SlideShare une entreprise Scribd logo
1  sur  39
Theory and Application of
Microprocessor 8085
Theory and Application of
Microprocessor
By: Sundas Shabbir
Recommended books
1. Theory and problems of microprocessor
fundamentals by schaum outline series.
2. The intel microprocessors by Barry B.
brey & C. R. Sarma
3. Other sources
– internet
The Microprocessor
Introduction
• Brain of the computer
• silicon chip that contains a CPU
• First microprocessors emerged in the early 1970.
• A microprocessor is designed to perform
arithmetic and logic operations.
• It is the most expensive component found inside
the system.
• Intel is world leader in Microprocessor.
Definition
• A microprocessor may be briefly defined as a
(VLSI) chip that performs a task of the central
processing unit of a microcomputer or other
automatic control systems.
Definition (2)
• Microprocessor is multipurpose, programmable logic
device that reads the binary instruction from storage
device called memory, accepts the binary data as input
and processes data according to those instructions, and
provides the results as output.
• Microprocessor is broadly divided into three parts.
• Arithmetic logic Unit :
– Arithmetic logic unit, the part of a computer that performs all arithmetic
computations, such as addition and multiplication, and all comparison
operations. The ALU is one component of the CPU .
• Registers:
– A register is one of a small set of data holding places that are part of a
computer processor . A register may hold a computer instruction , a
storage address, or any kind of data.
• Control Unit :
– The control unit is the circuitry that controls the flow of information
through the processor, and coordinates the activities of the other units
within it.
Common microprocessor
characteristics
• Power connections: microprocessors require a 5-v Dc regulated
power supply.
• Bit size: the bit size is sometimes referred to as its word size
commonly classified as 4, 8, 16 or 32 bit units.
• Data lines: Mp transfer data or instructions b/w the MPU and
memory or I/O via a bidirectional data bus.
• Address lines: older processors use 16 bit address buses, and
newer MPUs have 16, 20 or more bits in an address bus.
• Control lines: communicate with ALU and memory by
generating control signals, e.g
– R/W lines
– I/O lines
– interrupt lines.
• Internal registers: Registers work under the direction of the
control unit to accept, hold, and transfer instructions or data and
perform arithmetic or logical comparisons at high speed. Few of
the registers are :
– Program counter
– Accumulator
– Flag register
– General purpose register
– Stack pointer
• Addressing modes: a technique used to fetch the desired operand
during the execution of an instruction. Following are the few
types of modes:
– Register addressing mode
– Register indirect addressing mode
– Immediate addressing mode
– Inherent addressing
– Index addressing mode
Evolution of Intel Mp
• 4004
• 8008
• 8080
• 8085
• 8086/8088
• 80186
• 80286
• 80386
• 80486
• Pentium
• Pentium pro
• P-11
• P-111
• P-4 and so on..
Find the specifications of these
processors???
What to study
• when learning about a new microprocessor , one must
study the following:
– Microprocessor architecture
– Pin functions
– Control signals
– Addressing modes
– Instruction set
• The Mp we will discuss :
– 8085
– 8086
– 6800
– 6502 and many other acc. To availability of time 
The 8085 Microprocessor
8085 INTRODUCTION
The features of INTEL 8085 are :
• It is an 8 bit processor.
• It is a single chip N-MOS device with 40 pins.
• It has multiplexed address and data bus.(AD0-AD7).
• It works on 5 Volt dc power supply.
• The maximum clock frequency is 3 MHz while
minimum frequency is 500kHz.
• It provides 74 instructions with 5 different addressing
modes.
8085 INTRODUCTION
• It provides 16 address lines so it can access 2^16 =64K
bytes of memory.
• It generates 8 bit I/O address so it can access 2^8=256
input ports.
• It provides 5 hardware interrupts:TRAP, RST 5.5, RST
6.5, RST 7.5,INTR.
• It provides Acc ,one flag register ,6 general purpose
registers and two special purpose registers(SP,PC).
• It provides serial lines SID ,SOD.So serial peripherals
can be interfaced with 8085 directly.
17
Intel 8085 Pin
diagram
• It has 40 pins and uses +5V for power. It can run at a
maximum frequency of 3 MHz.
• The pins on the chip can be grouped into 6 groups:
1. Power supply and frequency.
2. Serial I/O ports.
3. Address Bus.
4. Data Bus.
5. Control and Status Signals.
6. Externally Initiated Signals.
www.yesnarayanan.blogspot.com
Power supply and Frequency signals
• The microprocessor operates on a singles +5V power supply
connected to Vcc at pin number 40.
• The ground is connected to Vss at pin number 20.
• There are 3 pin in the frequency control group 1. X1 2. X2.
3. CLK OUT.
(i) X1&X2: Pin number 1&2 are the inputs from the clock
generating circuit. It is use to synchronize the operations of
the 8085 microprocessor.
• The microprocessor has operates at 3MHz frequency.
(ii) CLK OUT: Pin number 37, It is an output pin. This signal is
generated by microprocessor. It can be used as the system
clock for other devices.
Clock circuit
www.yesnarayanan.blogspot.com
Serial I/O ports
• These signals are used for giving serial input and
output data.
• There are used two pin for serial I/O data .
1. SID: Serial Input Data. Pin number 5
This pin provides serial input data. The serial data on
this pin is loaded into the seventh bit of the
accumulator.
2. SOD: Serial Out Data Pin number 4
This pin provides the serial output data. The serial data
on this pin delivers its output from the seventh bit of
the accumulator.
www.yesnarayanan.blogspot.com
Address Bus and Data Bus
• 8085 μp consists of 16 signal pins use as address bus.
• Address bus is available from pin number 21 to 28.
• Divide into 2 part: A15 – A8 (upper) and AD7 – AD0
(lower).
– A15 – A8 : Unidirectional, known as ‘high order
address’ bits.
– AD7 – AD0 : bidirectional and dual purpose pins
also known as ‘low order address’ bits.
– To execute an instruction, at early stage AD7 – AD0
uses as address bus and alternately as data bus for
the next cycle.
– The method to change from address bus to data bus
known as ‘bus multiplexingbus multiplexing’.
• The 8 address bits are multiplexed (time shared) with
the 8 data bits. AD0 to AD7
• Pin number 12 to 19 are used for data bus in
microprocessor.
• The data bus is a bidirectional bus. The data bus can
transfer the data from CPU to memory or vice versa.
The data bus also connects the I/O ports and
microprocessor.
Control and Status Signals
• There are 4 main control and status signals.
1. ALE: Address Latch Enable: Pin number 30.
• This signal is a pulse that become 1 when the AD0 –
AD7 lines have an address on them. It becomes 0 after
that.
• This signal can be used to enable a latch to save the
address bits from the AD lines.
2. RD: Read. Active low
• Pin number 32
• The read control signal is used to control the reading
operations of microprocessor.
• indicate that the I/O or memory selected is to be read
and data are available on the bus.
3. WR: Write. Active low.
• Pin number 31
• The write control signal is same as read signal.
• Indicate that the data available on the bus are to be
written to memory or I/O ports.
www.yesnarayanan.blogspot.com
4. IO/M: Input-output/Memory
• Pin number 34
• This signal specifies whether the operation is a
memory operation (IO/M=0) or an I/O operation
(IO/M=1).
www.yesnarayanan.blogspot.com
• S1 and S0:
• Pin number 33&29
• S1 & S0 are two status signals.
• These signals are used to indicate the internal operation
of microprocessor.
• Status signals to specify the kind of operation being
performed .
www.yesnarayanan.blogspot.com
31
Control and Status Signals.
Externally initiated and acknowledge signals
• These are total 11 pins in this group:
1. RESET IN
2. RESET OUT
3. READY
4. HOLD
5. HLDA
6. Types of INTERRUPT
www.yesnarayanan.blogspot.com
1. RESET
• RESET IN: This is an input signal. Pin number-36
• When the signal on this chip goes low, the program
counter is set to zero.
• RESET OUT: Pin number-3
• This signal is generated by microprocessor in response
of the signal RESET IN when RESET IN is logic 0,
RESET OUT is logic 1,This signal show that
microprocessor in reset.
www.yesnarayanan.blogspot.com
2. READY
• Pin number-35
• If Ready is high during a read or write cycle, it show that the
memory or peripheral is ready to send or receiving the data.
• If Ready is low, the CPU wait for Ready to go high before
completing the read or write cycle.
• A peripheral may be a LCD display or analog to digital converter
or any other. These peripherals are connected to microprocessor
using the READY pin. If READY is high then the peripheral is
ready for data transfer.
3. HOLD & HLDA
• HOLD:
• Pin number-39
• is an active high signals.
• It means other device is requesting for DMA
operations.
• HOLD:
• This indicates if any other device is requesting the use
of address and data bus. Consider two peripheral
devices. One is the LCD and the other Analog to
Digital converter. Suppose if analog to digital
converter is using the address and data bus and if LCD
requests the use of address and data bus by giving
HOLD signal, then the microprocessor transfers the
control to the LCD as soon as the current cycle is over.
After the LCD process is over, the control is
transferred back to analog and digital converter.
• DMA is a method of transferring data from the
computer's RAM to another part of the computer
without processing it using the CPU.
• DMA can save processing time and is a more efficient
way to move data from the computer's memory to other
devices.
• In order for devices to use direct memory access, they
must be assigned to a DMA channel. Each type of port
on a computer has a set of DMA channels that can be
assigned to each connected device. For example, a PCI
controller and a hard drive controller each have their
own set of DMA channels.
• HLDA: Pin number-38
• It is active high signal.
• This signal acknowledges the HOLD request.
• It’s inactive by the microprocessor after the I/O device
has completed the DMA operation.
www.yesnarayanan.blogspot.com
Interrupt signals

Contenu connexe

Tendances (20)

ARM7-ARCHITECTURE
ARM7-ARCHITECTURE ARM7-ARCHITECTURE
ARM7-ARCHITECTURE
 
Timing diagram 8085 microprocessor
Timing diagram 8085 microprocessorTiming diagram 8085 microprocessor
Timing diagram 8085 microprocessor
 
8051 Microcontroller
8051 Microcontroller8051 Microcontroller
8051 Microcontroller
 
8086 micro processor
8086 micro processor8086 micro processor
8086 micro processor
 
Pic microcontroller architecture
Pic microcontroller architecturePic microcontroller architecture
Pic microcontroller architecture
 
Inverter
InverterInverter
Inverter
 
microcontroller vs microprocessor
microcontroller vs microprocessormicrocontroller vs microprocessor
microcontroller vs microprocessor
 
Thyristor
Thyristor Thyristor
Thyristor
 
Interfacing LCD with 8051 Microcontroller
Interfacing LCD with 8051 MicrocontrollerInterfacing LCD with 8051 Microcontroller
Interfacing LCD with 8051 Microcontroller
 
3.programmable interrupt controller 8259
3.programmable interrupt controller 82593.programmable interrupt controller 8259
3.programmable interrupt controller 8259
 
PIC MICROCONTROLLERS -CLASS NOTES
PIC MICROCONTROLLERS -CLASS NOTESPIC MICROCONTROLLERS -CLASS NOTES
PIC MICROCONTROLLERS -CLASS NOTES
 
8255 PPI
8255 PPI8255 PPI
8255 PPI
 
Interrupts in pic
Interrupts in picInterrupts in pic
Interrupts in pic
 
Stepper motor ppt
Stepper motor pptStepper motor ppt
Stepper motor ppt
 
Electrical ac & dc drives ppt
Electrical ac & dc drives pptElectrical ac & dc drives ppt
Electrical ac & dc drives ppt
 
Microprocessor 8085 complete
Microprocessor 8085 completeMicroprocessor 8085 complete
Microprocessor 8085 complete
 
Serial Communication in 8051
Serial Communication in 8051Serial Communication in 8051
Serial Communication in 8051
 
Power Electronics - DIAC & TRIAC
Power Electronics - DIAC & TRIACPower Electronics - DIAC & TRIAC
Power Electronics - DIAC & TRIAC
 
Pin diagram 8085
Pin diagram 8085 Pin diagram 8085
Pin diagram 8085
 
Silicon control rectifier
Silicon control rectifierSilicon control rectifier
Silicon control rectifier
 

Similaire à Microprocessor and Application (8085)

UNIT 1 Microprocessors.pptx
UNIT 1 Microprocessors.pptxUNIT 1 Microprocessors.pptx
UNIT 1 Microprocessors.pptxGowrishankar C
 
introduction to microprocessors
introduction to microprocessorsintroduction to microprocessors
introduction to microprocessorssudheerkethamreddy
 
Unit 2 - Microprocessor & Microcontroller.pptx
Unit 2 -  Microprocessor & Microcontroller.pptxUnit 2 -  Microprocessor & Microcontroller.pptx
Unit 2 - Microprocessor & Microcontroller.pptxCharunnath S V
 
Application of 8086 and 8085 Microprocessor in Robots.pptx
Application of 8086 and 8085 Microprocessor in Robots.pptxApplication of 8086 and 8085 Microprocessor in Robots.pptx
Application of 8086 and 8085 Microprocessor in Robots.pptxssuser631ea0
 
8086 architecture-unit-1
8086 architecture-unit-18086 architecture-unit-1
8086 architecture-unit-1logesh.ieee
 
Part of UNIT2 Memory mapped IOjkl;'lk.pdf
Part of UNIT2 Memory mapped IOjkl;'lk.pdfPart of UNIT2 Memory mapped IOjkl;'lk.pdf
Part of UNIT2 Memory mapped IOjkl;'lk.pdfAbhishekkumar397974
 
Microprocessor Architecture-III
Microprocessor Architecture-IIIMicroprocessor Architecture-III
Microprocessor Architecture-IIIDr.YNM
 
Microprocessor and Microcontroller.pptx
Microprocessor and Microcontroller.pptxMicroprocessor and Microcontroller.pptx
Microprocessor and Microcontroller.pptxpvg123456
 
Chapter 2-8085 Microprocessor Architecture and Microcomputer Systems
Chapter 2-8085 Microprocessor Architecture and Microcomputer SystemsChapter 2-8085 Microprocessor Architecture and Microcomputer Systems
Chapter 2-8085 Microprocessor Architecture and Microcomputer Systemscmkandemir
 
Memory & I/O interfacing
Memory & I/O  interfacingMemory & I/O  interfacing
Memory & I/O interfacingdeval patel
 

Similaire à Microprocessor and Application (8085) (20)

UNIT 1 Microprocessors.pptx
UNIT 1 Microprocessors.pptxUNIT 1 Microprocessors.pptx
UNIT 1 Microprocessors.pptx
 
8085 microprocessor
8085 microprocessor8085 microprocessor
8085 microprocessor
 
architect.ppt
architect.pptarchitect.ppt
architect.ppt
 
12 mt06ped001
12 mt06ped001 12 mt06ped001
12 mt06ped001
 
Unit 2.ppt
Unit 2.pptUnit 2.ppt
Unit 2.ppt
 
MP_MC.pdf
MP_MC.pdfMP_MC.pdf
MP_MC.pdf
 
introduction to microprocessors
introduction to microprocessorsintroduction to microprocessors
introduction to microprocessors
 
Unit 2 - Microprocessor & Microcontroller.pptx
Unit 2 -  Microprocessor & Microcontroller.pptxUnit 2 -  Microprocessor & Microcontroller.pptx
Unit 2 - Microprocessor & Microcontroller.pptx
 
MPMC
MPMC MPMC
MPMC
 
Application of 8086 and 8085 Microprocessor in Robots.pptx
Application of 8086 and 8085 Microprocessor in Robots.pptxApplication of 8086 and 8085 Microprocessor in Robots.pptx
Application of 8086 and 8085 Microprocessor in Robots.pptx
 
8086 architecture-unit-1
8086 architecture-unit-18086 architecture-unit-1
8086 architecture-unit-1
 
Mechatronics ME8791
Mechatronics ME8791 Mechatronics ME8791
Mechatronics ME8791
 
Part of UNIT2 Memory mapped IOjkl;'lk.pdf
Part of UNIT2 Memory mapped IOjkl;'lk.pdfPart of UNIT2 Memory mapped IOjkl;'lk.pdf
Part of UNIT2 Memory mapped IOjkl;'lk.pdf
 
Microprocessor Architecture-III
Microprocessor Architecture-IIIMicroprocessor Architecture-III
Microprocessor Architecture-III
 
Microprocessor and Microcontroller.pptx
Microprocessor and Microcontroller.pptxMicroprocessor and Microcontroller.pptx
Microprocessor and Microcontroller.pptx
 
PPT-1.pptx
PPT-1.pptxPPT-1.pptx
PPT-1.pptx
 
PPT-1.pptx
PPT-1.pptxPPT-1.pptx
PPT-1.pptx
 
Chapter 2-8085 Microprocessor Architecture and Microcomputer Systems
Chapter 2-8085 Microprocessor Architecture and Microcomputer SystemsChapter 2-8085 Microprocessor Architecture and Microcomputer Systems
Chapter 2-8085 Microprocessor Architecture and Microcomputer Systems
 
Memory & I/O interfacing
Memory & I/O  interfacingMemory & I/O  interfacing
Memory & I/O interfacing
 
Microprocessor history1
Microprocessor history1Microprocessor history1
Microprocessor history1
 

Dernier

Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...gurkirankumar98700
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilV3cube
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 

Dernier (20)

Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of Brazil
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 

Microprocessor and Application (8085)

  • 1. Theory and Application of Microprocessor 8085
  • 2. Theory and Application of Microprocessor By: Sundas Shabbir
  • 3. Recommended books 1. Theory and problems of microprocessor fundamentals by schaum outline series. 2. The intel microprocessors by Barry B. brey & C. R. Sarma 3. Other sources – internet
  • 5. Introduction • Brain of the computer • silicon chip that contains a CPU • First microprocessors emerged in the early 1970. • A microprocessor is designed to perform arithmetic and logic operations. • It is the most expensive component found inside the system. • Intel is world leader in Microprocessor.
  • 6. Definition • A microprocessor may be briefly defined as a (VLSI) chip that performs a task of the central processing unit of a microcomputer or other automatic control systems.
  • 7. Definition (2) • Microprocessor is multipurpose, programmable logic device that reads the binary instruction from storage device called memory, accepts the binary data as input and processes data according to those instructions, and provides the results as output.
  • 8. • Microprocessor is broadly divided into three parts. • Arithmetic logic Unit : – Arithmetic logic unit, the part of a computer that performs all arithmetic computations, such as addition and multiplication, and all comparison operations. The ALU is one component of the CPU . • Registers: – A register is one of a small set of data holding places that are part of a computer processor . A register may hold a computer instruction , a storage address, or any kind of data. • Control Unit : – The control unit is the circuitry that controls the flow of information through the processor, and coordinates the activities of the other units within it.
  • 9. Common microprocessor characteristics • Power connections: microprocessors require a 5-v Dc regulated power supply. • Bit size: the bit size is sometimes referred to as its word size commonly classified as 4, 8, 16 or 32 bit units. • Data lines: Mp transfer data or instructions b/w the MPU and memory or I/O via a bidirectional data bus. • Address lines: older processors use 16 bit address buses, and newer MPUs have 16, 20 or more bits in an address bus.
  • 10. • Control lines: communicate with ALU and memory by generating control signals, e.g – R/W lines – I/O lines – interrupt lines. • Internal registers: Registers work under the direction of the control unit to accept, hold, and transfer instructions or data and perform arithmetic or logical comparisons at high speed. Few of the registers are : – Program counter – Accumulator – Flag register – General purpose register – Stack pointer
  • 11. • Addressing modes: a technique used to fetch the desired operand during the execution of an instruction. Following are the few types of modes: – Register addressing mode – Register indirect addressing mode – Immediate addressing mode – Inherent addressing – Index addressing mode
  • 12. Evolution of Intel Mp • 4004 • 8008 • 8080 • 8085 • 8086/8088 • 80186 • 80286 • 80386 • 80486 • Pentium • Pentium pro • P-11 • P-111 • P-4 and so on.. Find the specifications of these processors???
  • 13. What to study • when learning about a new microprocessor , one must study the following: – Microprocessor architecture – Pin functions – Control signals – Addressing modes – Instruction set • The Mp we will discuss : – 8085 – 8086 – 6800 – 6502 and many other acc. To availability of time 
  • 15. 8085 INTRODUCTION The features of INTEL 8085 are : • It is an 8 bit processor. • It is a single chip N-MOS device with 40 pins. • It has multiplexed address and data bus.(AD0-AD7). • It works on 5 Volt dc power supply. • The maximum clock frequency is 3 MHz while minimum frequency is 500kHz. • It provides 74 instructions with 5 different addressing modes.
  • 16. 8085 INTRODUCTION • It provides 16 address lines so it can access 2^16 =64K bytes of memory. • It generates 8 bit I/O address so it can access 2^8=256 input ports. • It provides 5 hardware interrupts:TRAP, RST 5.5, RST 6.5, RST 7.5,INTR. • It provides Acc ,one flag register ,6 general purpose registers and two special purpose registers(SP,PC). • It provides serial lines SID ,SOD.So serial peripherals can be interfaced with 8085 directly.
  • 18.
  • 19.
  • 20. • It has 40 pins and uses +5V for power. It can run at a maximum frequency of 3 MHz. • The pins on the chip can be grouped into 6 groups: 1. Power supply and frequency. 2. Serial I/O ports. 3. Address Bus. 4. Data Bus. 5. Control and Status Signals. 6. Externally Initiated Signals. www.yesnarayanan.blogspot.com
  • 21. Power supply and Frequency signals • The microprocessor operates on a singles +5V power supply connected to Vcc at pin number 40. • The ground is connected to Vss at pin number 20. • There are 3 pin in the frequency control group 1. X1 2. X2. 3. CLK OUT. (i) X1&X2: Pin number 1&2 are the inputs from the clock generating circuit. It is use to synchronize the operations of the 8085 microprocessor. • The microprocessor has operates at 3MHz frequency. (ii) CLK OUT: Pin number 37, It is an output pin. This signal is generated by microprocessor. It can be used as the system clock for other devices.
  • 23. Serial I/O ports • These signals are used for giving serial input and output data. • There are used two pin for serial I/O data . 1. SID: Serial Input Data. Pin number 5 This pin provides serial input data. The serial data on this pin is loaded into the seventh bit of the accumulator. 2. SOD: Serial Out Data Pin number 4 This pin provides the serial output data. The serial data on this pin delivers its output from the seventh bit of the accumulator. www.yesnarayanan.blogspot.com
  • 24. Address Bus and Data Bus • 8085 μp consists of 16 signal pins use as address bus. • Address bus is available from pin number 21 to 28. • Divide into 2 part: A15 – A8 (upper) and AD7 – AD0 (lower). – A15 – A8 : Unidirectional, known as ‘high order address’ bits. – AD7 – AD0 : bidirectional and dual purpose pins also known as ‘low order address’ bits. – To execute an instruction, at early stage AD7 – AD0 uses as address bus and alternately as data bus for the next cycle. – The method to change from address bus to data bus known as ‘bus multiplexingbus multiplexing’.
  • 25. • The 8 address bits are multiplexed (time shared) with the 8 data bits. AD0 to AD7 • Pin number 12 to 19 are used for data bus in microprocessor. • The data bus is a bidirectional bus. The data bus can transfer the data from CPU to memory or vice versa. The data bus also connects the I/O ports and microprocessor.
  • 26. Control and Status Signals • There are 4 main control and status signals. 1. ALE: Address Latch Enable: Pin number 30. • This signal is a pulse that become 1 when the AD0 – AD7 lines have an address on them. It becomes 0 after that. • This signal can be used to enable a latch to save the address bits from the AD lines.
  • 27. 2. RD: Read. Active low • Pin number 32 • The read control signal is used to control the reading operations of microprocessor. • indicate that the I/O or memory selected is to be read and data are available on the bus.
  • 28. 3. WR: Write. Active low. • Pin number 31 • The write control signal is same as read signal. • Indicate that the data available on the bus are to be written to memory or I/O ports. www.yesnarayanan.blogspot.com
  • 29. 4. IO/M: Input-output/Memory • Pin number 34 • This signal specifies whether the operation is a memory operation (IO/M=0) or an I/O operation (IO/M=1). www.yesnarayanan.blogspot.com
  • 30. • S1 and S0: • Pin number 33&29 • S1 & S0 are two status signals. • These signals are used to indicate the internal operation of microprocessor. • Status signals to specify the kind of operation being performed . www.yesnarayanan.blogspot.com
  • 32. Externally initiated and acknowledge signals • These are total 11 pins in this group: 1. RESET IN 2. RESET OUT 3. READY 4. HOLD 5. HLDA 6. Types of INTERRUPT www.yesnarayanan.blogspot.com
  • 33. 1. RESET • RESET IN: This is an input signal. Pin number-36 • When the signal on this chip goes low, the program counter is set to zero. • RESET OUT: Pin number-3 • This signal is generated by microprocessor in response of the signal RESET IN when RESET IN is logic 0, RESET OUT is logic 1,This signal show that microprocessor in reset. www.yesnarayanan.blogspot.com
  • 34. 2. READY • Pin number-35 • If Ready is high during a read or write cycle, it show that the memory or peripheral is ready to send or receiving the data. • If Ready is low, the CPU wait for Ready to go high before completing the read or write cycle. • A peripheral may be a LCD display or analog to digital converter or any other. These peripherals are connected to microprocessor using the READY pin. If READY is high then the peripheral is ready for data transfer.
  • 35. 3. HOLD & HLDA • HOLD: • Pin number-39 • is an active high signals. • It means other device is requesting for DMA operations.
  • 36. • HOLD: • This indicates if any other device is requesting the use of address and data bus. Consider two peripheral devices. One is the LCD and the other Analog to Digital converter. Suppose if analog to digital converter is using the address and data bus and if LCD requests the use of address and data bus by giving HOLD signal, then the microprocessor transfers the control to the LCD as soon as the current cycle is over. After the LCD process is over, the control is transferred back to analog and digital converter.
  • 37. • DMA is a method of transferring data from the computer's RAM to another part of the computer without processing it using the CPU. • DMA can save processing time and is a more efficient way to move data from the computer's memory to other devices. • In order for devices to use direct memory access, they must be assigned to a DMA channel. Each type of port on a computer has a set of DMA channels that can be assigned to each connected device. For example, a PCI controller and a hard drive controller each have their own set of DMA channels.
  • 38. • HLDA: Pin number-38 • It is active high signal. • This signal acknowledges the HOLD request. • It’s inactive by the microprocessor after the I/O device has completed the DMA operation. www.yesnarayanan.blogspot.com

Notes de l'éditeur

  1. Just like brain it controls all resources in the system..and it can be in any other device ..
  2. Control unit…It controls communication and co-ordination between input/output devices. It reads and interprets instructions and determines the sequence for processing the data. All computer resources are managed by the CU (Control Unit). It directs the flow of data between the Central Processing Unit (CPU) and the other devices. It performs the tasks of fetching, decoding, managing execution and, finally, storing results. ALU:
  3. Address bus…A collection of wires connecting the CPU with main memory that is used to identify particular locations (addresses) in main memory data travels in both directions but the addresses will travel in only one direction. The reason for this is that unlike the data, the address is always specified by the processor.
  4. A resistor–capacitor circuit (RC circuit), RC circuits can be used to filter a signal by blocking certain frequencies and passing others. In electronics an LC circuit, also called a resonant circuit, consists of two electronic components connected together; an inductor, represented by the letter L, and a capacitor, represented by the letter C. LC circuits are used either for generating signals at a particular frequency .. An inductor, also called a coil or reactor, is a passive two-terminal electrical component which resists changes in electric current passing through it
  5. Synchronization…coordinate actions of the circuits..
  6. A clock pulse is one cycle of the system clock. Some processors (such as the 8085) use that as their primary clock. Each instruction is executed in one or more clock pulses, depending on the instruction and on the processor. he minimum instruction time, for instance, for the 8085 is 4 clock cycles. Access to memory is also controlled by the external clock. In the 8085, 3 clock cycles are required to read or write one byte. In the advanced processors, 2 clock cycles can read
  7. The data bus is a bidirectional bus. The data bus can transfer the data from CPU to memory or vice versa. The data bus also connects the I/O ports and microprocessor.
  8. n the x86 computer architecture, HLT (halt) is an assembly language instruction which halts the central processing unit (CPU) until the next external interrupt is fired. The HLT instruction is executed by the operating system when there is no immediate work to be done, and the system enters its idle state
  9. When you first power up. The whole system including the 8085 and peripheral chips is reset or initialised. After the RESET OUT goes low, the processing begins
  10. Some peripheral devices are slow; they are unable to run at the same speed at the 8085. One way to slow down the 8085 is with the READY signal. The 8085 address a peripheral device. If the device is not ready it will return a low READY bit to the 8085. Then the 8085 generates a number of T states called WAIT states. When the peripheral device is ready it will send a high READY signal to the 8085. Then the 8085 can complete the data transfer. The action is a form of handshaking
  11. is used to transfer data from memory to peripheral or peripheral to memory without the interference of the microprocessor. For example, a sound card may need to access data stored in the computer's RAM, but since it can process the data itself, it may use DMA to bypass the CPU. Video cards that support DMA can also access the system memory and process graphics without needing the CPU. Ultra DMA hard drives use DMA to transfer data faster than previous hard drives that required the data to first be run through the CPU.