SlideShare une entreprise Scribd logo
1  sur  60
Optimization
https://photos.prnewswire.com/prnvar/20160223/336432
Sample	Preparation
Equal	amounts	of	upper	and	lower	phases.	
(Usually	best	for	overall	solubility)
Add	to	sample	loop	in	alternating	plugs
Leave	a	buffer	of	mobile	phase	on	each	side	of	the	sample	loop
Need	to	filter	insoluble	material?
Column	Loading
http://www.microcontractor.org/uploads/4/4/9/7/44977385/8245406_orig.jpg
1. Column	loading
- higher	sample	concentration
- more	sample	volume
2.	scale-up
Preparative loading of CCS instruments
322 articles
52 journals
2008 through 2012.
15
52
27
24
4
0
10
20
30
40
50
60
<	100 101-500 501-1000 1001-5000 >	5000
number	of	separations
mg	sample
52
133
53 49
17
0
20
40
60
80
100
120
140
<	100 101-500 501-1000 1001-5000 >	5000
number	of	separations
mg	sample
Friesen, J. B.; McAlpine, J. B.; Chen, S.-N.; Pauli, G. F.,
Countercurrent Separation of Natural Products: An Update. Journal of
Natural Products 2015, 78, 1765-1796.
Pauli, G. F.; Pro, S. M.; Friesen, J. B., Countercurrent
separation of natural products. Journal of Natural Products
2008, 71, 1489-1508.
2000 through 2007 2008 through 2012
137 articles
24 journals
2000 through 2007.
Column	Loading
Column	Loading
15
40
61
102
15
9
0.01	-	0.20
0.21	-	0.50
0.51	-	1.00
1.01	-	5.0
5.2	-	10.0
10.5	-	21.0
number	of	separations
mg	sample	/mL	column	volume
Column	Loading:	HSCCC	instruments	
0.01	-	0.20
0.21		-0.50
0.51	-	1.00
1.01	-	5.0
5.2	-	10.0
10.5	-	375
B
21
26
129
66
44
18
Column	Loading:	All	CS	instruments	
number	of	separations
Friesen, J. B.; McAlpine, J. B.; Chen, S.-N.; Pauli, G. F., Countercurrent Separation of Natural Products: An Update. Journal
of Natural Products 2015, 78, 1765-1796.
Column	Loading
0
2000
4000
6000
8000
10000
12000
14000
16000
0 50000 100000 150000 200000 250000
v
o
l
u
m
e
m
L
mg	loaded
mg	loaded	&	volume
0
200
400
600
800
1000
1200
1400
1600
1800
0 2000 4000 6000 8000
v
o
l
u
m
e
m
L
mg	loaded
mg	loaded	&	volume
Friesen, J. B.; McAlpine, J. B.; Chen, S.-N.; Pauli, G. F.,
Countercurrent Separation of Natural Products: An Update. Journal of
Natural Products 2015, 78, 1765-1796.
Model Compounds:
HO
H
H H
H
O
O
OH
OH
O
O O
HO
H H
H
CH3
OH
OH O
OHO
OH
N
O
OH
O
OH
O
HO
O
O
OH
O OHO
O
H
HO
H
HO
H
H
OHH
O
OH
OH
O
OH
O
O
OH OH
OH
O
O
OH
OH
HO
O
O
H
HO
H
HO
H
H
OHH
O
OH
OH
N
N
N
N
O
O
N
H
O
OH
NH2
N
N
OH
S
O
O
O
SO
O
O
S
O
O
O
3Na
N
H
N
O
OH
H
H
O
O
O
O
O
O
O
O
OH
OH
OH
OOH
HO
The GUESSmix
Friesen J.B, Pauli G.F. Journal of Liquid
Chromatography and Related Technologies, 28:
2777-2806, 2005
b
O
Q
r
R
U
F
Y
C
I
E
MZ
V
G
T X
H
D
N
A
GUESSmix Used to Evaluate SSs
The distribution coefficient (K) is a constant for a particular substance
in a particular solvent system.
Independent of: - column volume
- instrument model
- normal or reverse-phase mode
- run time
- rotation speed
- flow rate
G Mix H/tBME/ACN/Water 4:6:5:5 10/12/06
-0.1
0.8
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375
mL & mn
A
280nm
230nm
K-Based Chromatography
CCC Chromatogram
0
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700
A254
mL
GUESSmix in ChMWat 10:7:3 12/14/12, 35 degrees N Phase
Compounds were identified using TLC and CCC peaks
Q HD
FUE
C
V
r
HPLC
• Next,	HPLC	was	used	to	further	identify	compounds	along	with	the	
TLC	plates	and	GC	chromatograms
-56.05
43.95
143.95
243.95
343.95
443.95
543.95
643.95
743.95
843.95
943.95
1043.95
1143.95
1243.95
1343.95
1443.95
0 5 10 15 20 25 30 35 40 45 50 55 60 65
X
T
Gr
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72
A254
tube
GUESSmixin DMWat10:6:4 11/02/12, 35degreesN Phase
G
T
r
X
HPLC of test tube 69
69
69
Emphasize the importance of K
Using GUESSmix to explore solvent system families.
Friesen, J.B. Pauli, G.F. Analytical Chemistry 79: 2320-2324 (2007)
Symmetry
Midline
0
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.29 2.67 3.2 4 5.33 8 16 ¥K
A
M
Q
V
U
F
N
Z E
Column	Loading
What	is	the	effect	of	column	loading	on	
K	value and	resolution?
10mg/compound
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
5 mg/compound
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
20mg/compound
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
2.29 2.67 3.2 4.00 5.33 8.00 16
8
Sf	=	0.52
Sf	=	0.54
Sf	=	0.56
Column	Loading
30mg/compound
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
50mg/compound
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
40mg/compund
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
2.29 2.67 3.2 4.00 5.33 8.00 16
8
2.29 2.67 3.2 4.00 5.33 8.00 16
8
2.29 2.67 3.2 4.00 5.33 8.00 16
8
Sf	=	0.59
Sf	=	0.59
Sf	=	0.44
Column	Loading
Column Loading
Solute-solute	interactions	may	decrease	or	
increase	resolution.
Solute-solute	interactions	may	affect	the	
apparent	(experimental)	K	value.
Fig. 3. APCI-MS (pos. mode) molecular weight profile
chromatogram generated by sequential injections of even
numbered fractions of the HPCCC preparative separations of S.
terebinthifolius berries on the Midi and selected ion traces of
peaks 1–3. Each signal contained the complete APCI-MS profile
information of compounds present in a single assay tube (distance
between two monitoring signals is equivalent to 50.0 mL – Midi I
to III and 80 mL – Midi IV).
J	Chromatogr A.	2015	Apr	10;1389:39-48.	doi:	10.1016/j.chroma.2015.02.005.	
Schinus terebinthifolius scale-up	countercurrent	chromatography	(Part	I):	High	
performance	countercurrent	chromatography	fractionation	of	triterpene	acids	with	off-
line	detection	using	atmospheric	pressure	chemical	ionization	mass	spectrometry.	Vieira	
MN,	Costa	Fd,	Leitão GG,	Garrard	I,	Hewitson P,	Ignatova S,	Winterhalter P,	Jerz G
Column	Loading
n-heptane/ethyl acetate/methanol/water (6:1:6:1)
Figure 4. HSCCC chromatogram of crude flavonol glycosides from Ginkgo biloba
leaves at flow rate 1.2 mL/min. n-hexane/butanol/ethyl	acetate/methanol/0.5%	
acetic	acid	(2:1:7:2:8)
J.	Sep.	Sci.	2007,	30,	2153	– 2159	
Qiang Zhang,	Li-Juan	Chen,	Hao-Yu	Ye,	Lei	Gao,	Wenli Hou,	Minghai Tang,	Guangli Yang,	Zhenhua Zhong,	
Yuan	Yuan,	Aihua Peng,	Isolation	and	purification	of	ginkgo	flavonol glycosides	from	Ginkgo	biloba	leaves	
by	high-speed	counter-current	chromatography
Column	Loading
(a) HSCCC chromatogram when injection volume was 100 mg for MD-R.
(b) HSCCC chromatogram when injection volume was 600 mg for MD-R.
HEMWat 10:2:5:7, 800 rpm, lower phase mobile 2 mL/mi. 280 nm TBE300
J	Chromatogr B	2016	Feb	1;1011:99-107.	doi:	10.1016/j.jchromb.2015.12.051.	
Separation	and	preparation	of	6-gingerol	from	molecular	distillation	residue	of	Yunnan	ginger	rhizomes	by	high-speed	counter-current	
chromatography	and	the	antioxidant	activity	of	ginger	oils	in	vitro.	Gan Z,	Liang	Z,	Chen	X,	Wen	X,	Wang	Y,	Li	M,	Ni	Y.
Column	Loading
Phytochem Anal.	2015	Nov-Dec;26(6):444-53.	doi:	10.1002/pca.2579.	Rapid	Separation	of	Three	Proanthocyanidin Dimers	from	Iris	lactea Pall.	
var.	Chinensis (Fisch.)	Koidz by	High-Speed	Counter-Current	Chromatography	With	Continuous	Sample	Load	and	Double-Pump	Balancing	Mode.	
Lv H,	Yuan	Z,	Wang	X,	Wang	Z,	Suo Y,	Wang	H.
Figure	5.	HSCCC	chromatograms	of	the	EPS	at	different	load	masses.	HSCCC	conditions:	solvent	system:	EBuWat (9:1:10);	
revolution	speed:	900	rpm;	separation	temperature:	30	°C;	flow	rate:	2.2mL/min;	detection	wavelength:	280	nm;	sample	size:	
(A)	50mg,	(B)	100mg,	(C)	150mg,	(D)	200mg	of	the	EPS	in	5mL	of	the	upper	phase	and	5	mL	of	the	lower	phase.
Column	Loading
Scale-Up
http://ian.umces.edu/imagelibrary/albums/userpics/12789/normal_ian-symbol-mountains-snowcaps-and-foothills.png
Fig.	6.	Comparison	of	chromatograms	for	different	coils	operated	in	similar	conditions	with	their	corresponding	parameters	in	the	reversed-phase	
mode.	(A)	The	chromatogram	for	the	4.7	ml	coil	on	Mini-DE:	HepEMWat phase	system	of	2:3:2:3;	rotation	speed,	2000	rpm;	sample	loop,	0.1ml;	
sample	concentration,	20	mg/ml;	flow	rate,	1.0ml/min;	temperature,	25	◦C;	Sf	=	53.03%.	(B)	The	chromatogram	for	the	17.2	ml	coil	on	Mini-DE:	
HepEMWat phase	system	of	2:3:2:3;	rotation	speed,	2000	rpm;	sample	loop,	0.43	ml;	sample	concentration,	20	mg/ml;	flow	rate,	1.0ml/min;	
temperature,	25	◦C:	Sf	=	53.01%.	(C)	The	chromatogram	for	the	915.5	ml	coil on	Midi-DE:	HepEMWat phase	system	of	2:3:2:3;	rotation	speed,	
1250	rpm;	sample	loop,	20.0	ml;	sample	concentration,	20	mg/ml;	flowrate,	50.0	ml/min;	temperature,	25	◦C;	Sf	=	53.33%.
Journal	of	Chromatography	A,	1194	(2008)	192–198	How	to	realize	the	linear	scale-up	process	for	rapid	purification	using	high-performance	counter-current	
chromatography	Yuan	Yuan,	BiqinWang,	Lijuan Chen,	Houding Luo,	Derek	Fisher,	Ian	A.	Sutherland,Yuquan Wei
Scale-up
Scale-up	of	counter-current	chromatography:	Demonstration	of	predictable	isocratic	and	quasi-continuous	operating	modes	from	the test	tube	to	pilot/process	scale	
Journal	of	Chromatography	A,	Volume	1216,	Issue	50,	11	December	2009,	Pages	8787-8792	Ian	Sutherland,	Peter	Hewitson,	Svetlana	Ignatova
Scale-up
Fig.	1.	4.6	L	Maxi	separation	of	benzyl	alcohol	and	p-cresol	scaled	up	850× from	the	Milli-CCC	separation	(inset).	Operating	conditions	for	4.6	L	Maxi:	speed	
600	rpm,	flow	850	mL/min;	sample	load,	290mL	(6.3%	Vc)	12.2	g	BA,	5.8	g	PC.	Run	conditions	for	the	Milli-CCC:	speed	2100	rpm,	flow	1	mL/min;	sample	
loading	condition	the	same	concentration	and	proportion	of	column	volume	as	for	Maxi.	Phase	system:	HEMWat (14:1:5:10,	v/v/v/v).	Sf	before	injection	
80.0%,	after	separation	40.8%	for	the	Maxi	run.
Purity	values	and	centrifugal	partition	
chromatography	elution	profile	of	the	major	
compounds	isolated	from	a	crude	aqueous	
extract	of	Stevia	leaves	using	the	ASCPC250®	
instrument	(experiment	A,	500	mg	injected;	
experiment	B,	1	g	injected)	or	the	FCPE300®	
instrument	(experiment	C,	5	g	injected).	
Sf	=	0.75,	0.70	&	0.70	for	A,	B	&	C.		
1200	rpm	A	&	B,	1000	rpm	C.	
10	mL/min	A	&	B,	20	mL/min	C.	
Planta	Med.	2015	Nov;81(17):1614-20.	doi:	10.1055/s-0035-1545840.	Intensified	Separation	of	Steviol Glycosides	from	
a	Crude	Aqueous	Extract	of	Stevia	rebaudiana Leaves	Using	Centrifugal	Partition	Chromatography.	Hubert	J,	Borie N,	
Chollet S,	Perret	J,	Barbet-Massin C,	Berger	M,	Daydé J,	Renault	JH.
Scale-up
Sf
Figure	3.2	The	importance	of	the	amount	of	stationary	phase	retained	in	
a	100	ml	CCC	column	(vertical	dotted	line).	Chromatograms	of	the	same	
mixture	of	seven	solutes	(listed	in	Table	3.1)	obtained	with	the	same	CCC	
hydrodynamic	column	and	the	same	biphasic	liquid	system:	hexane/ethyl	
acetate/methanol/water	4:6:4:6	v/v.	Aqueous	lower	mobile	phase,	2	ml/
min,	rotor	rotation	900	rpm,	average	efficiency	∼300	plates
Separations	with	a	Liquid	Stationary	Phase:	Countercurrent	Chromatography	or	Centrifugal	Partition	
Chromatography	Alain	Berthod and	Karine Faure
Analytical	Separation	Science,	First	Edition.	Edited	by	Jared	L.	Anderson,	Alain	Berthod,
Verónica Pino Estévez,	and	Apryll M.	Stalcup.
2015	Wiley-VCH	Verlag GmbH	&	Co.	KGaA.	
Sf
6 5
16
42
68
73
44
26
2
0
10
20
30
40
50
60
70
80
10-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100
reported		Sf	values
Sf
Friesen, J. B.; McAlpine, J. B.; Chen, S.-N.; Pauli, G. F.,
Countercurrent Separation of Natural Products: An Update. Journal of
Natural Products 2015, 78, 1765-1796.
Determination	of	Sf
• (i)	the	carry-over	method	Sf(CO):	this	approach	measures,	in	a	graduated	cylinder,	the	
amount	of	stationary	phase	carried	over	as	the	column	is	equilibrated	with	the	
mobile	phase.	The	amount	of	stationary	phase	displaced	is	called	the	“carry	over	
volume”	or	V(CO).	In	the	case	of	large	volume	columns,	V(CO) is	considered	to	be	
equal	to	the	mobile	phase	volume	inside	the	column	(VM).
• (ii)	void	volume	determination	by	UV	detection	Sf(UV):	this	method	is	routinely	
employed	with	crude	natural	extracts,	is	to	identify	the	mobile	phase	front	by	
unretained UV-active	sample	components	that	are	almost	always	present	in	
complex	natural	mixtures.	The	void	volume	(V(UV))	is	determined	by	taking	the	
analyte	retention	volume	(VR)	of	an	unretained component(s)	(VR
0)	to	be	equal	to	
VM.
• (iii)	volumetrics of	extruded	mobile	phase	Sf(MP):	the	third	method	is	based	on	the	
determination	of	VM by	measuring	the	volume	of	mobile	phase	extruded	(V(MP))	
from	the	column	after	the	separation	is	complete.
Flow	Rate
https://farm7.staticflickr.com/6081/6077573063_2bdf56e975_z.jpg
600m rpm 2 mL/min
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
600 rpm, 1.5 mL/min
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
600 rpm, 3 mL/min
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
Sf	=	0.52
Sf	=	0.47
Sf	=	0.36
2.29 2.67 3.2 4.00 5.33 8.00 16
8
2.29 2.67 3.2 4.00 5.33 8.00 16
8
2.29 2.67 3.2 4.00 5.33 8.00 16
8
Increasing	Flow	Rate	(constant	rpm)
Friesen	JB,	Pauli	GF	GUESSmix-guided	optimization	of	elution–extrusion	counter-current	separations.	Journal	of	Chromatography	A	1216:	4225-4231	(2009)
Sf and	Flow	Rate
Fig. 3. Stationary (upper) phase retention ratio in percentage of the column volume plotted versus the square root of the lower
mobile phase flow rate. CCC column volumes and rotor rotations: Mini 1.6mm I.D. 20.8mL and 1800 rpm; Mini 0.8mm I.D.
19.5mL and 2100 rpm; SFCC 1-coil 54mL and 800 rpm; SFCC 3-coil 156mL and 800 rpm. HepEMWat 2:3:2:3, head to tail
flowing direction. The regression equations give A intercepts and B slopes (Eq. (5)). The R2 regression coefficient is listed
below its equation.
Berthod2009_JCA_1216_4169_SmallVolume
CPC
Fig.	4.	Evolution	of	the	stationary	phase	(Sf)	retention	as	a	function	of	flow	rate	(F)	for	different	rotational	
speeds;	Sf0,	y-abscises	intercept,	corresponds	to	the	cells	fraction	of	the	column	volume.	Dots	are	experimental	
data;	straight	lines	show	tendency	and	flooding	transition
J	Chromatogr A.	2015	Apr	24;1391:80-7.	doi:	10.1016/j.chroma.2015.03.005.	 Modeling	pH-zone	refining	countercurrent	chromatography:	a	
dynamic	approach.	Kotland A,	Chollet S,	Autret JM,	Diard C,	Marchal L,	Renault	JH.
Sf and	Flow	Rate
Flow	Rate
Fig.	3.	(a–c)	Separation	of	the	GUESS	mixture	as	described	in	[15]	using	DE	
Spectrum	preparative	coils	at	80×g	(918	rpm),	136mL	column	volume,	
HEMWat (2:3:2:3),	lower	layer	as	mobile	phase,	1.5,	3	and	6mL/min,	head	to	
tail	elution,	Sf	=	77	%	(1.5mL/min),	64%	(3	mL/min)	and	53%	(mL/min);	60mg	
total	loading	(5mg	of	each	12	standards:	aspirin	(A),	-carotene,	caffeine	(C),	
nicotinic	acid	(D),	estradiol,	ferulic acid	(F),	naringenin,	carvone,	red	new	
Coccine (R),	quercetin	(Q),	umbelliferone (U),	vanillin	(V)),	monitored	by	DAD	
254	nm,	compared	separation	times	130,	60	and	32	min,	respectively.
1.5	mL/min
Sf	=	0.77
3	mL/min,	Sf	=	0.64
6 mL/min
Sf	=	0.64
918	rpm
Performance	comparison	using	the	GUESS	mixture	to	evaluate	counter-current	chromatography	
instruments		Journal	of	Chromatography	A,	Volume	1216,	Issue	19,	8	May	2009,	Pages	4181-4186	Hacer
Guzlek,	Philip	Leslie	Wood,	Lee	Janaway
Flow	Rate
Fig.	4.	Separation	of	the	GUESS	mixture	using	DE	Spectrum	preparative	coils	at	
243×g	(1600	rpm),	136mL	column	volume,	HEMWat (2:3:2:3),	lower	layer	as	
mobile	phase,	1.5,	3	and	6	mL/min,	head	to	tail	elution,	Sf	=	88%	(1.5	mL/min),	
85%	(3	mL/min)	and	73%	(6	mL/min);	60mg	total	loading	for	1.5	and	6mL/min;	
total	loading	for	3	mL/min	was	55mg	because	red	new	Coccine was	not	available	
(5mg	of	each	12	standards:	aspirin	(A),	-carotene,	Caffeine	(C),	nicotinic	acid	(D),	
estradiol,	ferulic acid	(F),	naringenin,	carvone,	red	new	Coccine (R),	quercetin	
(Q),	umbelliferone (U),	vanillin	(V)),	monitored	by	DAD	254	nm,	compared	
separation	times	105,	60	and	30	min,	respectively.
1600	rpm
1.5	mL/min
Sf	=	0.88
3	mL/min,	Sf	=	0.85
6 mL/min
Sf	=	0.73
Performance	comparison	using	the	GUESS	mixture	to	evaluate	counter-current	chromatography	
instruments		Journal	of	Chromatography	A,	Volume	1216,	Issue	19,	8	May	2009,	Pages	4181-4186	
Hacer Guzlek,	Philip	Leslie	Wood,	Lee	Janaway
Figure 3. HSCCC chromatogram of crude flavonol glycosides from Ginkgo biloba leaves. HSCCC conditions: column volume: 40 mL;
solvent system: hexane/butanol/ethyl acetate/methanol–0.5% acetic acid (1:0.5:3.5:1:4); stationary phase: lower; 1600 rpm; detection
wavelength: 254 nm; temperature: 25 oC; sample concentration: 20 mg/mL; Sf phase at 1.0, 1.2, and 1.5 mL/min flow rates: 78.1, 60.1,
and 45.4%, respectively.
J.	Sep.	Sci.	2007,	30,	2153	– 2159	
Qiang Zhang,	Li-Juan	Chen,	Hao-Yu	Ye,	Lei	Gao,	Wenli Hou,	Minghai Tang,	Guangli Yang,	Zhenhua Zhong,	
Yuan	Yuan,	Aihua Peng,	Isolation	and	purification	of	ginkgo	flavonol glycosides	from	Ginkgo	biloba	leaves	
by	high-speed	counter-current	chromatography
Flow	Rate
Phytochem Anal.	2015	Nov-Dec;26(6):444-53.	doi:	10.1002/pca.2579.	Rapid	Separation	of	Three	Proanthocyanidin Dimers	from	Iris	lactea Pall.	
var.	Chinensis (Fisch.)	Koidz by	High-Speed	Counter-Current	Chromatography	With	Continuous	Sample	Load	and	Double-Pump	Balancing	Mode.	
Lv H,	Yuan	Z,	Wang	X,	Wang	Z,	Suo Y,	Wang	H.
Figure	4.	HSCCC	chromatograms	of	the	EPS	at	different	flow	rates.	HSCCC	conditions:	EBuWat (9:1:10):	900	rpm:	30	
°C;:	50mg	of	the	EPS	in	5mL	of	the	upper	phase	and	5mL	of	the	lower	phase;	detection	280nm;	flow	rate:	(A)	
1.2mL/min,	(B)	1.5mL/min,	(C)	1.8mL/min,	(D)	2.2mL/min.
Flow	Rate	Gradients
Figure	3.	HPCCC	separation	patterns	of	the	acetone-soluble	extract	of	fermented	C.	
sinensis leaves	using	HEMWat (1:9:1:9,	v/v)	system	with	rotational	speed	at	1600	
rpm.	(A)	flow-rate	at	3.0	mL/min;	(B)	flow-rate	at	5.0	mL/min;	(C)	flow-rate	at	8.0	
mL/min;	(D)	gradient	flow-rate	at	3.0	mL/min	in	0–45	min,	and	5.0	mL/min	in	45–
130	min.	Peaks	1:	caffeine,	2:	(−)-epigallocatechin	3-O-gallate,	3:	(−)-gallocatechin 3-
O-gallate,	and	4:	(−)-epicatechin 3-O-gallate.
Molecules	2015,	20,	13216-13225;	doi:10.3390/molecules200713216
Separation	of	Polyphenols	and	Caffeine	from	the	Acetone	Extract	of	Fermented	Tea	Leaves	(Camellia	sinensis)	Using	High-Performance	Countercurrent	
Chromatography	Soo	Jung	Choi,	Yong	Deog Hong,	Bumjin Lee,	Jun	Seong Park	2,	Hyun	Woo	Jeong,	Wan	Gi Kim,	Song	Seok Shin	and	Kee Dong	Yoon
Flow	Rate	Gradients
Fig.	3.	HSCCC	chromatograms	of	the	EFS.	Peak	1:	procyanidin B3,	Peak	2:	procyanidin B1,	Peak	3:	catechin,	and	Peak	4:	
procyanidin B7.	HSCCC	conditions:	solvent	system:	HEMWat (0.75:12.5:1:12.5,	v/v/v/v);	stationary	phase:	upper	phase:	900	
rpm;	30	C;	300	mg	of	the	EFS:	280	nm;	flow	rate:	0–100	min,	1.5	mL/min,	∼100	min,	(A)	1.5	mL/min,	(B)	2.0	mL/min,	(C)	2.5	
mL/min,	(D)	3.0	mL/min.	Rs of	1.5	mL/min:67.19%;	2.0	mL/min:65.94%;	2.5	mL/min:64.06%;	3.0	mL/min:62.50%.
Journal	of	Liquid	Chromatography	&	Related	Technologies,	38:	1486–1493,	2015
DOI:	10.1080/10826076.2015.1063506	Separation	and	Purification	of	Four	Flavan-3-ols	From	Iris
Lactea Pall.	var.	Chinensis (Fisch.)	Koidz by	High-Speed	Counter-Current	Chromatography	with	Flow-Rate	Gradient
HUANHUAN	LV,	JIAN	OUYANG,	XIAOYAN	WANG,	XIAOFENG	MA,2YOURUI	SUO,	and	HONGLUN	WANG
Flow	Rate	Gradients
Flow	Rate	&	rpm
0
200
400
600
800
1000
1200
1400
1600
1800
2000
0 20 40 60 80 100 120 140 160
r
p
m
flow	mL/min
flow	rate	&	rpm
0
200
400
600
800
1000
1200
0 1 2 3 4 5 6
r
p
m
flow	mL/min
flow	rate	&	rpm
Friesen, J. B.; McAlpine, J. B.; Chen, S.-N.; Pauli, G. F.,
Countercurrent Separation of Natural Products: An Update.
Journal of Natural Products 2015, 78, 1765-1796.
Flow	Rate	&	Volume
0
200
400
600
800
1000
1200
1400
1600
1800
2000
0 1 2 3 4 5 6
v
o
l
u
m
e
flow	mL/min
flow	rate	&	volume
0
2000
4000
6000
8000
10000
12000
14000
16000
0 20 40 60 80 100 120 140 160
v
o
l
u
m
e
flow	mL/min
flow	rate	&	volume
Friesen, J. B.; McAlpine, J. B.; Chen, S.-N.; Pauli, G. F.,
Countercurrent Separation of Natural Products: An Update.
Journal of Natural Products 2015, 78, 1765-1796.
Flow	Rate/Temperature/Purity
Figure	5.	Response	surface	plots	for	the	optimization	of	HSCCC	process.	A)	Effect	of	temperature	and	
flow	rate	on	purity	of	rutin at	a	constant	revolution	speed	of	850	rpm;	
Chem.	Ind.	Chem.	Eng.	Q.	21	(2)	331−341	(2015)	PREPARATIVE	ISOLATION	AND	PURIFICATION	OF	SEVEN	COMPOUNDS	FROM	Hibiscus	mutabilis L.	LEAVES	
BY	TWO-STEP	HIGH-SPEED	COUNTER-CURRENT	CHROMATOGRAPHY	ZHUONI	HOU, XIANRUI	LIAN,	FENG	SU,	WEIKE	SU,	
Figure 3. HSCCC Chromatograms of the first separation. HSCCC
Conditions: solvent system: EBuWat (6:1:9 volume ratio); stationary
phase: upper phase. Flow rate: 1.11 mL/min, revolution speed: 800
rpm, temperature: 30 °C; stationary phase: upper organic phase;
detection wavelength: 254 nm; sample size: 100 mg.
Figure	5.	Response	surface	plots	for	the	optimization	of	HSCCC	process.	B)	influence	of	revolution	
speed	and	temperature	on	purity	of	rutin at	a	definite	flow	rate	of
1.5	mL/min;	
Chem.	Ind.	Chem.	Eng.	Q.	21	(2)	331−341	(2015)	PREPARATIVE	ISOLATION	AND	PURIFICATION	OF	SEVEN	COMPOUNDS	FROM	Hibiscus	mutabilis L.	LEAVES	
BY	TWO-STEP	HIGH-SPEED	COUNTER-CURRENT	CHROMATOGRAPHY	ZHUONI	HOU, XIANRUI	LIAN,	FENG	SU,	WEIKE	SU,	
rpm/Temperature/Purity
Figure	5.	Response	surface	plots	for	the	optimization	of	HSCCC	process.	C)	interaction	between	
revolution	speed	and	flow	rate	at	a	fixed	temperature	of	25	°C.
Chem.	Ind.	Chem.	Eng.	Q.	21	(2)	331−341	(2015)	PREPARATIVE	ISOLATION	AND	PURIFICATION	OF	SEVEN	COMPOUNDS	FROM	Hibiscus	mutabilis L.	LEAVES	
BY	TWO-STEP	HIGH-SPEED	COUNTER-CURRENT	CHROMATOGRAPHY	ZHUONI	HOU, XIANRUI	LIAN,	FENG	SU,	WEIKE	SU,	
Flow	Rate/rpm/Purity
rpm
0
200
400
600
800
1000
1200
1400
1600
1800
0 500 1000 1500 2000
v
o
l
u
m
e
m
L
rpm
rpm	and	volume
rpm	&	Volume
0
2000
4000
6000
8000
10000
12000
14000
16000
0 500 1000 1500 2000
v
o
l
u
m
e
m
L
rpm
rpm	and	volume
Friesen, J. B.; McAlpine, J. B.; Chen, S.-N.; Pauli, G. F.,
Countercurrent Separation of Natural Products: An Update.
Journal of Natural Products 2015, 78, 1765-1796.
Flow	Rate	&	rpm
How	does	the	interplay	of	flow	rate	and	rpm	affect	K	
values and	resolution?
600 rpm
1.5 mL/mn
800 rpm
1.5 mL/mn
1000 rpm
1.5 mL/mn
600 rpm
2 mL/mn
800 rpm
2 mL/mn
1000 rpm
2 mL/mn
600 rpm
3 mL/mn
800 rpm
3 mL/mn
1000 rpm
3 mL/mn
Friesen	JB,	Pauli	GF	GUESSmix-guided	optimization	of	elution–extrusion	counter-current	separations.	Journal	of	Chromatography	A	1216:	4225-4231	(2009)
600m rpm 2 mL/min
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
600 rpm, 1.5 mL/min
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
600 rpm, 3 mL/min
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
Sf	=	0.52
Sf	=	0.47
Sf	=	0.36
2.29 2.67 3.2 4.00 5.33 8.00 16
8
2.29 2.67 3.2 4.00 5.33 8.00 16
8
2.29 2.67 3.2 4.00 5.33 8.00 16
8
Increasing	Flow	Rate
Friesen	JB,	Pauli	GF	GUESSmix-guided	optimization	of	elution–extrusion	counter-current	separations.	Journal	of	Chromatography	A	1216:	4225-4231	(2009)
600 rpm, 3 mL/min
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
800 rpm, 3 mL/min
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
Sf	=	0.36
Sf	=	0.48
1000 rpm, 3 mL/min
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
Sf	=	0.55
2.29 2.67 3.2 4.00 5.33 8.00 16
8
2.29 2.67 3.2 4.00 5.33 8.00 16
8
2.29 2.67 3.2 4.00 5.33 8.00 16
8
Increasing	rpm
Friesen	JB,	Pauli	GF	GUESSmix-guided	optimization	of	elution–extrusion	counter-current	separations.	Journal	of	Chromatography	A	1216:	4225-4231	(2009)
600 rpm, 1.5 mL/min
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
Sf = 0.52
2.29 2.67 3.2 4.00 5.33 8.00 16
8
Increasing Flow Rate & rpm
800 rpm, 2 mL/min
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
Sf = 0.54
2.29 2.67 3.2 4.00 5.33 8.00 16
8
1000 rpm, 3 mL/min
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
Sf = 0.55
2.29 2.67 3.2 4.00 5.33 8.00 16
8
Friesen	JB,	Pauli	GF	GUESSmix-guided	optimization	of	elution–extrusion	counter-current	separations.	Journal	of	Chromatography	A	1216:	4225-4231	(2009)
Flow	Rate	&	rpm
Increasing	flow	rate	increases	
apparent	(experimental)	K	
values and	decreases	
resolution.	
Especially	at	lower	rpm.
Increasing rpm decreases apparent
(experimental) K values and increases
resolution. Especially at higher rpm.
K
flow	rate rpm
Sf
Temperature
Temperature
How	does	temperature	affect	the	K	value and	
resolution?
Tauto	
TBE300A
temperature of CS experiments
0
5
10
15
20
20 25 30 35
C
numberofarticles
38	data	points
15 C
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
5 C
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
10 C
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
Sf	=	0.45
Sf	=	0.45
2.29 2.67 3.2 4.00 5.33 8.00 16
8
2.29 2.67 3.2 4.00 5.33 8.00 16
8
Sf	=	0.45
2.29 2.67 3.2 4.00 5.33 8.00 16
8
Friesen	JB,	Pauli	GF	GUESSmix-guided	optimization	of	elution–extrusion	counter-current	separations.	Journal	of	Chromatography	A	1216:	4225-4231	(2009)
Temperature
20 C
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
25 C
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
Sf	=	0.50
Sf	=	0.54
15 C
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
Sf	=	0.45
2.29 2.67 3.2 4.00 5.33 8.00 16
8
2.29 2.67 3.2 4.00 5.33 8.00 16
8
2.29 2.67 3.2 4.00 5.33 8.00 16
8
Friesen	JB,	Pauli	GF	GUESSmix-guided	optimization	of	elution–extrusion	counter-current	separations.	Journal	of	Chromatography	A	1216:	4225-4231	(2009)
Temperature
30 C
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
35 C
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
25 C
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
Sf	=	0.53
Sf	=	0.57
Sf	=	0.54
2.29 2.67 3.2 4.00 5.33 8.00 16
8
2.29 2.67 3.2 4.00 5.33 8.00 16
8
2.29 2.67 3.2 4.00 5.33 8.00 16
8
Friesen	JB,	Pauli	GF	GUESSmix-guided	optimization	of	elution–extrusion	counter-current	separations.	Journal	of	Chromatography	A	1216:	4225-4231	(2009)
Temperature
no temperature regulation
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
25 C
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
A254
30 C
0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
Sf	=	0.54
Sf	=	0.53
Sf	=	0.53
2.29 2.67 3.2 4.00 5.33 8.00 16
8
2.29 2.67 3.2 4.00 5.33 8.00 16
8
2.29 2.67 3.2 4.00 5.33 8.00 16
8
Friesen	JB,	Pauli	GF	GUESSmix-guided	optimization	of	elution–extrusion	counter-current	separations.	Journal	of	Chromatography	A	1216:	4225-4231	(2009)
Temperature
Temperature
Temperature	influences	both	
K	values and	resolution.	
Generally, K decreases while Temperature
increases.
Generally, Temperature influences
resolution because compounds respond
differently to Temperature changes.
Sf as a function of Temperature
0.4
0.5
0.6
0 10 20 30 40degrees C
Sf
Friesen	JB,	Pauli	GF	GUESSmix-guided	optimization	of	elution–extrusion	counter-current	separations.	Journal	of	Chromatography	A	1216:	4225-4231	(2009)
Temperature
Generally, K tends toward unity while
Temperature increases.
K Value as a Function of Temperature
0
2
4
6
8
10
1 2 3 4 5 6 7 8
temperature
K
F
U
V
Q
M
N
E
5 10 15 20 25 30 35room
Friesen	JB,	Pauli	GF	GUESSmix-guided	optimization	of	elution–extrusion	counter-current	separations.	Journal	of	Chromatography	A	1216:	4225-4231	(2009)
J	Chromatogr A.	2015	Apr	3;1388:119-25.	doi:	10.1016/j.chroma.2015.02.020.	
Isolation	of	β-carotene,	α-carotene	and	lutein	from	carrots	by	countercurrent	chromatography	with	the	solvent	
system	modifier	benzotrifluoride.	Englert M,	Hammann S,	Vetter	W.
Temperature	Effects
Table	2
Partitioning	coefficients	K	of	α-carotene	and	β-
carotene	and	separation	factor	between	them	at	
different	temperatures	with	the	two-phase	
solvent	system	H/benzotrifluoride/Ac	
(10:3.5:6.5,	v/v/v)	determined	by	HPLC/UV–vis
Parameter Type Parameter Experimental report
Essential Important Optional
Operational Flow	rate E
Rpm E
Solvent	system	solvent	and	volume	ratios	 E
Mobile	phase	identity E
Flow	direction	(head-to-tail,	tail-to-head) E
Stationary	phase	volume	ratio	(Sf) E
Switch	volume	(Vex)	of	elution	extrusion	if	used E
Column	equilibration	and	sample	injection	method I
Temperature I
Pressure	variation	during	experiment O
Gravitational	field	generated	by	rotation O
Solvent	system	phase	composition O
SS	interfacial	tension O
SS	density	difference	of	phases O
Viscosity	of	each	phase O
pH	of	aqueous	phase O
Sample Loading	mass	of	sample E
Loading	volume E
Recovery	mass	of	individual	compounds I
Enrichment I
Composition	of	active	fractions	and	analytical	method	 I
Purity	of	target	analytes	and	determination	method I
Partition	coefficient	(K)	of	target	analytes I
Percent	recovery	of	target	analytes O
Pauli	GF,	Pro	S,	Friesen	B	 Countercurrent	Separation	of	Natural	Products	Journal	of	Natural	Products	71:	1489-1508	(2008)
dx.doi.org/10.1021/np800144q
Reporting	Operational	Parameters
Reporting	of	Separation	Parameters:	
Process	Throughput	(PT	in	Grams	of	Sample	Processed	per	Hour	of	Separation	Time),	
Process	Efficiency	(PE	in	Grams	of	Sample	Processed	per	Hour	of	Separation	Time),	
Process	Environmental	Risk	Factor	(ER	in	Liters	of	Solvent	per	Gram	of	Product),	
Process'	General	Evaluation	Factor	(GE	in	Grams	of	Sample	Times	Grams	of	Product	per	Hour	of	
Separation	Time	per	Liter	of	Solvent)
natural	
product(s)	
(no. of	cpds)
source solvent	system PT	[g/h] PE	[g/h] ER	[l/g] GE	[g2
/(h·l)] ref
ginsenosides	
(4)
Panax	ginseng	
roots
DiMWat	and	
HBuWat	(0.1%	
formic	acid)
5.14 0.21–0.54 0.065–0.18 1.17–8.27 140
salvianolic	
acid	B
Salvia	miltiorrhiza	
rhizomes
HEMWat	(0.1%	
acetic	acid)
2.23 0.77 4.0 0.192 250
ginsenosides	
(4)
Panax	ginseng	
roots
DiIsoWat	
(ammonium	
acetate)
0.23 6.73–14.6 0.06–0.71 9.5–243 251
geniposide Gardenia	
jasminoides	fruits
EBuWat 5.0 0.55 4.9 0.113 252
(140)	Cheng,	Y.	J.;	Zhang,	M.;	Liang,	Q.	L.;	Hu,	P.;	Wang,	Y.	M.;	Jun,	F.	W.;	Luo,	G.	A.	Sep.	Purif.	Technol.	2011,	77,	347-354.
(250)	Zhang,	M.;	Ignatova,	S.;	Liang,	Q.	L.;	Jun,	F.	W.;	Sutherland,	I.;	Wang,	Y.	M.;	Luo,	G.	A.	J.	Chromatogr.	A	2009,	1216,	3869-3873.
(251)	Qi,	X.	C.;	Ignatova,	S.;	Luo,	G.	A.;	Liang,	Q.	L.;	Jun,	F.	W.;	Wang,	Y.	M.;	Sutherland,	I.	J.	Chromatogr.	A	2010,	1217,	1995-2001.
(252)	Zhang,	M.;	Ignatova,	S.;	Hu,	P.;	Liang,	Q.	L.;	Wang,	Y.	M.;	Sutherland,	I.;	Jun,	F.	W.;	Luo,	G.	A.	Sep.	Purif.	Technol.	2012,	89,	193-198.

Contenu connexe

Tendances

CHEM318ResearchProject
CHEM318ResearchProjectCHEM318ResearchProject
CHEM318ResearchProject
Audree Co
 
Automated SPE for Capillary Microsampling Poster
Automated SPE for Capillary Microsampling PosterAutomated SPE for Capillary Microsampling Poster
Automated SPE for Capillary Microsampling Poster
Rick Youngblood
 

Tendances (20)

Instrument Methods (Introduction)
Instrument Methods (Introduction)Instrument Methods (Introduction)
Instrument Methods (Introduction)
 
Introduction to countercurrent chromatography: instruments
Introduction to countercurrent chromatography: instrumentsIntroduction to countercurrent chromatography: instruments
Introduction to countercurrent chromatography: instruments
 
Are You Sticking with Drinking Bottled Water? Assessment of PFAS Content in C...
Are You Sticking with Drinking Bottled Water? Assessment of PFAS Content in C...Are You Sticking with Drinking Bottled Water? Assessment of PFAS Content in C...
Are You Sticking with Drinking Bottled Water? Assessment of PFAS Content in C...
 
Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...
Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...
Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...
 
Chromatography: Trends and Developments in MAb Screening and Characterization
Chromatography: Trends and Developments in MAb Screening and CharacterizationChromatography: Trends and Developments in MAb Screening and Characterization
Chromatography: Trends and Developments in MAb Screening and Characterization
 
Determination of Ethanol and Isopropanol Content in Hand Sanitizers Using Nit...
Determination of Ethanol and Isopropanol Content in Hand Sanitizers Using Nit...Determination of Ethanol and Isopropanol Content in Hand Sanitizers Using Nit...
Determination of Ethanol and Isopropanol Content in Hand Sanitizers Using Nit...
 
Identification and Confirmation of Ten Common Seized Drugs Utilizing a Single...
Identification and Confirmation of Ten Common Seized Drugs Utilizing a Single...Identification and Confirmation of Ten Common Seized Drugs Utilizing a Single...
Identification and Confirmation of Ten Common Seized Drugs Utilizing a Single...
 
CHEM318ResearchProject
CHEM318ResearchProjectCHEM318ResearchProject
CHEM318ResearchProject
 
Automated SPE for Capillary Microsampling Poster
Automated SPE for Capillary Microsampling PosterAutomated SPE for Capillary Microsampling Poster
Automated SPE for Capillary Microsampling Poster
 
Analysis of Trace Elements in Water by EPA Method 200.8 using ICP Mass Spectr...
Analysis of Trace Elements in Water by EPA Method 200.8 using ICP Mass Spectr...Analysis of Trace Elements in Water by EPA Method 200.8 using ICP Mass Spectr...
Analysis of Trace Elements in Water by EPA Method 200.8 using ICP Mass Spectr...
 
Using THGA and Zeeman Background Correction for Blood-Lead Determination in C...
Using THGA and Zeeman Background Correction for Blood-Lead Determination in C...Using THGA and Zeeman Background Correction for Blood-Lead Determination in C...
Using THGA and Zeeman Background Correction for Blood-Lead Determination in C...
 
Analysis of “The Big Four” Heavy Metals in Hops by Graphite Furnace Atomic Ab...
Analysis of “The Big Four” Heavy Metals in Hops by Graphite Furnace Atomic Ab...Analysis of “The Big Four” Heavy Metals in Hops by Graphite Furnace Atomic Ab...
Analysis of “The Big Four” Heavy Metals in Hops by Graphite Furnace Atomic Ab...
 
The Potency Determination of 15 Cannabinoids using the Hemp Analyzer
The Potency Determination of 15 Cannabinoids using the Hemp Analyzer The Potency Determination of 15 Cannabinoids using the Hemp Analyzer
The Potency Determination of 15 Cannabinoids using the Hemp Analyzer
 
Usp biotherapeutics - biological medicines
Usp  biotherapeutics - biological medicinesUsp  biotherapeutics - biological medicines
Usp biotherapeutics - biological medicines
 
Analysis of PFAS Compounds in Fish Tissue Using Offline Supercritical Fluid E...
Analysis of PFAS Compounds in Fish Tissue Using Offline Supercritical Fluid E...Analysis of PFAS Compounds in Fish Tissue Using Offline Supercritical Fluid E...
Analysis of PFAS Compounds in Fish Tissue Using Offline Supercritical Fluid E...
 
Drug discovery library design by biomimetic hplc
Drug discovery library design by biomimetic hplcDrug discovery library design by biomimetic hplc
Drug discovery library design by biomimetic hplc
 
dry blood spotting technique,DBS
dry blood spotting technique,DBSdry blood spotting technique,DBS
dry blood spotting technique,DBS
 
Biomimetic hplc methods to predict in vivo drug distribution
Biomimetic hplc methods to predict in vivo drug distributionBiomimetic hplc methods to predict in vivo drug distribution
Biomimetic hplc methods to predict in vivo drug distribution
 
Separation and Quantitation of Oxysterol Compounds Using LC-MS/MS
Separation and Quantitation of Oxysterol Compounds Using LC-MS/MSSeparation and Quantitation of Oxysterol Compounds Using LC-MS/MS
Separation and Quantitation of Oxysterol Compounds Using LC-MS/MS
 
Rapid LC-MS/MS Analysis of PFCs in Non-drinking Water Matrices
Rapid LC-MS/MS Analysis of PFCs in Non-drinking Water MatricesRapid LC-MS/MS Analysis of PFCs in Non-drinking Water Matrices
Rapid LC-MS/MS Analysis of PFCs in Non-drinking Water Matrices
 

Similaire à Optimization parameters in Countercurrent Chromatography

Comprehensive Investigation of the Utilization of SFC/ESI Positive Mode MS fo...
Comprehensive Investigation of the Utilization of SFC/ESI Positive Mode MS fo...Comprehensive Investigation of the Utilization of SFC/ESI Positive Mode MS fo...
Comprehensive Investigation of the Utilization of SFC/ESI Positive Mode MS fo...
Waters Corporation
 
Vitamin D in Serum-MicroLiter
Vitamin D in Serum-MicroLiterVitamin D in Serum-MicroLiter
Vitamin D in Serum-MicroLiter
Rick Youngblood
 
New Software Methods Enhance Sedimentation Velocity Analysis of Protein Aggre...
New Software Methods Enhance Sedimentation Velocity Analysis of Protein Aggre...New Software Methods Enhance Sedimentation Velocity Analysis of Protein Aggre...
New Software Methods Enhance Sedimentation Velocity Analysis of Protein Aggre...
KBI Biopharma
 
Ultrafast Analysis of Anti-Cancer Drugs
Ultrafast Analysis of Anti-Cancer DrugsUltrafast Analysis of Anti-Cancer Drugs
Ultrafast Analysis of Anti-Cancer Drugs
Michael Roberts
 

Similaire à Optimization parameters in Countercurrent Chromatography (20)

Comprehensive Investigation of the Utilization of SFC/ESI Positive Mode MS fo...
Comprehensive Investigation of the Utilization of SFC/ESI Positive Mode MS fo...Comprehensive Investigation of the Utilization of SFC/ESI Positive Mode MS fo...
Comprehensive Investigation of the Utilization of SFC/ESI Positive Mode MS fo...
 
Vitamin D in Serum-MicroLiter
Vitamin D in Serum-MicroLiterVitamin D in Serum-MicroLiter
Vitamin D in Serum-MicroLiter
 
New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...
New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...
New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...
 
Improvement in Protein A Resin Lifetime
Improvement in Protein A Resin LifetimeImprovement in Protein A Resin Lifetime
Improvement in Protein A Resin Lifetime
 
Improvement in Protein A Resin Lifetime
Improvement in Protein A Resin LifetimeImprovement in Protein A Resin Lifetime
Improvement in Protein A Resin Lifetime
 
New Software Methods Enhance Sedimentation Velocity Analysis of Protein Aggre...
New Software Methods Enhance Sedimentation Velocity Analysis of Protein Aggre...New Software Methods Enhance Sedimentation Velocity Analysis of Protein Aggre...
New Software Methods Enhance Sedimentation Velocity Analysis of Protein Aggre...
 
Purification optimization and characterization of protease from Bacillus va...
Purification optimization and characterization of  protease from  Bacillus va...Purification optimization and characterization of  protease from  Bacillus va...
Purification optimization and characterization of protease from Bacillus va...
 
naocl_examples.pdf
naocl_examples.pdfnaocl_examples.pdf
naocl_examples.pdf
 
all sops combined pdf.pdf
all sops combined pdf.pdfall sops combined pdf.pdf
all sops combined pdf.pdf
 
all sops combined pdf.pdf
all sops combined pdf.pdfall sops combined pdf.pdf
all sops combined pdf.pdf
 
Particles in the Biotech Product Life Cycle: Analysis, Identification and Con...
Particles in the Biotech Product Life Cycle: Analysis, Identification and Con...Particles in the Biotech Product Life Cycle: Analysis, Identification and Con...
Particles in the Biotech Product Life Cycle: Analysis, Identification and Con...
 
Xevo TQ-XS Data: Quantifying Mid-size Proteins
Xevo TQ-XS Data: Quantifying Mid-size ProteinsXevo TQ-XS Data: Quantifying Mid-size Proteins
Xevo TQ-XS Data: Quantifying Mid-size Proteins
 
HPLC Combinatorial Libraries
HPLC Combinatorial LibrariesHPLC Combinatorial Libraries
HPLC Combinatorial Libraries
 
50 years of size exclusion chromatography
50 years of size exclusion chromatography50 years of size exclusion chromatography
50 years of size exclusion chromatography
 
Ultrafast Analysis of Anti-Cancer Drugs
Ultrafast Analysis of Anti-Cancer DrugsUltrafast Analysis of Anti-Cancer Drugs
Ultrafast Analysis of Anti-Cancer Drugs
 
Polymeric nanoparticles for encapsulation and controlled release of bioactive...
Polymeric nanoparticles for encapsulation and controlled release of bioactive...Polymeric nanoparticles for encapsulation and controlled release of bioactive...
Polymeric nanoparticles for encapsulation and controlled release of bioactive...
 
Practical Implementation of the New Elemental Impurities Guidelines May 2015
Practical Implementation of the New Elemental Impurities Guidelines May 2015Practical Implementation of the New Elemental Impurities Guidelines May 2015
Practical Implementation of the New Elemental Impurities Guidelines May 2015
 
Tools of the Trade
Tools of the TradeTools of the Trade
Tools of the Trade
 
Stress testing and physico-chemical characterization of monoclonal antibodies...
Stress testing and physico-chemical characterization of monoclonal antibodies...Stress testing and physico-chemical characterization of monoclonal antibodies...
Stress testing and physico-chemical characterization of monoclonal antibodies...
 
Critical care drug infusion
Critical care drug infusionCritical care drug infusion
Critical care drug infusion
 

Plus de Center for Natural Product Technologies

Plus de Center for Natural Product Technologies (9)

NMR data Sharing on Dataverse
NMR data Sharing on DataverseNMR data Sharing on Dataverse
NMR data Sharing on Dataverse
 
DNA-based and Chemical Identification of plant powders
DNA-based and Chemical Identification of plant powdersDNA-based and Chemical Identification of plant powders
DNA-based and Chemical Identification of plant powders
 
Integrating Countercurrent Separations into Natural Product Purification Work...
Integrating Countercurrent Separations into Natural Product Purification Work...Integrating Countercurrent Separations into Natural Product Purification Work...
Integrating Countercurrent Separations into Natural Product Purification Work...
 
What CPC can bring to your natural compounds purification?
What CPC can bring to your natural compounds purification?What CPC can bring to your natural compounds purification?
What CPC can bring to your natural compounds purification?
 
Basic principles of Countercurrent Separation
Basic principles of Countercurrent SeparationBasic principles of Countercurrent Separation
Basic principles of Countercurrent Separation
 
MZMine workflow from Dr. Kellogg
MZMine workflow from Dr. KelloggMZMine workflow from Dr. Kellogg
MZMine workflow from Dr. Kellogg
 
qHNMR for purity determination
qHNMR for purity determinationqHNMR for purity determination
qHNMR for purity determination
 
Phase modifications
Phase modificationsPhase modifications
Phase modifications
 
Commercially Available Countercurrent Separation (CCS) Instruments
Commercially Available Countercurrent Separation (CCS) InstrumentsCommercially Available Countercurrent Separation (CCS) Instruments
Commercially Available Countercurrent Separation (CCS) Instruments
 

Dernier

Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
PirithiRaju
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
Sérgio Sacani
 

Dernier (20)

GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
Unit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oUnit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 o
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
IDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicineIDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicine
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATIONSTS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 

Optimization parameters in Countercurrent Chromatography