SlideShare une entreprise Scribd logo
1  sur  26
Télécharger pour lire hors ligne
Technical	
  Project	
  Report	
  
Prepared	
  for:	
  
AVATAR	
  SOLAR	
  Private	
  Limited	
  
	
  
152.	
  Sahakar	
  Colony,	
  Sector	
  25,	
  
Gandhinagar,	
  Gujarat	
  382024	
  
India	
  
Phone:	
  +91-­‐	
  9537545046	
  
+91	
  –	
  9898046488	
  
079	
  -­‐	
  23288549	
  
+1	
  (805)	
  813	
  9946	
  
Web:	
  www.avatarsolar.net	
  
16-­‐05-­‐2013	
  
TECHNICAL	
  DESIGN	
  ANALYSIS	
  OF	
  AVATAR	
  SOLAR’S	
  
5	
  MW	
  Poly	
  Crystalline	
  based	
  SOLAR	
  PHOTOVOLTAIC	
  
POWER	
  PLANT	
  AT	
  CHARANKA,	
  GUJARAT	
  
Prepared	
  by:	
  
DR.	
  OMKAR	
  JANI	
  
PRINCIPAL	
  RESEARCH	
  SCIENTIST	
  (SOLAR)	
  
GUJARAT	
   ENERGY	
   RESEARCH	
  	
  &	
  MANAGEMENT	
  
INSTITUTE	
  	
  (GERMI)	
  
	
  
NEHAL	
  DIXIT	
  
SENIOR	
  TECHNICAL	
  ENGINEER	
  
AVATAR	
  SOLAR	
  PVT	
  LTD	
  
Contact	
  Information	
  
Dr.	
  Omkar	
  Jani	
  
Principal	
  Research	
  Scientist	
  (Solar)	
  
Gujarat	
  Energy	
  Research	
  &	
  Management	
  Institute	
  
Research,	
  Innovation	
  &	
  Incubation	
  Centre	
  
(GERMI	
  -­‐	
  RIIC)	
  
1st	
  Floor,	
  Energy	
  Building	
  
Pandit	
  Deendayal	
  Petroleum	
  University	
  Campus	
  
Gandhinagar,	
  Gujarat	
  –	
  382	
  007	
  
INDIA	
  
	
  
	
  M:	
  +91-­‐96240	
  00	
  264	
  
P:	
  +91-­‐79-­‐2327	
  5357	
  
F:	
  +91-­‐79-­‐2327	
  5370	
  
Omkar.J@germi.res.in	
  
	
  
Nehal	
  Dixit	
  
Senior	
  Technical	
  Engineer	
  
8	
  Nevil	
  Park	
  Society,	
  	
  
Opp	
  china	
  Town	
  Soc,	
  	
  
	
  B/h	
  Gayatri	
  Temple,	
  	
  
New	
  City	
  Light	
  Road,	
  
Surat,	
  Gujarat	
  –	
  395	
  017	
  
INDIA	
  
	
  
	
  M:	
  +91-­‐99040	
  98	
  987	
  
nehal@avatarsolar.net	
  
	
  
Disclaimer	
  
This	
  Technical	
  Design	
  Analysis	
  document	
  is	
  prepared	
  for	
  Avatar	
  Solar,	
  Inc.	
  as	
  a	
  third-­‐party	
  	
  	
  	
  analysis	
  for	
  the	
  5	
  
MW	
  solar	
  photovoltaic	
  power	
  plant	
  planned	
  for	
  commissioning	
  at	
  Charanka	
   (District:	
  Patan,	
  State:	
  Gujarat).	
  The	
  
analysis	
  is	
  based	
  on	
  the	
  data	
  provided	
  by	
  Avatar	
  Solar	
  Private	
  All	
  assumptions	
  taken	
  in	
  this	
  analysis	
  have	
  been	
  
clearly	
  indicated.	
  Neither	
  Dr.	
  Omkar	
  Jani	
  nor	
  GERMI	
  assume	
  any	
  liability,	
  financial	
  or	
  otherwise,	
  resulting	
  from	
  
any	
  information	
  in	
  this	
  report.	
  
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  1
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  2	
  
Table	
  of	
  Contents	
  
Contact	
  Information	
  .........................................................................................................	
  ...............................................	
  1	
  
Disclaimer	
  ..................................................................................................................	
  ..........................................................	
  1	
  
Terminology	
  .......................................................................................................................................................................	
  3	
  
Executive	
  Summary	
  ...........................................................................................................	
  ..............................................	
  4	
  
1.	
  Introduction	
  .............................................................................................................	
  ......................................................	
  6	
  
1.1	
  Solar	
  Energy	
  in	
  India...........................................................................................................................................	
  6	
  
1.2	
  About	
  Avatar	
  Solar,	
  Inc.	
  ................................................................................................	
  .....................................	
  7	
  
1.3	
  About	
  GERMI	
  .............................................................................................................	
  .............................................	
  8	
  
2.	
  Site	
  Details	
  .......................................................................................................................................................	
  ............	
  10	
  
2.1	
  Site	
  Location	
  ..............................................................................................	
  ..........................................................	
  10	
  
2.2	
  Solar	
  Resource	
  ..........................................................................................................	
  ..........................................	
  11	
  
2.3	
  Local	
  Weather	
  Conditions...................................................................................................................	
  ...........	
  12	
  
2.4	
  Geology	
  and	
  Seismic	
  Zone	
  ...................................................................................	
  ..........................................	
  12	
  
2.5	
  Soil	
  ....................................................................................................................	
  .......................................................	
  12	
  
3.	
  Plant	
  Overview...................................................................................................................................	
  ........................	
  14	
  
3.1	
  Photovoltaic	
  Modules	
  ...........................................................................	
  ...........................................................	
  14	
  
3.2	
  Module	
  Mounting	
  .........................................................................................................	
  .....................................	
  14	
  
3.3	
  Strings	
  and	
  Combiner	
  Boxes	
  ...................................................................................................................	
  ......	
  15	
  
3.4	
  Photovoltaic	
  Inverters............................................................................................	
  .........................................	
  15	
  
3.5	
  LT	
  and	
  HT	
  Transformers	
  ..................................................................................................	
  ..............................	
  16	
  
3.6	
  Plant	
  Layout.........................................................................................................................................................	
  1	
  6	
  
4.	
  Plant	
  Performance	
  Parameters	
  .............................................................................................	
  ..............................	
  19	
  
4.1	
  Loss	
  parameters..........................................................................................................	
  .......................................	
  19	
  
4.2	
  Weather	
  Data	
  ......................................................................................................................................................	
  19	
  
5.	
  Results	
  ..................................................................................................................	
  .........................................................	
  21	
  
5.1	
  First	
  Year	
  Energy	
  Output	
  and	
  Performance	
  ................................................................................	
  ...........	
  21	
  
5.2	
  Energy	
  Losses	
  ...........................................................................................................	
  ..........................................	
  22	
  
5.3	
  Yearly	
  Energy	
  Generation	
  ..................................................	
  ............................................................................	
  23	
  
5.4	
  Conclusion	
  ..............................................................................................................	
  ..............................................	
  23	
  
Appendix	
  A:	
  PV	
  Module	
  Datasheet	
  –	
  WAAREE	
  ENERGIES	
  PVT	
  LTD	
  |	
  LDK	
  SOLAR	
  
Appendix	
  B:	
  Combiner	
  Box	
  Datasheet	
  –	
  L&T	
  G-­‐Ray	
  String	
  monitoring	
  Box.	
  
Appendix	
  C:	
  PV	
  Inverter	
  Datasheet	
  –	
  ABB	
  57~630	
  KW	
  PS	
  700.
Terminology	
  
3φ	
  
CdTe	
  
FiT	
  
GUVNL	
  
Hz	
  
IAM	
  
Imp	
  Isc	
  
JNNSM	
  
kW	
  
kWh	
  
m	
  
MPP	
  
MPPT	
  
MW	
  
NOCT	
  
Pmax	
  
PPA	
  
PV	
  
sq.	
  m	
  
STC	
  
THD	
  
Vmp	
  
Voc	
  
W	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Three-­‐phase	
  (indicative	
  of	
  type	
  of	
  AC	
  electricity)	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ium	
  Telluride	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Feed-­‐in	
  Tariff	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Gujarat	
  Urja	
  Vikas	
  Nigam	
  Limited	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Hertz	
  (unit	
  of	
  frequency)	
  
:	
  	
   Incidence	
  Angle	
  Modifier	
  (indicates	
  an	
  optical	
  reflection	
  loss	
  
corresponding	
  to	
  the	
  weakening	
  of	
  irradiation	
  reaching	
  the	
  PV	
  cell	
  
through	
  the	
  front	
  glass,	
  with	
  respect	
  to	
  irradiation	
  under	
  normal	
  
incidence.	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Current	
  at	
  maximum	
  power	
  point	
  (in	
  Ampere)	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Short-­‐circuit	
  current	
  (in	
  Ampere)	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Jawaharlal	
  Nehru	
  National	
  Solar	
  Mission	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  kilowatt	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Kilowatt-­‐hour	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Metre	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Maximum	
  Power	
  Point	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Maximum	
  Power	
  Point	
  Tracking	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  megawatt	
  
:	
  	
   Nominal	
  Operating	
  Cell	
  Temperature	
  (at	
  800W/m2,	
  20C,	
  wind	
  velocity	
  
of	
  1m/s,	
  mounting	
  with	
  back	
  side	
  open	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Maximum	
  power	
  (in	
  Watt;	
  also	
  the	
  rating	
  of	
  the	
  PV	
  module	
  at	
  STC)	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Power	
  Purchase	
  Agreement	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Photovoltaic	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Square	
  metre	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Standard	
  Testing	
  Condition	
  (1000W/m2,	
  25°C,	
  AM1.5)	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Total	
  Harmonic	
  Distortion	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Voltage	
  at	
  maximum	
  power	
  point	
  (in	
  Volt)	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Open-­‐circuit	
  voltage	
  (in	
  Volt)	
  
:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Watt
Page	
  3
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  4	
  
Executive	
  Summary	
  
India	
  is	
  endowed	
  with	
  its	
  attractive	
  solar	
  energy	
  resource	
  averaging	
  more	
  than	
  200	
  MW	
  per	
  sq.km	
  per	
  year.	
  
The	
  Gujarat	
  Solar	
  Power	
  Policy	
  –	
  2009	
  aggressively	
  is	
  trying	
  to	
  take	
  advantage	
  ofits	
  enormous	
  solar	
  resource	
  
through	
   its	
   attractive	
   feed-­‐in	
   tariffs	
   and	
   economic	
   benefits.	
   AvatarSolar,	
   Inc.	
   ,	
   a	
   California-­‐based	
   alternate	
  
energy	
   service	
   provider,	
   has	
   signed	
   a	
   Power	
   Purchase	
   Agreement	
   (PPA)	
   for	
   a	
   5	
   MW	
   PV	
   power	
   plant	
   with	
  
Gujarat	
  	
  Urja	
  	
  Vikas	
  	
  Nigam	
  	
  Limited	
  	
  (GUVNL),	
  	
  a	
  	
  state	
  	
  utility	
  	
  company,	
  	
  under	
  	
  this	
  	
  policy,.	
  	
  Gujarat	
  	
  Energy	
  
Research	
  and	
  Management	
  Institute	
  (GERMI)	
  is	
  a	
  centre	
   for	
   excellence	
  in	
  renewable	
  energy	
  with	
  substantial	
  
experience	
  in	
  solar	
  energy	
  education,	
  R&D,training	
  and	
  consultancy,	
  and	
  is	
  technically	
  analysing	
  Avatar	
  Solar’s	
  
5	
  MW	
  plant.	
  
The	
   PV	
   power	
   plant	
   shall	
   be	
   commissioned	
   at	
   the	
   Solar	
   Park	
   –	
   Phase	
   II	
   located	
   at	
   Charanka	
   Village,	
   Patan	
  
District,	
  Gujarat	
  State	
  in	
  India.	
  Most	
  of	
  the	
  infrastructure	
  as	
  well	
  as	
  clearances	
  for	
   the	
  plant	
  shall	
  be	
  obtained	
  
directly	
  through	
  the	
  Solar	
  Park.	
  The	
  site	
  has	
  a	
  very	
  attractive	
  solar	
   resource,	
  classified	
  in	
  the	
  5.8	
  –	
  6	
  kWh/	
  m2/	
  
day	
   zone,	
   and	
   an	
   average	
   of	
   340	
   clear	
   days	
   per	
   year.	
   The	
   site	
   has	
   convenient	
   connectivity	
   by	
   roads,	
   ports,	
  
railway	
  	
  stations	
  	
  and	
  	
  airports.	
  	
  The	
  	
  site	
  	
  is	
  	
  classified	
  	
  as	
  	
  seismic	
  	
  zone	
  	
  V,	
  	
  and	
  	
  hence,	
  	
  adequate	
  	
  earthquake	
  
protection	
  should	
  be	
  taken	
  for	
  the	
  civil	
  structures.	
  Based	
  on	
  geotechnical	
  investigations,	
  the	
  site	
  is	
  suitable	
  for	
  
solar	
  	
  plants.	
  	
  An	
   allowable	
  	
  bearing	
  	
  pressure	
  	
  of	
  	
  16	
  	
  t/m2	
   is	
  	
  recommended.	
  	
  Shallow	
  	
  spread	
  	
  foundations	
  	
  are	
  
recommended	
  for	
  the	
  civil	
  structures.	
  
A	
  total	
  of	
  21,744	
  Poly	
  Crystalline	
  based	
  modules	
  by	
  WAAREE	
  Energies	
  |	
  LDK	
  Solar,	
  with	
  a	
  rating	
  of	
  240	
  Wp	
  |	
  
225	
   Wp	
   respectively	
   used	
   in	
   the	
   PV	
   power	
   plant.	
   24	
   modules	
   shall	
   be	
   mounted	
   on	
   one	
  module	
   mounting	
  
structure	
  at	
  an	
  azimuth	
  of	
  0°	
  with	
  respect	
  to	
  south	
  and	
  an	
  inclination	
  of	
  26°	
  due	
  south.	
  24	
  modules	
  shall	
  be	
  
connected	
  	
  to	
  	
  a	
  	
  string,	
  	
  24	
  	
  strings	
  	
  shall	
  	
  be	
  	
  connected	
  	
  to	
  	
  a	
   combiner	
  	
  box,	
  	
  and	
  	
  6	
  	
  combiner	
  	
  boxes	
  	
  shall	
  	
  be	
  
connected	
  to	
  a	
  PV	
  inverter.	
  ABB	
  PVS800-­‐57	
  Central	
  Inverter,	
  each	
  of	
  nominal	
  AC	
  power	
  output	
  of	
  630kW	
  shall	
  
be	
  	
  used.7	
  	
  such	
  	
  inverters	
  	
  shall	
  	
  be	
  	
  installed	
  	
  in	
  	
  the	
  	
  plant.	
  	
  Two	
  	
  inverters	
  	
  shall	
  	
  be	
  	
  connected	
  	
  to	
  	
  a	
  	
  single	
  
low-­‐tension	
  	
  (LT)	
  	
  transformer	
  	
  CSS	
  	
  in	
  	
  three	
  	
  sets	
  	
  and	
  	
  last	
  	
  inverter	
  	
  will	
  	
  be	
  	
  connected	
  	
  to	
  	
  750	
  	
  KVA	
  	
  CSS	
  
–Transformer,	
  which	
  has	
  set-­‐up	
  the	
  inverter	
  outputs	
  to	
  11	
  kV.	
  All	
  LT	
  transformer	
  outputs	
  shall	
  be	
  connected	
  
to	
  the	
  high-­‐tension	
   transformer	
  at	
  the	
   5-­‐6	
  MVA	
   transformer	
   switchyards	
   to	
  step-­‐up	
  the	
  voltage	
  to	
  66	
  kV	
  in	
  
order	
  to	
  feed	
  the	
  power	
  into	
  the	
  electricity	
  grid.	
  The	
  total	
  area	
  of	
  the	
  PV	
  power	
  plant	
  is	
  80,120	
  sq.	
  m.	
  around	
  
3990	
  number	
  of	
  foundations	
  and	
  with	
  specialized	
  Technical	
  formulae	
  to	
  analyse	
  shadow	
  and	
  determining	
  of	
  
distance	
  	
  between	
  	
  two	
  	
  successive	
  	
  rows	
  	
  of	
  	
  panels	
  	
  at	
  	
  same	
  	
  and	
  	
  different	
  	
  heights	
  	
  were	
  	
  simulated	
  	
  during	
  
designing	
  phase	
  of	
  this	
  project.	
  
Weather	
  data	
  from	
  a	
  number	
  of	
  sources	
  is	
  considered,	
  and	
  NASA	
  data,	
  which	
  is	
  comparatively	
  conservative,	
  is	
  
used	
  for	
  calculations.	
  
Compared	
   to	
   the	
   1,884	
   kW/m2	
  of	
   global	
   radiation	
   on	
   horizontal,	
   optimally	
   oriented	
   PV	
   modules	
   can	
   collect	
  as	
  
high	
  as	
  2,009	
  kW/m2	
  of	
  global	
  radiation.	
  The	
  plant	
  is	
  expected	
  to	
  generate	
  7.8	
   million	
  kWh	
  during	
  the	
  first	
  year	
  
with	
  a	
  performance-­‐ratio	
  of	
  71.2%.	
  
A	
  major	
  loss	
  of	
  13.5%	
  arises	
  due	
  to	
  the	
  high	
  temperatures	
  at	
  site.	
  Module	
  quality	
  loss,	
  array	
  soiling	
  loss,	
  module	
  
mismatch	
   loss,	
   and	
  	
  Ohmic	
  	
  loss	
   add	
  	
  up	
  	
  to	
  	
  net	
  	
  15.8%.	
   Inverter	
  	
  efficiency	
  	
  are	
  approximately	
  	
  1.6%	
  	
  based	
  	
  on	
  
ambient	
   weather	
   conditions.
The	
  PV	
  power	
  plant	
  is	
  expected	
  to	
  generate	
  172.9	
  million	
  kWh	
  over	
  the	
  first	
  25	
  years	
  with	
  a	
  steady	
  annual	
  
degradation	
  of	
  1%	
  over	
  the	
  previous	
  year.	
  
It	
   can	
   be	
   speculated	
   that	
   the	
   performance	
   ration	
   of	
  	
  the	
   plant	
   can	
   be	
   increased	
   by	
   up	
   to	
   2%	
   by	
  selecting	
  
better-­‐matched	
   modules	
   at	
   the	
   time	
   of	
   installation,	
   and	
   cleaning	
   the	
   PV	
   modules	
   at	
   a	
   frequent	
   interval	
   to	
  
reduce	
  the	
  soiling	
  losses.	
  
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Ply	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  5
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  6	
  
1.	
  Introduction	
  
1.1	
  Solar	
  Energy	
  in	
  India	
  
India	
  is	
  endowed	
  with	
  very	
  attractive	
  solar	
  energy	
  resource.	
  The	
  average	
  intensity	
  of	
  solar	
  
radiation	
  received	
  by	
  India	
  is	
  200	
  MW	
  per	
  sq.	
  km,	
  and	
  an	
  average	
  of	
  over	
  300	
  sunny	
  days	
  a	
  year.	
  
Owing	
  to	
  the	
  development	
  of	
  the	
  country,	
  electrification	
  of	
  remote	
  areas,	
  depleting	
  fossil	
  energy	
  
sources	
  and	
  the	
  concern	
  to	
  conserve	
  the	
  environment,	
  India	
  is	
  now	
  determined	
  at	
  both	
  the	
  
central	
  as	
  well	
  as	
  local	
  levels	
  to	
  deploy	
  solar	
  energy	
  system	
  at	
  a	
  mass	
  scale.	
  
Figure	
  1.1.	
  Solar	
  resource	
  in	
  India.	
  
The	
  Jawaharlal	
  Nehru	
  National	
  Solar	
  Mission	
  (JNNSM)	
  was	
  launched	
  by	
  the	
  Prime	
  Minister	
  of	
  
India	
  in	
  January,	
  2010,	
  as	
  a	
  major	
  initiative	
  to	
  promote	
  an	
  ecological	
  and	
  sustainable	
  growth	
  of
the	
  solar	
  energy	
  industry	
  in	
  India.	
  This	
  initiative	
  is	
  one	
  of	
  the	
  several	
  initiatives	
  under	
  the	
  
National	
  Action	
  Plan	
  on	
  Climate	
  Change.	
  
JNNSM	
  targets	
  are:	
  
o To	
  create	
  an	
  enabling	
  policy	
  framework	
  for	
  the	
  deployment	
  of	
  20,000	
  MW	
  of	
  solar	
  
power	
  by	
  2022.	
  
o To	
  ramp	
  up	
  capacity	
  of	
  grid-­‐connected	
  solar	
  power	
  generation	
  to	
  1000	
  MW	
  within	
  three	
  
years	
  –	
  by	
  2013;	
  an	
  additional	
  3000	
  MW	
  by	
  2017;	
  and	
  additional	
  10,000	
  MW	
  installed	
  
power	
  by	
  2022.	
  
o To	
  create	
  favourable	
  conditions	
  for	
  solar	
  manufacturing	
  capability.	
  
o To	
  promote	
  programmes	
  for	
  off	
  grid	
  applications,	
  reaching	
  1000	
  MW	
  by	
  2017	
  and	
  2000	
  
MW	
  by	
  2022.	
  
o To	
  achieve	
  15	
  million	
  sq.	
  meters	
  solar	
  thermal	
  collector	
  area	
  by	
  2017	
  and	
  20	
  million	
  by	
  
2022.	
  
o To	
  deploy	
  20	
  million	
  solar	
  lighting	
  systems	
  for	
  rural	
  areas	
  by	
  2022.	
  
The	
   Gujarat	
   Solar	
   Power	
   Policy	
  	
  –	
   2009,	
   which	
   is	
   applicable	
   to	
   this	
   report,	
   is	
   a	
   state-­‐level	
  	
  policy	
  	
  that	
   was	
  
launched	
   in	
   January	
   2009	
   to	
   promote	
   solar	
   energy	
   in	
   the	
   state	
   of	
   Gujarat.	
   This	
   policy	
   enables	
   an	
   attractive	
  
feed-­‐in	
  tariff	
   (FiT)	
   of	
  INR	
  9.98	
   per	
  kWh	
  for	
  the	
  first	
  12	
  years,	
  and	
  INR	
  7	
   per	
  kWh	
  for	
  the	
  next	
  13	
  years	
   after	
  
getting	
  extension	
  to	
  complete	
  this	
  project	
  on	
  or	
  before	
  31st	
   March	
  2013.	
  Additionally,	
  this	
  policy	
  also	
  provides	
  
added	
  benefits	
  to	
  developers	
  of	
  power	
  projects	
  such	
  as	
  ability	
  to	
  claim	
  accelerated	
  depreciation	
  and	
  provisions	
  
for	
  wheeling	
  of	
  power.	
  
Power	
  Purchase	
  Agreements	
  (PPAs)	
  of	
  more	
  than	
  965	
  MW	
  of	
  net	
  installed	
  solar	
  power	
  plantcapacity,	
  most	
  of	
  
which	
   are	
   for	
   photovoltaic	
   technologies,	
   have	
   been	
   signed	
   between	
   various	
   private	
   and	
   government	
  
organizations	
  with	
  GUVNL,	
  the	
  state	
  utility	
  company.	
  
1.2	
  About	
  Avatar	
  Solar,	
  Inc.	
  
Avatar	
  Solar	
  is	
  a	
  progressive	
  alternative	
  energy	
  service	
  provider	
  that	
  specializes	
  in	
  solar	
  electric	
  systems	
  and	
  
the	
   sale	
   of	
   Power	
   Purchase	
   Agreements	
   (PPA).	
   For	
   well	
   over	
   10	
   years,	
   Avatar	
   Solar	
   has	
   designed	
   and	
  
implemented	
  cost-­‐effective	
  solar	
  electricity	
  solutions	
  for	
  large	
  scale	
   commercial	
  properties	
  in	
  both	
  California	
  
and	
  Hawaii.	
  
Avatar	
  Solar’s	
  primary	
  goal	
  is	
  to	
  partner	
  with	
  companies	
  to	
  provide	
  efficient	
  and	
  effective	
   power	
  solutions	
  
through	
  the	
  use	
  of	
  renewable	
  and	
  clean	
  energy	
  alternatives.	
  The	
  company	
   offers	
  a	
  full	
  suite	
  of	
  alternative	
  
energy	
  services,	
  including:	
  
o energy	
  efficiency	
  consulting	
  
o site	
  analysis	
  
o design	
  and	
  implementation	
  
o financing	
  
o maintenance	
  and	
  support	
  
o billing	
  
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  7
Avatar	
   Solar	
   has	
   signed	
   a	
   PPA	
   with	
   GUVNL	
   for	
   a	
   5	
   MW	
   solar	
   PV	
   power	
   plant,	
   and	
   shall	
   avail	
   the	
   benefits	
  
including	
  the	
  tariff	
  outlined	
  in	
  the	
  Gujarat	
  Solar	
  Power	
  Policy	
  –	
  2009.	
  
1.3	
  About	
  GERMI	
  
Gujarat	
   Energy	
   Research	
  &	
   Management	
   Institute	
   (GERMI)	
   is	
  a	
  centre	
   of	
   excellence	
   in	
   industry	
   learning	
  and	
  
has	
  	
  set	
  	
  up	
  	
  to	
  	
  develop	
  	
  human	
  	
  resource	
  	
  assets	
  	
  to	
  	
  cater	
  	
  to	
  	
  renewable	
  	
  and	
  	
  non-­‐	
  renewable	
  	
  energy	
  	
  sectors,	
  
improve	
   knowledge	
   base	
   of	
   policy	
   makers	
   and	
   technologists	
   and	
   provide	
   a	
   competitive	
   edge	
   to	
   leaders	
   to	
  
compete	
  in	
  the	
  global	
  arena.	
  
GERMI	
   is	
   registered	
   as	
   society	
   and	
   a	
   trust	
   under	
   the	
   Societies	
   Registration	
   Act,	
   1860	
   and	
   the	
  Bombay	
   Public	
  
Trust	
  Act,	
  1950.	
  GERMI	
  has	
  already	
  established	
  a	
  specialised	
  technology	
  &	
   management	
  institute	
  focusing	
  on	
  the	
  
Oil	
  &	
  Gas	
  Sector	
  and	
  is	
  actively	
  pursuing	
  initiatives	
  in	
  the	
  areas	
  of	
  research	
  and	
  alternative	
  energy	
  resources.	
  
GERMI	
  promoted	
  by	
  Gujarat	
  State	
  Petroleum	
  Corporation	
  (GSPC)	
  Ltd.	
  (A	
  Govt.	
  of	
  GujaratUndertaking).	
  GSPC	
  is	
  a	
  
fully	
   integrated	
   energy	
   company	
   having	
   a	
   presence	
   in	
   variousoperations	
   like	
   Exploration	
   &	
   Production,	
  
Transportation	
  of	
  Gas,	
  and	
  Power	
  Generation,	
  IT	
  services.	
  It	
  is	
  one	
  of	
  the	
  fastest	
  growing	
  state	
  owned	
  companies	
  
and	
  has	
  excellent	
  support	
  from	
  Gujarat	
  Govt.	
  as	
  well	
  as	
  from	
  Central	
  Govt.	
  
GERMI	
  fulfils	
  its	
  solar	
  energy-­‐related	
  mandates	
  through	
  its	
  various	
  initiatives:	
  
o The	
  School	
  of	
  Solar	
  Energy	
  at	
  Pandit	
  Deendayal	
  Petroleum	
  University	
  caters	
  to	
  post-­‐graduate	
  studies	
  in	
  
fundamental	
  and	
  applied	
  R&D	
  through	
  its	
  Master’s	
  and	
  Doctorate	
  programmes.	
  
o The	
  Solar	
  Energy	
  Research	
  Wing	
  at	
  GERMI	
  Research,	
  Innovation	
  and	
  Incubation	
  Centre	
  
heads	
  applied	
  research,	
  energy	
  programmes	
  as	
  well	
  as	
  consulting	
  activities.	
  
o GERMI’s	
  Training	
  and	
  Development	
  Centre	
  conducts	
  various	
  professional	
  and	
  technical	
  
training	
  programmes	
  to	
  build	
  human	
  resource	
  capital	
  directly	
  for	
  the	
  solar	
  industry.	
  
Some	
  of	
  GERMI’s	
  consulting	
  activities	
  include:	
  
o Consultancy	
  for	
  5	
  MW	
  PV	
  power	
  plant	
  for	
  Gujarat	
  Power	
  Corporation	
  Limited	
  through	
  
an	
  EPC	
  route.	
  
o Consultancy	
  for	
  5	
  MW	
  PV	
  power	
  plant	
  for	
  Gujarat	
  Industries	
  Power	
  Corporation	
  Limited	
  
through	
  a	
  package	
  route.	
  
o Consultancy	
  for	
  1	
  MW	
  multi-­‐technology	
  demonstration	
  PV	
  power	
  plant	
  for	
  Gujarat	
  
Energy	
  Development	
  Agency.	
  
o Consultancy	
  for	
  structuring	
  and	
  implementation	
  of	
  5	
  MW	
  Gandhinagar	
  Photovoltaic	
  
Rooftop	
  Programme.	
  
GERMI	
  has	
  already	
  been	
  involved	
  in	
  establishing	
  its	
  own	
  1	
  MW	
  solar	
  PV	
  power	
  plant	
  on	
  the	
   campus	
  of	
  Pandit	
  
Deendayal	
  	
  Petroleum	
  	
  University.	
  	
  This	
  	
  plant	
  	
  consists	
  	
  of	
  	
  750	
  	
  kW	
  	
  of	
  	
  crystalline	
   silicon	
  	
  modules,	
  	
  250	
  	
  kW	
  	
  of	
  
thin-­‐film	
  silicon	
  modules,	
  and	
  15	
  kW	
  of	
  single-­‐axis	
  tracker	
  technology.	
  The	
  plant	
  was	
  inaugurated	
  by	
  the	
  Chief	
  
Minister	
  of	
  Gujarat	
  on	
  22nd	
  January,	
  2011.	
  
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  8
Thus,	
  GERMI	
  has	
  positioned	
  itself	
  as	
  one	
  of	
  the	
  foremost	
  consulting	
  and	
  implementing	
  
organizations	
  for	
  solar	
  power	
  projects.	
  
(a)	
  Bird’s	
  eye	
  view	
  of	
  the	
  plant.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (b)	
  View	
  from	
  the	
  plant	
  entrance.	
  
(c)	
  750	
  kW	
  of	
  crystalline	
  silicon	
  modules.	
  
(d)	
  250	
  kW	
  of	
  thin-­‐film	
  modules.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (e)	
  A	
  5	
  kW	
  single-­‐axis	
  tracker	
  assembly.	
  
Figure	
  1.2.	
  1	
  MW	
  multi-­‐technology	
  PV	
  power	
  plant	
  at	
  Pandit	
  Deendayal	
  Petroleum	
  
University,	
  Gandhinagar.	
  
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  9
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  
1010	
  
2.	
  Site	
  Details	
  
2.1	
  Site	
  Location	
  
Government	
  	
  of	
  	
  Gujarat	
  	
  has	
   initiated	
   a	
  	
  far-­‐reaching	
  	
  initiative	
   for	
  	
  sustainable	
  	
  progress	
  	
  in	
  	
  solar	
  power	
  	
  space	
  
through	
  development	
  of	
  series	
  of	
  Solar	
  Parks	
  that	
  are	
  envisaged	
  to	
  have	
  a	
  mix	
  of	
   solar	
  power	
  generation	
  units,	
  
manufacturing	
  units	
  and	
  R&D	
  facilities	
  for	
  both	
  private/public	
   sector	
  developers.	
  This	
  ‘Solar	
  Park’	
  concept	
  aims	
  
to	
  accelerate	
  the	
  development	
  of	
  solar	
  power	
   generation	
  projects	
  and	
  to	
  de-­‐risk	
  single	
  investments,	
  through	
  the	
  
availability	
  of	
  large	
  areas	
  of	
   suitable	
  land,	
  the	
  provision	
  of	
  common	
  infrastructure,	
  including	
  grid	
  connection	
  for	
  
evacuation	
  of	
  power	
  and	
  water	
  access,	
  as	
  well	
  as	
  facilitating	
  the	
  mandatory	
  clearances	
  centrally	
   –	
  for	
  a	
  number	
  
of	
  developers.	
  
Figure	
  2.1.	
  Gujarat	
  Solar	
  Park	
  at	
  Village	
  Charanka,	
  District	
  Patan.	
  
The	
  location	
  of	
   the	
  PV	
  power	
  plant	
  shall	
  be	
  at	
  the	
  Solar	
  Park	
   –	
  Phase	
  I	
   located	
  in	
  North	
  Gujarat	
  at	
  Charanka	
  
Village	
  in	
  the	
  Patan	
  District	
  of	
  Gujarat,	
  India	
  as	
  shown	
  in	
  Figure	
  2.1.	
  The	
  site	
  is	
   located	
  in	
  the	
  North	
  of	
  Charanka	
  
village	
  at	
  Latitude	
  23°54’20.24”N	
  and	
  Longitude	
  71°11’54.29”E.	
  It	
  is	
  abutted	
  by	
  –	
  
o Rann	
  of	
  Kutch	
  in	
  the	
  North
o Reserved	
  forest	
  in	
  the	
  East	
  
o Aluvas	
  village/	
  Asphalted	
  road	
  connecting	
  Charanka	
  and	
  Fangli	
  villages	
  in	
  the	
  South	
  
o Agricultural	
  land/Rann	
  of	
  Kutchh	
  lands	
  falling	
  within	
  the	
  village	
  of	
  Charanka	
  in	
  the	
  
West.	
  
The	
  nearest	
  urban	
  area	
  from	
  the	
  site	
  is	
  Radhanpur	
  which	
  is	
  located	
  approximately	
  at	
  a	
  distance	
  
of	
  25	
  kms.	
  The	
  distance	
  matrix	
  is	
  given	
  in	
  Table	
  2.1.	
  
Table	
  2.1.	
  Distance	
  matrix.	
  
2.2	
  Solar	
  Resource	
  
The	
   weather	
   data	
   including	
   solar	
   resource	
   and	
   temperature	
   used	
   for	
   calculations	
   for	
   the	
   PV	
   power	
   plant	
   is	
  
taken	
   from	
   the	
   NASA	
   Satellite	
   Weather	
   Observatory.	
   This	
   data	
   is	
   further	
   compared	
   with	
   third-­‐party	
   sources	
  
and	
  models	
  for	
  comparison,	
  which	
  matches	
  the	
  NASA	
  data	
   to	
  a	
  high	
  level	
  of	
  conformity.	
  The	
  solar	
  resource	
  and	
  
relevant	
  weather	
  data	
  is	
  summarized	
  in	
  Table	
  2.2.	
  
Table	
  2.2.	
  Summary	
  of	
  solar	
  resource	
  at	
  site.	
  
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  11
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  
1212	
  
2.3	
  Local	
  Weather	
  Conditions	
  
Weather	
  is	
  predominantly	
  dry	
  and	
  arid.	
  The	
  chief	
  characteristics	
  of	
  the	
  weather	
  are	
  given	
  in	
  
Table	
  2.3.	
  These	
  details	
  are	
  of	
  Deesa	
  station	
  of	
  IMD,	
  which	
  is	
  about	
  30	
  km	
  from	
  the	
  site.	
  
Table	
  2.3.	
  Climate	
  and	
  meteorological	
  condition.	
  
Parameter	
   Details	
  
Solar	
  Zone	
   5.8	
  –	
  6	
  kWh	
  per	
  sq.	
  m.	
  per	
  day	
  
Temperature	
  
Average	
  daily	
  maximum	
  temperature	
   34.1°C	
  
Average	
  daily	
  minimum	
  temperature	
   19.4°C	
  
Highest	
  temperature	
   47°C	
  
Lowest	
  temperature	
   5.2°C	
  
Rainfall	
  
Annual	
  rainfall	
   578.8mm	
  
Number	
  of	
  rainy	
  days	
   26.9	
  days	
  (sustained,	
  torrential	
  
rainfall)	
  
Relative	
  humidity	
   64%	
  
Wind	
  speed	
  
Average	
  wind	
  speed	
   8.5	
  km	
  per	
  hour	
  
Visibility	
  
Number	
  of	
  days	
  with	
  visibility	
  more	
  
than	
  10	
  km	
  
340	
  day	
  
2.4	
  Geology	
  and	
  Seismic	
  Zone	
  
The	
  site	
  is	
  a	
  part	
  of	
  North	
  Gujarat	
  alluvial	
  plain	
  and	
  geologically	
  it	
  falls	
  within	
  the	
  vast	
  marshy	
   ,saline	
  tract	
  of	
  
Holocene	
  sedimentation.	
  The	
  area	
  is	
  formed	
  of	
  tidal	
  mudflats	
  and	
  series	
  of	
  off-­‐shore	
  sandbars.	
  Geologically	
  the	
  
area	
   is	
  covered	
  with	
  saline	
  tract	
  of	
   brownish	
  grey	
  silt,	
  clay,	
   sand,	
   and	
  murram	
  at	
  depth.	
   In	
  the	
  Patan	
  district	
  
nearly	
  90%	
  of	
  soil	
  is	
  sandy.	
  The	
  alluvial	
  soils	
  are	
  found	
  in	
  the	
  talukas	
  of	
  Santalpur	
  and	
  Radhanpur.	
  
At	
  the	
  site,	
  rocky	
  outcrops	
  have	
  been	
  witnessed	
  in	
  the	
  south	
  and	
  south	
  west	
  direction	
  whereas	
  alluvial	
  thickness	
  
increases	
  towards	
  the	
  North.	
  
The	
  site	
  falls	
  in	
  Seismic	
  Zone	
  V,	
  which	
  indicates	
  a	
  very	
  high	
  damage	
  risk	
  zone.	
  Therefore,	
  adequate	
  measures	
  
need	
  to	
  be	
  taken	
  while	
  installing	
  the	
  Solar	
  Panels	
  to	
  ensure	
  least	
  damage	
  during	
  earthquake.	
  
2.5	
  Soil	
  
Soil	
  investigation	
  indicates	
  that	
  surface	
  geologic	
  materials	
  consist	
  of	
  clays	
  and	
  clayey	
  sand.	
  At	
  a	
   depth	
  of	
  3.0	
  to	
  5.0	
  
m,	
  texture	
  of	
  the	
  soil	
  is	
  either	
  hard	
  clay	
  or	
  clayey	
  sandy	
  soil.	
  From	
  5.00	
  to	
  10.0	
  m	
  below	
  ground	
  surface,	
  the	
  strata	
  
of	
  the	
  soil	
  is	
  hard	
  clay	
  mixed	
  with	
  highly	
  weathered	
   weak	
  and	
  fragmented	
  rock.	
  At	
  places	
  boulders	
  formation	
  and	
  
weak	
   and	
   fractured	
   rock	
   is	
   also	
   found.
Sub	
  soil	
  is	
  very	
  corrosive.	
  Soil	
  falls	
  in	
  class	
  3;	
  therefore	
  OPC	
  with	
  C3A	
  content	
  less	
  than	
  5	
  -­‐	
  8	
  %	
  shall	
  be	
  used.	
  
Concrete	
  should	
  be	
  designed	
  for	
  severe	
  exposure	
  condition.	
  Minimum	
  cement	
  content	
  should	
  not	
  be	
  less	
  than	
  
400	
  kg/m3	
  and	
  maximum	
  W/C	
  of	
  0.40.	
  
Liquefaction	
  is	
  a	
  phenomenon	
  whereby,	
  during	
  periods	
  of	
  oscillatory	
  ground	
  motion	
  caused	
  by	
  an	
  event	
  such	
  as	
  
an	
  earthquake,	
  the	
  pore-­‐water	
  pressure	
  in	
  a	
  loose,	
  saturated	
  granular	
  soil	
  and	
  some	
  fine-­‐grained	
  soils	
  increases	
  
to	
  the	
  point	
  where	
  the	
  effective	
  stress	
  in	
  the	
  soil	
  is	
  zero	
  and	
  thus	
  soil	
  loses	
  a	
  portion	
  of	
  its	
  shear	
  strength	
  (initial	
  
liquefaction).	
  	
   Structures	
  	
   on	
  	
   potentially	
  	
  liquefiable	
  	
   soils	
  	
   may	
  	
   experience	
  	
   bearing	
  	
  capacity	
  	
   failures,	
  	
   vertical	
  
settlement	
   (both	
   total	
   and	
  differential)	
   and	
   lateral	
   displacement	
   (due	
   to	
   lateral	
   spreading	
   of	
   the	
   ground).	
   The	
  
potential	
  for	
  liquefaction	
  at	
  the	
  site	
  is	
  considered	
  to	
  be	
  nil	
  to	
  insignificantly	
  low.	
  This	
  is	
  due	
  to	
  the	
  stiff	
  to	
  very	
  
stiff,	
  fine-­‐grained,	
  cohesive	
  nature	
  of	
  the	
  subsurface	
  materials	
  as	
  well	
  as	
  weathered	
  rock.	
  
Based	
  on	
  the	
  results	
   of	
  geotechnical	
  investigation,	
   the	
  site	
  appears	
  suitable,	
  from	
  a	
  geotechnical	
   standpoint,	
  for	
  
the	
  proposed	
  development	
  of	
  a	
  solar	
  plant.	
  Consistent	
  with	
  usual	
  practicelocally,	
  shallow	
  spread	
  footings	
  may	
  be	
  
used	
   to	
   support	
   the	
   transformers;	
   O&M	
   Building	
   and	
   the	
   PV	
   panel	
   support	
   structures.	
   The	
   allowable	
   bearing	
  
pressure	
  of	
  about	
  16	
  t/m2	
  is	
  recommended.	
  
Thus,	
  the	
  selected	
  site	
  at	
  Charanka	
  is	
  extremely	
  attractive	
  in	
  terms	
  of	
  solar	
  resource.	
  Moreover,the	
  electricity	
  grid	
  
and	
  infrastructure	
  facilities	
  make	
  it	
  an	
  ideal	
  location	
  for	
  setting	
  up	
  a	
  PV	
  power	
  plant	
  in	
  India.	
  
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  13
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  
1414	
  
3.	
  Plant	
  Overview	
  
3.1	
  Photovoltaic	
  Modules	
  
Photovoltaic	
  modules	
  from	
  WAAREE	
  Enrgies	
  Pvt	
  Ltd	
  |	
  LDK	
  Solar	
  have	
  been	
  used	
  for	
  the	
  PV	
  power	
  plant.	
  These	
  
modules	
  are	
  Poly	
  Crystalline-­‐based.	
  The	
  rated	
  power	
  output	
  of	
  the	
  modules	
  is	
  240W	
  |	
  225	
  W	
  at	
  STC.	
  
Poly	
  photovoltaic	
  modules	
  such	
  as	
  those	
  by	
  Del	
  Solar	
  carry	
  an	
  advantage	
  that	
  they	
  provide	
  a	
  higher	
  output	
  
than	
  crystalline	
  silicon	
  modules	
  of	
  the	
  same	
  STC	
  rating	
  proven	
  as	
  per	
  Demo	
  plant	
  of	
  GERMI.	
  
The	
  photovoltaic	
  modules	
  carry	
  a	
  5-­‐year	
  warranty	
  on	
  materials	
  and	
  workmanship.	
  Further,these	
  modules	
  carry	
  
a	
  	
  performance	
  	
  guarantee	
  	
  for	
  	
  90%	
  	
  of	
  	
  nominal	
  	
  output	
  	
  during	
  	
  first	
  	
  10	
  	
  years	
   and	
  	
  80%	
  	
  over	
  	
  25	
  	
  years.	
  	
  The	
  
certifications	
  carried	
  by	
  the	
  modules	
  are	
  IEC	
  61215	
  (for	
  design	
  qualification	
  and	
  type	
  approval)	
  and	
  IEC	
  61730	
  
(for	
  safety	
  qualification).	
  
21744	
  numbers	
  of	
  total	
  modules	
  shall	
  be	
  used	
  in	
  this	
  plant.	
  The	
  technical	
  datasheet	
  for	
  the	
  photovoltaic	
  
modules	
  is	
  provided	
  in	
  Appendix	
  A.	
  
Parameter	
  
PV	
  module:	
  
Pmax	
  
Voc*	
  
Isc*	
  
Vmp*	
  
Imp*	
  
Temperature	
  Coeff.	
  of	
  Pmax*	
  
Temperature	
  Coeff.	
  of	
  Voc*	
  
Table	
  3.1.	
  PV	
  module	
  parameters.	
  
Value	
  
WAAREE	
  EnergiesD6P2D]
240W
37.83	
  V	
  DC	
  
8.33A	
  DC	
  
30.39	
  V	
  DC	
  
7.91	
  A	
  DC	
  
-­‐0.42	
  %/°C	
  
-­‐0.352	
  %/°C	
  
Remarks	
  
See	
  Appendix	
  A	
  for	
  details.	
  
(at	
  STC)	
  
(at	
  STC)	
  
(at	
  STC)	
  
(at	
  STC)	
  
(at	
  STC)	
  
-­‐	
  
-­‐
Temperature	
  Coeff.	
  of	
  Isc*	
  
Type	
  of	
  output	
  terminal	
  
+0.049	
  %/°C-­‐	
  
#12AWG/	
  MC4	
  Connector-­‐	
  
*	
  
Parameters	
  may	
  be	
  derived	
  for	
  model	
  optimization.
3.2	
  Module	
  Mounting	
  
24	
  	
  PV	
  	
  modules	
  	
  shall	
  	
  be	
  	
  mounted	
  	
  on	
  	
  a	
  	
  single	
  	
  Module	
  	
  Mounting	
  	
  Structure	
  	
  (MMS).	
  	
  Each	
  	
  MMS	
  	
  shall	
  	
  be	
  
ground-­‐mounted	
  	
  	
  	
  	
  each	
  	
  secured	
  	
  through	
  	
  its	
  	
  own	
  	
  foundation	
  	
  of	
  	
  appropriate	
   size.	
  	
  The	
  	
  azimuth	
  	
  of	
  	
  the	
  	
  PV	
  
modules	
  shall	
  be	
  0°	
  with	
  respect	
  to	
  south,	
  while	
  the	
  inclination	
  ofthe	
  modules	
  shall	
  be	
  at	
  25°	
  with	
  respect	
  to	
  
horizontal	
   due	
   south.
Figure	
  3.1.	
  Schematic	
  of	
  a	
  module	
  mounting	
  structure.	
  
3.3	
  Strings	
  and	
  Combiner	
  Boxes	
  
24	
  modules	
  shall	
  be	
  connected	
  in	
  series	
  to	
  form	
  a	
  ‘string’.	
  Hence,	
  the	
  rated	
  power	
  capacity	
  of	
  each	
  string	
  shall	
  
be	
  5.76	
  KW	
  |5.4	
  KW	
  respectively	
  for	
  240	
  W|	
  225	
  W	
  respectively.	
  
Multiple	
  stings	
  shall	
  be	
  connected	
  in	
  parallel	
  through	
  combiner	
  boxes.	
  CSK-­‐24	
  combiner	
  boxes	
  By	
  L	
  &	
  T	
  G-­‐ray	
  
Boxes	
  are	
  used,	
  which	
  have	
  the	
  capability	
  of	
  connecting	
  24	
  strings	
  in	
  parallel.	
  
3.4	
  Photovoltaic	
  Inverters	
  
Photovoltaic	
  inverters	
  convert	
  the	
  DC	
  electricity	
  provided	
  by	
  the	
  photovoltaic	
  modules	
  into	
   synchronized	
  AC	
  
electricity	
  	
  to	
  	
  feed	
  	
  into	
  	
  the	
  	
  electric	
  	
  grid.	
  	
  The	
  	
  inverters	
  	
  also	
  	
  ensure	
  	
  maximum	
   power	
  	
  extraction	
  	
  from	
  	
  the	
  
photovoltaic	
  modules	
  through	
  its	
  Maximum	
  Power	
  Point	
  Tracking	
  (MPPT)	
  mechanism.	
  
ABB-­‐	
   PS	
   700	
   57~630	
   KW	
   Central	
   Inverter	
   Solar	
   Technology	
   AG	
   shall	
   be	
   used	
   for	
   the	
  PV	
   power	
   plant.	
   ABB	
  
photovoltaic	
  inverters	
  are	
  one	
  of	
  the	
  most	
  trusted	
  brands	
  for	
  inverterswith	
  a	
  leading	
  market	
  share	
  of	
  37%	
  in	
  
2010.	
  Also	
  ABB	
  inverters	
  are	
  installed	
  in	
  4	
  power	
  plants	
  inside	
  Solar	
  Park	
  for	
  your	
  reference.	
  
Each	
  inverter	
  in	
  the	
  plant	
  shall	
  cater	
  to	
  630	
  kW	
  of	
  PV	
  modules	
  (rated	
  at	
  STC)	
  and	
  7	
  such	
  inverters	
  shall	
  be	
  
used	
  	
   in	
  	
   the	
  	
  plant.	
  	
   The	
  	
  maximum	
  	
   rated	
  	
   efficiency	
  	
   of	
  	
   each	
  	
   inverter	
  	
   is	
  	
   98.6%,	
  	
  while	
  	
   the	
  	
  rated	
  	
   Euro	
  
ETA(efficiency)	
  is	
  98.4%.	
  
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  15
-­‐	
  
3.5	
  LT	
  and	
  HT	
  Transformers	
  
The	
  Low	
  Tension	
  (LT)	
  transformers	
  shall	
  take	
  inputs	
  from	
  two	
  inverters	
  and	
  step-­‐up	
  thevoltage	
  to	
  11kV.	
  The	
  
LT	
  transformer	
  shall	
  be	
  physically	
  situated	
  very	
  near	
  to	
  the	
  inverters,	
  in	
   order	
  to	
  minimize	
  any	
  electrical	
  losses	
  
arising	
  from	
  transmission	
  of	
  power	
  at	
  low	
  voltages.	
  5	
  such	
  LT	
  transformers	
  shall	
  be	
  used	
  in	
  the	
  plant.	
  
All	
  5	
  LT	
  transformers	
  shall	
  be	
  connected	
  to	
  the	
  High	
  Tension	
  (HT)	
  transformer	
  switchyard,	
  which	
  shall	
  further	
  
step-­‐up	
  the	
  11kV	
  input	
  voltage	
  to	
  66kV	
  output	
  voltage.	
  This	
  power	
  at	
  66kV	
  shall	
  be	
  fed	
  into	
  the	
  electricity	
  grid.	
  
3.6	
  Plant	
  Layout	
  
The	
  PV	
  power	
  plant	
  is	
  located	
  at	
  Plot	
  Nos.	
  28	
  P	
  of	
  the	
  Gujarat	
  Solar	
  Park,	
  Village	
  Charanka,	
  District	
  Patan,	
  State	
  
Gujarat.	
   The	
  total	
  plot	
  area	
  is	
   150,000	
  square	
  meters;	
  the	
  areas	
   taken	
  up	
  by	
   the	
  major	
  civil	
  components	
   of	
   the	
  
plant	
  are	
  indicated	
  in	
  Table	
  3.3.	
  
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  16
Plant Layout as per laid by GPCL and allotted to AVSPL on 28th
Jan 2013.
Figure	
  3.2.	
  PV	
  power	
  plant	
  layout.	
  
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  17
Table	
  3.3.	
  Bifurcation	
  of	
  area	
  for	
  the	
  PV	
  power	
  plant.
Sr.	
  
1.	
  
2.	
  
3.	
  
4.	
  
Feature	
  
PV	
  modules	
  built-­‐up	
  area	
  
Transformer	
  switchyard	
  
Road	
  
Inverter	
  rooms	
  
Area	
  
35734.08	
  sq.	
  M	
  
22184	
  sq.	
  M	
  
8,120	
  Sq.	
  M.	
  
13,961.92sq.q.	
  M.
TOTAL:	
   80,000	
  Sq.	
  M.
The	
  components	
  of	
  the	
  PV	
  power	
  plant	
  include	
  photovoltaic	
  modules,	
  module	
  mounting	
  structures,	
  photovoltaic	
  
inverters,	
  transformers,	
  civil	
  works	
  and	
  interconnections.	
  The	
  major	
  components	
  are	
  briefly	
  described	
  below	
  and	
  
technical	
  datasheets	
  are	
  provided	
  as	
  appendices	
  in	
  this	
  report.	
  
A	
  summary	
  of	
  sizes	
  of	
  PV	
  modules,	
  strings,	
  combiner	
  boxes,	
  and	
  inverters	
  for	
  the	
  PV	
  plant	
  is	
  
present	
  in	
  Table	
  3.4.	
  
Table	
  3.4.	
  PV	
  power	
  plant	
  design	
  parameters.
Parameter	
   Value	
   Equivalent	
  power	
  (STC)
Modules	
  per	
  string	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  24	
  
Strings	
  per	
  combiner	
  box	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  24	
  
Combiner	
  boxes	
  per	
  inverter	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  6	
  
Inverters	
  per	
  PV	
  plant	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  7	
  
Power	
  per	
  module	
  
Power	
  per	
  string	
  
Power	
  per	
  combiner	
  box	
  
Power	
  per	
  inverter	
  
Power	
  per	
  PV	
  plant	
  
225W/240w	
  
5400W/5760W	
  
129.6	
  KW/138.2KW	
  
630	
  KW	
  
4.986 MW
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  18
4.	
  Plant	
  Performance	
  Parameters	
  
4.1	
  Loss	
  parameters	
  
The	
  performance	
  of	
  the	
  plant	
  is	
  theoretically	
  analyzed	
  based	
  on	
  the	
  various	
  inputs	
  relating	
  tothe	
  site	
  as	
  well	
  as	
  
the	
  PV	
  power	
  plant.	
  The	
  site	
  details	
  are	
  already	
  indicated	
  in	
  Chapter	
  2.	
  Plant	
  loss	
  parameters	
  indicated	
  in	
  Table	
  
4.1	
  are	
  considered	
  for	
  the	
  analysis.	
  
Table.	
  4.1	
  Key	
  assumptions	
  for	
  performance	
  analysis.	
  
Parameter	
  
Thermal	
  Parameter	
  
Value	
  
55°C	
  
Remarks	
  
As	
  per	
  NOCT	
  measurement	
  
under	
  working	
  condition.	
  
Ohmic	
  losses	
   1.5%	
  
Loss	
  fraction	
  at	
  STC.	
  
Module	
  efficiency	
  losses	
   6%	
   Addresses	
  current	
  module	
  
performance.	
  
Power	
  loss	
  at	
  MPP	
   4%	
  
Due	
  to	
  module	
  standard	
  
deviation.	
  
Loss	
  running	
  at	
  fixed	
  voltage	
   2%	
   Due	
  to	
  module	
  standard	
  
deviation.	
  
Soiling	
  losses	
   4%	
  
Average	
  as	
  per	
  preliminary	
  
soiling	
  studies.	
  
IAM	
  losses	
   0.05%	
   As	
  per	
  ASHARE	
  model.	
  
4.2	
  Weather	
  Data	
  
The	
  weather	
  data	
   source	
   is	
   NASA	
   Satellite	
   Weather	
  Observatory.	
   This	
   data	
   is	
   further	
   compared	
   to	
  third	
   party	
  
interpolation	
   models	
   as	
   well	
  as	
   the	
  Deesa	
  Station	
  of	
   the	
  Indian	
  Meteorological	
   Department	
  (IMD),	
   which	
  is	
  30	
  
kilometres	
  away	
  from	
  the	
  site.	
  The	
  most	
  conservative	
  data	
  isused	
  for	
  analysis.	
  
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  19
Figure	
  4.1.	
  Radiation	
  on	
  horizontal	
  and	
  collector	
  plane	
  
(0°	
  azimuth;	
  25°	
  inclination)	
  at	
  site.	
  
Figure	
  4.2.	
  Average	
  ambient	
  temperature	
  at	
  site.	
  
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  20
5.	
  Results	
  
5.1	
  First	
  Year	
  Energy	
  Output	
  and	
  Performance	
  
The	
  calculated	
  output	
  of	
  the	
  PV	
  power	
  plant	
  is	
  7,783,099	
  kWh	
  (approx.	
  7.8	
  million	
  units)	
  for	
  the	
   first	
  year,	
  and	
  
the	
  	
  	
  average	
  	
  	
  performance-­‐ratio	
  	
  	
  of	
  	
  	
  the	
  	
  	
  plant	
  	
  	
  for	
  	
  	
  the	
  	
  	
  first	
  	
  	
  year	
  	
  	
  is	
  	
  	
  71.2%.	
  	
  	
  The	
  	
   monthly	
  	
  	
  outputs	
  	
  	
  and	
  
performance-­‐ratios	
  are	
  summarized	
  in	
  Tables	
  5.1	
  and	
  5.2,	
  respectively.	
  
Figure	
  5.1.	
  Monthly	
  output	
  of	
  plant	
  for	
  the	
  first	
  year.	
  
Figure	
  5.2.	
  Monthly	
  average	
  performance-­‐ratios	
  of	
  plant	
  for	
  the	
  first	
  year.	
  
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  21
.
5.2	
  Energy	
  Losses	
  
Figure	
  5.3	
  indicates	
  the	
  various	
  losses	
  in	
  the	
  plant	
  over	
  the	
  entire	
  first	
  year.	
  
Figure	
  5.3.	
  Loss	
  diagram	
  over	
  first	
  year.	
  
The	
  inverter	
  loss,	
  wiring	
  Ohmic	
  loss,	
  module	
  mismatch	
  loss,	
  module	
  quality	
  loss	
  and	
  soiling	
  loss	
  
is	
  indicated	
  in	
  Figure	
  5.4.	
  
Figure	
  5.4.	
  Various	
  losses	
  within	
  the	
  plant.	
  
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  22
5.3	
  Yearly	
  Energy	
  Generation	
  
Based	
  on	
  the	
  warranty	
  provided	
  by	
  the	
  module	
  manufacturer,	
  an	
  annual	
  degradation	
  in	
  module	
  
performance	
  of	
  1%	
  over	
  previous	
  year’s	
  performance	
  is	
  taken.	
  The	
  yearly	
  generation	
  over	
  the	
  
first	
  25	
  years	
  of	
  the	
  plant	
  is	
  shown	
  in	
  Figure	
  5.5.	
  
Figure	
  5.5.	
  Yearly	
  energy	
  generation	
  over	
  25	
  years.	
  
5.4	
  Conclusion	
  
Compared	
  to	
  the	
  1,884	
  kW/m2	
  of	
  global	
  radiation	
  on	
  horizontal,	
  optimally	
  oriented	
  PV	
  modules	
  can	
  collect	
  as	
  
high	
  as	
  2,009	
  kW/m2	
  of	
  global	
  radiation.	
  The	
  plant	
  is	
  expected	
  to	
  generate	
  7.8	
  million	
  kWh	
  during	
  the	
  first	
  year	
  
with	
  a	
  performance-­‐ratio	
  of	
  71.2%.	
  
A	
  major	
  loss	
  of	
   13.5%	
  arises	
   due	
  to	
   the	
   high	
  temperatures	
  at	
  site.	
   Module	
  quality	
  loss,	
   array	
  soiling	
   loss,	
  
module	
  mismatch	
  loss,	
  and	
  Ohmic	
  loss	
  add	
  up	
  to	
  net	
  15.8%.	
  Inverter	
  efficiency	
  losses	
  range	
  from	
  1.5%	
  to	
  
1.7%	
  based	
  on	
  ambient	
  weather	
  conditions.	
  
The	
  PV	
  power	
  plant	
  is	
  expected	
  to	
  generate	
  172.9	
  million	
  kWh	
  over	
  the	
  first	
  25	
  years	
  with	
  a	
  steady	
  annual	
  
degradation	
  of	
  1%	
  over	
  the	
  previous	
  year.	
  
It	
   can	
   be	
   speculated	
   that	
   the	
   performance	
   ration	
   of	
  	
  the	
   plant	
   can	
   be	
   increased	
   by	
   up	
   to	
   2%	
   by	
   selecting	
  
better-­‐matched	
   modules	
   at	
   the	
   time	
   of	
   installation,	
   and	
   cleaning	
   the	
   PV	
   modules	
   at	
   a	
   frequent	
   interval	
   to	
  
reduce	
  the	
  soiling	
  losses.	
  
Page	
  23
Notes:	
  
Technical	
  Design	
  Analysis	
  of	
  Avatar	
  Solar’s	
  5MW	
  Poly	
  Crystalline	
  based	
  Solar	
  
Photovoltaic	
  Power	
  Plant	
  at	
  Charanka,	
  Gujarat.	
  
Page	
  24	
  

Contenu connexe

Tendances

You Be the Judge: A Ratings Tool for Selecting the Best Solar Module
You Be the Judge: A Ratings Tool for Selecting the Best Solar Module You Be the Judge: A Ratings Tool for Selecting the Best Solar Module
You Be the Judge: A Ratings Tool for Selecting the Best Solar Module
Rick Borry
 
Ppt on design of solar photovoltaic generation for residential building
Ppt on design of solar photovoltaic generation for residential buildingPpt on design of solar photovoltaic generation for residential building
Ppt on design of solar photovoltaic generation for residential building
Siya Agarwal
 
Introduction to Off Grid Solar Power system
Introduction to Off Grid Solar Power systemIntroduction to Off Grid Solar Power system
Introduction to Off Grid Solar Power system
Shoeb Ali Khan
 

Tendances (20)

You Be the Judge: A Ratings Tool for Selecting the Best Solar Module
You Be the Judge: A Ratings Tool for Selecting the Best Solar Module You Be the Judge: A Ratings Tool for Selecting the Best Solar Module
You Be the Judge: A Ratings Tool for Selecting the Best Solar Module
 
Lobel proposal for 1 mw crystalline pv solar power plant
Lobel proposal for 1 mw crystalline pv solar power plantLobel proposal for 1 mw crystalline pv solar power plant
Lobel proposal for 1 mw crystalline pv solar power plant
 
9 system-sizing
9 system-sizing9 system-sizing
9 system-sizing
 
Solar cell
Solar cellSolar cell
Solar cell
 
Importance of Solar Energy in India | Solar Energy PDF
Importance of Solar Energy in India | Solar Energy PDFImportance of Solar Energy in India | Solar Energy PDF
Importance of Solar Energy in India | Solar Energy PDF
 
Ppt on design of solar photovoltaic generation for residential building
Ppt on design of solar photovoltaic generation for residential buildingPpt on design of solar photovoltaic generation for residential building
Ppt on design of solar photovoltaic generation for residential building
 
Standalone Solar PV system design Example
Standalone Solar PV system design ExampleStandalone Solar PV system design Example
Standalone Solar PV system design Example
 
Mini grid design manual
Mini grid design manualMini grid design manual
Mini grid design manual
 
IRJET - Solar Inverter using Super Capacitor
IRJET - Solar Inverter using Super CapacitorIRJET - Solar Inverter using Super Capacitor
IRJET - Solar Inverter using Super Capacitor
 
10 mw solar power plant
10 mw solar power plant10 mw solar power plant
10 mw solar power plant
 
A quick guide to off grid solar power systems design
A quick guide to off grid solar power systems designA quick guide to off grid solar power systems design
A quick guide to off grid solar power systems design
 
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWP
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWPIRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWP
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWP
 
Performance of solar plant
Performance of solar plantPerformance of solar plant
Performance of solar plant
 
solar street light project report.
solar street light project report.solar street light project report.
solar street light project report.
 
500w SOLAR INVERTER
500w SOLAR INVERTER500w SOLAR INVERTER
500w SOLAR INVERTER
 
Solar Development In India
Solar Development In IndiaSolar Development In India
Solar Development In India
 
Photovoltaic Project
Photovoltaic ProjectPhotovoltaic Project
Photovoltaic Project
 
Solar PV Systems Notes
Solar PV Systems NotesSolar PV Systems Notes
Solar PV Systems Notes
 
An Analysis of 10MW Photovoltaic Solar Power Plant Design on summer Training ...
An Analysis of 10MW Photovoltaic Solar Power Plant Design on summer Training ...An Analysis of 10MW Photovoltaic Solar Power Plant Design on summer Training ...
An Analysis of 10MW Photovoltaic Solar Power Plant Design on summer Training ...
 
Introduction to Off Grid Solar Power system
Introduction to Off Grid Solar Power systemIntroduction to Off Grid Solar Power system
Introduction to Off Grid Solar Power system
 

Similaire à AVATAR_SOLAR_DPR_MAY_18_2013

CURRICULUM__VITAE_Keshari..
CURRICULUM__VITAE_Keshari..CURRICULUM__VITAE_Keshari..
CURRICULUM__VITAE_Keshari..
Keshari Mishra
 
Project report-TATA Power
Project report-TATA PowerProject report-TATA Power
Project report-TATA Power
SHIVAM DWIVEDI
 
Exploring opportunity for energy supply through solar pv technology for stone...
Exploring opportunity for energy supply through solar pv technology for stone...Exploring opportunity for energy supply through solar pv technology for stone...
Exploring opportunity for energy supply through solar pv technology for stone...
Gaurav Gupta
 

Similaire à AVATAR_SOLAR_DPR_MAY_18_2013 (20)

Detailed_project_report_DPR_of_50_MW_Sol.pdf
Detailed_project_report_DPR_of_50_MW_Sol.pdfDetailed_project_report_DPR_of_50_MW_Sol.pdf
Detailed_project_report_DPR_of_50_MW_Sol.pdf
 
Detailed_project_report_DPR_of_50_MW_Sol.pdf
Detailed_project_report_DPR_of_50_MW_Sol.pdfDetailed_project_report_DPR_of_50_MW_Sol.pdf
Detailed_project_report_DPR_of_50_MW_Sol.pdf
 
Solar Energy Assessment Report for 100 kWp of Chandigarh, Punjab created by E...
Solar Energy Assessment Report for 100 kWp of Chandigarh, Punjab created by E...Solar Energy Assessment Report for 100 kWp of Chandigarh, Punjab created by E...
Solar Energy Assessment Report for 100 kWp of Chandigarh, Punjab created by E...
 
On grid
On gridOn grid
On grid
 
Solar Energy Assessment Report for 100 kWp of Bengaluru, Karnataka created by...
Solar Energy Assessment Report for 100 kWp of Bengaluru, Karnataka created by...Solar Energy Assessment Report for 100 kWp of Bengaluru, Karnataka created by...
Solar Energy Assessment Report for 100 kWp of Bengaluru, Karnataka created by...
 
Research Internship Report
Research Internship ReportResearch Internship Report
Research Internship Report
 
Sun tracker report satyam
Sun tracker report satyam Sun tracker report satyam
Sun tracker report satyam
 
Solar Based Grass Cutter Machine Paper
Solar Based Grass Cutter Machine PaperSolar Based Grass Cutter Machine Paper
Solar Based Grass Cutter Machine Paper
 
Summer Internship Report -By Rahul Mehra
Summer Internship Report -By Rahul MehraSummer Internship Report -By Rahul Mehra
Summer Internship Report -By Rahul Mehra
 
Dual Axis Solar Tracking system
Dual Axis Solar Tracking systemDual Axis Solar Tracking system
Dual Axis Solar Tracking system
 
IOT BASED ENERGY PREDECTION AND THEFT PROTECTED AUTOMATIC SOLAR TRACKER SYSTEM
IOT BASED ENERGY PREDECTION AND THEFT PROTECTED AUTOMATIC SOLAR TRACKER SYSTEMIOT BASED ENERGY PREDECTION AND THEFT PROTECTED AUTOMATIC SOLAR TRACKER SYSTEM
IOT BASED ENERGY PREDECTION AND THEFT PROTECTED AUTOMATIC SOLAR TRACKER SYSTEM
 
JSPL-ETL training report 2018
JSPL-ETL training report 2018JSPL-ETL training report 2018
JSPL-ETL training report 2018
 
KSEB Training Reporty
KSEB Training ReportyKSEB Training Reporty
KSEB Training Reporty
 
CURRICULUM__VITAE_Keshari..
CURRICULUM__VITAE_Keshari..CURRICULUM__VITAE_Keshari..
CURRICULUM__VITAE_Keshari..
 
Design and Development of 5MW Solar PV Grid Connected Power Plant using PVsyst
Design and Development of 5MW Solar PV Grid Connected Power Plant using PVsystDesign and Development of 5MW Solar PV Grid Connected Power Plant using PVsyst
Design and Development of 5MW Solar PV Grid Connected Power Plant using PVsyst
 
Project report-TATA Power
Project report-TATA PowerProject report-TATA Power
Project report-TATA Power
 
Exploring opportunity for energy supply through solar pv technology for stone...
Exploring opportunity for energy supply through solar pv technology for stone...Exploring opportunity for energy supply through solar pv technology for stone...
Exploring opportunity for energy supply through solar pv technology for stone...
 
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWP
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWPIRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWP
IRJET- Intelligent Microgrid Connected Rooftop Solar Power Plant 2KWP
 
SOLAR MPPT, INVERTER AND AUTOSWITCHING
SOLAR MPPT, INVERTER AND AUTOSWITCHINGSOLAR MPPT, INVERTER AND AUTOSWITCHING
SOLAR MPPT, INVERTER AND AUTOSWITCHING
 
Bid document for Solar Plant at J&K
Bid document for Solar Plant at J&KBid document for Solar Plant at J&K
Bid document for Solar Plant at J&K
 

AVATAR_SOLAR_DPR_MAY_18_2013

  • 1. Technical  Project  Report   Prepared  for:   AVATAR  SOLAR  Private  Limited     152.  Sahakar  Colony,  Sector  25,   Gandhinagar,  Gujarat  382024   India   Phone:  +91-­‐  9537545046   +91  –  9898046488   079  -­‐  23288549   +1  (805)  813  9946   Web:  www.avatarsolar.net   16-­‐05-­‐2013   TECHNICAL  DESIGN  ANALYSIS  OF  AVATAR  SOLAR’S   5  MW  Poly  Crystalline  based  SOLAR  PHOTOVOLTAIC   POWER  PLANT  AT  CHARANKA,  GUJARAT   Prepared  by:   DR.  OMKAR  JANI   PRINCIPAL  RESEARCH  SCIENTIST  (SOLAR)   GUJARAT   ENERGY   RESEARCH    &  MANAGEMENT   INSTITUTE    (GERMI)     NEHAL  DIXIT   SENIOR  TECHNICAL  ENGINEER   AVATAR  SOLAR  PVT  LTD  
  • 2. Contact  Information   Dr.  Omkar  Jani   Principal  Research  Scientist  (Solar)   Gujarat  Energy  Research  &  Management  Institute   Research,  Innovation  &  Incubation  Centre   (GERMI  -­‐  RIIC)   1st  Floor,  Energy  Building   Pandit  Deendayal  Petroleum  University  Campus   Gandhinagar,  Gujarat  –  382  007   INDIA      M:  +91-­‐96240  00  264   P:  +91-­‐79-­‐2327  5357   F:  +91-­‐79-­‐2327  5370   Omkar.J@germi.res.in     Nehal  Dixit   Senior  Technical  Engineer   8  Nevil  Park  Society,     Opp  china  Town  Soc,      B/h  Gayatri  Temple,     New  City  Light  Road,   Surat,  Gujarat  –  395  017   INDIA      M:  +91-­‐99040  98  987   nehal@avatarsolar.net     Disclaimer   This  Technical  Design  Analysis  document  is  prepared  for  Avatar  Solar,  Inc.  as  a  third-­‐party        analysis  for  the  5   MW  solar  photovoltaic  power  plant  planned  for  commissioning  at  Charanka   (District:  Patan,  State:  Gujarat).  The   analysis  is  based  on  the  data  provided  by  Avatar  Solar  Private  All  assumptions  taken  in  this  analysis  have  been   clearly  indicated.  Neither  Dr.  Omkar  Jani  nor  GERMI  assume  any  liability,  financial  or  otherwise,  resulting  from   any  information  in  this  report.  
  • 3. Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  1
  • 4. Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  2   Table  of  Contents   Contact  Information  .........................................................................................................  ...............................................  1   Disclaimer  ..................................................................................................................  ..........................................................  1   Terminology  .......................................................................................................................................................................  3   Executive  Summary  ...........................................................................................................  ..............................................  4   1.  Introduction  .............................................................................................................  ......................................................  6   1.1  Solar  Energy  in  India...........................................................................................................................................  6   1.2  About  Avatar  Solar,  Inc.  ................................................................................................  .....................................  7   1.3  About  GERMI  .............................................................................................................  .............................................  8   2.  Site  Details  .......................................................................................................................................................  ............  10   2.1  Site  Location  ..............................................................................................  ..........................................................  10   2.2  Solar  Resource  ..........................................................................................................  ..........................................  11   2.3  Local  Weather  Conditions...................................................................................................................  ...........  12   2.4  Geology  and  Seismic  Zone  ...................................................................................  ..........................................  12   2.5  Soil  ....................................................................................................................  .......................................................  12   3.  Plant  Overview...................................................................................................................................  ........................  14   3.1  Photovoltaic  Modules  ...........................................................................  ...........................................................  14   3.2  Module  Mounting  .........................................................................................................  .....................................  14   3.3  Strings  and  Combiner  Boxes  ...................................................................................................................  ......  15   3.4  Photovoltaic  Inverters............................................................................................  .........................................  15   3.5  LT  and  HT  Transformers  ..................................................................................................  ..............................  16   3.6  Plant  Layout.........................................................................................................................................................  1  6   4.  Plant  Performance  Parameters  .............................................................................................  ..............................  19   4.1  Loss  parameters..........................................................................................................  .......................................  19   4.2  Weather  Data  ......................................................................................................................................................  19   5.  Results  ..................................................................................................................  .........................................................  21   5.1  First  Year  Energy  Output  and  Performance  ................................................................................  ...........  21   5.2  Energy  Losses  ...........................................................................................................  ..........................................  22   5.3  Yearly  Energy  Generation  ..................................................  ............................................................................  23   5.4  Conclusion  ..............................................................................................................  ..............................................  23   Appendix  A:  PV  Module  Datasheet  –  WAAREE  ENERGIES  PVT  LTD  |  LDK  SOLAR   Appendix  B:  Combiner  Box  Datasheet  –  L&T  G-­‐Ray  String  monitoring  Box.   Appendix  C:  PV  Inverter  Datasheet  –  ABB  57~630  KW  PS  700.
  • 5. Terminology   3φ   CdTe   FiT   GUVNL   Hz   IAM   Imp  Isc   JNNSM   kW   kWh   m   MPP   MPPT   MW   NOCT   Pmax   PPA   PV   sq.  m   STC   THD   Vmp   Voc   W   :                              Three-­‐phase  (indicative  of  type  of  AC  electricity)   :                              ium  Telluride   :                              Feed-­‐in  Tariff   :                              Gujarat  Urja  Vikas  Nigam  Limited   :                              Hertz  (unit  of  frequency)   :     Incidence  Angle  Modifier  (indicates  an  optical  reflection  loss   corresponding  to  the  weakening  of  irradiation  reaching  the  PV  cell   through  the  front  glass,  with  respect  to  irradiation  under  normal   incidence.   :                              Current  at  maximum  power  point  (in  Ampere)   :                              Short-­‐circuit  current  (in  Ampere)   :                              Jawaharlal  Nehru  National  Solar  Mission   :                              kilowatt   :                              Kilowatt-­‐hour   :                              Metre   :                              Maximum  Power  Point   :                              Maximum  Power  Point  Tracking   :                              megawatt   :     Nominal  Operating  Cell  Temperature  (at  800W/m2,  20C,  wind  velocity   of  1m/s,  mounting  with  back  side  open   :                              Maximum  power  (in  Watt;  also  the  rating  of  the  PV  module  at  STC)   :                              Power  Purchase  Agreement   :                              Photovoltaic   :                              Square  metre   :                              Standard  Testing  Condition  (1000W/m2,  25°C,  AM1.5)   :                              Total  Harmonic  Distortion   :                              Voltage  at  maximum  power  point  (in  Volt)   :                              Open-­‐circuit  voltage  (in  Volt)   :                              Watt Page  3
  • 6. Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  4   Executive  Summary   India  is  endowed  with  its  attractive  solar  energy  resource  averaging  more  than  200  MW  per  sq.km  per  year.   The  Gujarat  Solar  Power  Policy  –  2009  aggressively  is  trying  to  take  advantage  ofits  enormous  solar  resource   through   its   attractive   feed-­‐in   tariffs   and   economic   benefits.   AvatarSolar,   Inc.   ,   a   California-­‐based   alternate   energy   service   provider,   has   signed   a   Power   Purchase   Agreement   (PPA)   for   a   5   MW   PV   power   plant   with   Gujarat    Urja    Vikas    Nigam    Limited    (GUVNL),    a    state    utility    company,    under    this    policy,.    Gujarat    Energy   Research  and  Management  Institute  (GERMI)  is  a  centre   for   excellence  in  renewable  energy  with  substantial   experience  in  solar  energy  education,  R&D,training  and  consultancy,  and  is  technically  analysing  Avatar  Solar’s   5  MW  plant.   The   PV   power   plant   shall   be   commissioned   at   the   Solar   Park   –   Phase   II   located   at   Charanka   Village,   Patan   District,  Gujarat  State  in  India.  Most  of  the  infrastructure  as  well  as  clearances  for   the  plant  shall  be  obtained   directly  through  the  Solar  Park.  The  site  has  a  very  attractive  solar   resource,  classified  in  the  5.8  –  6  kWh/  m2/   day   zone,   and   an   average   of   340   clear   days   per   year.   The   site   has   convenient   connectivity   by   roads,   ports,   railway    stations    and    airports.    The    site    is    classified    as    seismic    zone    V,    and    hence,    adequate    earthquake   protection  should  be  taken  for  the  civil  structures.  Based  on  geotechnical  investigations,  the  site  is  suitable  for   solar    plants.    An   allowable    bearing    pressure    of    16    t/m2   is    recommended.    Shallow    spread    foundations    are   recommended  for  the  civil  structures.   A  total  of  21,744  Poly  Crystalline  based  modules  by  WAAREE  Energies  |  LDK  Solar,  with  a  rating  of  240  Wp  |   225   Wp   respectively   used   in   the   PV   power   plant.   24   modules   shall   be   mounted   on   one  module   mounting   structure  at  an  azimuth  of  0°  with  respect  to  south  and  an  inclination  of  26°  due  south.  24  modules  shall  be   connected    to    a    string,    24    strings    shall    be    connected    to    a   combiner    box,    and    6    combiner    boxes    shall    be   connected  to  a  PV  inverter.  ABB  PVS800-­‐57  Central  Inverter,  each  of  nominal  AC  power  output  of  630kW  shall   be    used.7    such    inverters    shall    be    installed    in    the    plant.    Two    inverters    shall    be    connected    to    a    single   low-­‐tension    (LT)    transformer    CSS    in    three    sets    and    last    inverter    will    be    connected    to    750    KVA    CSS   –Transformer,  which  has  set-­‐up  the  inverter  outputs  to  11  kV.  All  LT  transformer  outputs  shall  be  connected   to  the  high-­‐tension   transformer  at  the   5-­‐6  MVA   transformer   switchyards   to  step-­‐up  the  voltage  to  66  kV  in   order  to  feed  the  power  into  the  electricity  grid.  The  total  area  of  the  PV  power  plant  is  80,120  sq.  m.  around   3990  number  of  foundations  and  with  specialized  Technical  formulae  to  analyse  shadow  and  determining  of   distance    between    two    successive    rows    of    panels    at    same    and    different    heights    were    simulated    during   designing  phase  of  this  project.   Weather  data  from  a  number  of  sources  is  considered,  and  NASA  data,  which  is  comparatively  conservative,  is   used  for  calculations.   Compared   to   the   1,884   kW/m2  of   global   radiation   on   horizontal,   optimally   oriented   PV   modules   can   collect  as   high  as  2,009  kW/m2  of  global  radiation.  The  plant  is  expected  to  generate  7.8   million  kWh  during  the  first  year   with  a  performance-­‐ratio  of  71.2%.   A  major  loss  of  13.5%  arises  due  to  the  high  temperatures  at  site.  Module  quality  loss,  array  soiling  loss,  module   mismatch   loss,   and    Ohmic    loss   add    up    to    net    15.8%.   Inverter    efficiency    are  approximately    1.6%    based    on   ambient   weather   conditions.
  • 7. The  PV  power  plant  is  expected  to  generate  172.9  million  kWh  over  the  first  25  years  with  a  steady  annual   degradation  of  1%  over  the  previous  year.   It   can   be   speculated   that   the   performance   ration   of    the   plant   can   be   increased   by   up   to   2%   by  selecting   better-­‐matched   modules   at   the   time   of   installation,   and   cleaning   the   PV   modules   at   a   frequent   interval   to   reduce  the  soiling  losses.   Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Ply  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  5
  • 8. Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  6   1.  Introduction   1.1  Solar  Energy  in  India   India  is  endowed  with  very  attractive  solar  energy  resource.  The  average  intensity  of  solar   radiation  received  by  India  is  200  MW  per  sq.  km,  and  an  average  of  over  300  sunny  days  a  year.   Owing  to  the  development  of  the  country,  electrification  of  remote  areas,  depleting  fossil  energy   sources  and  the  concern  to  conserve  the  environment,  India  is  now  determined  at  both  the   central  as  well  as  local  levels  to  deploy  solar  energy  system  at  a  mass  scale.   Figure  1.1.  Solar  resource  in  India.   The  Jawaharlal  Nehru  National  Solar  Mission  (JNNSM)  was  launched  by  the  Prime  Minister  of   India  in  January,  2010,  as  a  major  initiative  to  promote  an  ecological  and  sustainable  growth  of
  • 9. the  solar  energy  industry  in  India.  This  initiative  is  one  of  the  several  initiatives  under  the   National  Action  Plan  on  Climate  Change.   JNNSM  targets  are:   o To  create  an  enabling  policy  framework  for  the  deployment  of  20,000  MW  of  solar   power  by  2022.   o To  ramp  up  capacity  of  grid-­‐connected  solar  power  generation  to  1000  MW  within  three   years  –  by  2013;  an  additional  3000  MW  by  2017;  and  additional  10,000  MW  installed   power  by  2022.   o To  create  favourable  conditions  for  solar  manufacturing  capability.   o To  promote  programmes  for  off  grid  applications,  reaching  1000  MW  by  2017  and  2000   MW  by  2022.   o To  achieve  15  million  sq.  meters  solar  thermal  collector  area  by  2017  and  20  million  by   2022.   o To  deploy  20  million  solar  lighting  systems  for  rural  areas  by  2022.   The   Gujarat   Solar   Power   Policy    –   2009,   which   is   applicable   to   this   report,   is   a   state-­‐level    policy    that   was   launched   in   January   2009   to   promote   solar   energy   in   the   state   of   Gujarat.   This   policy   enables   an   attractive   feed-­‐in  tariff   (FiT)   of  INR  9.98   per  kWh  for  the  first  12  years,  and  INR  7   per  kWh  for  the  next  13  years   after   getting  extension  to  complete  this  project  on  or  before  31st   March  2013.  Additionally,  this  policy  also  provides   added  benefits  to  developers  of  power  projects  such  as  ability  to  claim  accelerated  depreciation  and  provisions   for  wheeling  of  power.   Power  Purchase  Agreements  (PPAs)  of  more  than  965  MW  of  net  installed  solar  power  plantcapacity,  most  of   which   are   for   photovoltaic   technologies,   have   been   signed   between   various   private   and   government   organizations  with  GUVNL,  the  state  utility  company.   1.2  About  Avatar  Solar,  Inc.   Avatar  Solar  is  a  progressive  alternative  energy  service  provider  that  specializes  in  solar  electric  systems  and   the   sale   of   Power   Purchase   Agreements   (PPA).   For   well   over   10   years,   Avatar   Solar   has   designed   and   implemented  cost-­‐effective  solar  electricity  solutions  for  large  scale   commercial  properties  in  both  California   and  Hawaii.   Avatar  Solar’s  primary  goal  is  to  partner  with  companies  to  provide  efficient  and  effective   power  solutions   through  the  use  of  renewable  and  clean  energy  alternatives.  The  company   offers  a  full  suite  of  alternative   energy  services,  including:   o energy  efficiency  consulting   o site  analysis   o design  and  implementation   o financing   o maintenance  and  support   o billing   Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  7
  • 10. Avatar   Solar   has   signed   a   PPA   with   GUVNL   for   a   5   MW   solar   PV   power   plant,   and   shall   avail   the   benefits   including  the  tariff  outlined  in  the  Gujarat  Solar  Power  Policy  –  2009.   1.3  About  GERMI   Gujarat   Energy   Research  &   Management   Institute   (GERMI)   is  a  centre   of   excellence   in   industry   learning  and   has    set    up    to    develop    human    resource    assets    to    cater    to    renewable    and    non-­‐  renewable    energy    sectors,   improve   knowledge   base   of   policy   makers   and   technologists   and   provide   a   competitive   edge   to   leaders   to   compete  in  the  global  arena.   GERMI   is   registered   as   society   and   a   trust   under   the   Societies   Registration   Act,   1860   and   the  Bombay   Public   Trust  Act,  1950.  GERMI  has  already  established  a  specialised  technology  &   management  institute  focusing  on  the   Oil  &  Gas  Sector  and  is  actively  pursuing  initiatives  in  the  areas  of  research  and  alternative  energy  resources.   GERMI  promoted  by  Gujarat  State  Petroleum  Corporation  (GSPC)  Ltd.  (A  Govt.  of  GujaratUndertaking).  GSPC  is  a   fully   integrated   energy   company   having   a   presence   in   variousoperations   like   Exploration   &   Production,   Transportation  of  Gas,  and  Power  Generation,  IT  services.  It  is  one  of  the  fastest  growing  state  owned  companies   and  has  excellent  support  from  Gujarat  Govt.  as  well  as  from  Central  Govt.   GERMI  fulfils  its  solar  energy-­‐related  mandates  through  its  various  initiatives:   o The  School  of  Solar  Energy  at  Pandit  Deendayal  Petroleum  University  caters  to  post-­‐graduate  studies  in   fundamental  and  applied  R&D  through  its  Master’s  and  Doctorate  programmes.   o The  Solar  Energy  Research  Wing  at  GERMI  Research,  Innovation  and  Incubation  Centre   heads  applied  research,  energy  programmes  as  well  as  consulting  activities.   o GERMI’s  Training  and  Development  Centre  conducts  various  professional  and  technical   training  programmes  to  build  human  resource  capital  directly  for  the  solar  industry.   Some  of  GERMI’s  consulting  activities  include:   o Consultancy  for  5  MW  PV  power  plant  for  Gujarat  Power  Corporation  Limited  through   an  EPC  route.   o Consultancy  for  5  MW  PV  power  plant  for  Gujarat  Industries  Power  Corporation  Limited   through  a  package  route.   o Consultancy  for  1  MW  multi-­‐technology  demonstration  PV  power  plant  for  Gujarat   Energy  Development  Agency.   o Consultancy  for  structuring  and  implementation  of  5  MW  Gandhinagar  Photovoltaic   Rooftop  Programme.   GERMI  has  already  been  involved  in  establishing  its  own  1  MW  solar  PV  power  plant  on  the   campus  of  Pandit   Deendayal    Petroleum    University.    This    plant    consists    of    750    kW    of    crystalline   silicon    modules,    250    kW    of   thin-­‐film  silicon  modules,  and  15  kW  of  single-­‐axis  tracker  technology.  The  plant  was  inaugurated  by  the  Chief   Minister  of  Gujarat  on  22nd  January,  2011.   Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  8
  • 11. Thus,  GERMI  has  positioned  itself  as  one  of  the  foremost  consulting  and  implementing   organizations  for  solar  power  projects.   (a)  Bird’s  eye  view  of  the  plant.                                                                            (b)  View  from  the  plant  entrance.   (c)  750  kW  of  crystalline  silicon  modules.   (d)  250  kW  of  thin-­‐film  modules.                                                                    (e)  A  5  kW  single-­‐axis  tracker  assembly.   Figure  1.2.  1  MW  multi-­‐technology  PV  power  plant  at  Pandit  Deendayal  Petroleum   University,  Gandhinagar.   Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  9
  • 12. Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page   1010   2.  Site  Details   2.1  Site  Location   Government    of    Gujarat    has   initiated   a    far-­‐reaching    initiative   for    sustainable    progress    in    solar  power    space   through  development  of  series  of  Solar  Parks  that  are  envisaged  to  have  a  mix  of   solar  power  generation  units,   manufacturing  units  and  R&D  facilities  for  both  private/public   sector  developers.  This  ‘Solar  Park’  concept  aims   to  accelerate  the  development  of  solar  power   generation  projects  and  to  de-­‐risk  single  investments,  through  the   availability  of  large  areas  of   suitable  land,  the  provision  of  common  infrastructure,  including  grid  connection  for   evacuation  of  power  and  water  access,  as  well  as  facilitating  the  mandatory  clearances  centrally   –  for  a  number   of  developers.   Figure  2.1.  Gujarat  Solar  Park  at  Village  Charanka,  District  Patan.   The  location  of   the  PV  power  plant  shall  be  at  the  Solar  Park   –  Phase  I   located  in  North  Gujarat  at  Charanka   Village  in  the  Patan  District  of  Gujarat,  India  as  shown  in  Figure  2.1.  The  site  is   located  in  the  North  of  Charanka   village  at  Latitude  23°54’20.24”N  and  Longitude  71°11’54.29”E.  It  is  abutted  by  –   o Rann  of  Kutch  in  the  North
  • 13. o Reserved  forest  in  the  East   o Aluvas  village/  Asphalted  road  connecting  Charanka  and  Fangli  villages  in  the  South   o Agricultural  land/Rann  of  Kutchh  lands  falling  within  the  village  of  Charanka  in  the   West.   The  nearest  urban  area  from  the  site  is  Radhanpur  which  is  located  approximately  at  a  distance   of  25  kms.  The  distance  matrix  is  given  in  Table  2.1.   Table  2.1.  Distance  matrix.   2.2  Solar  Resource   The   weather   data   including   solar   resource   and   temperature   used   for   calculations   for   the   PV   power   plant   is   taken   from   the   NASA   Satellite   Weather   Observatory.   This   data   is   further   compared   with   third-­‐party   sources   and  models  for  comparison,  which  matches  the  NASA  data   to  a  high  level  of  conformity.  The  solar  resource  and   relevant  weather  data  is  summarized  in  Table  2.2.   Table  2.2.  Summary  of  solar  resource  at  site.   Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  11
  • 14. Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page   1212   2.3  Local  Weather  Conditions   Weather  is  predominantly  dry  and  arid.  The  chief  characteristics  of  the  weather  are  given  in   Table  2.3.  These  details  are  of  Deesa  station  of  IMD,  which  is  about  30  km  from  the  site.   Table  2.3.  Climate  and  meteorological  condition.   Parameter   Details   Solar  Zone   5.8  –  6  kWh  per  sq.  m.  per  day   Temperature   Average  daily  maximum  temperature   34.1°C   Average  daily  minimum  temperature   19.4°C   Highest  temperature   47°C   Lowest  temperature   5.2°C   Rainfall   Annual  rainfall   578.8mm   Number  of  rainy  days   26.9  days  (sustained,  torrential   rainfall)   Relative  humidity   64%   Wind  speed   Average  wind  speed   8.5  km  per  hour   Visibility   Number  of  days  with  visibility  more   than  10  km   340  day   2.4  Geology  and  Seismic  Zone   The  site  is  a  part  of  North  Gujarat  alluvial  plain  and  geologically  it  falls  within  the  vast  marshy   ,saline  tract  of   Holocene  sedimentation.  The  area  is  formed  of  tidal  mudflats  and  series  of  off-­‐shore  sandbars.  Geologically  the   area   is  covered  with  saline  tract  of   brownish  grey  silt,  clay,   sand,   and  murram  at  depth.   In  the  Patan  district   nearly  90%  of  soil  is  sandy.  The  alluvial  soils  are  found  in  the  talukas  of  Santalpur  and  Radhanpur.   At  the  site,  rocky  outcrops  have  been  witnessed  in  the  south  and  south  west  direction  whereas  alluvial  thickness   increases  towards  the  North.   The  site  falls  in  Seismic  Zone  V,  which  indicates  a  very  high  damage  risk  zone.  Therefore,  adequate  measures   need  to  be  taken  while  installing  the  Solar  Panels  to  ensure  least  damage  during  earthquake.   2.5  Soil   Soil  investigation  indicates  that  surface  geologic  materials  consist  of  clays  and  clayey  sand.  At  a   depth  of  3.0  to  5.0   m,  texture  of  the  soil  is  either  hard  clay  or  clayey  sandy  soil.  From  5.00  to  10.0  m  below  ground  surface,  the  strata   of  the  soil  is  hard  clay  mixed  with  highly  weathered   weak  and  fragmented  rock.  At  places  boulders  formation  and   weak   and   fractured   rock   is   also   found.
  • 15. Sub  soil  is  very  corrosive.  Soil  falls  in  class  3;  therefore  OPC  with  C3A  content  less  than  5  -­‐  8  %  shall  be  used.   Concrete  should  be  designed  for  severe  exposure  condition.  Minimum  cement  content  should  not  be  less  than   400  kg/m3  and  maximum  W/C  of  0.40.   Liquefaction  is  a  phenomenon  whereby,  during  periods  of  oscillatory  ground  motion  caused  by  an  event  such  as   an  earthquake,  the  pore-­‐water  pressure  in  a  loose,  saturated  granular  soil  and  some  fine-­‐grained  soils  increases   to  the  point  where  the  effective  stress  in  the  soil  is  zero  and  thus  soil  loses  a  portion  of  its  shear  strength  (initial   liquefaction).     Structures     on     potentially    liquefiable     soils     may     experience     bearing    capacity     failures,     vertical   settlement   (both   total   and  differential)   and   lateral   displacement   (due   to   lateral   spreading   of   the   ground).   The   potential  for  liquefaction  at  the  site  is  considered  to  be  nil  to  insignificantly  low.  This  is  due  to  the  stiff  to  very   stiff,  fine-­‐grained,  cohesive  nature  of  the  subsurface  materials  as  well  as  weathered  rock.   Based  on  the  results   of  geotechnical  investigation,   the  site  appears  suitable,  from  a  geotechnical   standpoint,  for   the  proposed  development  of  a  solar  plant.  Consistent  with  usual  practicelocally,  shallow  spread  footings  may  be   used   to   support   the   transformers;   O&M   Building   and   the   PV   panel   support   structures.   The   allowable   bearing   pressure  of  about  16  t/m2  is  recommended.   Thus,  the  selected  site  at  Charanka  is  extremely  attractive  in  terms  of  solar  resource.  Moreover,the  electricity  grid   and  infrastructure  facilities  make  it  an  ideal  location  for  setting  up  a  PV  power  plant  in  India.   Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  13
  • 16. Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page   1414   3.  Plant  Overview   3.1  Photovoltaic  Modules   Photovoltaic  modules  from  WAAREE  Enrgies  Pvt  Ltd  |  LDK  Solar  have  been  used  for  the  PV  power  plant.  These   modules  are  Poly  Crystalline-­‐based.  The  rated  power  output  of  the  modules  is  240W  |  225  W  at  STC.   Poly  photovoltaic  modules  such  as  those  by  Del  Solar  carry  an  advantage  that  they  provide  a  higher  output   than  crystalline  silicon  modules  of  the  same  STC  rating  proven  as  per  Demo  plant  of  GERMI.   The  photovoltaic  modules  carry  a  5-­‐year  warranty  on  materials  and  workmanship.  Further,these  modules  carry   a    performance    guarantee    for    90%    of    nominal    output    during    first    10    years   and    80%    over    25    years.    The   certifications  carried  by  the  modules  are  IEC  61215  (for  design  qualification  and  type  approval)  and  IEC  61730   (for  safety  qualification).   21744  numbers  of  total  modules  shall  be  used  in  this  plant.  The  technical  datasheet  for  the  photovoltaic   modules  is  provided  in  Appendix  A.   Parameter   PV  module:   Pmax   Voc*   Isc*   Vmp*   Imp*   Temperature  Coeff.  of  Pmax*   Temperature  Coeff.  of  Voc*   Table  3.1.  PV  module  parameters.   Value   WAAREE  EnergiesD6P2D] 240W 37.83  V  DC   8.33A  DC   30.39  V  DC   7.91  A  DC   -­‐0.42  %/°C   -­‐0.352  %/°C   Remarks   See  Appendix  A  for  details.   (at  STC)   (at  STC)   (at  STC)   (at  STC)   (at  STC)   -­‐   -­‐ Temperature  Coeff.  of  Isc*   Type  of  output  terminal   +0.049  %/°C-­‐   #12AWG/  MC4  Connector-­‐   *   Parameters  may  be  derived  for  model  optimization. 3.2  Module  Mounting   24    PV    modules    shall    be    mounted    on    a    single    Module    Mounting    Structure    (MMS).    Each    MMS    shall    be   ground-­‐mounted          each    secured    through    its    own    foundation    of    appropriate   size.    The    azimuth    of    the    PV   modules  shall  be  0°  with  respect  to  south,  while  the  inclination  ofthe  modules  shall  be  at  25°  with  respect  to   horizontal   due   south.
  • 17. Figure  3.1.  Schematic  of  a  module  mounting  structure.   3.3  Strings  and  Combiner  Boxes   24  modules  shall  be  connected  in  series  to  form  a  ‘string’.  Hence,  the  rated  power  capacity  of  each  string  shall   be  5.76  KW  |5.4  KW  respectively  for  240  W|  225  W  respectively.   Multiple  stings  shall  be  connected  in  parallel  through  combiner  boxes.  CSK-­‐24  combiner  boxes  By  L  &  T  G-­‐ray   Boxes  are  used,  which  have  the  capability  of  connecting  24  strings  in  parallel.   3.4  Photovoltaic  Inverters   Photovoltaic  inverters  convert  the  DC  electricity  provided  by  the  photovoltaic  modules  into   synchronized  AC   electricity    to    feed    into    the    electric    grid.    The    inverters    also    ensure    maximum   power    extraction    from    the   photovoltaic  modules  through  its  Maximum  Power  Point  Tracking  (MPPT)  mechanism.   ABB-­‐   PS   700   57~630   KW   Central   Inverter   Solar   Technology   AG   shall   be   used   for   the  PV   power   plant.   ABB   photovoltaic  inverters  are  one  of  the  most  trusted  brands  for  inverterswith  a  leading  market  share  of  37%  in   2010.  Also  ABB  inverters  are  installed  in  4  power  plants  inside  Solar  Park  for  your  reference.   Each  inverter  in  the  plant  shall  cater  to  630  kW  of  PV  modules  (rated  at  STC)  and  7  such  inverters  shall  be   used     in     the    plant.     The    maximum     rated     efficiency     of     each     inverter     is     98.6%,    while     the    rated     Euro   ETA(efficiency)  is  98.4%.   Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  15
  • 18. -­‐   3.5  LT  and  HT  Transformers   The  Low  Tension  (LT)  transformers  shall  take  inputs  from  two  inverters  and  step-­‐up  thevoltage  to  11kV.  The   LT  transformer  shall  be  physically  situated  very  near  to  the  inverters,  in   order  to  minimize  any  electrical  losses   arising  from  transmission  of  power  at  low  voltages.  5  such  LT  transformers  shall  be  used  in  the  plant.   All  5  LT  transformers  shall  be  connected  to  the  High  Tension  (HT)  transformer  switchyard,  which  shall  further   step-­‐up  the  11kV  input  voltage  to  66kV  output  voltage.  This  power  at  66kV  shall  be  fed  into  the  electricity  grid.   3.6  Plant  Layout   The  PV  power  plant  is  located  at  Plot  Nos.  28  P  of  the  Gujarat  Solar  Park,  Village  Charanka,  District  Patan,  State   Gujarat.   The  total  plot  area  is   150,000  square  meters;  the  areas   taken  up  by   the  major  civil  components   of   the   plant  are  indicated  in  Table  3.3.   Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  16
  • 19. Plant Layout as per laid by GPCL and allotted to AVSPL on 28th Jan 2013. Figure  3.2.  PV  power  plant  layout.   Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  17
  • 20. Table  3.3.  Bifurcation  of  area  for  the  PV  power  plant. Sr.   1.   2.   3.   4.   Feature   PV  modules  built-­‐up  area   Transformer  switchyard   Road   Inverter  rooms   Area   35734.08  sq.  M   22184  sq.  M   8,120  Sq.  M.   13,961.92sq.q.  M. TOTAL:   80,000  Sq.  M. The  components  of  the  PV  power  plant  include  photovoltaic  modules,  module  mounting  structures,  photovoltaic   inverters,  transformers,  civil  works  and  interconnections.  The  major  components  are  briefly  described  below  and   technical  datasheets  are  provided  as  appendices  in  this  report.   A  summary  of  sizes  of  PV  modules,  strings,  combiner  boxes,  and  inverters  for  the  PV  plant  is   present  in  Table  3.4.   Table  3.4.  PV  power  plant  design  parameters. Parameter   Value   Equivalent  power  (STC) Modules  per  string                                                                      24   Strings  per  combiner  box                                              24   Combiner  boxes  per  inverter                                6   Inverters  per  PV  plant                                                          7   Power  per  module   Power  per  string   Power  per  combiner  box   Power  per  inverter   Power  per  PV  plant   225W/240w   5400W/5760W   129.6  KW/138.2KW   630  KW   4.986 MW Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  18
  • 21. 4.  Plant  Performance  Parameters   4.1  Loss  parameters   The  performance  of  the  plant  is  theoretically  analyzed  based  on  the  various  inputs  relating  tothe  site  as  well  as   the  PV  power  plant.  The  site  details  are  already  indicated  in  Chapter  2.  Plant  loss  parameters  indicated  in  Table   4.1  are  considered  for  the  analysis.   Table.  4.1  Key  assumptions  for  performance  analysis.   Parameter   Thermal  Parameter   Value   55°C   Remarks   As  per  NOCT  measurement   under  working  condition.   Ohmic  losses   1.5%   Loss  fraction  at  STC.   Module  efficiency  losses   6%   Addresses  current  module   performance.   Power  loss  at  MPP   4%   Due  to  module  standard   deviation.   Loss  running  at  fixed  voltage   2%   Due  to  module  standard   deviation.   Soiling  losses   4%   Average  as  per  preliminary   soiling  studies.   IAM  losses   0.05%   As  per  ASHARE  model.   4.2  Weather  Data   The  weather  data   source   is   NASA   Satellite   Weather  Observatory.   This   data   is   further   compared   to  third   party   interpolation   models   as   well  as   the  Deesa  Station  of   the  Indian  Meteorological   Department  (IMD),   which  is  30   kilometres  away  from  the  site.  The  most  conservative  data  isused  for  analysis.   Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  19
  • 22. Figure  4.1.  Radiation  on  horizontal  and  collector  plane   (0°  azimuth;  25°  inclination)  at  site.   Figure  4.2.  Average  ambient  temperature  at  site.   Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  20
  • 23. 5.  Results   5.1  First  Year  Energy  Output  and  Performance   The  calculated  output  of  the  PV  power  plant  is  7,783,099  kWh  (approx.  7.8  million  units)  for  the   first  year,  and   the      average      performance-­‐ratio      of      the      plant      for      the      first      year      is      71.2%.      The     monthly      outputs      and   performance-­‐ratios  are  summarized  in  Tables  5.1  and  5.2,  respectively.   Figure  5.1.  Monthly  output  of  plant  for  the  first  year.   Figure  5.2.  Monthly  average  performance-­‐ratios  of  plant  for  the  first  year.   Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  21 .
  • 24. 5.2  Energy  Losses   Figure  5.3  indicates  the  various  losses  in  the  plant  over  the  entire  first  year.   Figure  5.3.  Loss  diagram  over  first  year.   The  inverter  loss,  wiring  Ohmic  loss,  module  mismatch  loss,  module  quality  loss  and  soiling  loss   is  indicated  in  Figure  5.4.   Figure  5.4.  Various  losses  within  the  plant.   Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  22
  • 25. 5.3  Yearly  Energy  Generation   Based  on  the  warranty  provided  by  the  module  manufacturer,  an  annual  degradation  in  module   performance  of  1%  over  previous  year’s  performance  is  taken.  The  yearly  generation  over  the   first  25  years  of  the  plant  is  shown  in  Figure  5.5.   Figure  5.5.  Yearly  energy  generation  over  25  years.   5.4  Conclusion   Compared  to  the  1,884  kW/m2  of  global  radiation  on  horizontal,  optimally  oriented  PV  modules  can  collect  as   high  as  2,009  kW/m2  of  global  radiation.  The  plant  is  expected  to  generate  7.8  million  kWh  during  the  first  year   with  a  performance-­‐ratio  of  71.2%.   A  major  loss  of   13.5%  arises   due  to   the   high  temperatures  at  site.   Module  quality  loss,   array  soiling   loss,   module  mismatch  loss,  and  Ohmic  loss  add  up  to  net  15.8%.  Inverter  efficiency  losses  range  from  1.5%  to   1.7%  based  on  ambient  weather  conditions.   The  PV  power  plant  is  expected  to  generate  172.9  million  kWh  over  the  first  25  years  with  a  steady  annual   degradation  of  1%  over  the  previous  year.   It   can   be   speculated   that   the   performance   ration   of    the   plant   can   be   increased   by   up   to   2%   by   selecting   better-­‐matched   modules   at   the   time   of   installation,   and   cleaning   the   PV   modules   at   a   frequent   interval   to   reduce  the  soiling  losses.   Page  23
  • 26. Notes:   Technical  Design  Analysis  of  Avatar  Solar’s  5MW  Poly  Crystalline  based  Solar   Photovoltaic  Power  Plant  at  Charanka,  Gujarat.   Page  24