SlideShare une entreprise Scribd logo
1  sur  15
Télécharger pour lire hors ligne
Learning From Noisy
Labels With Deep Neural
Networks: A Survey
Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, Jae-Gil
Lee, IEEE TNNLS 2022
橋口凌大(名工大玉木研)
2022/10/28
概要
nノイズの多いデータから学習させる方法のサーベイ
• ノイズにロバストなモデル
n分類タスクに焦点を当ててロバストな学習
• ロバストなアーキテクチャ
• ロバストな正則化
• ロバストな損失関数の設計
• サンプル選択
ラベルノイズ下での教師あり学習
n問題点
• ノイズラベルを記憶し,汎化性能が低下
nアプローチ
• ノイズの影響を軽減する学習方法の確立
nノイズの種類についての調査
• インスタンス依存
• インスタンス非依存
Clean labels Wrong labels
Cross Entropy
Early-learning
Regularization
[Liu+, NeurIPS2020]
深層学習とノイジーラベル
n深層学習ではラベルノイズの影響を受けやすい
nロバスト性を実現するために複数の学習手法が誕生
(a) Noise added on classification inputs. (b) Noise added on classification labels.
Figure 7. Accuracy (left in each pair, solid is train, dotted is validation) and Critical sample ratios (right in each pair) for MNIST.
(a) Noise added on classification inputs. (b) Noise added on classification labels.
Figure 8. Accuracy (left in each pair, solid is train, dotted is validation) and Critical sample ratios (right in each pair) for CIFAR10.
Algorithm 1 Langevin Adversarial Sample Search (LASS)
Require: x 2 Rn
, ↵, , r, noise process ⌘
Ensure: x̂
1: converged = FALSE
2: x̃ x; x̂ ;
3: while not converged or max iter reached do
4: = ↵ · sign(@fk(x)
@x ) + · ⌘
5: x̃ x̃ +
6: for i 2 [n] do
⇢ i
[Zhang+, ICLR2017]
深層学習によるノイズロバストな学習
nロバストな学習方法の分類
EE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3
Robust Training
Robust Architecture (§III-A)
Robust Regularization (§III-B)
Loss Adjustment (§III-D)
Sample Selection (§III-E)
Robust Loss Function (§III-C)
Robust Loss Design
Noise Adaptation Layer
Dedicated Architecture
Explicit Regularization
Implicit Regularization
Loss Correction
Loss Reweighting
Label Refurbishment
Multi-network Learning
Multi-round Learning
Meta Learning
Hybrid Approach
g. 3. A high level research overview of robust deep learning for noisy labels. The research directions that are actively contributed by the machine learning
mmunity are categorized into five groups in blue italic.
Here, the risk minimization process is no longer noise- C. Non-deep Learning Approaches
Robust Architecture
nノイズ適応層
• ラベル遷移パターンを学習
stness of
hes [16],
research
nity. All
pervised
ion layer
ransition
reliably
o overfit
ly;
unction;
p(ỹ = j|x)=
X
i=1
p(ỹ = j, y = i|x)=
X
i=1
Tijp(y = i|x),
where Tij = p(ỹ = j|y = i, x).
(3)
In light of this, the noise adaptation layer is intended to
mimic the label transition behavior in learning a DNN. Let
p(y|x; ⇥) be the output of the base DNN with a softmax output
layer. Then, following Eq. (3), the probability of an example
x being predicted as its noisy label ỹ is parameterized by
p(ỹ = j|x; ⇥, W) =
c
X
i=1
p(ỹ = j, y=i|x; ⇥, W)
=
c
X
i=1
p(ỹ = j|y=i; W)
| {z }
Noise Adaptation Layer
p(y=i|x; ⇥)
| {z }
Base Model
.
(4)
Here, the noisy label ỹ is assumed to be conditionally
independent of the input x in general. Accordingly, as
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4
[57]. In addition, several decision tree models are extended
using new split criteria to solve the overfitting issue when
the training data are not fully reliable [58], [59]. However, it
is infeasible to apply their design principles to deep learning.
Meanwhile, deep learning is more susceptible to label noises
than traditional machine learning owing to its high expressive
power, as proven by many researchers [21], [60], [61]. There
has been significant effort to understand why noisy labels
negatively affect the performance of DNNs [22], [61]–[63].
This theoretical understanding has led to the algorithmic de-
sign which achieves higher robustness than non-deep learning
methods. A detailed analysis of theoretical understanding for
robust deep learning was provided by Han et al. [30].
D. Regression with Noisy Labels
In addition to classification, regression is another main topic
of supervised machine learning, which aims to model the rela-
tionship between a number of features and a continuous target
variable. Unlike the classification task with a discrete label
space, the regression task considers the continuous variable as
its target label [64], and thus it learns the mapping function
Loss ℒ(𝑓(𝑥; Θ, 𝒲), ෤
𝑦)
True Label y ∈ 𝒴 Input 𝑥 ∈ 𝒳
Base Model 𝜃 with Softmax Layer
Noise Adaptation Layer 𝒑(෥
𝒚|𝒚; 𝓦)
𝑝(𝑦|𝑥; Θ)
𝑝(෤
𝑦|𝑥; Θ, 𝒲)
Noisy Label ෤
y ∈ ෨
𝒴
Label Corruption
Fig. 4. Noise modeling process using the noise adaptation layer.
Overall, we categorize all recent deep learning methods into
five groups corresponding to popular research directions, as
shown in Figure 3. In §III-D, meta learning is also discussed
because it finds the optimal hyperparameters for loss reweight-
ing. In §III-E, we discuss the recent efforts for combining
sample selection with other orthogonal directions or semi-
supervised learning toward the state-of-the-art performance.
Figure 2 illustrates the categorization of robust training
methods using these five groups.
A. Robust Architecture
Robust Architecture
n専用アーキテクチャ
• ラベル遷移確率の推定の信頼性の向上
• 2つのネットワークを学習
• ラベル遷移確率の予測
• ノイズの種類の予測
Noise Free 41%
Random 3%
Confusing 56%
p(z | x)
5 Layers of
Conv +
Pool + Norm
3 FC Layers
of Size
4096 4096 14
5 Layers of
Conv +
Pool + Norm
3 FC Layers
of Size
4096 1024 3
Label Noise
Model Layer
Down Coat
Windbreaker 4%
Jacket 1%
……
94%
p(y | x)
Noisy Label:
Windbreaker
Down Coat
Windbreaker 11%
Jacket 4%
……
75%
p(y | y
!,x)
Noise Free 11%
Random 4%
Confusing 85%
p(z | y
!,x)
Data with
Clean Labels
Figure 5. System diagram of our method. Two CNNs are used to predict the class label p(y|x) and the noise type p(z|x), respectively. The
[Xiao+, CVPR2015]
Robust Regularization
n明示的な正則化
• 学習損失を修正する
2 S. Jenni and P. Favaro
validation mini-batches
data set
training mini-batches
i2T t
!i`i(✓)
j2Vt
`j(✓) ✓ = ✓t
✏
i2T t
!ir`i(✓t
)
stochastic gradient descent
with mini-batch adaptive weights
!i
j2Vt
r`j(✓t
)>
r`i(✓t
)
|r`i(✓t)|2 + µ̂
mini-batch weights
r`j(✓t
)
r`i(✓t
)
if gradients agree
the mini-batch weights
are positive and large
Fig. 1. The training procedure of our bilevel formulation. At each iteration we sample
[Jenni&Favaro, ECCV2018]
Robust Regularization
n暗黙的な正則化
• 確率的な効果をもたらす正則化
• データ拡張
• ミニバッチ確率的勾配降下法
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
with a uniform mixture over all possible labels,
ȳ =
⌦
ȳ(1), ȳ(2), . . . , ȳ(c)
↵
,
where ȳ(i) = (1 ↵) · [ỹ = i] + ↵/c and ↵ 2 [0, 1].
(5)
Here, [·] is the Iverson bracket and ↵ is the smoothing degree.
In contrast, mixup [95] regularizes the DNN to favor simple
linear behaviors in between training examples. First, the mini-
batch is constructed using virtual training examples, each of
which is formed by the linear interpolation of two noisy
training examples (xi, ỹi) and (xj, ỹj) obtained at random
from noisy training data D̃,
xmix = xi + (1 )xj and ymix = ỹi + (1 )ỹj, (6)
where 2 [0, 1] is the balance parameter between two
examples. Thus, mixup extends the training distribution by
where C is a cons
classifier trained on
probability as tha
the specified assu
classification was pr
RD(f⇤
) = 0, then t
asymmetric noise, w
For the classific
tropy (CCE) loss is
to its fast converg
However, in the pr
[68] showed that the
better generalization
loss satisfies the af
the MAE loss is tha
Robust Loss Function
n未知のクリーンなデータに対してもロバストな損失を設計
• ベイズリスク最小化がノイズ耐性となるような損失関数を証明
[Manwani&Sastry, IEEE Transactions on Cybernetics 2013]
n以下が成り立つときにノイズ耐性があると定義
in the training data [68], [97]–[101].
Technical Detail: Initially, Manwani and Sastry [48] theo-
retically proved a sufficient condition for the loss function
such that risk minimization with that function becomes noise-
tolerant for binary classification. Subsequently, the sufficient
condition was extended for multi-class classification using
deep learning [68]. Specifically, a loss function is defined to
be noise-tolerant for a c-class classification under symmetric
noise if the function satisfies the noise rate ⌧ < c 1
c and
c
X
j=1
` f(x; ⇥), y = j = C, 8x 2 X, 8f, (8)
correction that es
the forward or bac
different importan
scheme, 3) label
refurbished label
and predicted lab
infers the optima
loss function new
methods aims to
robust to label n
update rule is adj
noise is minimize
Loss Adjustment
nパラメータ更新の前にすべての学習性の損失を調整
1. ノイズ遷移行列を推定して損失補正
2. 各例に異なる重要度を付与する損失再重み付け
3. ノイズラベルと予測ラベルから生成したラベルを用いて損失を調整
4. 損失調整の最適ルールを自動的に推測するメタ学習
n 利点
• 学習データ全てに対して損失の調整が適用できる
n 欠点
• クラス数やノイズラベルが多い時,誤補正による誤差が蓄積される [Han+,
NeurIPS2018]
Loss Adjustment
n損失再重み付け
nラベル更新
• αは信頼度
RKS AND LEARNING SYSTEMS 7
ows for a full exploration
he loss of every example.
correction is accumulated,
classes or the number of
.
the noise adaptation layer
pproach modifies the loss
e estimated label transition
pecified DNN. The main
he transition probability is
tion [62] initially approx-
using the softmax output
orrection. Subsequently, it
the original loss based on
d loss of a example (x, ỹ)
tion of its loss values for
nt is the inverse transition
weights to those with true labels. Accordingly, the reweighted
loss on the mini-batch Bt is used to update the DNN,
⇥t+1 = ⇥t ⌘r
⇣ 1
|Bt|
X
(x,ỹ)2Bt
Reweighted Loss
z }| {
w(x, ỹ)` f(x; ⇥t), ỹ
⌘
, (11)
where w(x, ỹ) is the weight of an example x with its noisy
label ỹ. Hence, the examples with smaller weights do not
significantly affect the DNN learning.
Technical Detail: In importance reweighting [108], the ratio
of two joint data distributions w(x, ỹ) = PD(x, ỹ)/PD̃(x, ỹ)
determines the contribution of the loss of each noisy example.
An approximate solution to estimate the ratio was developed
because the two distributions are difficult to determine from
noisy data. Meanwhile, active bias [109] emphasizes uncertain
examples with inconsistent label predictions by assigning their
prediction variances as the weights for training. DualGraph
[118] employs graph neural networks and reweights the ex-
c
E>
, (9)
near com-
plying the
performed
y with the
ep,
ỹ
⌘
(10)
the avail-
s for loss
rix is ob-
ich further
the weighting function as well as there additional hyper-
parameters, which is fairly hard to be applied in practice due
to the significant variation of appropriate weighting schemes
that rely on the noise type and training data.
3) Label Refurbishment: Refurbishing a noisy label ỹ
effectively prevents overfitting to false labels. Let ŷ be the
current prediction of the DNN f(x; ⇥). Therefore, the refur-
bished label yrefurb
can be obtained by a convex combination
of the noisy label ỹ and the DNN prediction ŷ,
yrefurb
= ↵ỹ + (1 ↵)ŷ, (12)
where ↵ 2 [0, 1] is the label confidence of ỹ. To mitigate the
damage of incorrect labeling, this approach backpropagates the
loss for the refurbished label instead of the noisy one, thereby
yielding substantial robustness to noisy labels.
Technical Detail: Bootstrapping [69] is the first method that
sition matrix is ob-
mation, which further
rrection. Recently, T-
an infer the transition
al T [114] factorizes
-to-estimate matrices
class posterior. Be-
umption, Zhang et al.
embedding to model
the transition matrix.
osed to use the Bayes
the distilled examples
on matrix.
ches is highly depen-
atrix is estimated. To
quire prior knowledge
n validation data.
the concept of im-
yielding substantial robustness to noisy labels.
Technical Detail: Bootstrapping [69] is the first method that
proposes the concept of label refurbishment to update the
target label of training examples. It develops a more coherent
network that improves its ability to evaluate the consistency
of noisy labels, with the label confidence ↵ obtained via
cross-validation. Dynamic bootstrapping [110] dynamically
adjusts the confidence ↵ of individual training examples. The
confidence ↵ is obtained by fitting a two-component and one-
dimensional beta mixture model to the loss distribution of
all training examples. Self-adaptive training [119] applies the
exponential moving average to alleviate the instability issue of
using instantaneous prediction of the current DNN,
yrefurb
t+1 = ↵yrefurb
t + (1 ↵)ŷ, where yrefurb
0 = ỹ (13)
D2L [111] trains a DNN using a dimensionality-driven
learning strategy to avoid overfitting to false labels. A simple
measure called local intrinsic dimensionality [120] is adopted
to evaluate the confidence ↵ in considering that the overfitting
Sample Selection
n真のラベルデータのみを選択する
• 擬似的にクリーンなデータセットを生成できるので汎用性が向上 [Song+,
ICML2019]
比較
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12
TABLE III
COMPARISON OF ROBUST DEEP LEARNING CATEGORIES FOR OVERCOMING NOISY LABELS.
Category
P1 P2 P3 P4 P5 P6
Flexibility No Pre-train Full Exploration No Supervision Heavy Noise Complex Noise
Robust Architecture
(§III-A)
Noise Adaptation Layer 4 5 5
Dedicated Architecture 5 4 4 4
Robust Regularization
(§III-B)
Implicit Regularization 4 4
Explicit Regularization 5 4
Robust Loss Function (§III-C) 5 5
Loss Adjustment
(§III-D)
Loss Correction 5 5 5 5
Loss Reweighting 5 4
Label Refurbishment 4 4
Meta Learning 5 4 4
Sample Selection
(§III-E)
Multi-Network Learning 5 5 4
Multi-Round Learning 5 4
Hybrid Approach 4
the method marked with “5” only deals with the instance-
independent noise, while the method marked with “ ” deals
with both instance-independent and -dependent noises. The
remaining properties (i.e., P2, P3, and P4) are only assigned
k 6= i. Thus, let Ai be the set of anchor points with label i, then
the element of the noise transition matrix Tij is estimated by
T̂ij =
1
|A |
X c
X
p(ỹ = j|y = k)p(y = k|x)
まとめ
nノイズの多いラベルから学習するための手法のサーベイ
• ロバストなアーキテクチャ
• ロバストな正則化
• ロバストな損失関数の設計
• サンプル選択
n汎用的なフレームワークは存在しない
• 問題に応じて適切に設計する必要がある

Contenu connexe

Tendances

【論文読み会】Alias-Free Generative Adversarial Networks(StyleGAN3)
【論文読み会】Alias-Free Generative Adversarial Networks(StyleGAN3)【論文読み会】Alias-Free Generative Adversarial Networks(StyleGAN3)
【論文読み会】Alias-Free Generative Adversarial Networks(StyleGAN3)ARISE analytics
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -tmtm otm
 
MASTERING ATARI WITH DISCRETE WORLD MODELS (DreamerV2)
MASTERING ATARI WITH DISCRETE WORLD MODELS (DreamerV2)MASTERING ATARI WITH DISCRETE WORLD MODELS (DreamerV2)
MASTERING ATARI WITH DISCRETE WORLD MODELS (DreamerV2)harmonylab
 
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual FeaturesARISE analytics
 
【DL輪読会】Flamingo: a Visual Language Model for Few-Shot Learning 画像×言語の大規模基盤モ...
【DL輪読会】Flamingo: a Visual Language Model for Few-Shot Learning   画像×言語の大規模基盤モ...【DL輪読会】Flamingo: a Visual Language Model for Few-Shot Learning   画像×言語の大規模基盤モ...
【DL輪読会】Flamingo: a Visual Language Model for Few-Shot Learning 画像×言語の大規模基盤モ...Deep Learning JP
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門Shuyo Nakatani
 
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Preferred Networks
 
Bayesian Neural Networks : Survey
Bayesian Neural Networks : SurveyBayesian Neural Networks : Survey
Bayesian Neural Networks : Surveytmtm otm
 
[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報Deep Learning JP
 
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
【DL輪読会】DINOv2: Learning Robust Visual Features without SupervisionDeep Learning JP
 
12. Diffusion Model の数学的基礎.pdf
12. Diffusion Model の数学的基礎.pdf12. Diffusion Model の数学的基礎.pdf
12. Diffusion Model の数学的基礎.pdf幸太朗 岩澤
 
Triplet Loss 徹底解説
Triplet Loss 徹底解説Triplet Loss 徹底解説
Triplet Loss 徹底解説tancoro
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用Yoshitaka Ushiku
 
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)MLSE
 
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII
 
Transformer メタサーベイ
Transformer メタサーベイTransformer メタサーベイ
Transformer メタサーベイcvpaper. challenge
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習Deep Learning JP
 
画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイcvpaper. challenge
 

Tendances (20)

【論文読み会】Alias-Free Generative Adversarial Networks(StyleGAN3)
【論文読み会】Alias-Free Generative Adversarial Networks(StyleGAN3)【論文読み会】Alias-Free Generative Adversarial Networks(StyleGAN3)
【論文読み会】Alias-Free Generative Adversarial Networks(StyleGAN3)
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
 
MASTERING ATARI WITH DISCRETE WORLD MODELS (DreamerV2)
MASTERING ATARI WITH DISCRETE WORLD MODELS (DreamerV2)MASTERING ATARI WITH DISCRETE WORLD MODELS (DreamerV2)
MASTERING ATARI WITH DISCRETE WORLD MODELS (DreamerV2)
 
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
 
【DL輪読会】Flamingo: a Visual Language Model for Few-Shot Learning 画像×言語の大規模基盤モ...
【DL輪読会】Flamingo: a Visual Language Model for Few-Shot Learning   画像×言語の大規模基盤モ...【DL輪読会】Flamingo: a Visual Language Model for Few-Shot Learning   画像×言語の大規模基盤モ...
【DL輪読会】Flamingo: a Visual Language Model for Few-Shot Learning 画像×言語の大規模基盤モ...
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門
 
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
 
Bayesian Neural Networks : Survey
Bayesian Neural Networks : SurveyBayesian Neural Networks : Survey
Bayesian Neural Networks : Survey
 
一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM) 一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM)
 
[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報
 
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
 
12. Diffusion Model の数学的基礎.pdf
12. Diffusion Model の数学的基礎.pdf12. Diffusion Model の数学的基礎.pdf
12. Diffusion Model の数学的基礎.pdf
 
Triplet Loss 徹底解説
Triplet Loss 徹底解説Triplet Loss 徹底解説
Triplet Loss 徹底解説
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用
 
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
 
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
 
Transformer メタサーベイ
Transformer メタサーベイTransformer メタサーベイ
Transformer メタサーベイ
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習
 
画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ
 
最急降下法
最急降下法最急降下法
最急降下法
 

Similaire à 文献紹介:Learning From Noisy Labels With Deep Neural Networks: A Survey

論文紹介:Learning With Neighbor Consistency for Noisy Labels
論文紹介:Learning With Neighbor Consistency for Noisy Labels論文紹介:Learning With Neighbor Consistency for Noisy Labels
論文紹介:Learning With Neighbor Consistency for Noisy LabelsToru Tamaki
 
論文紹介:Learning from Noisy Pseudo Labels for Semi-Supervised Temporal Action Lo...
論文紹介:Learning from Noisy Pseudo Labels for Semi-Supervised Temporal Action Lo...論文紹介:Learning from Noisy Pseudo Labels for Semi-Supervised Temporal Action Lo...
論文紹介:Learning from Noisy Pseudo Labels for Semi-Supervised Temporal Action Lo...Toru Tamaki
 
Analytical study of feature extraction techniques in opinion mining
Analytical study of feature extraction techniques in opinion miningAnalytical study of feature extraction techniques in opinion mining
Analytical study of feature extraction techniques in opinion miningcsandit
 
ANALYTICAL STUDY OF FEATURE EXTRACTION TECHNIQUES IN OPINION MINING
ANALYTICAL STUDY OF FEATURE EXTRACTION TECHNIQUES IN OPINION MININGANALYTICAL STUDY OF FEATURE EXTRACTION TECHNIQUES IN OPINION MINING
ANALYTICAL STUDY OF FEATURE EXTRACTION TECHNIQUES IN OPINION MININGcsandit
 
Radial Basis Function Neural Network (RBFNN), Induction Motor, Vector control...
Radial Basis Function Neural Network (RBFNN), Induction Motor, Vector control...Radial Basis Function Neural Network (RBFNN), Induction Motor, Vector control...
Radial Basis Function Neural Network (RBFNN), Induction Motor, Vector control...cscpconf
 
(研究会輪読) Weight Uncertainty in Neural Networks
(研究会輪読) Weight Uncertainty in Neural Networks(研究会輪読) Weight Uncertainty in Neural Networks
(研究会輪読) Weight Uncertainty in Neural NetworksMasahiro Suzuki
 
Iberspeech2012
Iberspeech2012Iberspeech2012
Iberspeech2012joseangl
 
Visual Impression Localization of Autonomous Robots_#CASE2015
Visual Impression Localization of Autonomous Robots_#CASE2015Visual Impression Localization of Autonomous Robots_#CASE2015
Visual Impression Localization of Autonomous Robots_#CASE2015Soma Boubou
 
Event classification & prediction using support vector machine
Event classification & prediction using support vector machineEvent classification & prediction using support vector machine
Event classification & prediction using support vector machineRuta Kambli
 
A note on word embedding
A note on word embeddingA note on word embedding
A note on word embeddingKhang Pham
 
Chris Dyer - 2017 - Neural MT Workshop Invited Talk: The Neural Noisy Channel...
Chris Dyer - 2017 - Neural MT Workshop Invited Talk: The Neural Noisy Channel...Chris Dyer - 2017 - Neural MT Workshop Invited Talk: The Neural Noisy Channel...
Chris Dyer - 2017 - Neural MT Workshop Invited Talk: The Neural Noisy Channel...Association for Computational Linguistics
 
My PhD defence
My PhD defenceMy PhD defence
My PhD defenceJialin LIU
 
Anomaly detection using deep one class classifier
Anomaly detection using deep one class classifierAnomaly detection using deep one class classifier
Anomaly detection using deep one class classifier홍배 김
 
Neural netorksmatching
Neural netorksmatchingNeural netorksmatching
Neural netorksmatchingMasa Kato
 
Gi2429352937
Gi2429352937Gi2429352937
Gi2429352937IJMER
 
机器学习Adaboost
机器学习Adaboost机器学习Adaboost
机器学习AdaboostShocky1
 
Domain adaptation: A Theoretical View
Domain adaptation: A Theoretical ViewDomain adaptation: A Theoretical View
Domain adaptation: A Theoretical ViewChia-Ching Lin
 
Lecture7 cross validation
Lecture7 cross validationLecture7 cross validation
Lecture7 cross validationStéphane Canu
 

Similaire à 文献紹介:Learning From Noisy Labels With Deep Neural Networks: A Survey (20)

論文紹介:Learning With Neighbor Consistency for Noisy Labels
論文紹介:Learning With Neighbor Consistency for Noisy Labels論文紹介:Learning With Neighbor Consistency for Noisy Labels
論文紹介:Learning With Neighbor Consistency for Noisy Labels
 
論文紹介:Learning from Noisy Pseudo Labels for Semi-Supervised Temporal Action Lo...
論文紹介:Learning from Noisy Pseudo Labels for Semi-Supervised Temporal Action Lo...論文紹介:Learning from Noisy Pseudo Labels for Semi-Supervised Temporal Action Lo...
論文紹介:Learning from Noisy Pseudo Labels for Semi-Supervised Temporal Action Lo...
 
Analytical study of feature extraction techniques in opinion mining
Analytical study of feature extraction techniques in opinion miningAnalytical study of feature extraction techniques in opinion mining
Analytical study of feature extraction techniques in opinion mining
 
ANALYTICAL STUDY OF FEATURE EXTRACTION TECHNIQUES IN OPINION MINING
ANALYTICAL STUDY OF FEATURE EXTRACTION TECHNIQUES IN OPINION MININGANALYTICAL STUDY OF FEATURE EXTRACTION TECHNIQUES IN OPINION MINING
ANALYTICAL STUDY OF FEATURE EXTRACTION TECHNIQUES IN OPINION MINING
 
Radial Basis Function Neural Network (RBFNN), Induction Motor, Vector control...
Radial Basis Function Neural Network (RBFNN), Induction Motor, Vector control...Radial Basis Function Neural Network (RBFNN), Induction Motor, Vector control...
Radial Basis Function Neural Network (RBFNN), Induction Motor, Vector control...
 
(研究会輪読) Weight Uncertainty in Neural Networks
(研究会輪読) Weight Uncertainty in Neural Networks(研究会輪読) Weight Uncertainty in Neural Networks
(研究会輪読) Weight Uncertainty in Neural Networks
 
Iberspeech2012
Iberspeech2012Iberspeech2012
Iberspeech2012
 
Thesis
ThesisThesis
Thesis
 
Visual Impression Localization of Autonomous Robots_#CASE2015
Visual Impression Localization of Autonomous Robots_#CASE2015Visual Impression Localization of Autonomous Robots_#CASE2015
Visual Impression Localization of Autonomous Robots_#CASE2015
 
Event classification & prediction using support vector machine
Event classification & prediction using support vector machineEvent classification & prediction using support vector machine
Event classification & prediction using support vector machine
 
Text categorization
Text categorizationText categorization
Text categorization
 
A note on word embedding
A note on word embeddingA note on word embedding
A note on word embedding
 
Chris Dyer - 2017 - Neural MT Workshop Invited Talk: The Neural Noisy Channel...
Chris Dyer - 2017 - Neural MT Workshop Invited Talk: The Neural Noisy Channel...Chris Dyer - 2017 - Neural MT Workshop Invited Talk: The Neural Noisy Channel...
Chris Dyer - 2017 - Neural MT Workshop Invited Talk: The Neural Noisy Channel...
 
My PhD defence
My PhD defenceMy PhD defence
My PhD defence
 
Anomaly detection using deep one class classifier
Anomaly detection using deep one class classifierAnomaly detection using deep one class classifier
Anomaly detection using deep one class classifier
 
Neural netorksmatching
Neural netorksmatchingNeural netorksmatching
Neural netorksmatching
 
Gi2429352937
Gi2429352937Gi2429352937
Gi2429352937
 
机器学习Adaboost
机器学习Adaboost机器学习Adaboost
机器学习Adaboost
 
Domain adaptation: A Theoretical View
Domain adaptation: A Theoretical ViewDomain adaptation: A Theoretical View
Domain adaptation: A Theoretical View
 
Lecture7 cross validation
Lecture7 cross validationLecture7 cross validation
Lecture7 cross validation
 

Plus de Toru Tamaki

論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...
論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...
論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...Toru Tamaki
 
論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding
論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding
論文紹介:Selective Structured State-Spaces for Long-Form Video UnderstandingToru Tamaki
 
論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...
論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...
論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...Toru Tamaki
 
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...Toru Tamaki
 
論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNet論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNetToru Tamaki
 
論文紹介:Semantic segmentation using Vision Transformers: A survey
論文紹介:Semantic segmentation using Vision Transformers: A survey論文紹介:Semantic segmentation using Vision Transformers: A survey
論文紹介:Semantic segmentation using Vision Transformers: A surveyToru Tamaki
 
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex ScenesToru Tamaki
 
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...Toru Tamaki
 
論文紹介:Tracking Anything with Decoupled Video Segmentation
論文紹介:Tracking Anything with Decoupled Video Segmentation論文紹介:Tracking Anything with Decoupled Video Segmentation
論文紹介:Tracking Anything with Decoupled Video SegmentationToru Tamaki
 
論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope
論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope
論文紹介:Real-Time Evaluation in Online Continual Learning: A New HopeToru Tamaki
 
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...Toru Tamaki
 
論文紹介:Multitask Vision-Language Prompt Tuning
論文紹介:Multitask Vision-Language Prompt Tuning論文紹介:Multitask Vision-Language Prompt Tuning
論文紹介:Multitask Vision-Language Prompt TuningToru Tamaki
 
論文紹介:MovieCLIP: Visual Scene Recognition in Movies
論文紹介:MovieCLIP: Visual Scene Recognition in Movies論文紹介:MovieCLIP: Visual Scene Recognition in Movies
論文紹介:MovieCLIP: Visual Scene Recognition in MoviesToru Tamaki
 
論文紹介:Discovering Universal Geometry in Embeddings with ICA
論文紹介:Discovering Universal Geometry in Embeddings with ICA論文紹介:Discovering Universal Geometry in Embeddings with ICA
論文紹介:Discovering Universal Geometry in Embeddings with ICAToru Tamaki
 
論文紹介:Efficient Video Action Detection with Token Dropout and Context Refinement
論文紹介:Efficient Video Action Detection with Token Dropout and Context Refinement論文紹介:Efficient Video Action Detection with Token Dropout and Context Refinement
論文紹介:Efficient Video Action Detection with Token Dropout and Context RefinementToru Tamaki
 
論文紹介:MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Lon...
論文紹介:MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Lon...論文紹介:MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Lon...
論文紹介:MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Lon...Toru Tamaki
 
論文紹介:Revealing the unseen: Benchmarking video action recognition under occlusion
論文紹介:Revealing the unseen: Benchmarking video action recognition under occlusion論文紹介:Revealing the unseen: Benchmarking video action recognition under occlusion
論文紹介:Revealing the unseen: Benchmarking video action recognition under occlusionToru Tamaki
 
論文紹介:Video Task Decathlon: Unifying Image and Video Tasks in Autonomous Driving
論文紹介:Video Task Decathlon: Unifying Image and Video Tasks in Autonomous Driving論文紹介:Video Task Decathlon: Unifying Image and Video Tasks in Autonomous Driving
論文紹介:Video Task Decathlon: Unifying Image and Video Tasks in Autonomous DrivingToru Tamaki
 
論文紹介:Spatio-Temporal Action Detection Under Large Motion
論文紹介:Spatio-Temporal Action Detection Under Large Motion論文紹介:Spatio-Temporal Action Detection Under Large Motion
論文紹介:Spatio-Temporal Action Detection Under Large MotionToru Tamaki
 
論文紹介:Vision Transformer Adapter for Dense Predictions
論文紹介:Vision Transformer Adapter for Dense Predictions論文紹介:Vision Transformer Adapter for Dense Predictions
論文紹介:Vision Transformer Adapter for Dense PredictionsToru Tamaki
 

Plus de Toru Tamaki (20)

論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...
論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...
論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...
 
論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding
論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding
論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding
 
論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...
論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...
論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...
 
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
 
論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNet論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNet
 
論文紹介:Semantic segmentation using Vision Transformers: A survey
論文紹介:Semantic segmentation using Vision Transformers: A survey論文紹介:Semantic segmentation using Vision Transformers: A survey
論文紹介:Semantic segmentation using Vision Transformers: A survey
 
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes
 
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...
 
論文紹介:Tracking Anything with Decoupled Video Segmentation
論文紹介:Tracking Anything with Decoupled Video Segmentation論文紹介:Tracking Anything with Decoupled Video Segmentation
論文紹介:Tracking Anything with Decoupled Video Segmentation
 
論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope
論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope
論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope
 
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
 
論文紹介:Multitask Vision-Language Prompt Tuning
論文紹介:Multitask Vision-Language Prompt Tuning論文紹介:Multitask Vision-Language Prompt Tuning
論文紹介:Multitask Vision-Language Prompt Tuning
 
論文紹介:MovieCLIP: Visual Scene Recognition in Movies
論文紹介:MovieCLIP: Visual Scene Recognition in Movies論文紹介:MovieCLIP: Visual Scene Recognition in Movies
論文紹介:MovieCLIP: Visual Scene Recognition in Movies
 
論文紹介:Discovering Universal Geometry in Embeddings with ICA
論文紹介:Discovering Universal Geometry in Embeddings with ICA論文紹介:Discovering Universal Geometry in Embeddings with ICA
論文紹介:Discovering Universal Geometry in Embeddings with ICA
 
論文紹介:Efficient Video Action Detection with Token Dropout and Context Refinement
論文紹介:Efficient Video Action Detection with Token Dropout and Context Refinement論文紹介:Efficient Video Action Detection with Token Dropout and Context Refinement
論文紹介:Efficient Video Action Detection with Token Dropout and Context Refinement
 
論文紹介:MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Lon...
論文紹介:MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Lon...論文紹介:MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Lon...
論文紹介:MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Lon...
 
論文紹介:Revealing the unseen: Benchmarking video action recognition under occlusion
論文紹介:Revealing the unseen: Benchmarking video action recognition under occlusion論文紹介:Revealing the unseen: Benchmarking video action recognition under occlusion
論文紹介:Revealing the unseen: Benchmarking video action recognition under occlusion
 
論文紹介:Video Task Decathlon: Unifying Image and Video Tasks in Autonomous Driving
論文紹介:Video Task Decathlon: Unifying Image and Video Tasks in Autonomous Driving論文紹介:Video Task Decathlon: Unifying Image and Video Tasks in Autonomous Driving
論文紹介:Video Task Decathlon: Unifying Image and Video Tasks in Autonomous Driving
 
論文紹介:Spatio-Temporal Action Detection Under Large Motion
論文紹介:Spatio-Temporal Action Detection Under Large Motion論文紹介:Spatio-Temporal Action Detection Under Large Motion
論文紹介:Spatio-Temporal Action Detection Under Large Motion
 
論文紹介:Vision Transformer Adapter for Dense Predictions
論文紹介:Vision Transformer Adapter for Dense Predictions論文紹介:Vision Transformer Adapter for Dense Predictions
論文紹介:Vision Transformer Adapter for Dense Predictions
 

Dernier

presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Zilliz
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWERMadyBayot
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Victor Rentea
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Angeliki Cooney
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsNanddeep Nachan
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxRemote DBA Services
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 

Dernier (20)

presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 

文献紹介:Learning From Noisy Labels With Deep Neural Networks: A Survey

  • 1. Learning From Noisy Labels With Deep Neural Networks: A Survey Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, Jae-Gil Lee, IEEE TNNLS 2022 橋口凌大(名工大玉木研) 2022/10/28
  • 4. 深層学習とノイジーラベル n深層学習ではラベルノイズの影響を受けやすい nロバスト性を実現するために複数の学習手法が誕生 (a) Noise added on classification inputs. (b) Noise added on classification labels. Figure 7. Accuracy (left in each pair, solid is train, dotted is validation) and Critical sample ratios (right in each pair) for MNIST. (a) Noise added on classification inputs. (b) Noise added on classification labels. Figure 8. Accuracy (left in each pair, solid is train, dotted is validation) and Critical sample ratios (right in each pair) for CIFAR10. Algorithm 1 Langevin Adversarial Sample Search (LASS) Require: x 2 Rn , ↵, , r, noise process ⌘ Ensure: x̂ 1: converged = FALSE 2: x̃ x; x̂ ; 3: while not converged or max iter reached do 4: = ↵ · sign(@fk(x) @x ) + · ⌘ 5: x̃ x̃ + 6: for i 2 [n] do ⇢ i [Zhang+, ICLR2017]
  • 5. 深層学習によるノイズロバストな学習 nロバストな学習方法の分類 EE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3 Robust Training Robust Architecture (§III-A) Robust Regularization (§III-B) Loss Adjustment (§III-D) Sample Selection (§III-E) Robust Loss Function (§III-C) Robust Loss Design Noise Adaptation Layer Dedicated Architecture Explicit Regularization Implicit Regularization Loss Correction Loss Reweighting Label Refurbishment Multi-network Learning Multi-round Learning Meta Learning Hybrid Approach g. 3. A high level research overview of robust deep learning for noisy labels. The research directions that are actively contributed by the machine learning mmunity are categorized into five groups in blue italic. Here, the risk minimization process is no longer noise- C. Non-deep Learning Approaches
  • 6. Robust Architecture nノイズ適応層 • ラベル遷移パターンを学習 stness of hes [16], research nity. All pervised ion layer ransition reliably o overfit ly; unction; p(ỹ = j|x)= X i=1 p(ỹ = j, y = i|x)= X i=1 Tijp(y = i|x), where Tij = p(ỹ = j|y = i, x). (3) In light of this, the noise adaptation layer is intended to mimic the label transition behavior in learning a DNN. Let p(y|x; ⇥) be the output of the base DNN with a softmax output layer. Then, following Eq. (3), the probability of an example x being predicted as its noisy label ỹ is parameterized by p(ỹ = j|x; ⇥, W) = c X i=1 p(ỹ = j, y=i|x; ⇥, W) = c X i=1 p(ỹ = j|y=i; W) | {z } Noise Adaptation Layer p(y=i|x; ⇥) | {z } Base Model . (4) Here, the noisy label ỹ is assumed to be conditionally independent of the input x in general. Accordingly, as IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4 [57]. In addition, several decision tree models are extended using new split criteria to solve the overfitting issue when the training data are not fully reliable [58], [59]. However, it is infeasible to apply their design principles to deep learning. Meanwhile, deep learning is more susceptible to label noises than traditional machine learning owing to its high expressive power, as proven by many researchers [21], [60], [61]. There has been significant effort to understand why noisy labels negatively affect the performance of DNNs [22], [61]–[63]. This theoretical understanding has led to the algorithmic de- sign which achieves higher robustness than non-deep learning methods. A detailed analysis of theoretical understanding for robust deep learning was provided by Han et al. [30]. D. Regression with Noisy Labels In addition to classification, regression is another main topic of supervised machine learning, which aims to model the rela- tionship between a number of features and a continuous target variable. Unlike the classification task with a discrete label space, the regression task considers the continuous variable as its target label [64], and thus it learns the mapping function Loss ℒ(𝑓(𝑥; Θ, 𝒲), ෤ 𝑦) True Label y ∈ 𝒴 Input 𝑥 ∈ 𝒳 Base Model 𝜃 with Softmax Layer Noise Adaptation Layer 𝒑(෥ 𝒚|𝒚; 𝓦) 𝑝(𝑦|𝑥; Θ) 𝑝(෤ 𝑦|𝑥; Θ, 𝒲) Noisy Label ෤ y ∈ ෨ 𝒴 Label Corruption Fig. 4. Noise modeling process using the noise adaptation layer. Overall, we categorize all recent deep learning methods into five groups corresponding to popular research directions, as shown in Figure 3. In §III-D, meta learning is also discussed because it finds the optimal hyperparameters for loss reweight- ing. In §III-E, we discuss the recent efforts for combining sample selection with other orthogonal directions or semi- supervised learning toward the state-of-the-art performance. Figure 2 illustrates the categorization of robust training methods using these five groups. A. Robust Architecture
  • 7. Robust Architecture n専用アーキテクチャ • ラベル遷移確率の推定の信頼性の向上 • 2つのネットワークを学習 • ラベル遷移確率の予測 • ノイズの種類の予測 Noise Free 41% Random 3% Confusing 56% p(z | x) 5 Layers of Conv + Pool + Norm 3 FC Layers of Size 4096 4096 14 5 Layers of Conv + Pool + Norm 3 FC Layers of Size 4096 1024 3 Label Noise Model Layer Down Coat Windbreaker 4% Jacket 1% …… 94% p(y | x) Noisy Label: Windbreaker Down Coat Windbreaker 11% Jacket 4% …… 75% p(y | y !,x) Noise Free 11% Random 4% Confusing 85% p(z | y !,x) Data with Clean Labels Figure 5. System diagram of our method. Two CNNs are used to predict the class label p(y|x) and the noise type p(z|x), respectively. The [Xiao+, CVPR2015]
  • 8. Robust Regularization n明示的な正則化 • 学習損失を修正する 2 S. Jenni and P. Favaro validation mini-batches data set training mini-batches i2T t !i`i(✓) j2Vt `j(✓) ✓ = ✓t ✏ i2T t !ir`i(✓t ) stochastic gradient descent with mini-batch adaptive weights !i j2Vt r`j(✓t )> r`i(✓t ) |r`i(✓t)|2 + µ̂ mini-batch weights r`j(✓t ) r`i(✓t ) if gradients agree the mini-batch weights are positive and large Fig. 1. The training procedure of our bilevel formulation. At each iteration we sample [Jenni&Favaro, ECCV2018]
  • 9. Robust Regularization n暗黙的な正則化 • 確率的な効果をもたらす正則化 • データ拡張 • ミニバッチ確率的勾配降下法 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS with a uniform mixture over all possible labels, ȳ = ⌦ ȳ(1), ȳ(2), . . . , ȳ(c) ↵ , where ȳ(i) = (1 ↵) · [ỹ = i] + ↵/c and ↵ 2 [0, 1]. (5) Here, [·] is the Iverson bracket and ↵ is the smoothing degree. In contrast, mixup [95] regularizes the DNN to favor simple linear behaviors in between training examples. First, the mini- batch is constructed using virtual training examples, each of which is formed by the linear interpolation of two noisy training examples (xi, ỹi) and (xj, ỹj) obtained at random from noisy training data D̃, xmix = xi + (1 )xj and ymix = ỹi + (1 )ỹj, (6) where 2 [0, 1] is the balance parameter between two examples. Thus, mixup extends the training distribution by where C is a cons classifier trained on probability as tha the specified assu classification was pr RD(f⇤ ) = 0, then t asymmetric noise, w For the classific tropy (CCE) loss is to its fast converg However, in the pr [68] showed that the better generalization loss satisfies the af the MAE loss is tha
  • 10. Robust Loss Function n未知のクリーンなデータに対してもロバストな損失を設計 • ベイズリスク最小化がノイズ耐性となるような損失関数を証明 [Manwani&Sastry, IEEE Transactions on Cybernetics 2013] n以下が成り立つときにノイズ耐性があると定義 in the training data [68], [97]–[101]. Technical Detail: Initially, Manwani and Sastry [48] theo- retically proved a sufficient condition for the loss function such that risk minimization with that function becomes noise- tolerant for binary classification. Subsequently, the sufficient condition was extended for multi-class classification using deep learning [68]. Specifically, a loss function is defined to be noise-tolerant for a c-class classification under symmetric noise if the function satisfies the noise rate ⌧ < c 1 c and c X j=1 ` f(x; ⇥), y = j = C, 8x 2 X, 8f, (8) correction that es the forward or bac different importan scheme, 3) label refurbished label and predicted lab infers the optima loss function new methods aims to robust to label n update rule is adj noise is minimize
  • 11. Loss Adjustment nパラメータ更新の前にすべての学習性の損失を調整 1. ノイズ遷移行列を推定して損失補正 2. 各例に異なる重要度を付与する損失再重み付け 3. ノイズラベルと予測ラベルから生成したラベルを用いて損失を調整 4. 損失調整の最適ルールを自動的に推測するメタ学習 n 利点 • 学習データ全てに対して損失の調整が適用できる n 欠点 • クラス数やノイズラベルが多い時,誤補正による誤差が蓄積される [Han+, NeurIPS2018]
  • 12. Loss Adjustment n損失再重み付け nラベル更新 • αは信頼度 RKS AND LEARNING SYSTEMS 7 ows for a full exploration he loss of every example. correction is accumulated, classes or the number of . the noise adaptation layer pproach modifies the loss e estimated label transition pecified DNN. The main he transition probability is tion [62] initially approx- using the softmax output orrection. Subsequently, it the original loss based on d loss of a example (x, ỹ) tion of its loss values for nt is the inverse transition weights to those with true labels. Accordingly, the reweighted loss on the mini-batch Bt is used to update the DNN, ⇥t+1 = ⇥t ⌘r ⇣ 1 |Bt| X (x,ỹ)2Bt Reweighted Loss z }| { w(x, ỹ)` f(x; ⇥t), ỹ ⌘ , (11) where w(x, ỹ) is the weight of an example x with its noisy label ỹ. Hence, the examples with smaller weights do not significantly affect the DNN learning. Technical Detail: In importance reweighting [108], the ratio of two joint data distributions w(x, ỹ) = PD(x, ỹ)/PD̃(x, ỹ) determines the contribution of the loss of each noisy example. An approximate solution to estimate the ratio was developed because the two distributions are difficult to determine from noisy data. Meanwhile, active bias [109] emphasizes uncertain examples with inconsistent label predictions by assigning their prediction variances as the weights for training. DualGraph [118] employs graph neural networks and reweights the ex- c E> , (9) near com- plying the performed y with the ep, ỹ ⌘ (10) the avail- s for loss rix is ob- ich further the weighting function as well as there additional hyper- parameters, which is fairly hard to be applied in practice due to the significant variation of appropriate weighting schemes that rely on the noise type and training data. 3) Label Refurbishment: Refurbishing a noisy label ỹ effectively prevents overfitting to false labels. Let ŷ be the current prediction of the DNN f(x; ⇥). Therefore, the refur- bished label yrefurb can be obtained by a convex combination of the noisy label ỹ and the DNN prediction ŷ, yrefurb = ↵ỹ + (1 ↵)ŷ, (12) where ↵ 2 [0, 1] is the label confidence of ỹ. To mitigate the damage of incorrect labeling, this approach backpropagates the loss for the refurbished label instead of the noisy one, thereby yielding substantial robustness to noisy labels. Technical Detail: Bootstrapping [69] is the first method that sition matrix is ob- mation, which further rrection. Recently, T- an infer the transition al T [114] factorizes -to-estimate matrices class posterior. Be- umption, Zhang et al. embedding to model the transition matrix. osed to use the Bayes the distilled examples on matrix. ches is highly depen- atrix is estimated. To quire prior knowledge n validation data. the concept of im- yielding substantial robustness to noisy labels. Technical Detail: Bootstrapping [69] is the first method that proposes the concept of label refurbishment to update the target label of training examples. It develops a more coherent network that improves its ability to evaluate the consistency of noisy labels, with the label confidence ↵ obtained via cross-validation. Dynamic bootstrapping [110] dynamically adjusts the confidence ↵ of individual training examples. The confidence ↵ is obtained by fitting a two-component and one- dimensional beta mixture model to the loss distribution of all training examples. Self-adaptive training [119] applies the exponential moving average to alleviate the instability issue of using instantaneous prediction of the current DNN, yrefurb t+1 = ↵yrefurb t + (1 ↵)ŷ, where yrefurb 0 = ỹ (13) D2L [111] trains a DNN using a dimensionality-driven learning strategy to avoid overfitting to false labels. A simple measure called local intrinsic dimensionality [120] is adopted to evaluate the confidence ↵ in considering that the overfitting
  • 14. 比較 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12 TABLE III COMPARISON OF ROBUST DEEP LEARNING CATEGORIES FOR OVERCOMING NOISY LABELS. Category P1 P2 P3 P4 P5 P6 Flexibility No Pre-train Full Exploration No Supervision Heavy Noise Complex Noise Robust Architecture (§III-A) Noise Adaptation Layer 4 5 5 Dedicated Architecture 5 4 4 4 Robust Regularization (§III-B) Implicit Regularization 4 4 Explicit Regularization 5 4 Robust Loss Function (§III-C) 5 5 Loss Adjustment (§III-D) Loss Correction 5 5 5 5 Loss Reweighting 5 4 Label Refurbishment 4 4 Meta Learning 5 4 4 Sample Selection (§III-E) Multi-Network Learning 5 5 4 Multi-Round Learning 5 4 Hybrid Approach 4 the method marked with “5” only deals with the instance- independent noise, while the method marked with “ ” deals with both instance-independent and -dependent noises. The remaining properties (i.e., P2, P3, and P4) are only assigned k 6= i. Thus, let Ai be the set of anchor points with label i, then the element of the noise transition matrix Tij is estimated by T̂ij = 1 |A | X c X p(ỹ = j|y = k)p(y = k|x)
  • 15. まとめ nノイズの多いラベルから学習するための手法のサーベイ • ロバストなアーキテクチャ • ロバストな正則化 • ロバストな損失関数の設計 • サンプル選択 n汎用的なフレームワークは存在しない • 問題に応じて適切に設計する必要がある