SlideShare une entreprise Scribd logo
1  sur  37
Graph Expansion, Tseitin formulas and resolution

                          proofs for CSP



              Dmitriy Itsykson           Vsevolod Oparin
                  St. Petersburg Department of Steklov

                        Institute of Mathematics of

                       Russian Academy of Sciences


                        St. Petersburg University of

                        Russian Academy of Science




                         September 26, 2012



     Dmitriy Itsykson, Vsevolod Oparin   1/10 |   Tseitin formulas and resolution proofs for CSP
Outline




      SAT and DPLL
      Tseitin formula
      Lower bound in propositional case
      Upper bound
      CSP
      Main results




          Dmitriy Itsykson, Vsevolod Oparin   2/10 |   Tseitin formulas and resolution proofs for CSP
NP-hard problem


 Problem
 Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1}
 s.t. φ(a1 , a2 , · · · , an ) = 1.

 Method?




            Dmitriy Itsykson, Vsevolod Oparin   3/10 |   Tseitin formulas and resolution proofs for CSP
NP-hard problem


 Problem
 Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1}
 s.t. φ(a1 , a2 , · · · , an ) = 1.

 Method? DPLL algorithm!




            Dmitriy Itsykson, Vsevolod Oparin   3/10 |   Tseitin formulas and resolution proofs for CSP
NP-hard problem


 Problem
 Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1}
 s.t. φ(a1 , a2 , · · · , an ) = 1.

 Method? DPLL algorithm!
 φ(x , y , z ) := (x ∨ y ) ∧ (¬y ∨ z ) ∧ (¬z ) ∧ (¬x )


     φ(1, y , z ) := 0       φ(0, y , z ) := (y ) ∧ (¬y ∨ z ) ∧ (¬z )


                            φ(0, y , 1) := 0         φ(0, y , 0) := (y ) ∧ (¬y )


                                                 φ(0, 0, 0) := 0           φ(0, 1, 0) := 0



             Dmitriy Itsykson, Vsevolod Oparin     3/10 |   Tseitin formulas and resolution proofs for CSP
NP-hard problem


 Problem
 Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1}
 s.t. φ(a1 , a2 , · · · , an ) = 1.

 Method? DPLL algorithm!
 φ(x , y , z ) := (x ∨ y ) ∧ (¬y ∨ z ) ∧ (¬z ) ∧ (¬x )


     φ(1, y , z ) := 0       φ(0, y , z ) := (y ) ∧ (¬y ∨ z ) ∧ (¬z )


                            φ(0, y , 1) := 0         φ(0, y , 0) := (y ) ∧ (¬y )


                                                 φ(0, 0, 0) := 0           φ(0, 1, 0) := 0



             Dmitriy Itsykson, Vsevolod Oparin     3/10 |   Tseitin formulas and resolution proofs for CSP
NP-hard problem


 Problem
 Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1}
 s.t. φ(a1 , a2 , · · · , an ) = 1.

 Method? DPLL algorithm!
 φ(x , y , z ) := (x ∨ y ) ∧ (¬y ∨ z ) ∧ (¬z ) ∧ (¬x )


     φ(1, y , z ) := 0       φ(0, y , z ) := (y ) ∧ (¬y ∨ z ) ∧ (¬z )


                            φ(0, y , 1) := 0         φ(0, y , 0) := (y ) ∧ (¬y )


                                                 φ(0, 0, 0) := 0           φ(0, 1, 0) := 0



             Dmitriy Itsykson, Vsevolod Oparin     3/10 |   Tseitin formulas and resolution proofs for CSP
NP-hard problem


 Problem
 Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1}
 s.t. φ(a1 , a2 , · · · , an ) = 1.

 Method? DPLL algorithm!
 φ(x , y , z ) := (x ∨ y ) ∧ (¬y ∨ z ) ∧ (¬z ) ∧ (¬x )


     φ(1, y , z ) := 0       φ(0, y , z ) := (y ) ∧ (¬y ∨ z ) ∧ (¬z )


                            φ(0, y , 1) := 0         φ(0, y , 0) := (y ) ∧ (¬y )


                                                 φ(0, 0, 0) := 0           φ(0, 1, 0) := 0



             Dmitriy Itsykson, Vsevolod Oparin     3/10 |   Tseitin formulas and resolution proofs for CSP
NP-hard problem


 Problem
 Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1}
 s.t. φ(a1 , a2 , · · · , an ) = 1.

 Method? DPLL algorithm!
 φ(x , y , z ) := (x ∨ y ) ∧ (¬y ∨ z ) ∧ (¬z ) ∧ (¬x )


     φ(1, y , z ) := 0       φ(0, y , z ) := (y ) ∧ (¬y ∨ z ) ∧ (¬z )


                            φ(0, y , 1) := 0         φ(0, y , 0) := (y ) ∧ (¬y )


                                                 φ(0, 0, 0) := 0           φ(0, 1, 0) := 0



             Dmitriy Itsykson, Vsevolod Oparin     3/10 |   Tseitin formulas and resolution proofs for CSP
NP-hard problem


 Problem
 Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1}
 s.t. φ(a1 , a2 , · · · , an ) = 1.

 Method? DPLL algorithm!
 φ(x , y , z ) := (x ∨ y ) ∧ (¬y ∨ z ) ∧ (¬z ) ∧ (¬x )


     φ(1, y , z ) := 0       φ(0, y , z ) := (y ) ∧ (¬y ∨ z ) ∧ (¬z )


                            φ(0, y , 1) := 0         φ(0, y , 0) := (y ) ∧ (¬y )


                                                 φ(0, 0, 0) := 0           φ(0, 1, 0) := 0



             Dmitriy Itsykson, Vsevolod Oparin     3/10 |   Tseitin formulas and resolution proofs for CSP
NP-hard problem


 Problem
 Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1}
 s.t. φ(a1 , a2 , · · · , an ) = 1.

 Method? DPLL algorithm!
 φ(x , y , z ) := (x ∨ y ) ∧ (¬y ∨ z ) ∧ (¬z ) ∧ (¬x )


     φ(1, y , z ) := 0       φ(0, y , z ) := (y ) ∧ (¬y ∨ z ) ∧ (¬z )


                            φ(0, y , 1) := 0         φ(0, y , 0) := (y ) ∧ (¬y )


                                                 φ(0, 0, 0) := 0           φ(0, 1, 0) := 0
 The tree is the proof. The size of the proof ST is the number of
 vertecies.
             Dmitriy Itsykson, Vsevolod Oparin     3/10 |   Tseitin formulas and resolution proofs for CSP
Tseitin formula



  Denition
  Consider d -regular graph G = V , E and function f : V → {0, 1}.
  Associate every edge e ∈ E with a variable xe . For every vertex v
  write constraint (v ,u)∈E x(v ,u) = f (v ) (mod 2).

                     1
             x2             x3 ⇒
            0        x1        0




           Dmitriy Itsykson, Vsevolod Oparin   4/10 |   Tseitin formulas and resolution proofs for CSP
Tseitin formula



  Denition
  Consider d -regular graph G = V , E and function f : V → {0, 1}.
  Associate every edge e ∈ E with a variable xe . For every vertex v
  write constraint (v ,u)∈E x(v ,u) = f (v ) (mod 2).

                     1                    E → {x1 , x2 , x3 }
             x2             x3 ⇒
            0        x1        0




           Dmitriy Itsykson, Vsevolod Oparin   4/10 |   Tseitin formulas and resolution proofs for CSP
Tseitin formula



  Denition
  Consider d -regular graph G = V , E and function f : V → {0, 1}.
  Associate every edge e ∈ E with a variable xe . For every vertex v
  write constraint (v ,u)∈E x(v ,u) = f (v ) (mod 2).

                     1           E → {x1 , x2 , x3 }
                            x3 ⇒  x1 + x2 = 0 (mod 2)
                                 
             x2
                                    x2 + x3 = 1 (mod 2)
            0                 0     x1 + x3 = 0 (mod 2)
                                 
                     x1




           Dmitriy Itsykson, Vsevolod Oparin   4/10 |   Tseitin formulas and resolution proofs for CSP
Tseitin formula



  Denition
  Consider d -regular graph G = V , E and function f : V → {0, 1}.
  Associate every edge e ∈ E with a variable xe . For every vertex v
  write constraint (v ,u)∈E x(v ,u) = f (v ) (mod 2).

                     1           E → {x1 , x2 , x3 }
                            x3 ⇒  x1 + x2 = 0 (mod 2)
                                 
             x2
                                    x2 + x3 = 1 (mod 2)
            0                 0     x1 + x3 = 0 (mod 2)
                                 
                     x1




           Dmitriy Itsykson, Vsevolod Oparin   4/10 |   Tseitin formulas and resolution proofs for CSP
Tseitin formula



  Denition
  Consider d -regular graph G = V , E and function f : V → {0, 1}.
  Associate every edge e ∈ E with a variable xe . For every vertex v
  write constraint (v ,u)∈E x(v ,u) = f (v ) (mod 2).

                     1           E → {x1 , x2 , x3 }
                            x3 ⇒  x1 + x2 = 0 (mod 2)
                                 
             x2
                                    x2 + x3 = 1 (mod 2)
            0                 0     x1 + x3 = 0 (mod 2)
                                 
                     x1




           Dmitriy Itsykson, Vsevolod Oparin   4/10 |   Tseitin formulas and resolution proofs for CSP
Tseitin formula



  Denition
  Consider d -regular graph G = V , E and function f : V → {0, 1}.
  Associate every edge e ∈ E with a variable xe . For every vertex v
  write constraint (v ,u)∈E x(v ,u) = f (v ) (mod 2).

                     1           E → {x1 , x2 , x3 }
                            x3 ⇒  x1 + x2 = 0 (mod 2)
                                 
             x2
                                    x2 + x3 = 1 (mod 2)
            0                 0     x1 + x3 = 0 (mod 2)
                                 
                     x1




           Dmitriy Itsykson, Vsevolod Oparin   4/10 |   Tseitin formulas and resolution proofs for CSP
Tseitin formula



  Denition
  Consider d -regular graph G = V , E and function f : V → {0, 1}.
  Associate every edge e ∈ E with a variable xe . For every vertex v
  write constraint (v ,u)∈E x(v ,u) = f (v ) (mod 2).

                     1           E → {x1 , x2 , x3 }
                            x3 ⇒  x1 + x2 = 0 (mod 2)
                                 
             x2
                                    x2 + x3 = 1 (mod 2)
            0                 0     x1 + x3 = 0 (mod 2)
                                 
                     x1




           Dmitriy Itsykson, Vsevolod Oparin   4/10 |   Tseitin formulas and resolution proofs for CSP
Tseitin formula



  Denition
  Consider d -regular graph G = V , E and function f : V → {0, 1}.
  Associate every edge e ∈ E with a variable xe . For every vertex v
  write constraint (v ,u)∈E x(v ,u) = f (v ) (mod 2).

                      1            E → {x1 , x2 , x3 }
                              x3 ⇒  x1 + x2 = 0 (mod 2)
                                   
              x2
                                      x2 + x3 = 1 (mod 2)
             0                  0     x1 + x3 = 0 (mod 2)
                                   
                      x1


  Theorem
  φ ∈ SAT ⇐⇒               v ∈V f (v ) = 1 (mod 2).


            Dmitriy Itsykson, Vsevolod Oparin   4/10 |   Tseitin formulas and resolution proofs for CSP
Lower bounds for propositional formula


  First bound
  G.S. Tseitin, 1968.
                       ⇒ superpolynomial lower bound on
                       the size of proof




           Dmitriy Itsykson, Vsevolod Oparin   5/10 |   Tseitin formulas and resolution proofs for CSP
Lower bounds for propositional formula


  First bound
  G.S. Tseitin, 1968.
                       ⇒ superpolynomial lower bound on
                       the size of proof

  Strongest result
  E. Ben-Sasson and A. Wigderson, 2001.




           Dmitriy Itsykson, Vsevolod Oparin   5/10 |   Tseitin formulas and resolution proofs for CSP
Lower bounds for propositional formula


  First bound
  G.S. Tseitin, 1968.
                       ⇒ superpolynomial lower bound on
                       the size of proof

  Strongest result
  E. Ben-Sasson and A. Wigderson, 2001.


  Expansion

                                               e (G ) = min E (U , U ),
       U                                                      U
                        U
                                     where U ⊆ V s.t. |U |/|V | ∈                 1
                                                                                  3
                                                                                      ,2 .
                                                                                       3



           Dmitriy Itsykson, Vsevolod Oparin   5/10 |   Tseitin formulas and resolution proofs for CSP
Lower bounds for propositional formula


  First bound
  G.S. Tseitin, 1968.
                       ⇒ superpolynomial lower bound on
                       the size of proof

  Strongest result
  E. Ben-Sasson and A. Wigderson, 2001.
                                    ST ≥ 2e (φ)−d

  Expansion

                                               e (G ) = min E (U , U ),
       U                                                      U
                        U
                                     where U ⊆ V s.t. |U |/|V | ∈                 1
                                                                                  3
                                                                                      ,2 .
                                                                                       3



           Dmitriy Itsykson, Vsevolod Oparin   5/10 |   Tseitin formulas and resolution proofs for CSP
Upper bound

  Is graph expansion necessary for large proof size? That's easy!
  Theorem
                                                               e (H )·log V
  There is subgraph H of graph G s.t. ST ≤ 2                                  .
                                                                         3
                                                                         2




            Dmitriy Itsykson, Vsevolod Oparin   6/10 |   Tseitin formulas and resolution proofs for CSP
Upper bound

  Is graph expansion necessary for large proof size? That's easy!
  Theorem
                                                               e (H )·log V
  There is subgraph H of graph G s.t. ST ≤ 2                                  .
                                                                         3
                                                                         2




  Proof.
  Dene substitution operation.

                                                             G       → G1              G2

                                                                        φ(G )


                                                         φ(G1 ) φ(G2 ) φ(G2 ) φ(G1 )



            Dmitriy Itsykson, Vsevolod Oparin   6/10 |   Tseitin formulas and resolution proofs for CSP
Upper bound

  Is graph expansion necessary for large proof size? That's easy!
  Theorem
                                                                      e (H )·log V
  There is subgraph H of graph G s.t. ST ≤ 2                                         .
                                                                                3
                                                                                2




  Proof.
  Dene substitution operation.
      Divide graph G = V , E into
      subgraphs G = V , E ,1         1    1                         G       → G1              G2
      G = V , E s.t. E (V , V ) is
           2         2    2                1       2

      minimal and V diers from V at
                               1                       2                       φ(G )
      most twice.

                                                                φ(G1 ) φ(G2 ) φ(G2 ) φ(G1 )



               Dmitriy Itsykson, Vsevolod Oparin       6/10 |   Tseitin formulas and resolution proofs for CSP
Upper bound

  Is graph expansion necessary for large proof size? That's easy!
  Theorem
                                                                      e (H )·log V
  There is subgraph H of graph G s.t. ST ≤ 2                                         .
                                                                                3
                                                                                2




  Proof.
  Dene substitution operation.
      Divide graph G = V , E into
      subgraphs G = V , E ,1         1    1G → G          G                          1           2

      G = V , E s.t. E (V , V ) is
           2         2    2                1       2

      minimal and V diers from V at
                               1                 φ(G ) 2

      most twice.
      Substitute all possible values to
      variables corresponding in cut.   φ(G ) φ(G ) φ(G ) φ(G )      1         2          2          1




               Dmitriy Itsykson, Vsevolod Oparin       6/10 |   Tseitin formulas and resolution proofs for CSP
Upper bound

  Is graph expansion necessary for large proof size? That's easy!
  Theorem
                                                                      e (H )·log V
  There is subgraph H of graph G s.t. ST ≤ 2                                         .
                                                                                3
                                                                                2




  Proof.
  Dene substitution operation.
      Divide graph G = V , E into
      subgraphs G = V , E ,1         1    1G → G          G                          1           2

      G = V , E s.t. E (V , V ) is
           2         2    2                1       2

      minimal and V diers from V at
                               1                 φ(G ) 2

      most twice.
      Substitute all possible values to
      variables corresponding in cut.   φ(G ) φ(G ) φ(G ) φ(G )      1         2          2          1


      Run operation recursively.

               Dmitriy Itsykson, Vsevolod Oparin       6/10 |   Tseitin formulas and resolution proofs for CSP
Upper bound

  Is graph expansion necessary for large proof size? That's easy!
  Theorem
                                                                      e (H )·log V
  There is subgraph H of graph G s.t. ST ≤ 2                                         .
                                                                                3
                                                                                2




  Proof.
  Dene substitution operation.
      Divide graph G = V , E into
      subgraphs G = V , E ,1         1    1G → G          G                          1           2

      G = V , E s.t. E (V , V ) is
           2         2    2                1       2

      minimal and V diers from V at
                               1                 φ(G ) 2

      most twice.
      Substitute all possible values to
      variables corresponding in cut.   φ(G ) φ(G ) φ(G ) φ(G )      1         2          2          1


      Run operation recursively.

               Dmitriy Itsykson, Vsevolod Oparin       6/10 |   Tseitin formulas and resolution proofs for CSP
Upper bound

  Is graph expansion necessary for large proof size? That's easy!
  Theorem
                                                                   e (H )·log V
  There is subgraph H of graph G s.t. ST ≤ 2                                       .
                                                                               3
                                                                               2




  Proof.


                                                                   ≤ e (H )
      log V3
           2

     operations
                                                   h ≤ e (H ) · log V ⇒    3
                                                                           2
                                                             e (H )·log V
                                                   ST ≤ 2
                                                                       3
                                                                       2




               Dmitriy Itsykson, Vsevolod Oparin    7/10 |   Tseitin formulas and resolution proofs for CSP
CSP



 Comparison
 Constraint satisfaction problem. Given a set of variables and a set
 of functions from subset of these variables to {0, 1}, so called
 contraints, nd substituion from a set D s.t. satisfy all constraints.

  SAT           D = {0, 1}                                     Set of clauses
  CSP           D = {0, 1, · · · , W − 1}                      Set of constraints


      DPLL:                                        W branches.
                          ··· ···
                                                               x
  Tseitin formula:            D = ZW                   u                   v
                                                                   −x
                           Cv :       (v ,u )∈E   x(v ,u) = f (v ) (mod W )

           Dmitriy Itsykson, Vsevolod Oparin      8/10 |   Tseitin formulas and resolution proofs for CSP
CSP



 Comparison
 Constraint satisfaction problem. Given a set of variables and a set
 of functions from subset of these variables to {0, 1}, so called
 contraints, nd substituion from a set D s.t. satisfy all constraints.

  SAT           D = {0, 1}                                     Set of clauses
  CSP           D = {0, 1, · · · , W − 1}                      Set of constraints


      DPLL:                                        W branches.
                          ··· ···
                                                               x
  Tseitin formula:            D = ZW                   u                   v
                                                                   −x
                           Cv :       (v ,u )∈E   x(v ,u) = f (v ) (mod W )

           Dmitriy Itsykson, Vsevolod Oparin      8/10 |   Tseitin formulas and resolution proofs for CSP
CSP



 Comparison
 Constraint satisfaction problem. Given a set of variables and a set
 of functions from subset of these variables to {0, 1}, so called
 contraints, nd substituion from a set D s.t. satisfy all constraints.

  SAT           D = {0, 1}                                     Set of clauses
  CSP           D = {0, 1, · · · , W − 1}                      Set of constraints


      DPLL:                                        W branches.
                          ··· ···
                                                               x
  Tseitin formula:            D = ZW                   u                   v
                                                                   −x
                           Cv :       (v ,u )∈E   x(v ,u) = f (v ) (mod W )

           Dmitriy Itsykson, Vsevolod Oparin      8/10 |   Tseitin formulas and resolution proofs for CSP
Results




  For generalized Tseitin formula builded on ZW and graph G we
  obtained next results.
                              e (H )·  V
       Upper bound: ST ≤ W                for the subgraph H .
                                               log 3
                                                  2




           Dmitriy Itsykson, Vsevolod Oparin       9/10 |   Tseitin formulas and resolution proofs for CSP
Results




  For generalized Tseitin formula builded on ZW and graph G we
  obtained next results.
                              e (H )·  V
       Upper bound: ST ≤ W                for the subgraph H .
                                               log 3
                                                  2



       Lower bound (method of BW): ST ≥ 2e (G )−d .




           Dmitriy Itsykson, Vsevolod Oparin       9/10 |   Tseitin formulas and resolution proofs for CSP
Results




  For generalized Tseitin formula builded on ZW and graph G we
  obtained next results.
                              e (H )·  V
       Upper bound: ST ≤ W                for the subgraph H .
                                               log 3
                                                  2



       Lower bound (method of BW): ST ≥ 2e (G )−d .
       Lower bound (main result): ST ≥ W e (G )−d .




           Dmitriy Itsykson, Vsevolod Oparin       9/10 |   Tseitin formulas and resolution proofs for CSP
Thank you!




  Thank you! Questions?




          Dmitriy Itsykson, Vsevolod Oparin   10/10 |   Tseitin formulas and resolution proofs for CSP

Contenu connexe

Tendances

Lecture3 linear svm_with_slack
Lecture3 linear svm_with_slackLecture3 linear svm_with_slack
Lecture3 linear svm_with_slack
Stéphane Canu
 

Tendances (20)

A Generalization of the Chow-Liu Algorithm and its Applications to Artificial...
A Generalization of the Chow-Liu Algorithm and its Applications to Artificial...A Generalization of the Chow-Liu Algorithm and its Applications to Artificial...
A Generalization of the Chow-Liu Algorithm and its Applications to Artificial...
 
Lecture3 linear svm_with_slack
Lecture3 linear svm_with_slackLecture3 linear svm_with_slack
Lecture3 linear svm_with_slack
 
Mesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionMesh Processing Course : Multiresolution
Mesh Processing Course : Multiresolution
 
Lecture5 kernel svm
Lecture5 kernel svmLecture5 kernel svm
Lecture5 kernel svm
 
A Conjecture on Strongly Consistent Learning
A Conjecture on Strongly Consistent LearningA Conjecture on Strongly Consistent Learning
A Conjecture on Strongly Consistent Learning
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structure
 
Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexity
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
 
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproducts
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropy
 
Lecture 1: linear SVM in the primal
Lecture 1: linear SVM in the primalLecture 1: linear SVM in the primal
Lecture 1: linear SVM in the primal
 
Norm-variation of bilinear averages
Norm-variation of bilinear averagesNorm-variation of bilinear averages
Norm-variation of bilinear averages
 
Model Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesModel Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular Gauges
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilations
 
Lesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers ILesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers I
 
Lecture 2: linear SVM in the Dual
Lecture 2: linear SVM in the DualLecture 2: linear SVM in the Dual
Lecture 2: linear SVM in the Dual
 

Similaire à RuFiDiM

Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009
akabaka12
 
A unique common fixed point theorem for four
A unique common fixed point theorem for fourA unique common fixed point theorem for four
A unique common fixed point theorem for four
Alexander Decker
 

Similaire à RuFiDiM (20)

Conformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kindConformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kind
 
Automatic Bayesian method for Numerical Integration
Automatic Bayesian method for Numerical Integration Automatic Bayesian method for Numerical Integration
Automatic Bayesian method for Numerical Integration
 
Physical Chemistry Assignment Help
Physical Chemistry Assignment HelpPhysical Chemistry Assignment Help
Physical Chemistry Assignment Help
 
Additional notes EC220
Additional notes EC220Additional notes EC220
Additional notes EC220
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
 
From moments to sparse representations, a geometric, algebraic and algorithmi...
From moments to sparse representations, a geometric, algebraic and algorithmi...From moments to sparse representations, a geometric, algebraic and algorithmi...
From moments to sparse representations, a geometric, algebraic and algorithmi...
 
MDL/Bayesian Criteria based on Universal Coding/Measure
MDL/Bayesian Criteria based on Universal Coding/MeasureMDL/Bayesian Criteria based on Universal Coding/Measure
MDL/Bayesian Criteria based on Universal Coding/Measure
 
A new axisymmetric finite element
A new axisymmetric finite elementA new axisymmetric finite element
A new axisymmetric finite element
 
Imc2017 day1-solutions
Imc2017 day1-solutionsImc2017 day1-solutions
Imc2017 day1-solutions
 
5.4 Saddle-point interpretation, 5.5 Optimality conditions, 5.6 Perturbation ...
5.4 Saddle-point interpretation, 5.5 Optimality conditions, 5.6 Perturbation ...5.4 Saddle-point interpretation, 5.5 Optimality conditions, 5.6 Perturbation ...
5.4 Saddle-point interpretation, 5.5 Optimality conditions, 5.6 Perturbation ...
 
Universal Prediction without assuming either Discrete or Continuous
Universal Prediction without assuming either Discrete or ContinuousUniversal Prediction without assuming either Discrete or Continuous
Universal Prediction without assuming either Discrete or Continuous
 
Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009
 
Partial diferential good
Partial diferential goodPartial diferential good
Partial diferential good
 
Numerical solution of the Schr¨odinger equation
Numerical solution of the Schr¨odinger equationNumerical solution of the Schr¨odinger equation
Numerical solution of the Schr¨odinger equation
 
A unique common fixed point theorem for four
A unique common fixed point theorem for fourA unique common fixed point theorem for four
A unique common fixed point theorem for four
 
16 fft
16 fft16 fft
16 fft
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse Problems
 
Rational points on elliptic curves
Rational points on elliptic curvesRational points on elliptic curves
Rational points on elliptic curves
 

Dernier

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
fonyou31
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 

Dernier (20)

Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 

RuFiDiM

  • 1. Graph Expansion, Tseitin formulas and resolution proofs for CSP Dmitriy Itsykson Vsevolod Oparin St. Petersburg Department of Steklov Institute of Mathematics of Russian Academy of Sciences St. Petersburg University of Russian Academy of Science September 26, 2012 Dmitriy Itsykson, Vsevolod Oparin 1/10 | Tseitin formulas and resolution proofs for CSP
  • 2. Outline SAT and DPLL Tseitin formula Lower bound in propositional case Upper bound CSP Main results Dmitriy Itsykson, Vsevolod Oparin 2/10 | Tseitin formulas and resolution proofs for CSP
  • 3. NP-hard problem Problem Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1} s.t. φ(a1 , a2 , · · · , an ) = 1. Method? Dmitriy Itsykson, Vsevolod Oparin 3/10 | Tseitin formulas and resolution proofs for CSP
  • 4. NP-hard problem Problem Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1} s.t. φ(a1 , a2 , · · · , an ) = 1. Method? DPLL algorithm! Dmitriy Itsykson, Vsevolod Oparin 3/10 | Tseitin formulas and resolution proofs for CSP
  • 5. NP-hard problem Problem Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1} s.t. φ(a1 , a2 , · · · , an ) = 1. Method? DPLL algorithm! φ(x , y , z ) := (x ∨ y ) ∧ (¬y ∨ z ) ∧ (¬z ) ∧ (¬x ) φ(1, y , z ) := 0 φ(0, y , z ) := (y ) ∧ (¬y ∨ z ) ∧ (¬z ) φ(0, y , 1) := 0 φ(0, y , 0) := (y ) ∧ (¬y ) φ(0, 0, 0) := 0 φ(0, 1, 0) := 0 Dmitriy Itsykson, Vsevolod Oparin 3/10 | Tseitin formulas and resolution proofs for CSP
  • 6. NP-hard problem Problem Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1} s.t. φ(a1 , a2 , · · · , an ) = 1. Method? DPLL algorithm! φ(x , y , z ) := (x ∨ y ) ∧ (¬y ∨ z ) ∧ (¬z ) ∧ (¬x ) φ(1, y , z ) := 0 φ(0, y , z ) := (y ) ∧ (¬y ∨ z ) ∧ (¬z ) φ(0, y , 1) := 0 φ(0, y , 0) := (y ) ∧ (¬y ) φ(0, 0, 0) := 0 φ(0, 1, 0) := 0 Dmitriy Itsykson, Vsevolod Oparin 3/10 | Tseitin formulas and resolution proofs for CSP
  • 7. NP-hard problem Problem Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1} s.t. φ(a1 , a2 , · · · , an ) = 1. Method? DPLL algorithm! φ(x , y , z ) := (x ∨ y ) ∧ (¬y ∨ z ) ∧ (¬z ) ∧ (¬x ) φ(1, y , z ) := 0 φ(0, y , z ) := (y ) ∧ (¬y ∨ z ) ∧ (¬z ) φ(0, y , 1) := 0 φ(0, y , 0) := (y ) ∧ (¬y ) φ(0, 0, 0) := 0 φ(0, 1, 0) := 0 Dmitriy Itsykson, Vsevolod Oparin 3/10 | Tseitin formulas and resolution proofs for CSP
  • 8. NP-hard problem Problem Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1} s.t. φ(a1 , a2 , · · · , an ) = 1. Method? DPLL algorithm! φ(x , y , z ) := (x ∨ y ) ∧ (¬y ∨ z ) ∧ (¬z ) ∧ (¬x ) φ(1, y , z ) := 0 φ(0, y , z ) := (y ) ∧ (¬y ∨ z ) ∧ (¬z ) φ(0, y , 1) := 0 φ(0, y , 0) := (y ) ∧ (¬y ) φ(0, 0, 0) := 0 φ(0, 1, 0) := 0 Dmitriy Itsykson, Vsevolod Oparin 3/10 | Tseitin formulas and resolution proofs for CSP
  • 9. NP-hard problem Problem Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1} s.t. φ(a1 , a2 , · · · , an ) = 1. Method? DPLL algorithm! φ(x , y , z ) := (x ∨ y ) ∧ (¬y ∨ z ) ∧ (¬z ) ∧ (¬x ) φ(1, y , z ) := 0 φ(0, y , z ) := (y ) ∧ (¬y ∨ z ) ∧ (¬z ) φ(0, y , 1) := 0 φ(0, y , 0) := (y ) ∧ (¬y ) φ(0, 0, 0) := 0 φ(0, 1, 0) := 0 Dmitriy Itsykson, Vsevolod Oparin 3/10 | Tseitin formulas and resolution proofs for CSP
  • 10. NP-hard problem Problem Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1} s.t. φ(a1 , a2 , · · · , an ) = 1. Method? DPLL algorithm! φ(x , y , z ) := (x ∨ y ) ∧ (¬y ∨ z ) ∧ (¬z ) ∧ (¬x ) φ(1, y , z ) := 0 φ(0, y , z ) := (y ) ∧ (¬y ∨ z ) ∧ (¬z ) φ(0, y , 1) := 0 φ(0, y , 0) := (y ) ∧ (¬y ) φ(0, 0, 0) := 0 φ(0, 1, 0) := 0 Dmitriy Itsykson, Vsevolod Oparin 3/10 | Tseitin formulas and resolution proofs for CSP
  • 11. NP-hard problem Problem Given boolean formula φ(x1 , x2 , · · · , xn ) nd a1 , a2 , · · · , an ∈ {0, 1} s.t. φ(a1 , a2 , · · · , an ) = 1. Method? DPLL algorithm! φ(x , y , z ) := (x ∨ y ) ∧ (¬y ∨ z ) ∧ (¬z ) ∧ (¬x ) φ(1, y , z ) := 0 φ(0, y , z ) := (y ) ∧ (¬y ∨ z ) ∧ (¬z ) φ(0, y , 1) := 0 φ(0, y , 0) := (y ) ∧ (¬y ) φ(0, 0, 0) := 0 φ(0, 1, 0) := 0 The tree is the proof. The size of the proof ST is the number of vertecies. Dmitriy Itsykson, Vsevolod Oparin 3/10 | Tseitin formulas and resolution proofs for CSP
  • 12. Tseitin formula Denition Consider d -regular graph G = V , E and function f : V → {0, 1}. Associate every edge e ∈ E with a variable xe . For every vertex v write constraint (v ,u)∈E x(v ,u) = f (v ) (mod 2). 1 x2 x3 ⇒ 0 x1 0 Dmitriy Itsykson, Vsevolod Oparin 4/10 | Tseitin formulas and resolution proofs for CSP
  • 13. Tseitin formula Denition Consider d -regular graph G = V , E and function f : V → {0, 1}. Associate every edge e ∈ E with a variable xe . For every vertex v write constraint (v ,u)∈E x(v ,u) = f (v ) (mod 2). 1 E → {x1 , x2 , x3 } x2 x3 ⇒ 0 x1 0 Dmitriy Itsykson, Vsevolod Oparin 4/10 | Tseitin formulas and resolution proofs for CSP
  • 14. Tseitin formula Denition Consider d -regular graph G = V , E and function f : V → {0, 1}. Associate every edge e ∈ E with a variable xe . For every vertex v write constraint (v ,u)∈E x(v ,u) = f (v ) (mod 2). 1 E → {x1 , x2 , x3 } x3 ⇒  x1 + x2 = 0 (mod 2)  x2 x2 + x3 = 1 (mod 2) 0 0 x1 + x3 = 0 (mod 2)  x1 Dmitriy Itsykson, Vsevolod Oparin 4/10 | Tseitin formulas and resolution proofs for CSP
  • 15. Tseitin formula Denition Consider d -regular graph G = V , E and function f : V → {0, 1}. Associate every edge e ∈ E with a variable xe . For every vertex v write constraint (v ,u)∈E x(v ,u) = f (v ) (mod 2). 1 E → {x1 , x2 , x3 } x3 ⇒  x1 + x2 = 0 (mod 2)  x2 x2 + x3 = 1 (mod 2) 0 0 x1 + x3 = 0 (mod 2)  x1 Dmitriy Itsykson, Vsevolod Oparin 4/10 | Tseitin formulas and resolution proofs for CSP
  • 16. Tseitin formula Denition Consider d -regular graph G = V , E and function f : V → {0, 1}. Associate every edge e ∈ E with a variable xe . For every vertex v write constraint (v ,u)∈E x(v ,u) = f (v ) (mod 2). 1 E → {x1 , x2 , x3 } x3 ⇒  x1 + x2 = 0 (mod 2)  x2 x2 + x3 = 1 (mod 2) 0 0 x1 + x3 = 0 (mod 2)  x1 Dmitriy Itsykson, Vsevolod Oparin 4/10 | Tseitin formulas and resolution proofs for CSP
  • 17. Tseitin formula Denition Consider d -regular graph G = V , E and function f : V → {0, 1}. Associate every edge e ∈ E with a variable xe . For every vertex v write constraint (v ,u)∈E x(v ,u) = f (v ) (mod 2). 1 E → {x1 , x2 , x3 } x3 ⇒  x1 + x2 = 0 (mod 2)  x2 x2 + x3 = 1 (mod 2) 0 0 x1 + x3 = 0 (mod 2)  x1 Dmitriy Itsykson, Vsevolod Oparin 4/10 | Tseitin formulas and resolution proofs for CSP
  • 18. Tseitin formula Denition Consider d -regular graph G = V , E and function f : V → {0, 1}. Associate every edge e ∈ E with a variable xe . For every vertex v write constraint (v ,u)∈E x(v ,u) = f (v ) (mod 2). 1 E → {x1 , x2 , x3 } x3 ⇒  x1 + x2 = 0 (mod 2)  x2 x2 + x3 = 1 (mod 2) 0 0 x1 + x3 = 0 (mod 2)  x1 Dmitriy Itsykson, Vsevolod Oparin 4/10 | Tseitin formulas and resolution proofs for CSP
  • 19. Tseitin formula Denition Consider d -regular graph G = V , E and function f : V → {0, 1}. Associate every edge e ∈ E with a variable xe . For every vertex v write constraint (v ,u)∈E x(v ,u) = f (v ) (mod 2). 1 E → {x1 , x2 , x3 } x3 ⇒  x1 + x2 = 0 (mod 2)  x2 x2 + x3 = 1 (mod 2) 0 0 x1 + x3 = 0 (mod 2)  x1 Theorem φ ∈ SAT ⇐⇒ v ∈V f (v ) = 1 (mod 2). Dmitriy Itsykson, Vsevolod Oparin 4/10 | Tseitin formulas and resolution proofs for CSP
  • 20. Lower bounds for propositional formula First bound G.S. Tseitin, 1968. ⇒ superpolynomial lower bound on the size of proof Dmitriy Itsykson, Vsevolod Oparin 5/10 | Tseitin formulas and resolution proofs for CSP
  • 21. Lower bounds for propositional formula First bound G.S. Tseitin, 1968. ⇒ superpolynomial lower bound on the size of proof Strongest result E. Ben-Sasson and A. Wigderson, 2001. Dmitriy Itsykson, Vsevolod Oparin 5/10 | Tseitin formulas and resolution proofs for CSP
  • 22. Lower bounds for propositional formula First bound G.S. Tseitin, 1968. ⇒ superpolynomial lower bound on the size of proof Strongest result E. Ben-Sasson and A. Wigderson, 2001. Expansion e (G ) = min E (U , U ), U U U where U ⊆ V s.t. |U |/|V | ∈ 1 3 ,2 . 3 Dmitriy Itsykson, Vsevolod Oparin 5/10 | Tseitin formulas and resolution proofs for CSP
  • 23. Lower bounds for propositional formula First bound G.S. Tseitin, 1968. ⇒ superpolynomial lower bound on the size of proof Strongest result E. Ben-Sasson and A. Wigderson, 2001. ST ≥ 2e (φ)−d Expansion e (G ) = min E (U , U ), U U U where U ⊆ V s.t. |U |/|V | ∈ 1 3 ,2 . 3 Dmitriy Itsykson, Vsevolod Oparin 5/10 | Tseitin formulas and resolution proofs for CSP
  • 24. Upper bound Is graph expansion necessary for large proof size? That's easy! Theorem e (H )·log V There is subgraph H of graph G s.t. ST ≤ 2 . 3 2 Dmitriy Itsykson, Vsevolod Oparin 6/10 | Tseitin formulas and resolution proofs for CSP
  • 25. Upper bound Is graph expansion necessary for large proof size? That's easy! Theorem e (H )·log V There is subgraph H of graph G s.t. ST ≤ 2 . 3 2 Proof. Dene substitution operation. G → G1 G2 φ(G ) φ(G1 ) φ(G2 ) φ(G2 ) φ(G1 ) Dmitriy Itsykson, Vsevolod Oparin 6/10 | Tseitin formulas and resolution proofs for CSP
  • 26. Upper bound Is graph expansion necessary for large proof size? That's easy! Theorem e (H )·log V There is subgraph H of graph G s.t. ST ≤ 2 . 3 2 Proof. Dene substitution operation. Divide graph G = V , E into subgraphs G = V , E ,1 1 1 G → G1 G2 G = V , E s.t. E (V , V ) is 2 2 2 1 2 minimal and V diers from V at 1 2 φ(G ) most twice. φ(G1 ) φ(G2 ) φ(G2 ) φ(G1 ) Dmitriy Itsykson, Vsevolod Oparin 6/10 | Tseitin formulas and resolution proofs for CSP
  • 27. Upper bound Is graph expansion necessary for large proof size? That's easy! Theorem e (H )·log V There is subgraph H of graph G s.t. ST ≤ 2 . 3 2 Proof. Dene substitution operation. Divide graph G = V , E into subgraphs G = V , E ,1 1 1G → G G 1 2 G = V , E s.t. E (V , V ) is 2 2 2 1 2 minimal and V diers from V at 1 φ(G ) 2 most twice. Substitute all possible values to variables corresponding in cut. φ(G ) φ(G ) φ(G ) φ(G ) 1 2 2 1 Dmitriy Itsykson, Vsevolod Oparin 6/10 | Tseitin formulas and resolution proofs for CSP
  • 28. Upper bound Is graph expansion necessary for large proof size? That's easy! Theorem e (H )·log V There is subgraph H of graph G s.t. ST ≤ 2 . 3 2 Proof. Dene substitution operation. Divide graph G = V , E into subgraphs G = V , E ,1 1 1G → G G 1 2 G = V , E s.t. E (V , V ) is 2 2 2 1 2 minimal and V diers from V at 1 φ(G ) 2 most twice. Substitute all possible values to variables corresponding in cut. φ(G ) φ(G ) φ(G ) φ(G ) 1 2 2 1 Run operation recursively. Dmitriy Itsykson, Vsevolod Oparin 6/10 | Tseitin formulas and resolution proofs for CSP
  • 29. Upper bound Is graph expansion necessary for large proof size? That's easy! Theorem e (H )·log V There is subgraph H of graph G s.t. ST ≤ 2 . 3 2 Proof. Dene substitution operation. Divide graph G = V , E into subgraphs G = V , E ,1 1 1G → G G 1 2 G = V , E s.t. E (V , V ) is 2 2 2 1 2 minimal and V diers from V at 1 φ(G ) 2 most twice. Substitute all possible values to variables corresponding in cut. φ(G ) φ(G ) φ(G ) φ(G ) 1 2 2 1 Run operation recursively. Dmitriy Itsykson, Vsevolod Oparin 6/10 | Tseitin formulas and resolution proofs for CSP
  • 30. Upper bound Is graph expansion necessary for large proof size? That's easy! Theorem e (H )·log V There is subgraph H of graph G s.t. ST ≤ 2 . 3 2 Proof. ≤ e (H ) log V3 2 operations h ≤ e (H ) · log V ⇒ 3 2 e (H )·log V ST ≤ 2 3 2 Dmitriy Itsykson, Vsevolod Oparin 7/10 | Tseitin formulas and resolution proofs for CSP
  • 31. CSP Comparison Constraint satisfaction problem. Given a set of variables and a set of functions from subset of these variables to {0, 1}, so called contraints, nd substituion from a set D s.t. satisfy all constraints. SAT D = {0, 1} Set of clauses CSP D = {0, 1, · · · , W − 1} Set of constraints DPLL: W branches. ··· ··· x Tseitin formula: D = ZW u v −x Cv : (v ,u )∈E x(v ,u) = f (v ) (mod W ) Dmitriy Itsykson, Vsevolod Oparin 8/10 | Tseitin formulas and resolution proofs for CSP
  • 32. CSP Comparison Constraint satisfaction problem. Given a set of variables and a set of functions from subset of these variables to {0, 1}, so called contraints, nd substituion from a set D s.t. satisfy all constraints. SAT D = {0, 1} Set of clauses CSP D = {0, 1, · · · , W − 1} Set of constraints DPLL: W branches. ··· ··· x Tseitin formula: D = ZW u v −x Cv : (v ,u )∈E x(v ,u) = f (v ) (mod W ) Dmitriy Itsykson, Vsevolod Oparin 8/10 | Tseitin formulas and resolution proofs for CSP
  • 33. CSP Comparison Constraint satisfaction problem. Given a set of variables and a set of functions from subset of these variables to {0, 1}, so called contraints, nd substituion from a set D s.t. satisfy all constraints. SAT D = {0, 1} Set of clauses CSP D = {0, 1, · · · , W − 1} Set of constraints DPLL: W branches. ··· ··· x Tseitin formula: D = ZW u v −x Cv : (v ,u )∈E x(v ,u) = f (v ) (mod W ) Dmitriy Itsykson, Vsevolod Oparin 8/10 | Tseitin formulas and resolution proofs for CSP
  • 34. Results For generalized Tseitin formula builded on ZW and graph G we obtained next results. e (H )· V Upper bound: ST ≤ W for the subgraph H . log 3 2 Dmitriy Itsykson, Vsevolod Oparin 9/10 | Tseitin formulas and resolution proofs for CSP
  • 35. Results For generalized Tseitin formula builded on ZW and graph G we obtained next results. e (H )· V Upper bound: ST ≤ W for the subgraph H . log 3 2 Lower bound (method of BW): ST ≥ 2e (G )−d . Dmitriy Itsykson, Vsevolod Oparin 9/10 | Tseitin formulas and resolution proofs for CSP
  • 36. Results For generalized Tseitin formula builded on ZW and graph G we obtained next results. e (H )· V Upper bound: ST ≤ W for the subgraph H . log 3 2 Lower bound (method of BW): ST ≥ 2e (G )−d . Lower bound (main result): ST ≥ W e (G )−d . Dmitriy Itsykson, Vsevolod Oparin 9/10 | Tseitin formulas and resolution proofs for CSP
  • 37. Thank you! Thank you! Questions? Dmitriy Itsykson, Vsevolod Oparin 10/10 | Tseitin formulas and resolution proofs for CSP