SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez nos Conditions d’utilisation et notre Politique de confidentialité.
SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez notre Politique de confidentialité et nos Conditions d’utilisation pour en savoir plus.
Publié le
Search engines frequently miss the mark when it comes to understanding user intent. This talk will walk through some of the key building blocks necessary to turn a search engine into a dynamically-learning "intent engine", able to interpret and search on meaning, not just keywords. We will walk through CareerBuilder's semantic search architecture, including semantic autocomplete, query and document interpretation, probabilistic query parsing, automatic taxonomy discovery, keyword disambiguation, and personalization based upon user context/behavior. We will also see how to leverage an inverted index (Lucene/Solr) as a knowledge graph that can be used as a dynamic ontology to extract phrases, understand and weight the semantic relationships between those phrases and known entities, and expand the query to include those additional conceptual relationships.
As an example, most search engines completely miss the mark at parsing a query like (Senior Java Developer Portland, OR Hadoop). We will show how to dynamically understand that "senior" designates an experience level, that "java developer" is a job title related to "software engineering", that "portland, or" is a city with a specific geographical boundary (as opposed to a keyword followed by a boolean operator), and that "hadoop" is the skill "Apache Hadoop", which is also related to other terms like "hbase", "hive", and "map/reduce". We will discuss how to train the search engine to parse the query into this intended understanding and how to reflect this understanding to the end user to provide an insightful, augmented search experience.
Topics: Semantic Search, Apache Solr, Finite State Transducers, Probabilistic Query Parsing, Bayes Theorem, Augmented Search, Recommendations, Query Disambiguation, NLP, Knowledge Graphs
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Identifiez-vous pour voir les commentaires