SlideShare une entreprise Scribd logo
1  sur  14
Télécharger pour lire hors ligne
Chapter 5: Repetitive Projects

                           Chapter 5: Scheduling of Repetitive Projects

5.1 Introduction

This chapter introduces new techniques for scheduling of multiple and linear projects that
involve a number of repetitive activities. These techniques include: the summary diagrams and
the line of balance (LOB). Examples of these projects are highways, pipelines, and high-rise
buildings. The objective of the LOB technique is to determine a balanced mix of resources and
synchronize their work so that they are fully employed and non-interrupted. As such, it is
possible to benefit from repetition, and the crews will likely be able to spend less time and
money on later units once they develop a learning momentum. Another benefit of the LOB
technique is its interesting representation of the schedule, given the large amount of data for the
repetitive units. This chapter introduces the summary diagrams calculations presented on AON
networks and integrated CPM-LOB calculations that combine the benefits of CPM network
analysis of a single unit and the LOB analysis and representation.

5.2 Linear Projects

Linear projects are projects involving repetitive activities. They take their name from either: (a)
involving several uniform units of work such as multiple houses or typical floors in a building; or
(b) being geometrically linear such as highway, pipeline, and utility projects. In both categories,
however, some non-typical units could be involved such as a non-typical floor in a high-rise
building or a non-standard station in a highway project. The activities in these non-typical units
may certainly involve higher or lower quantity of work than their counterparts in the typical
units. To simplify the scheduling task in these situations, we can assume that the project is
comprised of (n) typical units, with the activities in each unit having average quantity of the
work in all units. As the number of units in a project increases, eventually the project becomes
more complex and more challenging.

5.3 Resource-Driven Scheduling

As we have seen in network scheduling, the basic inputs to critical-path analysis are the
individual project activities, their durations, and their dependency relationships. Accordingly, the
forward-path and backward-path calculations determine the start and finish times of the
activities. The CPM algorithm, therefore, is duration-driven. Activities’ durations here are
function of the resources that are required (rather than available) to complete each activity. The
CPM formulation, therefore, assumes that resources are in abundance and cannot be used to
determine what resources are needed in order to meet a known project deadline duration.

Resource-driven scheduling, on the other hand, is different and is more focused on resources. Its
objective is to schedule the activities (determine their start and finish times) so that a project
deadline is met using predefined resource availability limits. The line of balance technique dealt
with in this chapter is a resource-driven schedule.




 Construction Management                        65                              Dr. Emad Elbeltagi
Chapter 5: Repetitive Projects

    5.4 Line of Balance (LOB)

    5.4.1        Basic representation

    Let’s consider a medium-sized high-rise building of 40 typical floors. The construction of each
    typical floor involves various inter-related activities. If a CPM network is to be developed for the
    whole project, certainly it will be so complex and will be composed of copies of the activities in
    a single floor. A Bar Chart of the project will still be so complex and will not serve the purpose
    of a good communication tool between planners and execution personnel.

    A schedule representation that suits projects with repetitive activities is shown in Figure 5.1
    between time on the horizontal axis and units on the vertical axis. This representation shows the
    following information:

    -        Each sloping bar represents one activity (A, B, C, or D) in the project and the width of the
             bar is the activity duration of one unit, which is uniform along all units;

    -        A horizontal line at any unit intersects with the activity bars at the planned start and finish
             times of the work in that unit;

    -        A vertical line at any date (time) shows the planned work that should be completed/started
             before and on that date;

    -        The slope of each activity represents its planned rate of progress and this is direct function of
             the number of crews involved in the activity. The slope of the last activity is the rate of
             delivery of the various units; and
                                                                                                                        Project
                                                                                                                        End Date
        11
Units




         .
         .                         A                    B                    C                       D
         .
         .
                       Start    Finish
                          4        7              11        13   14½        16½        19          22
         5

         3
                                                                                            Delivery rate
         1
                                                                                                                              Time
             0     2      4    6         8   10        12        14         16    18        20     22       24    26     28        30

                                             Figure 5.1: LOB representation

    -        The finish time of the last unit in the last activity represents the end date of the project.

    It is possible also to add more details to the basic LOB schedule as shown in Figure 5.2. The
    modified figure shows interesting information, as follows:

         Construction Management                                       66                                        Dr. Emad Elbeltagi
Chapter 5: Repetitive Projects


        -       The number of crews employed in each task is graphically represented with each crew
                indicated by a different pattern. As such, the movement of the crews from one unit to the
                other is shown;
                                                                    Buffer time
        11
Units




            .
            .                                   A                   B                   C                  D
            .
            .                     3 crews                 4 crews             3 crews            3 crews


            5

                             Crew 3
            3
                         Crew 2

                    Crew 1                                                                                                            Time
            1
                                                           Buffer time
                0       2         4         6       8    10    12        14        16       18     20      22     24      26     28     30



                                                    Figure 5.2: LOB Schedule with crew details

        -       The three crews employed in activity (A) have different work assignments. Crew 1 works in
                four units (numbers 1, 4, 7, and 10) and leaves site on day 12. Similarly, Crew 2 works on
                four units (numbers 2, 5, 8, and 11) then leaves site on day 13. Crew 3, on the other hand,
                works on three units only (numbers 3, 6, and 9) and leaves site on day 11;

        -       Each crew moves to a new unit as soon as it finishes with the previous one, without
                interruption. As such, work continuity is maintained and the learning phenomenon can lead
                to some savings in cost and time;

        -       To prevent interference among the sequential tasks of the LOB schedule in case an activity is
                slightly delayed, a buffer time may be introduced as shown, to act as a float time;

        -       When a slower activity is to follow a faster activity (e.g., C follows B), the activity C can be
                scheduled starting from unit 1, immediately following the predecessor B. Since interference
                can happen at unit 1, buffer time may be added to the start of unit 1;

        -       When a faster activity is to follow a slower activity (e.g., B follows A), the activity B needs
                to be scheduled starting at the top unit. If buffer time is to be added, it will be added at top.
                Notice that the start of unit 1 in activity B has been delayed to allow the task the proceed
                without interruption;

        -       Changing the production rate (slope) of any activity changes the project duration. Even
                speeding one task may prove to be harmful to the project when the conflict point changes
                from bottom to top; and


            Construction Management                                           67                                       Dr. Emad Elbeltagi
Chapter 5: Repetitive Projects

-     If speeding an activity or relaxing it may result in a delay in the project, a good scheduling
      strategy is to schedule the activities as parallel as possible to each other and also parallel to a
      desired project delivery.

5.4.2     LOB Calculations

The objective of using LOB is to achieve a resource-balanced schedule by determining the
suitable crew size and number of crews to employ in each repetitive activity. This is done such
that: (1) the units are delivered with a rate that meets a pre-specified deadline; (2) the logical
CPM network of each unit is respected; and (3) crews’ work continuity is maintained. The
analysis also involves determining the start and finish times of all activities in all units and the
crews’ assignments.

The CPM-LOB formulation that achieves the above objective involves four main issues, which
are discussed in the next sections:

            -   Crew synchronization and work continuity equation;
            -   Computation of a project delivery rate that meets a given deadline duration;
            -   Calculating resource needs for critical and non-critical activities; and
            -   Drawing the LOB schedule.

Crew synchronization

A simple relationship between the duration taken by a crew in one unit (D) and the number of
crews (C) to employ in a repetitive activity can be derived from the illustration in Figure 5.3. In
this figure, we have a 5-unit activity and 3 crews to use. Only one crew is assumed to work in a
single unit and the crew spends time (D) on the unit before moving to another unit.
                                                                           Crew 2
                                  5
                          Units




                                                                      Crew 1
                                  4
                                                              Crew 3
                                  3
                                                     Crew 2
                                  2                                        No. of Crews
                                                                           (C) = 3
                                            Crew 1                R
                                  1                                                       Time
                                      0 1      2       3      4        5       6    7
                                            D = 3 days

                                        Figure 5.3: Crew synchronization

Having 3 crews available for this activity, it is possible to schedule their movements in and out
of each unit, as shown in the figure, so that they are not interrupted and the work progresses at a
rate (R). For that work synchronization to happen, the following simple relationship applies:


    Construction Management                                   68                                        Dr. Emad Elbeltagi
Chapter 5: Repetitive Projects

                Number of Crews (C) = D x R                                                                      (5.1)

In the example shown, C = 3; D = 3 days; then, R becomes 1 unit/day, according to Equation 5.1.
Therefore, it is possible to achieve work continuity given any change in the number of crews (C)
or crew formation (affects D) by adjusting the rate of progress (R). For example, if 4 crews
become available, we can apply the same Equation 5.1 to determine a faster progress rate of 1.25
units/day.
                                                                          Crew 3
                           Units   3



                                                                         Crew 2
                                   2


                                                      1
                                            R                            Crew 1
                                                                                       R
                                   1
                                       0          1                  2             3       Time
                                            D/C           D/C               D/C


                                           Figure 5.4: Deriving Equation 5.1

Driving the relationship of Equation 5.1 is simple. By enlarging part of Figure 5.3 and dividing
the duration (D) among the (C) crews, the slope of the shaded triangle in Figure 5.4 becomes:

                     R = 1 / (D / C)                                                                             (5.2)

and the time D/C becomes:

                     D/C=1/R                                                                                     (5.3)

Both equations lead to our formulation of C = D x R. Equation 5.2 also means that work
continuity is achieved by shifting the start of each unit from its previous one by a time D/C or
1/R. This shift also has another practical meaning. Since each crew has part of its duration non-
shared with other crews, the chance of work delay is reduced when two crews need the same
equipment, or other resource, such as a crane on site.

Meeting a deadline duration

A basic objective in CPM-LOB calculation is to meet a given deadline for finishing a number of
(n) repetitive units; each has its own CPM network of component activities. Using the illustration
in Figure 5.5, it is possible to formulate a strategy for meeting the deadline by calculating a
desired rate of delivery (Rd) for the units, as follows:




 Construction Management                                        69                                  Dr. Emad Elbeltagi
Chapter 5: Repetitive Projects


                                    n




                            Units
                                    .
                                    .
                                    .
                                                                              n-1
                                    2

                                                                       R
                                    1                                               Time

                                        T1 = CPM Duration of Unit 1

                                             TL = Project Deadline Duration


                           Figure 5.5: Calculating a desired rate of delivery

                 Rd = (n – 1) / (TL - T1)                                                       (5.4)

where, TL is the deadline duration of the project and T1 is the CPM duration of the first unit. The
delivery rate determined from Equation 5.4 is, in fact, the minimum rate required to meet the
desired deadline. Any higher rate can expectedly produce shorter project duration, however,
more crews may need to be used and the schedule can be more costly.

Calculating resource needs

Once a minimum delivery rate (Rd) is calculated, it is desirable to enforce this rate on the
schedule of the repetitive activities to determine the resources needed to complete the project on
time. Equation 5.4, therefore, needs to be applied particularly to the critical activities, which are
the sequential tasks that take the longest path in the CPM network of each unit. Non-critical
activities, on the other hand, have float (TF) times and as such, we can afford to relax them
according to their float times to reduce cost. It is, therefore, possible to modify Equation 5.4 and
generalize it to determine a desired rate (Ri) for any repetitive task (i), as follows:

                 Ri = (n – 1) / (TL - T1) + TFi                                                   (5.5)

The physical meaning of Equation 5.5 is illustrated in Figure 5.6. In this figure, a 5-unit project
is shown with each unit consisting of a simple four-activity network. Three of the four activities
A, B, and C are sequential and each has 5-days duration. The fourth activity D runs parallel to B
and has a duration of 2 days only. Accordingly, A, B, and C are critical activities while activity
D is non-critical with Total Float (TF) of 3 days. As shown in Figure 5.6, the slopes of activities
A, B, and C are the same and are steep up. The slope of activity (D), on the other hand, has been
relaxed by simply starting unit 1 of task D as early as possible while starting the last unit as late
as possible (notice the difference in the CPM networks of the first and the last units). In this
manner, simple analysis of the slope of activity D in the figure leads us to the formulation of
Equation 5.5. Using this approach, the relaxation of non-critical activities can be performed
without violating any logical relationships or crew work continuity requirements.

 Construction Management                                70                           Dr. Emad Elbeltagi
Chapter 5: Repetitive Projects


                                                        TF = 3          D (2)
                                           A (5)                B (5)           C (5)
                           Unit n


                                    A              B        D               C
                                                                                               n-1



                                                   (TL - T1 ) + TFD
                                                                                TL - T1
      Unit 1

                  A (5)                 B (5)             C (5)
                               D (2)        TF = 3

                          Figure 5.6: Utilization of float in LOB calculations

With the desired rates calculated for the individual activities, a generalized form of Equation 5.1
can be used to determine the necessary number of crews (Ci) to use in each activity (i), as
follows:

                      Ci = Di x Ri                                                                    (5.6)

Another important consideration is that, in most cases, the number of crews calculated using
Equation 5.6 is not an integer value. Since a fraction of a crew is not possible, the number of
crews (Ci)’s has to be rounded up to determine the actual number of crews (Cai)’s. As a
consequence to that, the actual rates of progress in the activities (Rai)’s need to be adjusted, as
follows:
                     Cai = Round Up (Ci)                                                   (5.7)

                      Rai = Cai / Di                                                                    (5.8)

Equations 5.5 to 5.8, therefore, become the basis of integrated CPM-LOB calculations.

Drawing the LOB Schedule

A LOB schedule becomes simple to draw when all activities run with an exactly similar rate (i.e.,
activities run parallel to each other). However, due to the rounding of number of crews in
Equation 5.4, the activities’ actual rates (Rai)s calculated using Equation 5.5 will not be parallel.
Drawing the LOB schedule as such requires extra care as conflict points, either at the top unit or
at the first unit, will be introduced due to the difference in progress rates from one activity to the
other. As explained earlier, sometimes speeding an activity will cause a net delay in the whole
project, if work continuity is to be maintained. Therefore, some non-critical activities may end
up being delayed even in some situations violating the logical relationships or becomes critical

 Construction Management                               71                                  Dr. Emad Elbeltagi
Chapter 5: Repetitive Projects

themselves. Also, in some situations, the end schedule may slightly extend beyond the deadline.
In this case, a simple approach to use is to re-schedule the project with a deadline duration that is
slightly (one or two days) shorter than originally desired.

            Unit   5

                   4

                                              A               B         C         D
                   3
                                                                                    Critical Activities

                   2

                           Crew 1                                                                        Time
                   1
                       0       2          4       6     8     10        12   14   16       18       20

                   2
                                                                                  Earliest start
                   3        Latest finish                                         line of all
                            line of all                             E             successors
                            Predecessors
                   4
                                    Non-Critical Activity
                   5                with its Boundary Lines

                                        Figure 5.7: Alternative LOB representation

To draw the LOB schedule using the activities actual rates (Rai)s, we need to proceed in a
forward path, following the logical relationships in the CPM network. When an activity is
considered, its predecessors are first examined to identify their largest finish times, which are
then considered as a boundary on the start of the current activity. Drawing the schedule by hand
is simple when the network is small and can be done with varying levels of detail as shown in
Figures 5.1 and 5.2.

In terms of presentation, showing all the activities on the same grid results in a crowded schedule
and can be confusing even for a small network. Two interesting approaches can be used to
circumvent this problem. One approach is to draw the critical path on one grid and draw the
other paths, each on a different grid. The benefit of drawing these paths is to help visualize the
successor/predecessor relations for any given task, and accordingly facilitate any desired changes
to rates or crews. The second approach is to extend the LOB representation to show the non-
critical activities on a mirrored grid as shown in Figure 5.7.

5.4.3   Example Application

Now, let’s describe the systematic CPM-LOB procedure and apply it to a complete example.
Consider a subcontractor involved in a 5-unit housing project. The CPM network of the activities
in a single unit is shown in Figure 5.8.



 Construction Management                                           72                                    Dr. Emad Elbeltagi
Chapter 5: Repetitive Projects



                                                              D(8)
                                              2                           3
                                                                                      E(4)
                                    A(4)

                                    B(6)                      F(10)                   H(8)              I(6)
                           1                  4                           5                     6                  9
                                    C(2)                      G(16)
                                                                                               K(10)
                                                          J(6)            8
                                              7

                                   Figure 5.8: AOA network of a single unit

Activity durations, in days, are shown inside the brackets. The contractor signed a contract with
the developer to finish all the work in 50 days. Calculate and draw a LOB schedule. Also,
determine how many crews are needed and show on the LOB schedule how the crews move
from one unit to the other.

Solution

Step1: CPM calculations for a single unit: In this step, we determine the duration of a single unit
       and identify the critical path. As shown in Figure 5.12, the CPM duration (T1) of a single
       unit is 32 days and the critical path is B - G - K.

                                                  4 14                        12 22
                                                                 D(8)
                                                      2                        3
                                       A(4)                                             E(4)
                                                  6       6               16 18                  24 26             32 32
                                      B(6)                       F(10)                  H(8)              I(6)
                    00 0
                        0      1                   4                           5                    6                  9
                                      C(2)                           G(16)
                                                                                                 K(10)
                                                              J(6)             8
                                                   7
                                              2 16                        22 22


                               Figure 5.9: CPM Calculations for a single unit

Step 2: LOB calculations: In this step, apply the continuity equation (Equation 5.1) to determine
        the number of crews, and then determine the actual rate of progress in each activity. The
        calculations are shown in Table 5.1. Given that a project duration (TL) of 50 days is
        desirable, the 32 days taken by the first unit (T1) will leave only 18 days (TL - T1) to
        deliver the remaining 4 (i.e., n – 1) units. This gives a rate of delivery (4/18 = 0.222 units
        per day) or simply one unit every 4.5 days. As discussed before, this rate will be applied
        to the critical activities as a desired rate required to meet the deadline. Non-critical
        activities will have smaller rates depending on their float times (column 4 of Table 5.1).




 Construction Management                                             73                                           Dr. Emad Elbeltagi
Chapter 5: Repetitive Projects

 Table 5.1: LOB calculations
                 Activity        Total          Desired Rate         Required         Actual           Actual
                 Duration        Float               (R) =            Crews           Crews             Rate
   Activity        (D)           (TF)        (n-1) / (TL-T1+TF)     (C) = D x R        (Ca)         (Ra) = Ca / D
      A             4             10                0.143               0.572            1              0.25
      *B            6              0                0.222               1.332            2              0.333
      C             2             14                0.125               0.250            1               0.5
      D             8             10                0.143               1.144            2              0.25
      E             4             10                0.143               0.572            1              0.25
      F             10             2                0.200                 2              2               0.2
      *G            16             0                0.222               3.552            4              0.25
      H             8              2                0.200                1.6             2              0.25
       I            6              2                0.200                1.2             2              0.333
       J            6             14                0.125               0.75             1              0.167
      *K            10             0                0.222               2.22             3               0.3
  TL = deadline duration = 50 days; T1 = CPM duration of a single unit; * = Critical activity

Step 3: Draw the LOB Schedule: In this step, we draw the LOB schedule, starting with the
       critical path. First, we construct an empty grid and then plot the activities one by one as a
       four-point parallelogram (Figure 5.10). The two points on the left side represent the line
       connecting the start times of all units while the right side line connects the finish times.
       We start with activity B, the first critical activity. The first unit starts at time 0 (lower-left
       point) since this is the first activity in the path. The finish time of the first unit (bottom-
       right point), therefore, is at time 6 since the activity has a duration of 6 days. Knowing
       the two bottom points of B, the top two points are then determined, considering the actual
       progress rate of this activity (R = 0.333, see Table 5.1). As discussed earlier, each unit
       starts after (1/R) days from the start of its previous unit. Therefore, the last unit (unit 5)
       starts after 4 x (1/0.333) days from the start of unit 1 (12 + 0) = day 12 (Figure 5.10). The
       finish time of unit 5 (top-right point) then becomes 12 + 6 (duration) = day 18.

           Once an activity is plotted, we proceed with its successor, activity G in our case. Since G
           depends only on B, its start is bounded only by the finish line of activity B, which is the
           line between day 6 on unit 1 and day 18 on unit 5. Now, since G has a slower progress
           rate (0.25) than the boundary line (0.333), we can start the first unit of G (lower-left
           point) right after the work in activity B has finished, which is day 6 (notice that conflict
           point is at bottom). The finish of unit 1 (lower-right point of G), then, becomes day 22
           (starts at day 6 + a duration of 16 days). Following that, similar to what we did for
           activity B, we can plot the top two points, considering the progress rate of activity G.




 Construction Management                                 74                                     Dr. Emad Elbeltagi
Chapter 5: Repetitive Projects



                                         12            18        22                                  38                 48
                   5

            Unit   4

                                     B                                G                              K
                   3

                          Crew 2
                   2

                       Crew 1                                                                                                Time
                   1
                   0      5         10            15        20        25            30         35         40      45         50
                              6                                  22 24.67                    34.67


                                  Figure 5.10: LOB schedule for the critical path

                                                                                                          32 38




                                                        C                       J
                                                                                    Finish          Finish
                                                                                    of J            of G



                                     0        2             8         22


                       Figure 5.11: Determining the boundary line on activity K

After plotting activity G, we continue with activity K. Since K depends on both G and J, the start
of K has to be bounded by the largest finish times of G and J. For G, the finish times are
connected by the line between day 22 on unit 1 and day 38 on unit 5. For J, on the other hand,
simple calculations have to be made to determine its finish times. As illustrated in Figure 5.11, J
follows C and has a slower rate than C. Then, without doing any calculations for C, we sketch
the duration of C as 2 days, then proceed with J at unit 1 with 6 days duration, then we draw the
sloped line of J’s finish times, from day 8 to day 32, which are smaller than those for activity G.
As such, the start of activity K is bounded by day 22 on unit 1 and day 38 on unit 5.

Activity K has a higher progress rate than that of its boundary line, and as such, is expected to
have a conflict point at top unit. Therefore, we start plotting that activity starting from the top
unit and then subtract the slope of this activity to determine the start of unit 1 (lower point), as
shown on Figure 5.10. Following that process, we can see that the project is planned to end at
day 48, thus meeting the 50-day deadline. Also, after drawing the lines representing the activities
on the LOB schedule, it is possible to show the activities’ crew assignments and their movement
along the different units. Activity B in Figure 5.10, for example, shows the work assignments for
its two crews. Each crew can be given a different pattern or color to be easily identified.


 Construction Management                                                   75                                                     Dr. Emad Elbeltagi
Chapter 5: Repetitive Projects

Now consider the path connecting activities A-D-E-I and will use the same procedure described
for drawing the LOB schedule of the critical path. Activities A, D and E are sequential, have no
more than one predecessor, and have identical progress rates. As such, they can be easily plotted
as shown in Figure 5.12. Activity I on the other hand has two predecessors, E and H. The finish
line of activity E is shown in Figure 5.12 and spans from day 16 till day 32. The finish line of
activity H, however, can be calculated considering the B-F-H path, as illustrated in Figure 5.13.
Accordingly, the start of activity I is bounded by activity H (not activity E). Now, since the
activity being considered (I) has a higher progress rate (0.333) than its boundary line (0.25), we
need to draw the activity starting from the top point at day 44. The resulting LOB schedule of
this path (Figure 5.12) extends the project duration till day 50, which still meets the scheduling
goal. The significance of this change in project duration is that the critical path has also changed
for unit 5 (all other units end before day 48). This change in the critical path is due to the
relaxation of the slopes of non-critical activities and the rounding of the crew numbers. As
demonstrated by this example, extra care has to be taken when drawing the LOB schedule to
determine the planned project duration.


                                                16       20             28        32                       44        50
                    5
             Unit




                    4

                                       A             D         E                                       I
                    3


                    2

                                                                                                                      Time
                    1
                    0        5    10            15       20        25        30        35         40            45   50
                         4             12       16                                32        38

                                 Figure 5.12: LOB schedule for path A-D-E-I
                                                                                                 36        44




                                                     B                   F                  H
                                                                                                Finish
                                                                                                of H



                                   0        6             16                      28

                        Figure 5.13: Determining the boundary line on activity I


Example 5.1

The activities involved in the construction of one kilometer of a pipeline are given together with
their estimated durations in the table below. The project consists of 10 similar kilometers.

 Construction Management                                            76                                                    Dr. Emad Elbeltagi
Chapter 5: Repetitive Projects

Calculate the number of crews needed for each activity if the deadline for completing the project
is 40 days and draw the LOB schedule. Assume one day buffer time between activities.


             Table 5.2: Data for Example 5.1
                  Activity                                    Duration          Preceding
                                    Activity name
                    no.                                        (days)           activities
                         1        Locate and clear                1                     -
                         2        Excavate                        3                     1
                         3        String pipe                     1                     1
                         4        Lay pipe                        4                    2,3
                         5        Pressure test                   1                     4
                         6        Backfill                        2                     5


Solution

Figure 5.14 shows the CPM calculations for a single unit of the project. In this step, we
determine the duration of a single unit and identify the critical path.

Note that the one day buffer time is set as a lag between activities.


             0           1          2           5        6      10         11     12              13     15
                             -1         2 (3)       -1     4 (4)      -1     5 (1)           -1     6 (2)
                 1 (1)
             0           1          2           5        6      10         11     12              13     15
                             -1                     -1
                                    2           3
                                        3 (1)
                                    4           5


                             Figure 5.14: CPM calculations for Example 5.1


       T1 = 15 day       TL= 40 day          N = 10 units
       Ri = (n-1) / TL - T1 + TFi = 9 / (25 + TFi)




 Construction Management                                     77                                    Dr. Emad Elbeltagi
Chapter 5: Repetitive Projects

      Table 5.3: LOB calculations for Example 5.1

                       Duration         Total                                             Cai =
        Activity                                   Ri = 4 / (25+TFi)     Ci =Di x Ri                     Rai = Cai / Di
                          Di            Float                                          Round up Ci

           1                 1            0             0.36             0.36                 1            1
           2                 3            0             0.36             1.08                 2            0.667
           3                 1            2             0.333            0.333                1            1
           4                 4            0             0.36             1.44                 2            0.5
           5                 1            0             0.36             0.36                 1            1
           6                 2            0             0.36             0.72                 1            0.5




No. of units
                                 9 10 11 12      15.5       18.5        24        28 29 30                         40     42
10




                   1     3         2                    4                     5                6




 1
     0 1 2 3       5 6             10                           20 21 22 24                                               Time


                                              Figure 5.15: LOB for Example 5.1




     Construction Management                                       78                               Dr. Emad Elbeltagi

Contenu connexe

Tendances

Project network scheduling and S-curve
Project network scheduling and S-curve Project network scheduling and S-curve
Project network scheduling and S-curve Satish Yadavalli
 
Construction Planning and Scheduling of Residential Building by MS Project by...
Construction Planning and Scheduling of Residential Building by MS Project by...Construction Planning and Scheduling of Residential Building by MS Project by...
Construction Planning and Scheduling of Residential Building by MS Project by...Shabaz Khan
 
Construction Management (1st Lecture)
Construction Management (1st Lecture) Construction Management (1st Lecture)
Construction Management (1st Lecture) Muhammad Aljalali
 
Quantify Construction Damages related to Delay, disruption, and inefficiencies
Quantify Construction Damages related to Delay, disruption, and inefficienciesQuantify Construction Damages related to Delay, disruption, and inefficiencies
Quantify Construction Damages related to Delay, disruption, and inefficienciesMichael Pink
 
121 r 85 - quality assurance systems for concrete constructio
121 r 85 - quality assurance systems for concrete constructio121 r 85 - quality assurance systems for concrete constructio
121 r 85 - quality assurance systems for concrete constructioMOHAMMED SABBAR
 
Primavera presentation
Primavera presentationPrimavera presentation
Primavera presentationNithin Dev
 
Training i-staad pro 2007
Training i-staad pro 2007Training i-staad pro 2007
Training i-staad pro 2007fazil64
 
Chapter 3 Construction Planning and Scheduling lect. 3.ppt
Chapter 3 Construction Planning and Scheduling lect. 3.pptChapter 3 Construction Planning and Scheduling lect. 3.ppt
Chapter 3 Construction Planning and Scheduling lect. 3.pptssuserb4074f
 
TALAT Lecture 2301: Design of Members Example 9.2: Beam-column with rectangul...
TALAT Lecture 2301: Design of Members Example 9.2: Beam-column with rectangul...TALAT Lecture 2301: Design of Members Example 9.2: Beam-column with rectangul...
TALAT Lecture 2301: Design of Members Example 9.2: Beam-column with rectangul...CORE-Materials
 
مذكرات مهندس إنشائي - الجزء الثاني : احمال الرياح على المنشآت الخرسانية وكيفي...
مذكرات مهندس إنشائي - الجزء الثاني : احمال الرياح على المنشآت الخرسانية وكيفي...مذكرات مهندس إنشائي - الجزء الثاني : احمال الرياح على المنشآت الخرسانية وكيفي...
مذكرات مهندس إنشائي - الجزء الثاني : احمال الرياح على المنشآت الخرسانية وكيفي...Karim Gaber
 
Time cost optimisation
Time cost optimisationTime cost optimisation
Time cost optimisationCharul Sharma
 
Building project presentation
Building project presentationBuilding project presentation
Building project presentationemdad bhuiyan
 
Analysis of T-Beam
Analysis of T-BeamAnalysis of T-Beam
Analysis of T-Beam01008828934
 
Wind loads calculation
Wind loads calculationWind loads calculation
Wind loads calculationHenry Kurniadi
 
Session W2 - Delay Claims and Analysis Based on FIDIC Forms of Contract
Session W2 - Delay Claims and Analysis Based on FIDIC Forms of ContractSession W2 - Delay Claims and Analysis Based on FIDIC Forms of Contract
Session W2 - Delay Claims and Analysis Based on FIDIC Forms of ContractProject Controls Expo
 
3. construction planning. construction project management
3. construction planning. construction project management3. construction planning. construction project management
3. construction planning. construction project managementKabilan Kabi
 

Tendances (20)

Project network scheduling and S-curve
Project network scheduling and S-curve Project network scheduling and S-curve
Project network scheduling and S-curve
 
Sistema Heli Pile Guia
Sistema Heli Pile GuiaSistema Heli Pile Guia
Sistema Heli Pile Guia
 
Construction Planning and Scheduling of Residential Building by MS Project by...
Construction Planning and Scheduling of Residential Building by MS Project by...Construction Planning and Scheduling of Residential Building by MS Project by...
Construction Planning and Scheduling of Residential Building by MS Project by...
 
Construction Management (1st Lecture)
Construction Management (1st Lecture) Construction Management (1st Lecture)
Construction Management (1st Lecture)
 
Pert & Cpm
Pert & CpmPert & Cpm
Pert & Cpm
 
Quantify Construction Damages related to Delay, disruption, and inefficiencies
Quantify Construction Damages related to Delay, disruption, and inefficienciesQuantify Construction Damages related to Delay, disruption, and inefficiencies
Quantify Construction Damages related to Delay, disruption, and inefficiencies
 
121 r 85 - quality assurance systems for concrete constructio
121 r 85 - quality assurance systems for concrete constructio121 r 85 - quality assurance systems for concrete constructio
121 r 85 - quality assurance systems for concrete constructio
 
Design of pile cap
Design of pile capDesign of pile cap
Design of pile cap
 
Primavera presentation
Primavera presentationPrimavera presentation
Primavera presentation
 
Delay analysis final
Delay analysis finalDelay analysis final
Delay analysis final
 
Training i-staad pro 2007
Training i-staad pro 2007Training i-staad pro 2007
Training i-staad pro 2007
 
Chapter 3 Construction Planning and Scheduling lect. 3.ppt
Chapter 3 Construction Planning and Scheduling lect. 3.pptChapter 3 Construction Planning and Scheduling lect. 3.ppt
Chapter 3 Construction Planning and Scheduling lect. 3.ppt
 
TALAT Lecture 2301: Design of Members Example 9.2: Beam-column with rectangul...
TALAT Lecture 2301: Design of Members Example 9.2: Beam-column with rectangul...TALAT Lecture 2301: Design of Members Example 9.2: Beam-column with rectangul...
TALAT Lecture 2301: Design of Members Example 9.2: Beam-column with rectangul...
 
مذكرات مهندس إنشائي - الجزء الثاني : احمال الرياح على المنشآت الخرسانية وكيفي...
مذكرات مهندس إنشائي - الجزء الثاني : احمال الرياح على المنشآت الخرسانية وكيفي...مذكرات مهندس إنشائي - الجزء الثاني : احمال الرياح على المنشآت الخرسانية وكيفي...
مذكرات مهندس إنشائي - الجزء الثاني : احمال الرياح على المنشآت الخرسانية وكيفي...
 
Time cost optimisation
Time cost optimisationTime cost optimisation
Time cost optimisation
 
Building project presentation
Building project presentationBuilding project presentation
Building project presentation
 
Analysis of T-Beam
Analysis of T-BeamAnalysis of T-Beam
Analysis of T-Beam
 
Wind loads calculation
Wind loads calculationWind loads calculation
Wind loads calculation
 
Session W2 - Delay Claims and Analysis Based on FIDIC Forms of Contract
Session W2 - Delay Claims and Analysis Based on FIDIC Forms of ContractSession W2 - Delay Claims and Analysis Based on FIDIC Forms of Contract
Session W2 - Delay Claims and Analysis Based on FIDIC Forms of Contract
 
3. construction planning. construction project management
3. construction planning. construction project management3. construction planning. construction project management
3. construction planning. construction project management
 

En vedette (7)

Estimating & tendering
Estimating & tenderingEstimating & tendering
Estimating & tendering
 
An Approach to estimate Software Testing
An Approach to estimate Software TestingAn Approach to estimate Software Testing
An Approach to estimate Software Testing
 
Ch1 introduction
Ch1 introductionCh1 introduction
Ch1 introduction
 
Manual ms excel 2007 nivel avanzado
Manual ms excel 2007 nivel avanzadoManual ms excel 2007 nivel avanzado
Manual ms excel 2007 nivel avanzado
 
3.estimating
3.estimating3.estimating
3.estimating
 
4.contracting
4.contracting4.contracting
4.contracting
 
Graficos
GraficosGraficos
Graficos
 

Similaire à Ch5 repetitive

Cpm n pert lecture 1
Cpm n pert lecture 1Cpm n pert lecture 1
Cpm n pert lecture 1adeelmunir158
 
Critical path method(cpm)
Critical path method(cpm)Critical path method(cpm)
Critical path method(cpm)chandkec
 
project-network-diagram.ppt
project-network-diagram.pptproject-network-diagram.ppt
project-network-diagram.pptalbert937613
 
PMGT 510Principles of Project ManagementGroup Assign.docx
PMGT 510Principles of Project ManagementGroup Assign.docxPMGT 510Principles of Project ManagementGroup Assign.docx
PMGT 510Principles of Project ManagementGroup Assign.docxstilliegeorgiana
 
Pert & cpm project management
Pert & cpm   project managementPert & cpm   project management
Pert & cpm project managementRahul Dubey
 
Bar Graph Method in Engineering management
Bar Graph Method in Engineering management Bar Graph Method in Engineering management
Bar Graph Method in Engineering management Nzar Braim
 
Basics CPM&PERT.ppt
Basics CPM&PERT.pptBasics CPM&PERT.ppt
Basics CPM&PERT.pptssuserad50d3
 
Unit.6. network analysis with cpm and pert
Unit.6. network analysis with cpm and pertUnit.6. network analysis with cpm and pert
Unit.6. network analysis with cpm and pertDagnaygebawGoshme
 
Mba ii pmom_unit-4.3 scheduling-gantt chart a
Mba ii pmom_unit-4.3 scheduling-gantt chart aMba ii pmom_unit-4.3 scheduling-gantt chart a
Mba ii pmom_unit-4.3 scheduling-gantt chart aRai University
 
Chapter 6 project management
Chapter 6 project managementChapter 6 project management
Chapter 6 project managementShadina Shah
 
Software project-scheduling
Software project-schedulingSoftware project-scheduling
Software project-schedulingsaurabhshertukde
 
Cm ch4 scheduling
Cm ch4 schedulingCm ch4 scheduling
Cm ch4 schedulingAhmed Gamal
 
Free float and total float - PMP/CAPM from PMI
Free float and total float - PMP/CAPM from PMIFree float and total float - PMP/CAPM from PMI
Free float and total float - PMP/CAPM from PMIMudassir Iqbal
 
12 lecture project scheduling 4
12 lecture project scheduling 412 lecture project scheduling 4
12 lecture project scheduling 4Ahmad Basim Hamza
 

Similaire à Ch5 repetitive (20)

Ch4 scheduling
Ch4 schedulingCh4 scheduling
Ch4 scheduling
 
Cpm n pert lecture 1
Cpm n pert lecture 1Cpm n pert lecture 1
Cpm n pert lecture 1
 
Critical path method(cpm)
Critical path method(cpm)Critical path method(cpm)
Critical path method(cpm)
 
PERT-Overview1.pdf
PERT-Overview1.pdfPERT-Overview1.pdf
PERT-Overview1.pdf
 
project-network-diagram.ppt
project-network-diagram.pptproject-network-diagram.ppt
project-network-diagram.ppt
 
PMGT 510Principles of Project ManagementGroup Assign.docx
PMGT 510Principles of Project ManagementGroup Assign.docxPMGT 510Principles of Project ManagementGroup Assign.docx
PMGT 510Principles of Project ManagementGroup Assign.docx
 
Pert & cpm project management
Pert & cpm   project managementPert & cpm   project management
Pert & cpm project management
 
Bar Graph Method in Engineering management
Bar Graph Method in Engineering management Bar Graph Method in Engineering management
Bar Graph Method in Engineering management
 
Basics CPM&PERT.ppt
Basics CPM&PERT.pptBasics CPM&PERT.ppt
Basics CPM&PERT.ppt
 
Unit.6. network analysis with cpm and pert
Unit.6. network analysis with cpm and pertUnit.6. network analysis with cpm and pert
Unit.6. network analysis with cpm and pert
 
Mba ii pmom_unit-4.3 scheduling-gantt chart a
Mba ii pmom_unit-4.3 scheduling-gantt chart aMba ii pmom_unit-4.3 scheduling-gantt chart a
Mba ii pmom_unit-4.3 scheduling-gantt chart a
 
Pert and CPM
Pert and CPMPert and CPM
Pert and CPM
 
Chapter 6 project management
Chapter 6 project managementChapter 6 project management
Chapter 6 project management
 
Software project-scheduling
Software project-schedulingSoftware project-scheduling
Software project-scheduling
 
Project Scheduling
Project SchedulingProject Scheduling
Project Scheduling
 
Cpm pert asgm. prashant
Cpm pert asgm. prashantCpm pert asgm. prashant
Cpm pert asgm. prashant
 
Cm ch4 scheduling
Cm ch4 schedulingCm ch4 scheduling
Cm ch4 scheduling
 
Free float and total float - PMP/CAPM from PMI
Free float and total float - PMP/CAPM from PMIFree float and total float - PMP/CAPM from PMI
Free float and total float - PMP/CAPM from PMI
 
Ch 5.pptx
Ch 5.pptxCh 5.pptx
Ch 5.pptx
 
12 lecture project scheduling 4
12 lecture project scheduling 412 lecture project scheduling 4
12 lecture project scheduling 4
 

Plus de Tu Nguyen, PMP®,PMI-RMP®

Plus de Tu Nguyen, PMP®,PMI-RMP® (20)

2.tendering
2.tendering2.tendering
2.tendering
 
1.introduction
1.introduction1.introduction
1.introduction
 
Session 8 gdas pmp study group presentation
Session 8   gdas pmp study group presentationSession 8   gdas pmp study group presentation
Session 8 gdas pmp study group presentation
 
Session 7 gdas pmp study group presentation
Session 7   gdas pmp study group presentationSession 7   gdas pmp study group presentation
Session 7 gdas pmp study group presentation
 
Session 6 gdas pmp study group presentation
Session 6   gdas pmp study group presentationSession 6   gdas pmp study group presentation
Session 6 gdas pmp study group presentation
 
Session 5 gdas pmp study group presentation
Session 5   gdas pmp study group presentationSession 5   gdas pmp study group presentation
Session 5 gdas pmp study group presentation
 
Session 4 gdas pmp study group presentation
Session 4   gdas pmp study group presentationSession 4   gdas pmp study group presentation
Session 4 gdas pmp study group presentation
 
Session 10 gdas pmp study group presentation
Session 10   gdas pmp study group presentationSession 10   gdas pmp study group presentation
Session 10 gdas pmp study group presentation
 
Session 3 gdas pmp study group presentation
Session 3   gdas pmp study group presentationSession 3   gdas pmp study group presentation
Session 3 gdas pmp study group presentation
 
Session 2 gdas pmp study group presentation
Session 2   gdas pmp study group presentationSession 2   gdas pmp study group presentation
Session 2 gdas pmp study group presentation
 
Node
NodeNode
Node
 
Contract
ContractContract
Contract
 
Cash flow
Cash flowCash flow
Cash flow
 
Bar chart
Bar chartBar chart
Bar chart
 
Arrow computation
Arrow computationArrow computation
Arrow computation
 
Arrow
ArrowArrow
Arrow
 
Administration
AdministrationAdministration
Administration
 
Time cost-trade-off
Time cost-trade-offTime cost-trade-off
Time cost-trade-off
 
Time cost-control
Time cost-controlTime cost-control
Time cost-control
 
Resources
ResourcesResources
Resources
 

Ch5 repetitive

  • 1. Chapter 5: Repetitive Projects Chapter 5: Scheduling of Repetitive Projects 5.1 Introduction This chapter introduces new techniques for scheduling of multiple and linear projects that involve a number of repetitive activities. These techniques include: the summary diagrams and the line of balance (LOB). Examples of these projects are highways, pipelines, and high-rise buildings. The objective of the LOB technique is to determine a balanced mix of resources and synchronize their work so that they are fully employed and non-interrupted. As such, it is possible to benefit from repetition, and the crews will likely be able to spend less time and money on later units once they develop a learning momentum. Another benefit of the LOB technique is its interesting representation of the schedule, given the large amount of data for the repetitive units. This chapter introduces the summary diagrams calculations presented on AON networks and integrated CPM-LOB calculations that combine the benefits of CPM network analysis of a single unit and the LOB analysis and representation. 5.2 Linear Projects Linear projects are projects involving repetitive activities. They take their name from either: (a) involving several uniform units of work such as multiple houses or typical floors in a building; or (b) being geometrically linear such as highway, pipeline, and utility projects. In both categories, however, some non-typical units could be involved such as a non-typical floor in a high-rise building or a non-standard station in a highway project. The activities in these non-typical units may certainly involve higher or lower quantity of work than their counterparts in the typical units. To simplify the scheduling task in these situations, we can assume that the project is comprised of (n) typical units, with the activities in each unit having average quantity of the work in all units. As the number of units in a project increases, eventually the project becomes more complex and more challenging. 5.3 Resource-Driven Scheduling As we have seen in network scheduling, the basic inputs to critical-path analysis are the individual project activities, their durations, and their dependency relationships. Accordingly, the forward-path and backward-path calculations determine the start and finish times of the activities. The CPM algorithm, therefore, is duration-driven. Activities’ durations here are function of the resources that are required (rather than available) to complete each activity. The CPM formulation, therefore, assumes that resources are in abundance and cannot be used to determine what resources are needed in order to meet a known project deadline duration. Resource-driven scheduling, on the other hand, is different and is more focused on resources. Its objective is to schedule the activities (determine their start and finish times) so that a project deadline is met using predefined resource availability limits. The line of balance technique dealt with in this chapter is a resource-driven schedule. Construction Management 65 Dr. Emad Elbeltagi
  • 2. Chapter 5: Repetitive Projects 5.4 Line of Balance (LOB) 5.4.1 Basic representation Let’s consider a medium-sized high-rise building of 40 typical floors. The construction of each typical floor involves various inter-related activities. If a CPM network is to be developed for the whole project, certainly it will be so complex and will be composed of copies of the activities in a single floor. A Bar Chart of the project will still be so complex and will not serve the purpose of a good communication tool between planners and execution personnel. A schedule representation that suits projects with repetitive activities is shown in Figure 5.1 between time on the horizontal axis and units on the vertical axis. This representation shows the following information: - Each sloping bar represents one activity (A, B, C, or D) in the project and the width of the bar is the activity duration of one unit, which is uniform along all units; - A horizontal line at any unit intersects with the activity bars at the planned start and finish times of the work in that unit; - A vertical line at any date (time) shows the planned work that should be completed/started before and on that date; - The slope of each activity represents its planned rate of progress and this is direct function of the number of crews involved in the activity. The slope of the last activity is the rate of delivery of the various units; and Project End Date 11 Units . . A B C D . . Start Finish 4 7 11 13 14½ 16½ 19 22 5 3 Delivery rate 1 Time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Figure 5.1: LOB representation - The finish time of the last unit in the last activity represents the end date of the project. It is possible also to add more details to the basic LOB schedule as shown in Figure 5.2. The modified figure shows interesting information, as follows: Construction Management 66 Dr. Emad Elbeltagi
  • 3. Chapter 5: Repetitive Projects - The number of crews employed in each task is graphically represented with each crew indicated by a different pattern. As such, the movement of the crews from one unit to the other is shown; Buffer time 11 Units . . A B C D . . 3 crews 4 crews 3 crews 3 crews 5 Crew 3 3 Crew 2 Crew 1 Time 1 Buffer time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Figure 5.2: LOB Schedule with crew details - The three crews employed in activity (A) have different work assignments. Crew 1 works in four units (numbers 1, 4, 7, and 10) and leaves site on day 12. Similarly, Crew 2 works on four units (numbers 2, 5, 8, and 11) then leaves site on day 13. Crew 3, on the other hand, works on three units only (numbers 3, 6, and 9) and leaves site on day 11; - Each crew moves to a new unit as soon as it finishes with the previous one, without interruption. As such, work continuity is maintained and the learning phenomenon can lead to some savings in cost and time; - To prevent interference among the sequential tasks of the LOB schedule in case an activity is slightly delayed, a buffer time may be introduced as shown, to act as a float time; - When a slower activity is to follow a faster activity (e.g., C follows B), the activity C can be scheduled starting from unit 1, immediately following the predecessor B. Since interference can happen at unit 1, buffer time may be added to the start of unit 1; - When a faster activity is to follow a slower activity (e.g., B follows A), the activity B needs to be scheduled starting at the top unit. If buffer time is to be added, it will be added at top. Notice that the start of unit 1 in activity B has been delayed to allow the task the proceed without interruption; - Changing the production rate (slope) of any activity changes the project duration. Even speeding one task may prove to be harmful to the project when the conflict point changes from bottom to top; and Construction Management 67 Dr. Emad Elbeltagi
  • 4. Chapter 5: Repetitive Projects - If speeding an activity or relaxing it may result in a delay in the project, a good scheduling strategy is to schedule the activities as parallel as possible to each other and also parallel to a desired project delivery. 5.4.2 LOB Calculations The objective of using LOB is to achieve a resource-balanced schedule by determining the suitable crew size and number of crews to employ in each repetitive activity. This is done such that: (1) the units are delivered with a rate that meets a pre-specified deadline; (2) the logical CPM network of each unit is respected; and (3) crews’ work continuity is maintained. The analysis also involves determining the start and finish times of all activities in all units and the crews’ assignments. The CPM-LOB formulation that achieves the above objective involves four main issues, which are discussed in the next sections: - Crew synchronization and work continuity equation; - Computation of a project delivery rate that meets a given deadline duration; - Calculating resource needs for critical and non-critical activities; and - Drawing the LOB schedule. Crew synchronization A simple relationship between the duration taken by a crew in one unit (D) and the number of crews (C) to employ in a repetitive activity can be derived from the illustration in Figure 5.3. In this figure, we have a 5-unit activity and 3 crews to use. Only one crew is assumed to work in a single unit and the crew spends time (D) on the unit before moving to another unit. Crew 2 5 Units Crew 1 4 Crew 3 3 Crew 2 2 No. of Crews (C) = 3 Crew 1 R 1 Time 0 1 2 3 4 5 6 7 D = 3 days Figure 5.3: Crew synchronization Having 3 crews available for this activity, it is possible to schedule their movements in and out of each unit, as shown in the figure, so that they are not interrupted and the work progresses at a rate (R). For that work synchronization to happen, the following simple relationship applies: Construction Management 68 Dr. Emad Elbeltagi
  • 5. Chapter 5: Repetitive Projects Number of Crews (C) = D x R (5.1) In the example shown, C = 3; D = 3 days; then, R becomes 1 unit/day, according to Equation 5.1. Therefore, it is possible to achieve work continuity given any change in the number of crews (C) or crew formation (affects D) by adjusting the rate of progress (R). For example, if 4 crews become available, we can apply the same Equation 5.1 to determine a faster progress rate of 1.25 units/day. Crew 3 Units 3 Crew 2 2 1 R Crew 1 R 1 0 1 2 3 Time D/C D/C D/C Figure 5.4: Deriving Equation 5.1 Driving the relationship of Equation 5.1 is simple. By enlarging part of Figure 5.3 and dividing the duration (D) among the (C) crews, the slope of the shaded triangle in Figure 5.4 becomes: R = 1 / (D / C) (5.2) and the time D/C becomes: D/C=1/R (5.3) Both equations lead to our formulation of C = D x R. Equation 5.2 also means that work continuity is achieved by shifting the start of each unit from its previous one by a time D/C or 1/R. This shift also has another practical meaning. Since each crew has part of its duration non- shared with other crews, the chance of work delay is reduced when two crews need the same equipment, or other resource, such as a crane on site. Meeting a deadline duration A basic objective in CPM-LOB calculation is to meet a given deadline for finishing a number of (n) repetitive units; each has its own CPM network of component activities. Using the illustration in Figure 5.5, it is possible to formulate a strategy for meeting the deadline by calculating a desired rate of delivery (Rd) for the units, as follows: Construction Management 69 Dr. Emad Elbeltagi
  • 6. Chapter 5: Repetitive Projects n Units . . . n-1 2 R 1 Time T1 = CPM Duration of Unit 1 TL = Project Deadline Duration Figure 5.5: Calculating a desired rate of delivery Rd = (n – 1) / (TL - T1) (5.4) where, TL is the deadline duration of the project and T1 is the CPM duration of the first unit. The delivery rate determined from Equation 5.4 is, in fact, the minimum rate required to meet the desired deadline. Any higher rate can expectedly produce shorter project duration, however, more crews may need to be used and the schedule can be more costly. Calculating resource needs Once a minimum delivery rate (Rd) is calculated, it is desirable to enforce this rate on the schedule of the repetitive activities to determine the resources needed to complete the project on time. Equation 5.4, therefore, needs to be applied particularly to the critical activities, which are the sequential tasks that take the longest path in the CPM network of each unit. Non-critical activities, on the other hand, have float (TF) times and as such, we can afford to relax them according to their float times to reduce cost. It is, therefore, possible to modify Equation 5.4 and generalize it to determine a desired rate (Ri) for any repetitive task (i), as follows: Ri = (n – 1) / (TL - T1) + TFi (5.5) The physical meaning of Equation 5.5 is illustrated in Figure 5.6. In this figure, a 5-unit project is shown with each unit consisting of a simple four-activity network. Three of the four activities A, B, and C are sequential and each has 5-days duration. The fourth activity D runs parallel to B and has a duration of 2 days only. Accordingly, A, B, and C are critical activities while activity D is non-critical with Total Float (TF) of 3 days. As shown in Figure 5.6, the slopes of activities A, B, and C are the same and are steep up. The slope of activity (D), on the other hand, has been relaxed by simply starting unit 1 of task D as early as possible while starting the last unit as late as possible (notice the difference in the CPM networks of the first and the last units). In this manner, simple analysis of the slope of activity D in the figure leads us to the formulation of Equation 5.5. Using this approach, the relaxation of non-critical activities can be performed without violating any logical relationships or crew work continuity requirements. Construction Management 70 Dr. Emad Elbeltagi
  • 7. Chapter 5: Repetitive Projects TF = 3 D (2) A (5) B (5) C (5) Unit n A B D C n-1 (TL - T1 ) + TFD TL - T1 Unit 1 A (5) B (5) C (5) D (2) TF = 3 Figure 5.6: Utilization of float in LOB calculations With the desired rates calculated for the individual activities, a generalized form of Equation 5.1 can be used to determine the necessary number of crews (Ci) to use in each activity (i), as follows: Ci = Di x Ri (5.6) Another important consideration is that, in most cases, the number of crews calculated using Equation 5.6 is not an integer value. Since a fraction of a crew is not possible, the number of crews (Ci)’s has to be rounded up to determine the actual number of crews (Cai)’s. As a consequence to that, the actual rates of progress in the activities (Rai)’s need to be adjusted, as follows: Cai = Round Up (Ci) (5.7) Rai = Cai / Di (5.8) Equations 5.5 to 5.8, therefore, become the basis of integrated CPM-LOB calculations. Drawing the LOB Schedule A LOB schedule becomes simple to draw when all activities run with an exactly similar rate (i.e., activities run parallel to each other). However, due to the rounding of number of crews in Equation 5.4, the activities’ actual rates (Rai)s calculated using Equation 5.5 will not be parallel. Drawing the LOB schedule as such requires extra care as conflict points, either at the top unit or at the first unit, will be introduced due to the difference in progress rates from one activity to the other. As explained earlier, sometimes speeding an activity will cause a net delay in the whole project, if work continuity is to be maintained. Therefore, some non-critical activities may end up being delayed even in some situations violating the logical relationships or becomes critical Construction Management 71 Dr. Emad Elbeltagi
  • 8. Chapter 5: Repetitive Projects themselves. Also, in some situations, the end schedule may slightly extend beyond the deadline. In this case, a simple approach to use is to re-schedule the project with a deadline duration that is slightly (one or two days) shorter than originally desired. Unit 5 4 A B C D 3 Critical Activities 2 Crew 1 Time 1 0 2 4 6 8 10 12 14 16 18 20 2 Earliest start 3 Latest finish line of all line of all E successors Predecessors 4 Non-Critical Activity 5 with its Boundary Lines Figure 5.7: Alternative LOB representation To draw the LOB schedule using the activities actual rates (Rai)s, we need to proceed in a forward path, following the logical relationships in the CPM network. When an activity is considered, its predecessors are first examined to identify their largest finish times, which are then considered as a boundary on the start of the current activity. Drawing the schedule by hand is simple when the network is small and can be done with varying levels of detail as shown in Figures 5.1 and 5.2. In terms of presentation, showing all the activities on the same grid results in a crowded schedule and can be confusing even for a small network. Two interesting approaches can be used to circumvent this problem. One approach is to draw the critical path on one grid and draw the other paths, each on a different grid. The benefit of drawing these paths is to help visualize the successor/predecessor relations for any given task, and accordingly facilitate any desired changes to rates or crews. The second approach is to extend the LOB representation to show the non- critical activities on a mirrored grid as shown in Figure 5.7. 5.4.3 Example Application Now, let’s describe the systematic CPM-LOB procedure and apply it to a complete example. Consider a subcontractor involved in a 5-unit housing project. The CPM network of the activities in a single unit is shown in Figure 5.8. Construction Management 72 Dr. Emad Elbeltagi
  • 9. Chapter 5: Repetitive Projects D(8) 2 3 E(4) A(4) B(6) F(10) H(8) I(6) 1 4 5 6 9 C(2) G(16) K(10) J(6) 8 7 Figure 5.8: AOA network of a single unit Activity durations, in days, are shown inside the brackets. The contractor signed a contract with the developer to finish all the work in 50 days. Calculate and draw a LOB schedule. Also, determine how many crews are needed and show on the LOB schedule how the crews move from one unit to the other. Solution Step1: CPM calculations for a single unit: In this step, we determine the duration of a single unit and identify the critical path. As shown in Figure 5.12, the CPM duration (T1) of a single unit is 32 days and the critical path is B - G - K. 4 14 12 22 D(8) 2 3 A(4) E(4) 6 6 16 18 24 26 32 32 B(6) F(10) H(8) I(6) 00 0 0 1 4 5 6 9 C(2) G(16) K(10) J(6) 8 7 2 16 22 22 Figure 5.9: CPM Calculations for a single unit Step 2: LOB calculations: In this step, apply the continuity equation (Equation 5.1) to determine the number of crews, and then determine the actual rate of progress in each activity. The calculations are shown in Table 5.1. Given that a project duration (TL) of 50 days is desirable, the 32 days taken by the first unit (T1) will leave only 18 days (TL - T1) to deliver the remaining 4 (i.e., n – 1) units. This gives a rate of delivery (4/18 = 0.222 units per day) or simply one unit every 4.5 days. As discussed before, this rate will be applied to the critical activities as a desired rate required to meet the deadline. Non-critical activities will have smaller rates depending on their float times (column 4 of Table 5.1). Construction Management 73 Dr. Emad Elbeltagi
  • 10. Chapter 5: Repetitive Projects Table 5.1: LOB calculations Activity Total Desired Rate Required Actual Actual Duration Float (R) = Crews Crews Rate Activity (D) (TF) (n-1) / (TL-T1+TF) (C) = D x R (Ca) (Ra) = Ca / D A 4 10 0.143 0.572 1 0.25 *B 6 0 0.222 1.332 2 0.333 C 2 14 0.125 0.250 1 0.5 D 8 10 0.143 1.144 2 0.25 E 4 10 0.143 0.572 1 0.25 F 10 2 0.200 2 2 0.2 *G 16 0 0.222 3.552 4 0.25 H 8 2 0.200 1.6 2 0.25 I 6 2 0.200 1.2 2 0.333 J 6 14 0.125 0.75 1 0.167 *K 10 0 0.222 2.22 3 0.3 TL = deadline duration = 50 days; T1 = CPM duration of a single unit; * = Critical activity Step 3: Draw the LOB Schedule: In this step, we draw the LOB schedule, starting with the critical path. First, we construct an empty grid and then plot the activities one by one as a four-point parallelogram (Figure 5.10). The two points on the left side represent the line connecting the start times of all units while the right side line connects the finish times. We start with activity B, the first critical activity. The first unit starts at time 0 (lower-left point) since this is the first activity in the path. The finish time of the first unit (bottom- right point), therefore, is at time 6 since the activity has a duration of 6 days. Knowing the two bottom points of B, the top two points are then determined, considering the actual progress rate of this activity (R = 0.333, see Table 5.1). As discussed earlier, each unit starts after (1/R) days from the start of its previous unit. Therefore, the last unit (unit 5) starts after 4 x (1/0.333) days from the start of unit 1 (12 + 0) = day 12 (Figure 5.10). The finish time of unit 5 (top-right point) then becomes 12 + 6 (duration) = day 18. Once an activity is plotted, we proceed with its successor, activity G in our case. Since G depends only on B, its start is bounded only by the finish line of activity B, which is the line between day 6 on unit 1 and day 18 on unit 5. Now, since G has a slower progress rate (0.25) than the boundary line (0.333), we can start the first unit of G (lower-left point) right after the work in activity B has finished, which is day 6 (notice that conflict point is at bottom). The finish of unit 1 (lower-right point of G), then, becomes day 22 (starts at day 6 + a duration of 16 days). Following that, similar to what we did for activity B, we can plot the top two points, considering the progress rate of activity G. Construction Management 74 Dr. Emad Elbeltagi
  • 11. Chapter 5: Repetitive Projects 12 18 22 38 48 5 Unit 4 B G K 3 Crew 2 2 Crew 1 Time 1 0 5 10 15 20 25 30 35 40 45 50 6 22 24.67 34.67 Figure 5.10: LOB schedule for the critical path 32 38 C J Finish Finish of J of G 0 2 8 22 Figure 5.11: Determining the boundary line on activity K After plotting activity G, we continue with activity K. Since K depends on both G and J, the start of K has to be bounded by the largest finish times of G and J. For G, the finish times are connected by the line between day 22 on unit 1 and day 38 on unit 5. For J, on the other hand, simple calculations have to be made to determine its finish times. As illustrated in Figure 5.11, J follows C and has a slower rate than C. Then, without doing any calculations for C, we sketch the duration of C as 2 days, then proceed with J at unit 1 with 6 days duration, then we draw the sloped line of J’s finish times, from day 8 to day 32, which are smaller than those for activity G. As such, the start of activity K is bounded by day 22 on unit 1 and day 38 on unit 5. Activity K has a higher progress rate than that of its boundary line, and as such, is expected to have a conflict point at top unit. Therefore, we start plotting that activity starting from the top unit and then subtract the slope of this activity to determine the start of unit 1 (lower point), as shown on Figure 5.10. Following that process, we can see that the project is planned to end at day 48, thus meeting the 50-day deadline. Also, after drawing the lines representing the activities on the LOB schedule, it is possible to show the activities’ crew assignments and their movement along the different units. Activity B in Figure 5.10, for example, shows the work assignments for its two crews. Each crew can be given a different pattern or color to be easily identified. Construction Management 75 Dr. Emad Elbeltagi
  • 12. Chapter 5: Repetitive Projects Now consider the path connecting activities A-D-E-I and will use the same procedure described for drawing the LOB schedule of the critical path. Activities A, D and E are sequential, have no more than one predecessor, and have identical progress rates. As such, they can be easily plotted as shown in Figure 5.12. Activity I on the other hand has two predecessors, E and H. The finish line of activity E is shown in Figure 5.12 and spans from day 16 till day 32. The finish line of activity H, however, can be calculated considering the B-F-H path, as illustrated in Figure 5.13. Accordingly, the start of activity I is bounded by activity H (not activity E). Now, since the activity being considered (I) has a higher progress rate (0.333) than its boundary line (0.25), we need to draw the activity starting from the top point at day 44. The resulting LOB schedule of this path (Figure 5.12) extends the project duration till day 50, which still meets the scheduling goal. The significance of this change in project duration is that the critical path has also changed for unit 5 (all other units end before day 48). This change in the critical path is due to the relaxation of the slopes of non-critical activities and the rounding of the crew numbers. As demonstrated by this example, extra care has to be taken when drawing the LOB schedule to determine the planned project duration. 16 20 28 32 44 50 5 Unit 4 A D E I 3 2 Time 1 0 5 10 15 20 25 30 35 40 45 50 4 12 16 32 38 Figure 5.12: LOB schedule for path A-D-E-I 36 44 B F H Finish of H 0 6 16 28 Figure 5.13: Determining the boundary line on activity I Example 5.1 The activities involved in the construction of one kilometer of a pipeline are given together with their estimated durations in the table below. The project consists of 10 similar kilometers. Construction Management 76 Dr. Emad Elbeltagi
  • 13. Chapter 5: Repetitive Projects Calculate the number of crews needed for each activity if the deadline for completing the project is 40 days and draw the LOB schedule. Assume one day buffer time between activities. Table 5.2: Data for Example 5.1 Activity Duration Preceding Activity name no. (days) activities 1 Locate and clear 1 - 2 Excavate 3 1 3 String pipe 1 1 4 Lay pipe 4 2,3 5 Pressure test 1 4 6 Backfill 2 5 Solution Figure 5.14 shows the CPM calculations for a single unit of the project. In this step, we determine the duration of a single unit and identify the critical path. Note that the one day buffer time is set as a lag between activities. 0 1 2 5 6 10 11 12 13 15 -1 2 (3) -1 4 (4) -1 5 (1) -1 6 (2) 1 (1) 0 1 2 5 6 10 11 12 13 15 -1 -1 2 3 3 (1) 4 5 Figure 5.14: CPM calculations for Example 5.1 T1 = 15 day TL= 40 day N = 10 units Ri = (n-1) / TL - T1 + TFi = 9 / (25 + TFi) Construction Management 77 Dr. Emad Elbeltagi
  • 14. Chapter 5: Repetitive Projects Table 5.3: LOB calculations for Example 5.1 Duration Total Cai = Activity Ri = 4 / (25+TFi) Ci =Di x Ri Rai = Cai / Di Di Float Round up Ci 1 1 0 0.36 0.36 1 1 2 3 0 0.36 1.08 2 0.667 3 1 2 0.333 0.333 1 1 4 4 0 0.36 1.44 2 0.5 5 1 0 0.36 0.36 1 1 6 2 0 0.36 0.72 1 0.5 No. of units 9 10 11 12 15.5 18.5 24 28 29 30 40 42 10 1 3 2 4 5 6 1 0 1 2 3 5 6 10 20 21 22 24 Time Figure 5.15: LOB for Example 5.1 Construction Management 78 Dr. Emad Elbeltagi