC
(bottom-center). The readout electronics and power source is installed in a plastic box
and includes a Raspberry Pi single board computer and storage disc (bottom-right).
Figure 3. The transmittance of the Johnson BVR and UV filters installed in the
FASCam, together with the FASCam CCD quantum efficiency graph. The QE plot
Automated all-sky camera
L. Chytka et al. (FAST Collaboration), JINST 15 T10009 (2020)
-2018/05/15
Time bin [100 ns]
200 250 300 350 400
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/
100
ns
pe
N
0
50
100
150
200
250
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/
100
ns
pe
N
0
50
100
150
200
Data
Simulation
Time bin [100 ns]
150 200 250 300 350 400 450 500
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/
100
ns
pe
N
0
50
100
150
200
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
4 / 9
Cherenkov dominated event with "top-down" reconstruction
8
FAST waveforms + Expected signals from top-down reconstruction
(Data, Simulation by the best-fit parameters)
FAST top-down reconstruction (Preliminary)
Zenith Azimuth Core(X) Core(Y) Xmax Energy
59.8 deg -96.7 deg 7.9 km -9.0 km 842 g/cm2 17.3 EeV
TA FD
(Preliminary)
Energy: 19.0 EeV
Rp: 6.1 km
Fluorescence dominated event
9
Event 2: SD: 15.8 EeV, Zen: 36.15◦
, Azi: 18.0◦
, Core(5.002,
-4.461), Date: 20190110, Time: 063617.657363 FD: 19.95 EeV,
Zen: 33.2◦
, Azi: 35.8◦
, Core(6.12, -5.26), Date: 20190110,
Time: 063617.657398690
Event 4: SD: 1.32 EeV, Zen: 39.07◦
, Azi: -4.84◦
, Core(9.045,
-2.982), Date: 20190110, Time: 070221.485684 FD: 1.86 EeV,
Zen: 33.9◦
, Azi: 10.0◦
, Core(9.8, -3.91), Date: 20190110, Time:
070221.485723180
FAST top-down reconstruction (Preliminary)
Zenith Azimuth Core(X) Core(Y) Xmax Energy
33.9 deg 19.3 deg 4.6 km -4.7 km 808 g/cm2 18.8 EeV
FAST result
TA result
Time bin [100 ns]
0 200 400 600 800 1000
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 100
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 100
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
TA SD (Preliminary)
Zenith Azimuth Core(X) Core(Y) Energy
36.2 deg 18.0 deg 5.0 km -4.5 km 15.8 EeV
TA FD (Preliminary)
33.2 deg 35.8 deg 6.1 km -5.3 km 20.0 EeV
FAST@TA
Reconstructing UHECRs with FAST@TA
10
16 16.5 17 17.5 18 18.5 19 19.5 20
log(E(eV))
1
10
2
10
Impact
parameter
[km]
TA FD events
Single-hit PMT (FAST)
Multi-hit PMTs
✦ Data period: 2018/Mar/19 - 2019/Oct/14, 225 hours
✦ Event number: 964 (TA FD) -> 179 (Single-hit with FAST, S/N > 6σ, Δt > 500 ns) -> 59 (Multi-hit)
✦ The shower parameters are reconstructed by TA FD monocular result
✦ Use top-down reconstruction for events with multi-hit PMTs above 1 EeV
✦ First-guess geometry given from the TA FD
18
10 19
10
(eV)
E
400
500
600
700
800
900
1000
1100
]
2
[g/cm
max
X
Preliminary
FAST
16 16.5 17 17.5 18 18.5 19 19.5 20
log(E(eV))
2
10
3
10
4
10
5
10
s]
µ
Time-average
brightness
[pe/
TA FD events
Single-hit PMT (FAST)
Multi-hit PMTs
Updates on reconstruction methods
11
✦ Top-down reconstruction
✦ Use all available information from individual pixel
traces
✦ Computationally expensive
✦ Need a reliable first-guess geometry
✦ Neural network first guess reconstruction
✦ 3 input per PMT: total signal, centroid time and
pulse hight
✦ Kares/Tensorflow in Python, two hidden layers
✦ 6 outputs: Xmax, energy, geometry (θ, φ, x, y)
✦ Very fast reconstruction
Inputs
3 feature per PMT with S/N > 5σ
on
n

l
T
Outputs
Energy, Xmax, geometry(θ, φ, x, y)
Work: Justin Albury
Performance with the FAST array
12
10
− 5
− 0 5 10
x [km]
10
−
5
−
0
5
10
y[km]
✦ Training data: Energy of 1 - 100 EeV, Xmax of 500 - 1200 g/cm2, uniform
✦ Night sky background: σ=10 p.e./100 ns, based on field measurements at TA and Auger sites
✦ Test data: Xmax distributions based on CORSIKA-Conex simulations
✦ 4 species (P, He, N, Fe) with 3 interaction models (EPOS-LHC, QGSJetII-04, Sibyll 2.3c)
Incircle of the triangle
3-fold trigger
efficiency
100% above
1019.3 eV
ϵ =
Ni(Etrue
trigger)
Ni(Etrue
thrown)
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20
(eV))
true
E
log(
0
0.2
0.4
0.6
0.8
1
Efficiency
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
Proton Helium Nitrogen Iron
Preliminary
Resolution at 40 - 50 EeV (Proton, EPOS-LHC)
13
0 5 10 15 20 25 30
Angular resolution (deg)
0
200
400
600
800
1000
1200
Entries
0 500 1000 1500 2000 2500 3000
Core resolution (m)
0
200
400
600
800
1000
Entries
Constant 26.8
±
1898
Mean 0.00080
±
0.02198
−
Sigma 0.0007
±
0.0758
1
− 0.8
− 0.6
− 0.4
− 0.2
− 0 0.2 0.4 0.6 0.8 1
)
true
/Energy
reco
ln(Energy
0
200
400
600
800
1000
1200
1400
1600
1800
2000
Entries
Constant 26.8
±
1898
Mean 0.00080
±
0.02198
−
Sigma 0.0007
±
0.0758
10000
− 5000
− 0 5000 10000
Core X (m)
10000
−
5000
−
0
5000
10000
Core
Y
(m)
10000
− 5000
− 0 5000 10000
Core X (m)
10000
−
5000
−
0
5000
10000
Core
Y
(m)
Constant 28.7
±
1930
Mean 0.311
±
5.593
Sigma 0.30
±
29.22
400
− 300
− 200
− 100
− 0 100 200 300 400
)
2
(g/cm
true
max
- X
reco
max
X
0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
Entries
Constant 28.7
±
1930
Mean 0.311
±
5.593
Sigma 0.30
±
29.22
True
Reconstructed
✦ Arrival direction: 4.2 degrees, Core: 465 m, Energy: 8% Xmax: 30 g/cm2 (without quality cuts)
Reconstructed Xmax distributions at 40 - 50 EeV
14
500 600 700 800 900 1000 1100 1200
)
2
(g/cm
true
max
X
0
0.05
0.1
0.15
0.2
0.25
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
True Reconstructed
500 600 700 800 900 1000 1100 1200
)
2
(g/cm
reco
max
X
0
0.02
0.04
0.06
0.08
0.1
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
Preliminary
Preliminary
True Xmax rails
15
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20
(eV))
true
E
log(
600
650
700
750
800
850
900
950
)
2
>
(g/cm
true
max
X
<
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
Proton Helium Nitrogen Iron
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20
(eV))
true
E
log(
0
20
40
60
80
100
120
140
160
)
2
)
(g/cm
true
max
X
(
σ
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
Proton Helium Nitrogen Iron
Preliminary
Preliminary
Reconstructed Xmax rails
16
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20
(eV))
reco
E
log(
0
20
40
60
80
100
120
140
160
)
2
)
(g/cm
reco
max
X
(
σ
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
Proton Helium Nitrogen Iron
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20
(eV))
reco
E
log(
600
650
700
750
800
850
900
950
)
2
>
(g/cm
reco
max
X
<
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
Proton Helium Nitrogen Iron
Preliminary
Preliminary
500 600 700 800 900 1000 1100 120
)
2
(g/cm
reco
max
X
0
0.02
0.04
0.06
0.08
0.1
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
500 600 700 800 900 1000 1100 1200
)
2
(g/cm
reco
max
X
0
0.02
0.04
0.06
0.08
0.1
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
500 600 700 800 900 1000 1100 1200
)
2
(g/cm
reco
max
X
0
0.02
0.04
0.06
0.08
0.1
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
500 600 700 800 900 1000 1100 1200
)
2
(g/cm
reco
max
X
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
500 600 700 800 900 1000 1100 120
)
2
(g/cm
reco
max
X
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
500 600 700 800 900 1000 1100 1200
)
2
(g/cm
reco
max
X
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
500 600 700 800 900 1000 1100 1200
)
2
(g/cm
reco
max
X
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
500 600 700 800 900 1000 1100 1200
)
2
(g/cm
reco
max
X
0
0.02
0.04
0.06
0.08
0.1
0.12
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
Reconstructed Xmax distributions (Preliminary)
17
10 - 20 EeV 20 - 30 EeV 30 - 40 EeV 40 - 50 EeV
50 - 60 EeV 60 - 70 EeV 70 - 80 EeV 80 - 90 EeV
A lot of remaining works to optimize quality cuts, neural network, trigger condition....
Electronics and PMT calibration in laboratory
18
Vertical
Horizontal
Single Photo Electron
Robot arm (0.2 mm accuracy)
New electronics development Dual 32ch FADC (ADS52J90), 64ch FADC at maximum
14bit 32.5 MSPS 32ch
MIO module
GPS
RTC
ID
T/H
LED
USB
LAN
SFP
DCDC
ROM
Selectable PHY chip for ethernet
Selectable USB HOST/TARGET
GPS/RTC for 1PPS
To be optimized for FAST telescope
GPIO
SoC module (or SoM)
SoC SDRAM
DCDC
FMC
JTAG
mSD
DCDC MODE
System on Module with Xilinx SoC
(XC7Z030-1FFG676I)
Many purpose
HPC -FMC (80 diff line) compatible, 4ch GBT
All MIO pin is connected
PMOD
On/
Off
RST
FADC module
SoC
To
Analog
F/E
Heat
Sink
HDMI
FADC
To
SoM
CLK
F/O
SSD
Dual 32ch FADC (ADS52J90), 64ch FADC at maximum
Some of input can be bypassed for TDC use
FADC has 7 operation mode
10bit 200/100/50 MSPS 8/16/32ch,
12bit 80/40 MSPS 16/32ch,
14bit 65/32.5 MSPS 16/32ch
M.2 SSD “can be” used, if we can buy firmware
I2C SPI bridge for slow control
64 ch analog input can be connected to analog F/E
In this case, 48ch FADC/TDC, 14 bit 32.5MSPS
DCDC
FADC
I2C
SPI
AMP module
Con
To
FADC
I2C
F/O
AMP
48ch 4 pole LPF / Dscri.(LVDS output) / DAC
/ U.FL coax conn
DAC is used for threshold control of Dscri.
DAC
> 2000 R/C !!
Discr
MIO SoC FADC AMP Assembly
Need optimization (MIO board size, AMP parameter, etc)
Firmware is empty (A lot of work)
Assembly!
Non-uniformity
18.5 19 19.5 20 20.5 21 21.5
(eV))
E
log(
19
10
20
10
)
-1
sr
-1
s
-2
cm
2
(eV
3
E
×
)
E
(
J
TA ICRC 2019
Auger PRD 2020
FAST 1 yr (95%CL)
FAST 10 yr (95%CL)
Summary and future plan
19
FAST@TA FAST@Auger
https://www.fast-project.org
✦ Fluorescence detector Array of Single-pixel
Telescopes (FAST)
✦ Low-cost fluorescence telescope array
✦ Promising concept as next-generation cosmic ray
observatory to fulfill requirements
✦ Anisotropy with mass composition sensitivity
✦ Preliminary performance estimation
✦ 100% efficiency above 1019.3 eV
✦ Preliminary resolution of neural network
reconstruction at 40 EeV
✦ Arrival direction: 4.2 deg, Core: 465 m
✦ Energy: 8%, Xmax: 30 g/cm2 (Δ lnA ~ 1)
✦ Next step and challenges
✦ Stand-alone operation of FAST "array" in field
Expected sensitivity with a full-size FAST array

Contenu connexe

Tendances

FR3T10-4-IGARSS_Aalto-1_Praks.pptx
FR3T10-4-IGARSS_Aalto-1_Praks.pptxFR3T10-4-IGARSS_Aalto-1_Praks.pptx
FR3T10-4-IGARSS_Aalto-1_Praks.pptxgrssieee
 
Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013AREA Science Park
 
Embedded Systems & Open Source Mechatronics
Embedded Systems & Open Source MechatronicsEmbedded Systems & Open Source Mechatronics
Embedded Systems & Open Source MechatronicsCelso Furukawa
 
P. Jovanovic/L. Popovic: Gravitational Lensing Statistics and Cosmology
P. Jovanovic/L. Popovic: Gravitational Lensing Statistics and CosmologyP. Jovanovic/L. Popovic: Gravitational Lensing Statistics and Cosmology
P. Jovanovic/L. Popovic: Gravitational Lensing Statistics and CosmologySEENET-MTP
 
Wiggin dielectric
Wiggin dielectricWiggin dielectric
Wiggin dielectricSaul Wiggin
 
Photoacoustic Imaging with Coherent Light - Emmanuel Bossy
Photoacoustic Imaging with Coherent Light - Emmanuel BossyPhotoacoustic Imaging with Coherent Light - Emmanuel Bossy
Photoacoustic Imaging with Coherent Light - Emmanuel BossySébastien Popoff
 

Tendances (9)

FR3T10-4-IGARSS_Aalto-1_Praks.pptx
FR3T10-4-IGARSS_Aalto-1_Praks.pptxFR3T10-4-IGARSS_Aalto-1_Praks.pptx
FR3T10-4-IGARSS_Aalto-1_Praks.pptx
 
Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013
 
Pulsardetection
PulsardetectionPulsardetection
Pulsardetection
 
Goddard-DR-2010
Goddard-DR-2010Goddard-DR-2010
Goddard-DR-2010
 
Embedded Systems & Open Source Mechatronics
Embedded Systems & Open Source MechatronicsEmbedded Systems & Open Source Mechatronics
Embedded Systems & Open Source Mechatronics
 
P. Jovanovic/L. Popovic: Gravitational Lensing Statistics and Cosmology
P. Jovanovic/L. Popovic: Gravitational Lensing Statistics and CosmologyP. Jovanovic/L. Popovic: Gravitational Lensing Statistics and Cosmology
P. Jovanovic/L. Popovic: Gravitational Lensing Statistics and Cosmology
 
Wiggin dielectric
Wiggin dielectricWiggin dielectric
Wiggin dielectric
 
Aspelmeyer
AspelmeyerAspelmeyer
Aspelmeyer
 
Photoacoustic Imaging with Coherent Light - Emmanuel Bossy
Photoacoustic Imaging with Coherent Light - Emmanuel BossyPhotoacoustic Imaging with Coherent Light - Emmanuel Bossy
Photoacoustic Imaging with Coherent Light - Emmanuel Bossy
 

Similaire à Latest results of ultra-high-energy cosmic ray measurements with prototypes of the Fluorescence detector Array of Single-pixel Telescopes (FAST)

Fluorescence technique - FAST
Fluorescence technique - FASTFluorescence technique - FAST
Fluorescence technique - FASTToshihiro FUJII
 
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画Toshihiro FUJII
 
FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価Toshihiro FUJII
 
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...Toshihiro FUJII
 
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...Toshihiro FUJII
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...Toshihiro FUJII
 
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) projectFluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) projectToshihiro FUJII
 
The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -Toshihiro FUJII
 
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Toshihiro FUJII
 
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告Toshihiro FUJII
 
637126main stysley presentation
637126main stysley presentation637126main stysley presentation
637126main stysley presentationClifford Stone
 
Biomimetics : Compound eyes
Biomimetics : Compound eyesBiomimetics : Compound eyes
Biomimetics : Compound eyesYoung Min Song
 
Eis meeting talk
Eis meeting talkEis meeting talk
Eis meeting talkastrosanti
 
ASICs for particle and radiation detection
ASICs for particle and radiation detectionASICs for particle and radiation detection
ASICs for particle and radiation detectionGunnar Maehlum
 
Collective Power of Science: High-Energy Atmospheric Science
Collective Power of Science: High-Energy Atmospheric ScienceCollective Power of Science: High-Energy Atmospheric Science
Collective Power of Science: High-Energy Atmospheric ScienceTeruakiEnoto1
 
A Low Power & Low Noise Multi-Channel ASIC for X-Ray and Gamma-Ray Spectroscopy
A Low Power & Low Noise Multi-Channel ASIC for X-Ray and Gamma-Ray SpectroscopyA Low Power & Low Noise Multi-Channel ASIC for X-Ray and Gamma-Ray Spectroscopy
A Low Power & Low Noise Multi-Channel ASIC for X-Ray and Gamma-Ray SpectroscopyGunnar Maehlum
 
Deep Impact Poster Revised
Deep Impact Poster RevisedDeep Impact Poster Revised
Deep Impact Poster RevisedAlejandro Cota
 

Similaire à Latest results of ultra-high-energy cosmic ray measurements with prototypes of the Fluorescence detector Array of Single-pixel Telescopes (FAST) (20)

Fluorescence technique - FAST
Fluorescence technique - FASTFluorescence technique - FAST
Fluorescence technique - FAST
 
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
 
FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価
 
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
 
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
 
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) projectFluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
 
The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -
 
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
 
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
 
637126main stysley presentation
637126main stysley presentation637126main stysley presentation
637126main stysley presentation
 
Biomimetics : Compound eyes
Biomimetics : Compound eyesBiomimetics : Compound eyes
Biomimetics : Compound eyes
 
Eis meeting talk
Eis meeting talkEis meeting talk
Eis meeting talk
 
ASICs for particle and radiation detection
ASICs for particle and radiation detectionASICs for particle and radiation detection
ASICs for particle and radiation detection
 
Goddard 2015: Mark Clampin, NASA
Goddard 2015: Mark Clampin, NASAGoddard 2015: Mark Clampin, NASA
Goddard 2015: Mark Clampin, NASA
 
Collective Power of Science: High-Energy Atmospheric Science
Collective Power of Science: High-Energy Atmospheric ScienceCollective Power of Science: High-Energy Atmospheric Science
Collective Power of Science: High-Energy Atmospheric Science
 
A Low Power & Low Noise Multi-Channel ASIC for X-Ray and Gamma-Ray Spectroscopy
A Low Power & Low Noise Multi-Channel ASIC for X-Ray and Gamma-Ray SpectroscopyA Low Power & Low Noise Multi-Channel ASIC for X-Ray and Gamma-Ray Spectroscopy
A Low Power & Low Noise Multi-Channel ASIC for X-Ray and Gamma-Ray Spectroscopy
 
AJ_Article
AJ_ArticleAJ_Article
AJ_Article
 
GAIA @SpaceUpParis
GAIA @SpaceUpParisGAIA @SpaceUpParis
GAIA @SpaceUpParis
 
Deep Impact Poster Revised
Deep Impact Poster RevisedDeep Impact Poster Revised
Deep Impact Poster Revised
 

Plus de Toshihiro FUJII

FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...Toshihiro FUJII
 
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)Toshihiro FUJII
 
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究Toshihiro FUJII
 
20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdfToshihiro FUJII
 
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Toshihiro FUJII
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究Toshihiro FUJII
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告Toshihiro FUJII
 
A Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence DetectorsA Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence DetectorsToshihiro FUJII
 

Plus de Toshihiro FUJII (8)

FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
 
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
 
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
 
20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf
 
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
 
A Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence DetectorsA Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence Detectors
 

Dernier

Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Silpa
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Servicenishacall1
 
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Silpa
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxRizalinePalanog2
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxFarihaAbdulRasheed
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxSuji236384
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)Areesha Ahmad
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Monika Rani
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learninglevieagacer
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.Nitya salvi
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Servicemonikaservice1
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flyPRADYUMMAURYA1
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Joonhun Lee
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...ssuser79fe74
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
IDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicineIDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicinesherlingomez2
 

Dernier (20)

Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
IDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicineIDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicine
 

Latest results of ultra-high-energy cosmic ray measurements with prototypes of the Fluorescence detector Array of Single-pixel Telescopes (FAST)

  • 1. Toshihiro Fujii (Kyoto University) fujii@cr.scphys.kyoto-u.ac.jp Latest results of ultra-high-energy cosmic ray measurements with prototypes of the Fluorescence detector Array of Single-pixel Telescopes (FAST) Justin Albury, Jose Bellido, Ladislav Chytka, John Farmer, Petr Hamal, Pavel Horvath, Miroslav Hrabovsky, Hidetoshi Kubo, Jiri Kvita, Max Malacari, Dusan Mandat, Massimo Mastrodicasa, John Matthews, Stanislav Michal, Xiaochen Ni, Seiya Nozaki, Libor Nozka, Tomohiko Oka, Miroslav Palatka, Miroslav Pech, Paolo Privitera, Petr Schovanek, Francesco Salamida, Radomir Smida, Stan Thomas, Akimichi Taketa, Kenta Terauchi, Petr Travnicek, Martin Vacula, Seokhyun Yoo (FAST Collaboration) ICRC 2021, July 21th, 2021 ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE Berlin | Germany ONLINE ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE Berlin | Germany 37th International Cosmic Ray Conference 12–23 July 2021
  • 2. Ultra-high-energy cosmic ray (UHECR) sky 2 → Extragalactic cosmic rays NASA/DOE/Fermi Collaboration GAIA Collaboration J. Biteau, TF et al., EPJ Web of Conferences 210, 01005 (2019) A. di Matteo, TF et al., PoS ICRC2019 (2020) 439, using a different color contour "Ankle" energies (EAuger>8.86 EeV, ETA>10 EeV) Optical γ-rays
  • 3. UHECR sky above cutoff 3 "Cutoff" energies (EAuger>40 EeV: 842 events in 13.3 yr, ETA>52.3 EeV: 127 events in 9 yr) ● Intriguing intermediate anisotropies: Active galactic nuclei, Starburst galaxies ● No excess from the Virgo cluster, Virgo scandal ● Challenges to mass composition and galactic/extragalactic magnetic fields → Need more statistic with mass composition sensitivity to identify UHECR sources J. Biteau, TF et al., EPJ Web of Conferences 210, 01005 (2019) A. di Matteo, TF et al., PoS ICRC2019 (2020) 439, using a different color contour
  • 4. Fine pixelated camera Low-cost and simplified telescope ✦ Target : > 1019.5 eV, ultrahigh-energy cosmic rays, neutrino and gamma rays ✦ Huge target volume ⇒ Fluorescence detector array Too expensive to cover a huge area 4 Smaller optics and single or few pixels Fluorescence detector Array of Single-pixel Telescopes Segmented mirror telescope Variable angles of elevation – steps. 15 deg 45 deg
  • 5. 5 10 − 5 − 0 5 10 x [km] 10 − 5 − 0 5 10 y[km] Simulation E = 40 EeV θ = 50° 20 km FAST telescope 4 PMTs (20 cm diameter) 1 m2 aperture (UV filter) Segmented mirror in 1.6 m diameter 0 200 400 600 800 1000 Time bin [100 ns] 20 − 0 20 40 60 80 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 40 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 40 50 60 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 20 − 0 20 40 60 80 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 40 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 40 50 60 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 40 − 20 − 0 20 40 60 80 100 120 140 160 180 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 20 − 0 20 40 60 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 20 − 0 20 40 60 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 40 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 20 − 0 20 40 60 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 40 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 40 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 40 − 20 − 0 20 40 60 80 100 120 140 160 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 50 − 0 50 100 150 200 250 300 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 20 − 0 20 40 60 / 100 ns pe N Segmented mirror telescope Variable angles of elevation – steps. construction is still in development 15 deg 45 deg Joint Laboratory of Optics Olomouc – March 2014 7 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 40 − 20 − 0 20 40 60 80 / 100 ns pe N 12 telescopes / station 500 stations → 150,000 km2 Time p.e. / 100 ns 100 µs Fluorescence detector Array of Single-pixel Telescopes PMT waveform 0 µs
  • 6. Field measurements to validate the FAST concept 6 1 in Astroparticle Physics P. Privitera in UHECR 2012 EUSO-TA optics + Single-pixel camera Time (100 ns) 0 100 200 300 400 500 600 700 800 / (100 ns) p.e. N 0 50 100 150 200 250 300 350 Data Simulation Time (100 ns) 0 100 200 300 400 500 600 700 800 / (100 ns) p.e. N -20 0 20 40 60 80 Cosmic Ray (1 EeV, 2 km) Vertical laser (~ 30 EeV) Feb. 2012 Sep. 2017 Apr. 2014 Oct. 2016 Oct. 2018 Apr. 2019 FAST@TA FAST@Auger @TA @Auger T. Fujii et al., Astroparticle Physics 74 (2016) 64-72 M. Malacari et al., Astroparticle Physics 119 (2020) 102430 D. Mandat et al., JINST 12, T07001 (2017)
  • 7. Atmospheric monitoring studies 7 A distant laser detected with FAST Star extinctions measured with all sky camera er photo-multiplier tubes at the detector plane and a segmented mirror of 1.6 m in er. In October 2016, September 2017, and September 2018 three such prototypes stalled at the Black Rock Mesa (BRM) site of the Telescope Array experiment al Utah, USA [3, 4]. All three telescopes have been steadily taking data since tion. Collected data include measurements of air showers, as well as vertical aces from the Telescope Array’s Central Laser Facility (CLF) [5]. The cloud e and atmospheric transparency are two of the largest systematic uncertainties fluorescence technique, making robust atmospheric monitoring an essential task xt-generation cosmic ray observatory [6]. We present an instrument capable of ng monitoring of these important atmospheric parameters. Figure 1. Left: The FASCam installed atop one of the FAST telescope huts at the Black Rock Mesa site of the Telescope Array experiment in central Utah, USA. The small instrument in the plastic tube next to the FASCam is a Sky Quality Monitor (SQM-LE). Right: The field of view of the FASCam with the FAST telescope field of view indicated. The grid splits the image into 30 ⇥ 30 regions in azimuth and elevation. FASCam ASCam is an astronomical cooled CCD camera equipped with a 360 ⇥ 90 h and elevation) lens and a set of filters installed in the internal filter wheel Johnson R, Johnson V, Johnson B, Baader UV). The camera is mounted in a oof UV-resistant housing and connected to an IP65 plastic box located inside ST hut that includes the electronics (PC, heating, power source). The FASCam s nightly full-sky images, along with measurements of the cloud coverage and atmospheric extinction. The FASCam UV filter transmittance is similar to that FASCam 5 FASCam 4 Figure 2. The waterproof body of the FASCam is built from aluminum sheets equipped with a glass UV-VIS transparent lens cover at the top of the box (top-left and center image). The G2-4000 astronomical camera is placed inside the aluminum box (top- right) and the cables are routed out of the box using IP65 stainless electrical glands. The G2-4000 camera is equipped with an internal five position filter wheel and mechanical shutter (bottom-left). The lens of the FASCam is a Sigma 4.5/2.8 EX DC (bottom-center). The readout electronics and power source is installed in a plastic box and includes a Raspberry Pi single board computer and storage disc (bottom-right). Figure 3. The transmittance of the Johnson BVR and UV filters installed in the FASCam, together with the FASCam CCD quantum efficiency graph. The QE plot Automated all-sky camera L. Chytka et al. (FAST Collaboration), JINST 15 T10009 (2020)
  • 8. -2018/05/15 Time bin [100 ns] 200 250 300 350 400 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 / 100 ns pe N 0 50 100 150 200 250 Data Simulation Time bin [100 ns] 200 250 300 350 400 / 100 ns pe N 0 50 100 150 200 Data Simulation Time bin [100 ns] 150 200 250 300 350 400 450 500 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 / 100 ns pe N 0 50 100 150 200 Data Simulation Time bin [100 ns] 200 250 300 350 400 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation 4 / 9 Cherenkov dominated event with "top-down" reconstruction 8 FAST waveforms + Expected signals from top-down reconstruction (Data, Simulation by the best-fit parameters) FAST top-down reconstruction (Preliminary) Zenith Azimuth Core(X) Core(Y) Xmax Energy 59.8 deg -96.7 deg 7.9 km -9.0 km 842 g/cm2 17.3 EeV TA FD (Preliminary) Energy: 19.0 EeV Rp: 6.1 km
  • 9. Fluorescence dominated event 9 Event 2: SD: 15.8 EeV, Zen: 36.15◦ , Azi: 18.0◦ , Core(5.002, -4.461), Date: 20190110, Time: 063617.657363 FD: 19.95 EeV, Zen: 33.2◦ , Azi: 35.8◦ , Core(6.12, -5.26), Date: 20190110, Time: 063617.657398690 Event 4: SD: 1.32 EeV, Zen: 39.07◦ , Azi: -4.84◦ , Core(9.045, -2.982), Date: 20190110, Time: 070221.485684 FD: 1.86 EeV, Zen: 33.9◦ , Azi: 10.0◦ , Core(9.8, -3.91), Date: 20190110, Time: 070221.485723180 FAST top-down reconstruction (Preliminary) Zenith Azimuth Core(X) Core(Y) Xmax Energy 33.9 deg 19.3 deg 4.6 km -4.7 km 808 g/cm2 18.8 EeV FAST result TA result Time bin [100 ns] 0 200 400 600 800 1000 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 100 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 100 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation TA SD (Preliminary) Zenith Azimuth Core(X) Core(Y) Energy 36.2 deg 18.0 deg 5.0 km -4.5 km 15.8 EeV TA FD (Preliminary) 33.2 deg 35.8 deg 6.1 km -5.3 km 20.0 EeV FAST@TA
  • 10. Reconstructing UHECRs with FAST@TA 10 16 16.5 17 17.5 18 18.5 19 19.5 20 log(E(eV)) 1 10 2 10 Impact parameter [km] TA FD events Single-hit PMT (FAST) Multi-hit PMTs ✦ Data period: 2018/Mar/19 - 2019/Oct/14, 225 hours ✦ Event number: 964 (TA FD) -> 179 (Single-hit with FAST, S/N > 6σ, Δt > 500 ns) -> 59 (Multi-hit) ✦ The shower parameters are reconstructed by TA FD monocular result ✦ Use top-down reconstruction for events with multi-hit PMTs above 1 EeV ✦ First-guess geometry given from the TA FD 18 10 19 10 (eV) E 400 500 600 700 800 900 1000 1100 ] 2 [g/cm max X Preliminary FAST 16 16.5 17 17.5 18 18.5 19 19.5 20 log(E(eV)) 2 10 3 10 4 10 5 10 s] µ Time-average brightness [pe/ TA FD events Single-hit PMT (FAST) Multi-hit PMTs
  • 11. Updates on reconstruction methods 11 ✦ Top-down reconstruction ✦ Use all available information from individual pixel traces ✦ Computationally expensive ✦ Need a reliable first-guess geometry ✦ Neural network first guess reconstruction ✦ 3 input per PMT: total signal, centroid time and pulse hight ✦ Kares/Tensorflow in Python, two hidden layers ✦ 6 outputs: Xmax, energy, geometry (θ, φ, x, y) ✦ Very fast reconstruction Inputs 3 feature per PMT with S/N > 5σ on n l T Outputs Energy, Xmax, geometry(θ, φ, x, y) Work: Justin Albury
  • 12. Performance with the FAST array 12 10 − 5 − 0 5 10 x [km] 10 − 5 − 0 5 10 y[km] ✦ Training data: Energy of 1 - 100 EeV, Xmax of 500 - 1200 g/cm2, uniform ✦ Night sky background: σ=10 p.e./100 ns, based on field measurements at TA and Auger sites ✦ Test data: Xmax distributions based on CORSIKA-Conex simulations ✦ 4 species (P, He, N, Fe) with 3 interaction models (EPOS-LHC, QGSJetII-04, Sibyll 2.3c) Incircle of the triangle 3-fold trigger efficiency 100% above 1019.3 eV ϵ = Ni(Etrue trigger) Ni(Etrue thrown) 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 (eV)) true E log( 0 0.2 0.4 0.6 0.8 1 Efficiency EPOS-LHC QGSJetII-04 Sibyll 2.3c Proton Helium Nitrogen Iron Preliminary
  • 13. Resolution at 40 - 50 EeV (Proton, EPOS-LHC) 13 0 5 10 15 20 25 30 Angular resolution (deg) 0 200 400 600 800 1000 1200 Entries 0 500 1000 1500 2000 2500 3000 Core resolution (m) 0 200 400 600 800 1000 Entries Constant 26.8 ± 1898 Mean 0.00080 ± 0.02198 − Sigma 0.0007 ± 0.0758 1 − 0.8 − 0.6 − 0.4 − 0.2 − 0 0.2 0.4 0.6 0.8 1 ) true /Energy reco ln(Energy 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Entries Constant 26.8 ± 1898 Mean 0.00080 ± 0.02198 − Sigma 0.0007 ± 0.0758 10000 − 5000 − 0 5000 10000 Core X (m) 10000 − 5000 − 0 5000 10000 Core Y (m) 10000 − 5000 − 0 5000 10000 Core X (m) 10000 − 5000 − 0 5000 10000 Core Y (m) Constant 28.7 ± 1930 Mean 0.311 ± 5.593 Sigma 0.30 ± 29.22 400 − 300 − 200 − 100 − 0 100 200 300 400 ) 2 (g/cm true max - X reco max X 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 Entries Constant 28.7 ± 1930 Mean 0.311 ± 5.593 Sigma 0.30 ± 29.22 True Reconstructed ✦ Arrival direction: 4.2 degrees, Core: 465 m, Energy: 8% Xmax: 30 g/cm2 (without quality cuts)
  • 14. Reconstructed Xmax distributions at 40 - 50 EeV 14 500 600 700 800 900 1000 1100 1200 ) 2 (g/cm true max X 0 0.05 0.1 0.15 0.2 0.25 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c True Reconstructed 500 600 700 800 900 1000 1100 1200 ) 2 (g/cm reco max X 0 0.02 0.04 0.06 0.08 0.1 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c Preliminary Preliminary
  • 15. True Xmax rails 15 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 (eV)) true E log( 600 650 700 750 800 850 900 950 ) 2 > (g/cm true max X < EPOS-LHC QGSJetII-04 Sibyll 2.3c Proton Helium Nitrogen Iron 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 (eV)) true E log( 0 20 40 60 80 100 120 140 160 ) 2 ) (g/cm true max X ( σ EPOS-LHC QGSJetII-04 Sibyll 2.3c Proton Helium Nitrogen Iron Preliminary Preliminary
  • 16. Reconstructed Xmax rails 16 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 (eV)) reco E log( 0 20 40 60 80 100 120 140 160 ) 2 ) (g/cm reco max X ( σ EPOS-LHC QGSJetII-04 Sibyll 2.3c Proton Helium Nitrogen Iron 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 (eV)) reco E log( 600 650 700 750 800 850 900 950 ) 2 > (g/cm reco max X < EPOS-LHC QGSJetII-04 Sibyll 2.3c Proton Helium Nitrogen Iron Preliminary Preliminary
  • 17. 500 600 700 800 900 1000 1100 120 ) 2 (g/cm reco max X 0 0.02 0.04 0.06 0.08 0.1 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c 500 600 700 800 900 1000 1100 1200 ) 2 (g/cm reco max X 0 0.02 0.04 0.06 0.08 0.1 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c 500 600 700 800 900 1000 1100 1200 ) 2 (g/cm reco max X 0 0.02 0.04 0.06 0.08 0.1 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c 500 600 700 800 900 1000 1100 1200 ) 2 (g/cm reco max X 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c 500 600 700 800 900 1000 1100 120 ) 2 (g/cm reco max X 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c 500 600 700 800 900 1000 1100 1200 ) 2 (g/cm reco max X 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c 500 600 700 800 900 1000 1100 1200 ) 2 (g/cm reco max X 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c 500 600 700 800 900 1000 1100 1200 ) 2 (g/cm reco max X 0 0.02 0.04 0.06 0.08 0.1 0.12 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c Reconstructed Xmax distributions (Preliminary) 17 10 - 20 EeV 20 - 30 EeV 30 - 40 EeV 40 - 50 EeV 50 - 60 EeV 60 - 70 EeV 70 - 80 EeV 80 - 90 EeV A lot of remaining works to optimize quality cuts, neural network, trigger condition....
  • 18. Electronics and PMT calibration in laboratory 18 Vertical Horizontal Single Photo Electron Robot arm (0.2 mm accuracy) New electronics development Dual 32ch FADC (ADS52J90), 64ch FADC at maximum 14bit 32.5 MSPS 32ch MIO module GPS RTC ID T/H LED USB LAN SFP DCDC ROM Selectable PHY chip for ethernet Selectable USB HOST/TARGET GPS/RTC for 1PPS To be optimized for FAST telescope GPIO SoC module (or SoM) SoC SDRAM DCDC FMC JTAG mSD DCDC MODE System on Module with Xilinx SoC (XC7Z030-1FFG676I) Many purpose HPC -FMC (80 diff line) compatible, 4ch GBT All MIO pin is connected PMOD On/ Off RST FADC module SoC To Analog F/E Heat Sink HDMI FADC To SoM CLK F/O SSD Dual 32ch FADC (ADS52J90), 64ch FADC at maximum Some of input can be bypassed for TDC use FADC has 7 operation mode 10bit 200/100/50 MSPS 8/16/32ch, 12bit 80/40 MSPS 16/32ch, 14bit 65/32.5 MSPS 16/32ch M.2 SSD “can be” used, if we can buy firmware I2C SPI bridge for slow control 64 ch analog input can be connected to analog F/E In this case, 48ch FADC/TDC, 14 bit 32.5MSPS DCDC FADC I2C SPI AMP module Con To FADC I2C F/O AMP 48ch 4 pole LPF / Dscri.(LVDS output) / DAC / U.FL coax conn DAC is used for threshold control of Dscri. DAC > 2000 R/C !! Discr MIO SoC FADC AMP Assembly Need optimization (MIO board size, AMP parameter, etc) Firmware is empty (A lot of work) Assembly! Non-uniformity
  • 19. 18.5 19 19.5 20 20.5 21 21.5 (eV)) E log( 19 10 20 10 ) -1 sr -1 s -2 cm 2 (eV 3 E × ) E ( J TA ICRC 2019 Auger PRD 2020 FAST 1 yr (95%CL) FAST 10 yr (95%CL) Summary and future plan 19 FAST@TA FAST@Auger https://www.fast-project.org ✦ Fluorescence detector Array of Single-pixel Telescopes (FAST) ✦ Low-cost fluorescence telescope array ✦ Promising concept as next-generation cosmic ray observatory to fulfill requirements ✦ Anisotropy with mass composition sensitivity ✦ Preliminary performance estimation ✦ 100% efficiency above 1019.3 eV ✦ Preliminary resolution of neural network reconstruction at 40 EeV ✦ Arrival direction: 4.2 deg, Core: 465 m ✦ Energy: 8%, Xmax: 30 g/cm2 (Δ lnA ~ 1) ✦ Next step and challenges ✦ Stand-alone operation of FAST "array" in field Expected sensitivity with a full-size FAST array