SlideShare une entreprise Scribd logo
1  sur  12
Télécharger pour lire hors ligne
GEOMETRIA ESPACIAL
SÓLIDOS DE REVOLUÇÃO
CILINDRO
Na figura abaixo, temos dois planos paralelos e distintos, α e β, um
círculo R contido em α e uma reta r que intercepta α e β, mas não R:
Para cada ponto C da região R, vamos considerar o segmento , paralelo à
reta r (C’∈β):
Assim, temos:
Chamamos de cilindro, ou cilindro circular, o conjunto de todos os
segmentos congruentes e paralelos a r.
ELEMENTOS DO CILINDRO
Dado o cilindro a seguir, consideramos os seguintes elementos:
• bases: os círculos de centro O e O'e raios r;
• altura: a distância h entre os planos α e β;
• geratriz: qualquer segmento de extremidades nos pontos das circunferências das
bases ( por exemplo, ) e paralelo à reta r
CLASSIFICAÇÃO DO CILINDRO
Um cilindro pode ser:
• circular oblíquo: quando as geratrizes são oblíquas às bases;
• circular reto: quando as geratrizes são perpendiculares às bases.
Veja:
O cilindro circular reto é também chamado de cilindro de revolução, por ser gerado
pela rotação completa de um retângulo por um de seus lados. Assim, a rotação do
retângulo ABCD pelo lado gera o cilindro a seguir:
A reta contém os centros das bases e é o eixo do cilindro.
SECÇÃO
Secção transversal é a região determinada pela intersecção do cilindro com um
plano paralelo às bases. Todas as secções transversais são congruentes.
Secção meridiana é a região determinada pela intersecção do cilindro com um
plano que contém o eixo.
ÁREAS
Num cilindro, consideramos as seguintes áreas:
a) área lateral (AL)
Podemos observar a área lateral de um cilindro fazendo a sua planificação:
Assim, a área lateral do cilindro reto cuja altura é h e cujos raios dos círculos das
bases são r é um retângulo de dimensões ( 2πr e h ):
b) área da base ( AB) ⇒ área do círculo de raio r
c) área total ( AT) ⇒ (área lateral) + 2(área da base)
VOLUME
Para obter o volume do cilindro, vamos usar novamente o princípio de Cavalieri.
Dados dois sólidos com mesma altura e um plano α, se todo plano β, paralelo ao
plano α, intercepta os sólidos e determina secções de mesma área, os sólidos têm
volumes iguais:
α // β e A1 = A2 ⇒ V1 = V2
Se 1 é um paralelepípedo retângulo, então V2 = ABh.
Assim, o volume de todo paralelepípedo retângulo e de todo cilindro é o produto da
área da base pela medida de sua altura:
Vcilindro = ABh
No caso do cilindro circular reto, a área da base é a área do círculo de raio r, isto é,
dado por AB = πr2
; portanto seu volume é:
CILINDRO EQUILÁTERO
Todo cilindro cuja secção meridiana é um quadrado (altura igual ao diâmetro da
base) é chamado cilindro eqüilátero.
CONE CIRCULAR
Dado um círculo C, contido num plano α, e um ponto V ( vértice) fora de α,
chamamos de cone circular o conjunto de todos os segmentos VP, P ∈ C.
ELEMENTOS DO CONE CIRCULAR
Dado o cone a seguir, consideramos os seguintes elementos:
• Altura: distância h do vértice V ao plano α;
• Geratriz (g): segmento com uma extremidade no ponto V e outra num ponto da
circunferência;
• Raio da base: raio R do círculo;
• Eixo de rotação: reta determinada pelo centro do círculo e pelo vértice do cone
CONE RETO
Todo cone cujo eixo de rotação é perpendicular à base é chamado cone reto,
também denominado cone de revolução. Ele pode ser gerado pela rotação completa de
um triângulo retângulo em torno de um de seus catetos.
Da figura, e pelo Teorema de Pitágoras, temos a seguinte relação:
g2 = h2 + R2
SECÇÃO MERIDIANA
A secção determinada, num cone de revolução, por um plano que contém o eixo de
rotação é chamada secção meridiana.
Se o triângulo AVB for eqüilátero, o cone também será eqüilátero:
ÁREAS
Desenvolvendo a superfície lateral de um cone circular reto, obtemos um setor
circular de raio g e comprimento l = 2πR:
Assim, temos de considerar as seguintes áreas:
a) área lateral (AL): área do setor circular
b) área da base (AB): área do circulo do raio R
c) área total (AT): soma da área lateral com a área da base
VOLUME
Para determinar o volume do cone, vamos ver como calcular volumes de sólidos de
revolução. Observe a figura:
d = distância do centro de gravidade
(CG) da sua superfície ao eixo e
S = área da superfície
Sabemos, pelo Teorema de Pappus - Guldin, que, quando uma superfície gira em
torno de um eixo e, gera um volume tal que:
Vamos, então, determinar o volume do cone de revolução gerado pela rotação de
um triângulo retângulo em torno do cateto h:
O CG do triângulo está a uma distância do eixo de rotação. Logo:
VOLUME
O princípio de Cavalieri assegura que um cone e uma pirâmide equivalentes
possuem volumes iguais:
TRONCO DO CONE
Sendo o tronco do cone circular regular a seguir, temos:
• as bases maior e menor são paralelas;
• a altura do tronco é dada pela distância entre os planos que contém as bases.
ÁREAS
Temos:
a) área lateral
b) área total
VOLUME
Sendo V o volume do cone e V' o volume do cone obtido pela secção são válidas
as relações:
ESFERA
Chamamos de esfera de centro O e raio R o conjunto de pontos do espaço cuja
distância ao centro é menor ou igual ao raio R.
Considerando a rotação completa de um semicírculo em torno de um eixo e, a
esfera é o sólido gerado por essa rotação. Assim, ela é limitada por uma superfície
esférica e formada por todos os pontos pertencentes a essa superfície e ao seu interior.
Volume
O volume da esfera de raio R é dado por:
PARTES DA ESFERA
SUPERFÍCIE ESFÉRICA
A superfície esférica de centro O e raio R é o conjunto de pontos do es[aço cuja
distância ao ponto O é igual ao raio R.
Se considerarmos a rotação completa de uma semicircunferência em torno de seu
diâmetro, a superfície esférica é o resultado dessa rotação.
A área da superfície esférica é dada por:
ZONA ESFÉRICA
É a parte da esfera gerada do seguinte modo:
A área da zona esférica é dada por:
CALOTA ESFÉRICA
É a parte da esfera gerada do seguinte modo:
Ä área da calota esférica é dada por:
FUSO ESFÉRICO
O fuso esférico é uma parte da superfície esférica que se obtém ao girar uma semi-
circunferência de um ângulo α (0 < α < 2π) em torno de seu eixo:
A área do fuso esférico pode ser obtida por uma regra de três simples:
CUNHA ESFÉRICA
Parte da esfera que se obtém ao girar um semicírculo em torno de seu eixo de um
ângulo α (0 < α < 2π):
O volume da cunha pode ser obtido por uma regra de três simples:

Contenu connexe

Tendances

âNgulos na circunferência
âNgulos na circunferênciaâNgulos na circunferência
âNgulos na circunferência
Rodrigo Carvalho
 
Aula 7 [projeções ortogonais des té capitulo 2 c
Aula 7 [projeções ortogonais des té capitulo 2 cAula 7 [projeções ortogonais des té capitulo 2 c
Aula 7 [projeções ortogonais des té capitulo 2 c
Lucas Barbosa
 
Ficha nº 8 óvulo e oval
Ficha nº 8 óvulo e ovalFicha nº 8 óvulo e oval
Ficha nº 8 óvulo e oval
ruiseixas
 
Circunferências, arcos e ângulos
Circunferências, arcos e ângulosCircunferências, arcos e ângulos
Circunferências, arcos e ângulos
Neil Azevedo
 
7º aula pontos notáveis do triângulo-cevianas
7º aula   pontos notáveis do triângulo-cevianas7º aula   pontos notáveis do triângulo-cevianas
7º aula pontos notáveis do triângulo-cevianas
jatobaesem
 
Poliedros e não poliedros
Poliedros e não poliedrosPoliedros e não poliedros
Poliedros e não poliedros
marcommendes
 
Mat concordancia exercicios resolvidos
Mat concordancia exercicios resolvidosMat concordancia exercicios resolvidos
Mat concordancia exercicios resolvidos
trigono_metrico
 
Lei dos-senos-e-lei-dos-cossenos-aula-07
Lei dos-senos-e-lei-dos-cossenos-aula-07Lei dos-senos-e-lei-dos-cossenos-aula-07
Lei dos-senos-e-lei-dos-cossenos-aula-07
André Luís Nogueira
 
Círculo e circunferência
Círculo e circunferênciaCírculo e circunferência
Círculo e circunferência
mariacferreira
 

Tendances (20)

âNgulos na circunferência
âNgulos na circunferênciaâNgulos na circunferência
âNgulos na circunferência
 
Poliedros
PoliedrosPoliedros
Poliedros
 
DESENHO TECNICO PERSPECTIVA ISOMETRICA
DESENHO TECNICO PERSPECTIVA ISOMETRICADESENHO TECNICO PERSPECTIVA ISOMETRICA
DESENHO TECNICO PERSPECTIVA ISOMETRICA
 
Aula 7 [projeções ortogonais des té capitulo 2 c
Aula 7 [projeções ortogonais des té capitulo 2 cAula 7 [projeções ortogonais des té capitulo 2 c
Aula 7 [projeções ortogonais des té capitulo 2 c
 
Desenho técnico 1
Desenho técnico 1Desenho técnico 1
Desenho técnico 1
 
Ficha nº 8 óvulo e oval
Ficha nº 8 óvulo e ovalFicha nº 8 óvulo e oval
Ficha nº 8 óvulo e oval
 
Circunferências, arcos e ângulos
Circunferências, arcos e ângulosCircunferências, arcos e ângulos
Circunferências, arcos e ângulos
 
Simetria
SimetriaSimetria
Simetria
 
Raiz quadrada
Raiz quadradaRaiz quadrada
Raiz quadrada
 
Razao Da Semelhanca
Razao Da SemelhancaRazao Da Semelhanca
Razao Da Semelhanca
 
7º aula pontos notáveis do triângulo-cevianas
7º aula   pontos notáveis do triângulo-cevianas7º aula   pontos notáveis do triângulo-cevianas
7º aula pontos notáveis do triângulo-cevianas
 
Exercicios descritor 6
Exercicios descritor 6Exercicios descritor 6
Exercicios descritor 6
 
Poliedros e não poliedros
Poliedros e não poliedrosPoliedros e não poliedros
Poliedros e não poliedros
 
Mat concordancia exercicios resolvidos
Mat concordancia exercicios resolvidosMat concordancia exercicios resolvidos
Mat concordancia exercicios resolvidos
 
Círculo e Circunferência
Círculo e Circunferência Círculo e Circunferência
Círculo e Circunferência
 
Simetria
SimetriaSimetria
Simetria
 
Lei dos-senos-e-lei-dos-cossenos-aula-07
Lei dos-senos-e-lei-dos-cossenos-aula-07Lei dos-senos-e-lei-dos-cossenos-aula-07
Lei dos-senos-e-lei-dos-cossenos-aula-07
 
Triângulos
TriângulosTriângulos
Triângulos
 
Círculo e circunferência
Círculo e circunferênciaCírculo e circunferência
Círculo e circunferência
 
Soma dos ângulos internos de um triângulo gabarito
Soma dos ângulos internos de um triângulo gabaritoSoma dos ângulos internos de um triângulo gabarito
Soma dos ângulos internos de um triângulo gabarito
 

Similaire à Sólidos de revolução

Cilindro.aula.2011
Cilindro.aula.2011Cilindro.aula.2011
Cilindro.aula.2011
Saulo Costa
 
Geometria espacial cilindros - matemática
Geometria espacial   cilindros - matemáticaGeometria espacial   cilindros - matemática
Geometria espacial cilindros - matemática
escola_areias
 
Inscricaoecircunscricaodesolidosgeometricos
InscricaoecircunscricaodesolidosgeometricosInscricaoecircunscricaodesolidosgeometricos
Inscricaoecircunscricaodesolidosgeometricos
didicadoida
 
Geometria grafica 2014_tipo_b
Geometria grafica 2014_tipo_bGeometria grafica 2014_tipo_b
Geometria grafica 2014_tipo_b
Carol Monteiro
 
Anexo B Do Projeto ConteúDo DidáTico Grupo InovaçâO
Anexo B Do Projeto ConteúDo DidáTico  Grupo InovaçâOAnexo B Do Projeto ConteúDo DidáTico  Grupo InovaçâO
Anexo B Do Projeto ConteúDo DidáTico Grupo InovaçâO
Elizabeth Justo
 
Paralelepipedo.cubo.2011
Paralelepipedo.cubo.2011Paralelepipedo.cubo.2011
Paralelepipedo.cubo.2011
Saulo Costa
 

Similaire à Sólidos de revolução (20)

Cone.aula.2011
Cone.aula.2011Cone.aula.2011
Cone.aula.2011
 
Cilindro.aula.2011
Cilindro.aula.2011Cilindro.aula.2011
Cilindro.aula.2011
 
Matematica
MatematicaMatematica
Matematica
 
Calculo de cones
Calculo de conesCalculo de cones
Calculo de cones
 
Cones alunos
Cones   alunosCones   alunos
Cones alunos
 
Geometria espacial BY GLEDSON
Geometria espacial BY GLEDSONGeometria espacial BY GLEDSON
Geometria espacial BY GLEDSON
 
Esferas
EsferasEsferas
Esferas
 
-Cones Circulares-
-Cones Circulares- -Cones Circulares-
-Cones Circulares-
 
Cones
Cones Cones
Cones
 
Super super recu 3 ano
Super super recu 3 ano Super super recu 3 ano
Super super recu 3 ano
 
Geometria espacial cilindros - matemática
Geometria espacial   cilindros - matemáticaGeometria espacial   cilindros - matemática
Geometria espacial cilindros - matemática
 
Inscricaoecircunscricaodesolidosgeometricos
InscricaoecircunscricaodesolidosgeometricosInscricaoecircunscricaodesolidosgeometricos
Inscricaoecircunscricaodesolidosgeometricos
 
Geometria do circulo
Geometria  do circuloGeometria  do circulo
Geometria do circulo
 
Geometria grafica 2014_tipo_b
Geometria grafica 2014_tipo_bGeometria grafica 2014_tipo_b
Geometria grafica 2014_tipo_b
 
Cones
ConesCones
Cones
 
Cilindros (1)
Cilindros (1)Cilindros (1)
Cilindros (1)
 
(7) geometria espacial vii
(7) geometria espacial   vii(7) geometria espacial   vii
(7) geometria espacial vii
 
Anexo B Do Projeto ConteúDo DidáTico Grupo InovaçâO
Anexo B Do Projeto ConteúDo DidáTico  Grupo InovaçâOAnexo B Do Projeto ConteúDo DidáTico  Grupo InovaçâO
Anexo B Do Projeto ConteúDo DidáTico Grupo InovaçâO
 
Poliedros E Prismas02
Poliedros E Prismas02Poliedros E Prismas02
Poliedros E Prismas02
 
Paralelepipedo.cubo.2011
Paralelepipedo.cubo.2011Paralelepipedo.cubo.2011
Paralelepipedo.cubo.2011
 

Plus de Washington Soares Alves (8)

12 aula eda_21102019
12 aula eda_2110201912 aula eda_21102019
12 aula eda_21102019
 
Desconto composto concurso ueg
Desconto composto   concurso uegDesconto composto   concurso ueg
Desconto composto concurso ueg
 
Lista sólidos de revolução - gabarito
Lista   sólidos de revolução - gabaritoLista   sólidos de revolução - gabarito
Lista sólidos de revolução - gabarito
 
Sólidos de revolução
Sólidos de revoluçãoSólidos de revolução
Sólidos de revolução
 
Avaliação cilindro - cone
Avaliação   cilindro - coneAvaliação   cilindro - cone
Avaliação cilindro - cone
 
Sistemas de equações
Sistemas de equaçõesSistemas de equações
Sistemas de equações
 
Física gravitação
Física   gravitaçãoFísica   gravitação
Física gravitação
 
Física gravitação
Física   gravitaçãoFísica   gravitação
Física gravitação
 

Dernier

O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
azulassessoria9
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
sh5kpmr7w7
 
19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf
marlene54545
 
Expansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XVExpansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XV
lenapinto
 
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
azulassessoria9
 
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdfatividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
Autonoma
 

Dernier (20)

O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
 
Slides 9º ano 2024.pptx- Geografia - exercicios
Slides 9º ano 2024.pptx- Geografia - exerciciosSlides 9º ano 2024.pptx- Geografia - exercicios
Slides 9º ano 2024.pptx- Geografia - exercicios
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
 
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
 
19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf
 
Educação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptxEducação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptx
 
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptxSlides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
 
Historia de Portugal - Quarto Ano - 2024
Historia de Portugal - Quarto Ano - 2024Historia de Portugal - Quarto Ano - 2024
Historia de Portugal - Quarto Ano - 2024
 
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...
 
GUIA DE APRENDIZAGEM 2024 9º A - História 1 BI.doc
GUIA DE APRENDIZAGEM 2024 9º A - História 1 BI.docGUIA DE APRENDIZAGEM 2024 9º A - História 1 BI.doc
GUIA DE APRENDIZAGEM 2024 9º A - História 1 BI.doc
 
Expansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XVExpansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XV
 
aprendizagem significatica, teórico David Ausubel
aprendizagem significatica, teórico David Ausubelaprendizagem significatica, teórico David Ausubel
aprendizagem significatica, teórico David Ausubel
 
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
 
M0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptxM0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptx
 
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdfatividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
 
INTERTEXTUALIDADE atividade muito boa para
INTERTEXTUALIDADE   atividade muito boa paraINTERTEXTUALIDADE   atividade muito boa para
INTERTEXTUALIDADE atividade muito boa para
 
Pesquisa Ação René Barbier Livro acadêmico
Pesquisa Ação René Barbier Livro  acadêmicoPesquisa Ação René Barbier Livro  acadêmico
Pesquisa Ação René Barbier Livro acadêmico
 
Novena de Pentecostes com textos de São João Eudes
Novena de Pentecostes com textos de São João EudesNovena de Pentecostes com textos de São João Eudes
Novena de Pentecostes com textos de São João Eudes
 
Apresentação | Símbolos e Valores da União Europeia
Apresentação | Símbolos e Valores da União EuropeiaApresentação | Símbolos e Valores da União Europeia
Apresentação | Símbolos e Valores da União Europeia
 
Sopa de letras | Dia da Europa 2024 (nível 1)
Sopa de letras | Dia da Europa 2024 (nível 1)Sopa de letras | Dia da Europa 2024 (nível 1)
Sopa de letras | Dia da Europa 2024 (nível 1)
 

Sólidos de revolução

  • 1. GEOMETRIA ESPACIAL SÓLIDOS DE REVOLUÇÃO CILINDRO Na figura abaixo, temos dois planos paralelos e distintos, α e β, um círculo R contido em α e uma reta r que intercepta α e β, mas não R: Para cada ponto C da região R, vamos considerar o segmento , paralelo à reta r (C’∈β): Assim, temos:
  • 2. Chamamos de cilindro, ou cilindro circular, o conjunto de todos os segmentos congruentes e paralelos a r. ELEMENTOS DO CILINDRO Dado o cilindro a seguir, consideramos os seguintes elementos: • bases: os círculos de centro O e O'e raios r; • altura: a distância h entre os planos α e β; • geratriz: qualquer segmento de extremidades nos pontos das circunferências das bases ( por exemplo, ) e paralelo à reta r CLASSIFICAÇÃO DO CILINDRO Um cilindro pode ser: • circular oblíquo: quando as geratrizes são oblíquas às bases; • circular reto: quando as geratrizes são perpendiculares às bases. Veja: O cilindro circular reto é também chamado de cilindro de revolução, por ser gerado pela rotação completa de um retângulo por um de seus lados. Assim, a rotação do retângulo ABCD pelo lado gera o cilindro a seguir:
  • 3. A reta contém os centros das bases e é o eixo do cilindro. SECÇÃO Secção transversal é a região determinada pela intersecção do cilindro com um plano paralelo às bases. Todas as secções transversais são congruentes. Secção meridiana é a região determinada pela intersecção do cilindro com um plano que contém o eixo.
  • 4. ÁREAS Num cilindro, consideramos as seguintes áreas: a) área lateral (AL) Podemos observar a área lateral de um cilindro fazendo a sua planificação: Assim, a área lateral do cilindro reto cuja altura é h e cujos raios dos círculos das bases são r é um retângulo de dimensões ( 2πr e h ): b) área da base ( AB) ⇒ área do círculo de raio r c) área total ( AT) ⇒ (área lateral) + 2(área da base) VOLUME Para obter o volume do cilindro, vamos usar novamente o princípio de Cavalieri. Dados dois sólidos com mesma altura e um plano α, se todo plano β, paralelo ao plano α, intercepta os sólidos e determina secções de mesma área, os sólidos têm volumes iguais: α // β e A1 = A2 ⇒ V1 = V2 Se 1 é um paralelepípedo retângulo, então V2 = ABh.
  • 5. Assim, o volume de todo paralelepípedo retângulo e de todo cilindro é o produto da área da base pela medida de sua altura: Vcilindro = ABh No caso do cilindro circular reto, a área da base é a área do círculo de raio r, isto é, dado por AB = πr2 ; portanto seu volume é: CILINDRO EQUILÁTERO Todo cilindro cuja secção meridiana é um quadrado (altura igual ao diâmetro da base) é chamado cilindro eqüilátero. CONE CIRCULAR Dado um círculo C, contido num plano α, e um ponto V ( vértice) fora de α, chamamos de cone circular o conjunto de todos os segmentos VP, P ∈ C.
  • 6. ELEMENTOS DO CONE CIRCULAR Dado o cone a seguir, consideramos os seguintes elementos: • Altura: distância h do vértice V ao plano α; • Geratriz (g): segmento com uma extremidade no ponto V e outra num ponto da circunferência; • Raio da base: raio R do círculo; • Eixo de rotação: reta determinada pelo centro do círculo e pelo vértice do cone CONE RETO Todo cone cujo eixo de rotação é perpendicular à base é chamado cone reto, também denominado cone de revolução. Ele pode ser gerado pela rotação completa de um triângulo retângulo em torno de um de seus catetos. Da figura, e pelo Teorema de Pitágoras, temos a seguinte relação: g2 = h2 + R2 SECÇÃO MERIDIANA A secção determinada, num cone de revolução, por um plano que contém o eixo de rotação é chamada secção meridiana.
  • 7. Se o triângulo AVB for eqüilátero, o cone também será eqüilátero: ÁREAS Desenvolvendo a superfície lateral de um cone circular reto, obtemos um setor circular de raio g e comprimento l = 2πR: Assim, temos de considerar as seguintes áreas: a) área lateral (AL): área do setor circular b) área da base (AB): área do circulo do raio R c) área total (AT): soma da área lateral com a área da base VOLUME Para determinar o volume do cone, vamos ver como calcular volumes de sólidos de revolução. Observe a figura:
  • 8. d = distância do centro de gravidade (CG) da sua superfície ao eixo e S = área da superfície Sabemos, pelo Teorema de Pappus - Guldin, que, quando uma superfície gira em torno de um eixo e, gera um volume tal que: Vamos, então, determinar o volume do cone de revolução gerado pela rotação de um triângulo retângulo em torno do cateto h: O CG do triângulo está a uma distância do eixo de rotação. Logo: VOLUME O princípio de Cavalieri assegura que um cone e uma pirâmide equivalentes possuem volumes iguais:
  • 9. TRONCO DO CONE Sendo o tronco do cone circular regular a seguir, temos: • as bases maior e menor são paralelas; • a altura do tronco é dada pela distância entre os planos que contém as bases. ÁREAS Temos: a) área lateral b) área total VOLUME Sendo V o volume do cone e V' o volume do cone obtido pela secção são válidas as relações:
  • 10. ESFERA Chamamos de esfera de centro O e raio R o conjunto de pontos do espaço cuja distância ao centro é menor ou igual ao raio R. Considerando a rotação completa de um semicírculo em torno de um eixo e, a esfera é o sólido gerado por essa rotação. Assim, ela é limitada por uma superfície esférica e formada por todos os pontos pertencentes a essa superfície e ao seu interior. Volume O volume da esfera de raio R é dado por: PARTES DA ESFERA SUPERFÍCIE ESFÉRICA A superfície esférica de centro O e raio R é o conjunto de pontos do es[aço cuja distância ao ponto O é igual ao raio R. Se considerarmos a rotação completa de uma semicircunferência em torno de seu diâmetro, a superfície esférica é o resultado dessa rotação. A área da superfície esférica é dada por: ZONA ESFÉRICA
  • 11. É a parte da esfera gerada do seguinte modo: A área da zona esférica é dada por: CALOTA ESFÉRICA É a parte da esfera gerada do seguinte modo: Ä área da calota esférica é dada por: FUSO ESFÉRICO O fuso esférico é uma parte da superfície esférica que se obtém ao girar uma semi- circunferência de um ângulo α (0 < α < 2π) em torno de seu eixo: A área do fuso esférico pode ser obtida por uma regra de três simples:
  • 12. CUNHA ESFÉRICA Parte da esfera que se obtém ao girar um semicírculo em torno de seu eixo de um ângulo α (0 < α < 2π): O volume da cunha pode ser obtido por uma regra de três simples: