Van de droom van het Semantic Web naar de realiteit van Linked Open

12 May 2022
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
Van de droom van het Semantic Web naar de realiteit van Linked Open
1 sur 39

Contenu connexe

Similaire à Van de droom van het Semantic Web naar de realiteit van Linked Open

RDFa From Theory to PracticeRDFa From Theory to Practice
RDFa From Theory to PracticeAdrian Stevenson
Data Big and Broad (Oxford, 2012)Data Big and Broad (Oxford, 2012)
Data Big and Broad (Oxford, 2012)James Hendler
BrightTALK - Semantic AI BrightTALK - Semantic AI
BrightTALK - Semantic AI Semantic Web Company
Broad DataBroad Data
Broad DataJames Hendler
Linked Open Government Data:  What’s Next?Linked Open Government Data:  What’s Next?
Linked Open Government Data: What’s Next?Li Ding
LinuxCon 2010 Education Mini-Summit: The State of Open Data in EducationLinuxCon 2010 Education Mini-Summit: The State of Open Data in Education
LinuxCon 2010 Education Mini-Summit: The State of Open Data in Educationcomputercolin

Plus de voginip

The Dark Side of Science: Misconduct in Biomedical ResearchThe Dark Side of Science: Misconduct in Biomedical Research
The Dark Side of Science: Misconduct in Biomedical Researchvoginip
Oude boeken, nieuwe vaardigheden en WikipediaOude boeken, nieuwe vaardigheden en Wikipedia
Oude boeken, nieuwe vaardigheden en Wikipediavoginip
De kracht van samenwerking: hoe de Universiteitsbibliotheek Gent open kennisc...De kracht van samenwerking: hoe de Universiteitsbibliotheek Gent open kennisc...
De kracht van samenwerking: hoe de Universiteitsbibliotheek Gent open kennisc...voginip
Open yet everywhere in chains: Where next for open knowledge?Open yet everywhere in chains: Where next for open knowledge?
Open yet everywhere in chains: Where next for open knowledge?voginip
The three layers of a knowledge graph and what it means for authoring, storag...The three layers of a knowledge graph and what it means for authoring, storag...
The three layers of a knowledge graph and what it means for authoring, storag...voginip
Vijf vindbaarheidsproblemen waar een taxonomie de schuld van krijgt (maar nik...Vijf vindbaarheidsproblemen waar een taxonomie de schuld van krijgt (maar nik...
Vijf vindbaarheidsproblemen waar een taxonomie de schuld van krijgt (maar nik...voginip

Dernier

The perfect couple: Uniting Large Language Models and Knowledge Graphs for En...The perfect couple: Uniting Large Language Models and Knowledge Graphs for En...
The perfect couple: Uniting Large Language Models and Knowledge Graphs for En...Neo4j
Unlocking the Power of Integer ProgrammingUnlocking the Power of Integer Programming
Unlocking the Power of Integer ProgrammingFlorian Wilhelm
PLM 200.pdfPLM 200.pdf
PLM 200.pdfMidhun Mohan
Database DesignDatabase Design
Database DesignVICTOR MAESTRE RAMIREZ
Predictive HR Analytics_ Mastering the HR Metric ( PDFDrive ).pdfPredictive HR Analytics_ Mastering the HR Metric ( PDFDrive ).pdf
Predictive HR Analytics_ Mastering the HR Metric ( PDFDrive ).pdfSanthosh Prabhu
Factors Influencing the Choice of Business Education in Bangladesh..pdfFactors Influencing the Choice of Business Education in Bangladesh..pdf
Factors Influencing the Choice of Business Education in Bangladesh..pdfShamim Rana

Van de droom van het Semantic Web naar de realiteit van Linked Open

Notes de l'éditeur

  1. The good news: a distributed knowledge-base that describes hundreds of millions of items through tens of billions of relations between them, classifying them into hundreds of thousands of different classes, hosted on a web of thousands of different servers across the world, with fully distributed access and open to contributions from anybody. A knowledge-base on this scale, of this size and of such broad coverage would have been unthinkable 15 years ago, but it has now become reality under a variety of names such as the Semantic Web, the Linked Open Data cloud, or the Web of Data. The bad news: despite this success, we actually understand very little of the structure of the Web of Data. Its formal meaning is specified in logic, but with its scale, context dependency and dynamics, the Web of Data has outgrown its traditional model-theoretic semantics. Is the meaning of a logical statement (an edge in the graph) dependent on the cluster ("context") in which it appears? Does a more densely connected concept (node) contain more information?  Is the path length between two nodes related to their semantic distance? Properties such as clustering, connectivity and path length are not described, much less explained by model-theoretic semantics. Do such properties contribute to the meaning of a knowledge graph? To properly understand the structure and meaning of knowledge graphs, we should no longer treat knowledge graphs as (only) a set of logical statements, but treat them properly as a graph. But how to do this is far from clear. In this talk, we'll report on some of our early results on some of these questions, but we'll ask many more questions for which we don't have answers yet.
  2. We’re going to explain all of these.
  3. Give all things a name (including non-physical things like a date, a year, a location, a movie, the color red, a disease, etc). That’s lots of names.
  4. Make a graph of those names: nodes are the (names of) things, edges are the relations between them. Notice names for non-physical things like “1999”. This creates a giant graph. This slide is sloppy, all of these names should be URL, next principle
  5. So now, anybody can assign any property to any object published by anybody else. Together this creates a giant GLOBAL graph
  6. To make that giant global graph a knowledge graph, we need to assign formal meaning. That meaning will have a very simple structure. More or less the modelling primitives you find in any widely accepted modelling language
  7. First, let’s remind ourselves how hard it is for computers to find “meaning” in anything. T
  8. Mind-reading game to explain semantics. If I show the audience the top triple, and we share a little bit of background knowledge in the square box (“ontology”), I can predict what the audience will infer from the top-triple. The shared background knowledge forces us to believe certain things (such that the right blobs must be locations) , and forbids us to believe certain things (such as that the two right blobs are different). By increasing the background knowledge the enforced conclusions (lowerbound on agreement) and the forbidden conlusions (upperbound on agreement) get closer and closer, and the remaining space for ambiguity and misunderstanding reduces. Not only misunderstanding between people, but also between machines. Slogan: semantics is when I can predict what you will infer when I send you something.
  9. We’re going to explain all of these.
  10. From ivo@velitchkov.eu 1. For Morgan Stanley etc see case studies of Top Quadrant 2. For Voklswagen, Nokia, Daimler, Bosch, I couldn't find quickly an online resource but they are all clients of eccenca 3. I can't remember seeing Schneider Electric, which are heavy RDF user. You can find them along many others on Stardog's customer page 4. Philips, CreditSuise etc at PoolParty customer page. 5. Taxonic is now implementing Asset Managemnt system based on RDF at Schihol Airport but you should ask Jan if they are fine to associate their logo with that 6. I saw the logo of the European Commission, but not of European Council (SPARQL: http://data.consilium.europa.eu/sparql ) and Publications Office (SPARQL: http://publications.europa.eu/webapi/rdf/sparql)
  11. We’ve seen this example
  12. That works because all three major search engines are sharing a single very lightweight ontology.
  13. From ivo@velitchkov.eu 1. For Morgan Stanley etc see case studies of Top Quadrant 2. For Voklswagen, Nokia, Daimler, Bosch, I couldn't find quickly an online resource but they are all clients of eccenca 3. I can't remember seeing Schneider Electric, which are heavy RDF user. You can find them along many others on Stardog's customer page 4. Philips, CreditSuise etc at PoolParty customer page. 5. Taxonic is now implementing Asset Managemnt system based on RDF at Schihol Airport but you should ask Jan if they are fine to associate their logo with that 6. I saw the logo of the European Commission, but not of European Council (SPARQL: http://data.consilium.europa.eu/sparql ) and Publications Office (SPARQL: http://publications.europa.eu/webapi/rdf/sparql)
  14. The US government is publishing many many datasets in semantic web format. So that citizens and companies can re-use these data for their own purposes. (commercial, lobbying, education, science, etc)
  15. Lots of Governments around the world do this.
  16. In Europe too
  17. From ivo@velitchkov.eu 1. For Morgan Stanley etc see case studies of Top Quadrant 2. For Voklswagen, Nokia, Daimler, Bosch, I couldn't find quickly an online resource but they are all clients of eccenca 3. I can't remember seeing Schneider Electric, which are heavy RDF user. You can find them along many others on Stardog's customer page 4. Philips, CreditSuise etc at PoolParty customer page. 5. Taxonic is now implementing Asset Managemnt system based on RDF at Schihol Airport but you should ask Jan if they are fine to associate their logo with that 6. I saw the logo of the European Commission, but not of European Council (SPARQL: http://data.consilium.europa.eu/sparql ) and Publications Office (SPARQL: http://publications.europa.eu/webapi/rdf/sparql)
  18. From ivo@velitchkov.eu 1. For Morgan Stanley etc see case studies of Top Quadrant 2. For Voklswagen, Nokia, Daimler, Bosch, I couldn't find quickly an online resource but they are all clients of eccenca 3. I can't remember seeing Schneider Electric, which are heavy RDF user. You can find them along many others on Stardog's customer page 4. Philips, CreditSuise etc at PoolParty customer page. 5. Taxonic is now implementing Asset Managemnt system based on RDF at Schihol Airport but you should ask Jan if they are fine to associate their logo with that 6. I saw the logo of the European Commission, but not of European Council (SPARQL: http://data.consilium.europa.eu/sparql ) and Publications Office (SPARQL: http://publications.europa.eu/webapi/rdf/sparql)
  19. Journalists re-use bits of information, text and images from other journalists all the time. Semweb technology made that process more efficient. The BBC website, powered by SemWeb technology was the busiest website in the world during the London Olympic Games.
  20. And yes, just as XMP made an ontology about their electronic products, the BBC made an ontology about Olympic sports.
  21. This company had so many variations on their products that their own engineers couldn’t find the specs of each others designs any more.
  22. After it was such a success for their own engineers, they also made portions of it open to their customers.