SlideShare une entreprise Scribd logo
1  sur  25
Télécharger pour lire hors ligne
[course site]
#DLUPC
Kevin McGuinness
kevin.mcguinness@dcu.ie
Research Fellow
Insight Centre for Data Analytics
Dublin City University
Unsupervised
Learning
Day 2 Lecture 6
Motivation
Vast amounts of unlabelled data
Most data has structure; we would like to discover hidden structure
Modelling the probability density of the data P(X)
Fighting the curse of dimensionality
Visualizing high-dimensional data
Supervised learning tasks: learning from fewer training examples
2
Using unlabelled examples: 1D example
Max margin decision boundary
3
Using unlabelled examples: 1D example
Semi supervised decision
boundary
4
Using unlabelled examples: 2D example
5
Using unlabelled examples: 2D example
6
A probabilistic perspective
● P(Y|X) depends on P(X|Y) and P(X)
● Knowledge of P(X) can help to predict P(Y|X)
● Good model of P(X) must have Y as an implicit latent variable
Bayes rule
7
Example
x1
x2
Not linearly separable :(
8
Example
x1
x2
Cluster 1 Cluster 2
Cluster 3
Cluster 4
1 2 3 4
1 2 3 4
4D BoW
representation
Separable!
https://github.com/kevinmcguinness/ml-examples/blob/master/notebooks/Semi_Supervised_Simple.ipynb 9
Assumptions
To model P(X) given data, it is necessary to make some assumptions
“You can’t do inference without making assumptions”
-- David MacKay, Information Theory, Inference, and Learning Algorithms
Typical assumptions:
● Smoothness assumption
○ Points which are close to each other are more likely to share a label.
● Cluster assumption
○ The data form discrete clusters; points in the same cluster are likely to share a label
● Manifold assumption
○ The data lie approximately on a manifold of much lower dimension than the input space.
10
Examples
Smoothness assumption
● Label propagation
○ Recursively propagate labels to nearby
points
○ Problem: in high-D, your nearest neighbour
may be very far away!
Cluster assumption
● Bag of words models
○ K-means, etc.
○ Represent points by cluster centers
○ Soft assignment
○ VLAD
● Gaussian mixture models
○ Fisher vectors
Manifold assumption
● Linear manifolds
○ PCA
○ Linear autoencoders
○ Random projections
○ ICA
● Non-linear manifolds:
○ Non-linear autoencoders
○ Deep autoencoders
○ Restricted Boltzmann machines
○ Deep belief nets
11
The manifold hypothesis
The data distribution lie close to a low-dimensional
manifold
Example: consider image data
● Very high dimensional (1,000,000D)
● A randomly generated image will almost certainly not
look like any real world scene
○ The space of images that occur in nature is
almost completely empty
● Hypothesis: real world images lie on a smooth,
low-dimensional manifold
○ Manifold distance is a good measure of
similarity
Similar for audio and text
12
The manifold hypothesis
x1
x2
Linear manifold
wT
x + b
x1
x2
Non-linear
manifold
13
Energy-based models
Often intractable to explicitly model probability
density
Energy-based model: high energy for data far
from manifold, low energy for data near manifold
of observed data
Fitting energy-based models
● Push down on area near observations.
● Push up everywhere else.
Examples
Encoder-decoder models: measure energy with
reconstruction error
● K-Means: push down near prototypes. Push up
based on distance from prototypes.
● PCA: push down near line of maximum variation.
Push up based on distance to line.
● Autoencoders: non-linear manifolds...
LeCun et al, A Tutorial on Energy-Based Learning, Predicting Structured Data, 2006 http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf
14
Autoencoders
Encoder
W1
Decoder
W2
hdata reconstruction
Loss
(reconstruction error)
Latent variables
(representation/features)
15
Autoencoders
Encoder
W1
hdata Classifier
WC
Latent variables
(representation/features)
prediction
y Loss
(cross entropy)
16
Autoencoders
Need to somehow push up on energy far from manifold
● Undercomplete autoencoders: limit the dimension of the hidden
representation.
● Sparse autoencoders: add penalty to make hidden representation sparse.
● Denoising autoencoders: add noise to the data, reconstruct without noise.
● Contractive autoencoders: regularizer to encourage gradient of hidden layer
activations wrt inputs to be small.
Can stack autoencoders to attempt to learn higher-level features
Can train stacked autoencoders by greedy layerwise training
Finetune for classification using backprop
17
Greedy layerwise training
Input
Reconstruction of input
Layer 1
Reconstruction of layer 1
Layer 2
Reconstruction of layer 2
Layer 3
Supervised objective
Y
Backprop
18
Unsupervised learning from video
Slow feature analysis
● Temporal coherence assumption: features
should change slowly over time in video
Steady feature analysis
● Second order changes also small: changes
in the past should resemble changes in the
future
Train on triples of frames from video
Loss encourages nearby frames to have slow
and steady features, and far frames to have
different features
Jayaraman and Grauman. Slow and steady feature analysis: higher order temporal coherence in video CVPR 2016.
https://arxiv.org/abs/1506.04714
19
Learning to see by moving: ego-motion prediction
L1
L1
L2
Lk
L2
Lk
F1
F2
...
...
transform parameters
BaseCNN
Siamese net
Idea: predict relationship between pairs of
images. E.g. predict the transform. Translation,
rotation.
Can use real-world training data if you know
something about the ego-motion
Can easily simulate training data by
transforming images: 8.7% error MNIST w/ 100
examples
Agrawal et al. Learning to see by moving. ICCV. 2015. 20
Split-brain autoencoders
Simultaneously train two networks to predict one
part of the data from the other.
E.g. predict chrominance from luminance and
vice versa. Predict depth from RGB.
Concat two networks and use features for other
tasks.
Zhang et al., Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction, arXiv 2016
21
Split-brain autoencoders
Zhang et al., Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction, arXiv 2016
22
Ladder networks
Combine supervised and unsupervised
objectives and train together
● Clean path and noisy path
● Decoder which can invert the
mappings on each layer
● Loss is weighted sum of supervised
and unsupervised cost
1.13% error on permutation invariant
MNIST with only 100 examples
Rasmus et al. Semi-Supervised Learning with Ladder Networks. NIPS 2015. http://arxiv.org/abs/1507.02672
23
Summary
Many methods available for learning from unlabelled data
● Autoencoders (many variations)
● Restricted boltzmann machines
● Video and ego-motion
● Semi-supervised methods (e.g. ladder networks)
Very active research area!
24
Questions?

Contenu connexe

Tendances

Unsupervised Deep Learning (D2L1 Insight@DCU Machine Learning Workshop 2017)
Unsupervised Deep Learning (D2L1 Insight@DCU Machine Learning Workshop 2017)Unsupervised Deep Learning (D2L1 Insight@DCU Machine Learning Workshop 2017)
Unsupervised Deep Learning (D2L1 Insight@DCU Machine Learning Workshop 2017)Universitat Politècnica de Catalunya
 
Transfer Learning and Domain Adaptation (D2L3 2017 UPC Deep Learning for Comp...
Transfer Learning and Domain Adaptation (D2L3 2017 UPC Deep Learning for Comp...Transfer Learning and Domain Adaptation (D2L3 2017 UPC Deep Learning for Comp...
Transfer Learning and Domain Adaptation (D2L3 2017 UPC Deep Learning for Comp...Universitat Politècnica de Catalunya
 
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)Universitat Politècnica de Catalunya
 
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)Universitat Politècnica de Catalunya
 
Joint unsupervised learning of deep representations and image clusters
Joint unsupervised learning of deep representations and image clustersJoint unsupervised learning of deep representations and image clusters
Joint unsupervised learning of deep representations and image clustersUniversitat Politècnica de Catalunya
 
Transfer Learning and Domain Adaptation (DLAI D5L2 2017 UPC Deep Learning for...
Transfer Learning and Domain Adaptation (DLAI D5L2 2017 UPC Deep Learning for...Transfer Learning and Domain Adaptation (DLAI D5L2 2017 UPC Deep Learning for...
Transfer Learning and Domain Adaptation (DLAI D5L2 2017 UPC Deep Learning for...Universitat Politècnica de Catalunya
 
Generative Models and Adversarial Training (D2L3 Insight@DCU Machine Learning...
Generative Models and Adversarial Training (D2L3 Insight@DCU Machine Learning...Generative Models and Adversarial Training (D2L3 Insight@DCU Machine Learning...
Generative Models and Adversarial Training (D2L3 Insight@DCU Machine Learning...Universitat Politècnica de Catalunya
 
Recurrent Neural Networks (D2L2 2017 UPC Deep Learning for Computer Vision)
Recurrent Neural Networks (D2L2 2017 UPC Deep Learning for Computer Vision)Recurrent Neural Networks (D2L2 2017 UPC Deep Learning for Computer Vision)
Recurrent Neural Networks (D2L2 2017 UPC Deep Learning for Computer Vision)Universitat Politècnica de Catalunya
 
Optimization for Deep Networks (D2L1 2017 UPC Deep Learning for Computer Vision)
Optimization for Deep Networks (D2L1 2017 UPC Deep Learning for Computer Vision)Optimization for Deep Networks (D2L1 2017 UPC Deep Learning for Computer Vision)
Optimization for Deep Networks (D2L1 2017 UPC Deep Learning for Computer Vision)Universitat Politècnica de Catalunya
 
Semantic Segmentation - Fully Convolutional Networks for Semantic Segmentation
Semantic Segmentation - Fully Convolutional Networks for Semantic SegmentationSemantic Segmentation - Fully Convolutional Networks for Semantic Segmentation
Semantic Segmentation - Fully Convolutional Networks for Semantic Segmentation岳華 杜
 
Training Deep Networks with Backprop (D1L4 Insight@DCU Machine Learning Works...
Training Deep Networks with Backprop (D1L4 Insight@DCU Machine Learning Works...Training Deep Networks with Backprop (D1L4 Insight@DCU Machine Learning Works...
Training Deep Networks with Backprop (D1L4 Insight@DCU Machine Learning Works...Universitat Politècnica de Catalunya
 
Convolutional Neural Networks - Veronica Vilaplana - UPC Barcelona 2018
Convolutional Neural Networks - Veronica Vilaplana - UPC Barcelona 2018Convolutional Neural Networks - Veronica Vilaplana - UPC Barcelona 2018
Convolutional Neural Networks - Veronica Vilaplana - UPC Barcelona 2018Universitat Politècnica de Catalunya
 
Optimizing Deep Networks (D1L6 Insight@DCU Machine Learning Workshop 2017)
Optimizing Deep Networks (D1L6 Insight@DCU Machine Learning Workshop 2017)Optimizing Deep Networks (D1L6 Insight@DCU Machine Learning Workshop 2017)
Optimizing Deep Networks (D1L6 Insight@DCU Machine Learning Workshop 2017)Universitat Politècnica de Catalunya
 
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...Universitat Politècnica de Catalunya
 
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018Universitat Politècnica de Catalunya
 
Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...
Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...
Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...Universitat Politècnica de Catalunya
 

Tendances (20)

Unsupervised Deep Learning (D2L1 Insight@DCU Machine Learning Workshop 2017)
Unsupervised Deep Learning (D2L1 Insight@DCU Machine Learning Workshop 2017)Unsupervised Deep Learning (D2L1 Insight@DCU Machine Learning Workshop 2017)
Unsupervised Deep Learning (D2L1 Insight@DCU Machine Learning Workshop 2017)
 
Transfer Learning and Domain Adaptation (D2L3 2017 UPC Deep Learning for Comp...
Transfer Learning and Domain Adaptation (D2L3 2017 UPC Deep Learning for Comp...Transfer Learning and Domain Adaptation (D2L3 2017 UPC Deep Learning for Comp...
Transfer Learning and Domain Adaptation (D2L3 2017 UPC Deep Learning for Comp...
 
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
 
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
 
Joint unsupervised learning of deep representations and image clusters
Joint unsupervised learning of deep representations and image clustersJoint unsupervised learning of deep representations and image clusters
Joint unsupervised learning of deep representations and image clusters
 
Transfer Learning and Domain Adaptation (DLAI D5L2 2017 UPC Deep Learning for...
Transfer Learning and Domain Adaptation (DLAI D5L2 2017 UPC Deep Learning for...Transfer Learning and Domain Adaptation (DLAI D5L2 2017 UPC Deep Learning for...
Transfer Learning and Domain Adaptation (DLAI D5L2 2017 UPC Deep Learning for...
 
Generative Models and Adversarial Training (D2L3 Insight@DCU Machine Learning...
Generative Models and Adversarial Training (D2L3 Insight@DCU Machine Learning...Generative Models and Adversarial Training (D2L3 Insight@DCU Machine Learning...
Generative Models and Adversarial Training (D2L3 Insight@DCU Machine Learning...
 
Deep Learning for Computer Vision: Data Augmentation (UPC 2016)
Deep Learning for Computer Vision: Data Augmentation (UPC 2016)Deep Learning for Computer Vision: Data Augmentation (UPC 2016)
Deep Learning for Computer Vision: Data Augmentation (UPC 2016)
 
Recurrent Neural Networks (D2L2 2017 UPC Deep Learning for Computer Vision)
Recurrent Neural Networks (D2L2 2017 UPC Deep Learning for Computer Vision)Recurrent Neural Networks (D2L2 2017 UPC Deep Learning for Computer Vision)
Recurrent Neural Networks (D2L2 2017 UPC Deep Learning for Computer Vision)
 
Optimization for Deep Networks (D2L1 2017 UPC Deep Learning for Computer Vision)
Optimization for Deep Networks (D2L1 2017 UPC Deep Learning for Computer Vision)Optimization for Deep Networks (D2L1 2017 UPC Deep Learning for Computer Vision)
Optimization for Deep Networks (D2L1 2017 UPC Deep Learning for Computer Vision)
 
Semantic Segmentation - Fully Convolutional Networks for Semantic Segmentation
Semantic Segmentation - Fully Convolutional Networks for Semantic SegmentationSemantic Segmentation - Fully Convolutional Networks for Semantic Segmentation
Semantic Segmentation - Fully Convolutional Networks for Semantic Segmentation
 
Deep Learning for Computer Vision: Attention Models (UPC 2016)
Deep Learning for Computer Vision: Attention Models (UPC 2016)Deep Learning for Computer Vision: Attention Models (UPC 2016)
Deep Learning for Computer Vision: Attention Models (UPC 2016)
 
Training Deep Networks with Backprop (D1L4 Insight@DCU Machine Learning Works...
Training Deep Networks with Backprop (D1L4 Insight@DCU Machine Learning Works...Training Deep Networks with Backprop (D1L4 Insight@DCU Machine Learning Works...
Training Deep Networks with Backprop (D1L4 Insight@DCU Machine Learning Works...
 
Convolutional Neural Networks - Veronica Vilaplana - UPC Barcelona 2018
Convolutional Neural Networks - Veronica Vilaplana - UPC Barcelona 2018Convolutional Neural Networks - Veronica Vilaplana - UPC Barcelona 2018
Convolutional Neural Networks - Veronica Vilaplana - UPC Barcelona 2018
 
Deep Learning for Computer Vision: Visualization (UPC 2016)
Deep Learning for Computer Vision: Visualization (UPC 2016)Deep Learning for Computer Vision: Visualization (UPC 2016)
Deep Learning for Computer Vision: Visualization (UPC 2016)
 
Deep Visual Saliency - Kevin McGuinness - UPC Barcelona 2017
Deep Visual Saliency - Kevin McGuinness - UPC Barcelona 2017Deep Visual Saliency - Kevin McGuinness - UPC Barcelona 2017
Deep Visual Saliency - Kevin McGuinness - UPC Barcelona 2017
 
Optimizing Deep Networks (D1L6 Insight@DCU Machine Learning Workshop 2017)
Optimizing Deep Networks (D1L6 Insight@DCU Machine Learning Workshop 2017)Optimizing Deep Networks (D1L6 Insight@DCU Machine Learning Workshop 2017)
Optimizing Deep Networks (D1L6 Insight@DCU Machine Learning Workshop 2017)
 
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
 
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
 
Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...
Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...
Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...
 

Similaire à Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)

Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018
Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018
Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018Universitat Politècnica de Catalunya
 
Representation Learning & Generative Modeling with Variational Autoencoder(VA...
Representation Learning & Generative Modeling with Variational Autoencoder(VA...Representation Learning & Generative Modeling with Variational Autoencoder(VA...
Representation Learning & Generative Modeling with Variational Autoencoder(VA...changedaeoh
 
Online machine learning in Streaming Applications
Online machine learning in Streaming ApplicationsOnline machine learning in Streaming Applications
Online machine learning in Streaming ApplicationsStavros Kontopoulos
 
PAISS (PRAIRIE AI Summer School) Digest July 2018
PAISS (PRAIRIE AI Summer School) Digest July 2018 PAISS (PRAIRIE AI Summer School) Digest July 2018
PAISS (PRAIRIE AI Summer School) Digest July 2018 Natalia Díaz Rodríguez
 
物件偵測與辨識技術
物件偵測與辨識技術物件偵測與辨識技術
物件偵測與辨識技術CHENHuiMei
 
VIBE: Video Inference for Human Body Pose and Shape Estimation
VIBE: Video Inference for Human Body Pose and Shape EstimationVIBE: Video Inference for Human Body Pose and Shape Estimation
VIBE: Video Inference for Human Body Pose and Shape EstimationArithmer Inc.
 
Semantic Segmentation on Satellite Imagery
Semantic Segmentation on Satellite ImagerySemantic Segmentation on Satellite Imagery
Semantic Segmentation on Satellite ImageryRAHUL BHOJWANI
 
DLD meetup 2017, Efficient Deep Learning
DLD meetup 2017, Efficient Deep LearningDLD meetup 2017, Efficient Deep Learning
DLD meetup 2017, Efficient Deep LearningBrodmann17
 
Deep Learning and Automatic Differentiation from Theano to PyTorch
Deep Learning and Automatic Differentiation from Theano to PyTorchDeep Learning and Automatic Differentiation from Theano to PyTorch
Deep Learning and Automatic Differentiation from Theano to PyTorchinside-BigData.com
 
[20240304_LabSeminar_Huy]DeepWalk: Online Learning of Social Representations....
[20240304_LabSeminar_Huy]DeepWalk: Online Learning of Social Representations....[20240304_LabSeminar_Huy]DeepWalk: Online Learning of Social Representations....
[20240304_LabSeminar_Huy]DeepWalk: Online Learning of Social Representations....thanhdowork
 
Deep learning: Cutting through the Myths and Hype
Deep learning: Cutting through the Myths and HypeDeep learning: Cutting through the Myths and Hype
Deep learning: Cutting through the Myths and HypeSiby Jose Plathottam
 
Brodmann17 CVPR 2017 review - meetup slides
Brodmann17 CVPR 2017 review - meetup slides Brodmann17 CVPR 2017 review - meetup slides
Brodmann17 CVPR 2017 review - meetup slides Brodmann17
 
Cvpr 2017 Summary Meetup
Cvpr 2017 Summary MeetupCvpr 2017 Summary Meetup
Cvpr 2017 Summary MeetupAmir Alush
 
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018Universitat Politècnica de Catalunya
 
Model Evaluation in the land of Deep Learning
Model Evaluation in the land of Deep LearningModel Evaluation in the land of Deep Learning
Model Evaluation in the land of Deep LearningPramit Choudhary
 
Deep Learning for Computer Vision: Generative models and adversarial training...
Deep Learning for Computer Vision: Generative models and adversarial training...Deep Learning for Computer Vision: Generative models and adversarial training...
Deep Learning for Computer Vision: Generative models and adversarial training...Universitat Politècnica de Catalunya
 
Pixel Recurrent Neural Networks
Pixel Recurrent Neural NetworksPixel Recurrent Neural Networks
Pixel Recurrent Neural Networksneouyghur
 

Similaire à Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision) (20)

Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018
Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018
Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018
 
Representation Learning & Generative Modeling with Variational Autoencoder(VA...
Representation Learning & Generative Modeling with Variational Autoencoder(VA...Representation Learning & Generative Modeling with Variational Autoencoder(VA...
Representation Learning & Generative Modeling with Variational Autoencoder(VA...
 
Online machine learning in Streaming Applications
Online machine learning in Streaming ApplicationsOnline machine learning in Streaming Applications
Online machine learning in Streaming Applications
 
PAISS (PRAIRIE AI Summer School) Digest July 2018
PAISS (PRAIRIE AI Summer School) Digest July 2018 PAISS (PRAIRIE AI Summer School) Digest July 2018
PAISS (PRAIRIE AI Summer School) Digest July 2018
 
物件偵測與辨識技術
物件偵測與辨識技術物件偵測與辨識技術
物件偵測與辨識技術
 
Deep Generative Models - Kevin McGuinness - UPC Barcelona 2018
Deep Generative Models - Kevin McGuinness - UPC Barcelona 2018Deep Generative Models - Kevin McGuinness - UPC Barcelona 2018
Deep Generative Models - Kevin McGuinness - UPC Barcelona 2018
 
VIBE: Video Inference for Human Body Pose and Shape Estimation
VIBE: Video Inference for Human Body Pose and Shape EstimationVIBE: Video Inference for Human Body Pose and Shape Estimation
VIBE: Video Inference for Human Body Pose and Shape Estimation
 
Semantic Segmentation on Satellite Imagery
Semantic Segmentation on Satellite ImagerySemantic Segmentation on Satellite Imagery
Semantic Segmentation on Satellite Imagery
 
DLD meetup 2017, Efficient Deep Learning
DLD meetup 2017, Efficient Deep LearningDLD meetup 2017, Efficient Deep Learning
DLD meetup 2017, Efficient Deep Learning
 
Deep Learning and Automatic Differentiation from Theano to PyTorch
Deep Learning and Automatic Differentiation from Theano to PyTorchDeep Learning and Automatic Differentiation from Theano to PyTorch
Deep Learning and Automatic Differentiation from Theano to PyTorch
 
Deep Learning Opening Workshop - Improving Generative Models - Junier Oliva, ...
Deep Learning Opening Workshop - Improving Generative Models - Junier Oliva, ...Deep Learning Opening Workshop - Improving Generative Models - Junier Oliva, ...
Deep Learning Opening Workshop - Improving Generative Models - Junier Oliva, ...
 
[20240304_LabSeminar_Huy]DeepWalk: Online Learning of Social Representations....
[20240304_LabSeminar_Huy]DeepWalk: Online Learning of Social Representations....[20240304_LabSeminar_Huy]DeepWalk: Online Learning of Social Representations....
[20240304_LabSeminar_Huy]DeepWalk: Online Learning of Social Representations....
 
Deep learning: Cutting through the Myths and Hype
Deep learning: Cutting through the Myths and HypeDeep learning: Cutting through the Myths and Hype
Deep learning: Cutting through the Myths and Hype
 
Brodmann17 CVPR 2017 review - meetup slides
Brodmann17 CVPR 2017 review - meetup slides Brodmann17 CVPR 2017 review - meetup slides
Brodmann17 CVPR 2017 review - meetup slides
 
Cvpr 2017 Summary Meetup
Cvpr 2017 Summary MeetupCvpr 2017 Summary Meetup
Cvpr 2017 Summary Meetup
 
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
 
Model Evaluation in the land of Deep Learning
Model Evaluation in the land of Deep LearningModel Evaluation in the land of Deep Learning
Model Evaluation in the land of Deep Learning
 
Pixel Recursive Super Resolution. Google Brain
 Pixel Recursive Super Resolution.  Google Brain Pixel Recursive Super Resolution.  Google Brain
Pixel Recursive Super Resolution. Google Brain
 
Deep Learning for Computer Vision: Generative models and adversarial training...
Deep Learning for Computer Vision: Generative models and adversarial training...Deep Learning for Computer Vision: Generative models and adversarial training...
Deep Learning for Computer Vision: Generative models and adversarial training...
 
Pixel Recurrent Neural Networks
Pixel Recurrent Neural NetworksPixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
 

Plus de Universitat Politècnica de Catalunya

The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...Universitat Politècnica de Catalunya
 
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
Towards Sign Language Translation & Production | Xavier Giro-i-NietoTowards Sign Language Translation & Production | Xavier Giro-i-Nieto
Towards Sign Language Translation & Production | Xavier Giro-i-NietoUniversitat Politècnica de Catalunya
 
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...Universitat Politècnica de Catalunya
 
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
Generation of Synthetic Referring Expressions for Object Segmentation in VideosGeneration of Synthetic Referring Expressions for Object Segmentation in Videos
Generation of Synthetic Referring Expressions for Object Segmentation in VideosUniversitat Politècnica de Catalunya
 
Learn2Sign : Sign language recognition and translation using human keypoint e...
Learn2Sign : Sign language recognition and translation using human keypoint e...Learn2Sign : Sign language recognition and translation using human keypoint e...
Learn2Sign : Sign language recognition and translation using human keypoint e...Universitat Politècnica de Catalunya
 
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020Universitat Politècnica de Catalunya
 
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...Universitat Politècnica de Catalunya
 
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020Universitat Politècnica de Catalunya
 
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...Universitat Politècnica de Catalunya
 
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020Universitat Politècnica de Catalunya
 
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)Universitat Politècnica de Catalunya
 
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...Universitat Politècnica de Catalunya
 

Plus de Universitat Politècnica de Catalunya (20)

Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
Deep Generative Learning for All - The Gen AI Hype (Spring 2024)Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
 
Deep Generative Learning for All
Deep Generative Learning for AllDeep Generative Learning for All
Deep Generative Learning for All
 
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
 
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
Towards Sign Language Translation & Production | Xavier Giro-i-NietoTowards Sign Language Translation & Production | Xavier Giro-i-Nieto
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
 
The Transformer - Xavier Giró - UPC Barcelona 2021
The Transformer - Xavier Giró - UPC Barcelona 2021The Transformer - Xavier Giró - UPC Barcelona 2021
The Transformer - Xavier Giró - UPC Barcelona 2021
 
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
 
Open challenges in sign language translation and production
Open challenges in sign language translation and productionOpen challenges in sign language translation and production
Open challenges in sign language translation and production
 
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
Generation of Synthetic Referring Expressions for Object Segmentation in VideosGeneration of Synthetic Referring Expressions for Object Segmentation in Videos
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
 
Discovery and Learning of Navigation Goals from Pixels in Minecraft
Discovery and Learning of Navigation Goals from Pixels in MinecraftDiscovery and Learning of Navigation Goals from Pixels in Minecraft
Discovery and Learning of Navigation Goals from Pixels in Minecraft
 
Learn2Sign : Sign language recognition and translation using human keypoint e...
Learn2Sign : Sign language recognition and translation using human keypoint e...Learn2Sign : Sign language recognition and translation using human keypoint e...
Learn2Sign : Sign language recognition and translation using human keypoint e...
 
Intepretability / Explainable AI for Deep Neural Networks
Intepretability / Explainable AI for Deep Neural NetworksIntepretability / Explainable AI for Deep Neural Networks
Intepretability / Explainable AI for Deep Neural Networks
 
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
 
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
 
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
 
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
 
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
 
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
 
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
 
Curriculum Learning for Recurrent Video Object Segmentation
Curriculum Learning for Recurrent Video Object SegmentationCurriculum Learning for Recurrent Video Object Segmentation
Curriculum Learning for Recurrent Video Object Segmentation
 
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
 

Dernier

From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...Florian Roscheck
 
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...Boston Institute of Analytics
 
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024thyngster
 
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样vhwb25kk
 
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改yuu sss
 
Learn How Data Science Changes Our World
Learn How Data Science Changes Our WorldLearn How Data Science Changes Our World
Learn How Data Science Changes Our WorldEduminds Learning
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...dajasot375
 
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)jennyeacort
 
INTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTDINTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTDRafezzaman
 
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Jack DiGiovanna
 
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一办理学位证纽约大学毕业证(NYU毕业证书)原版一比一
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一fhwihughh
 
Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Colleen Farrelly
 
Student profile product demonstration on grades, ability, well-being and mind...
Student profile product demonstration on grades, ability, well-being and mind...Student profile product demonstration on grades, ability, well-being and mind...
Student profile product demonstration on grades, ability, well-being and mind...Seán Kennedy
 
2006_GasProcessing_HB (1).pdf HYDROCARBON PROCESSING
2006_GasProcessing_HB (1).pdf HYDROCARBON PROCESSING2006_GasProcessing_HB (1).pdf HYDROCARBON PROCESSING
2006_GasProcessing_HB (1).pdf HYDROCARBON PROCESSINGmarianagonzalez07
 
Multiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdfMultiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdfchwongval
 
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degreeyuu sss
 
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...Amil Baba Dawood bangali
 
Data Factory in Microsoft Fabric (MsBIP #82)
Data Factory in Microsoft Fabric (MsBIP #82)Data Factory in Microsoft Fabric (MsBIP #82)
Data Factory in Microsoft Fabric (MsBIP #82)Cathrine Wilhelmsen
 
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档208367051
 

Dernier (20)

From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
 
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
 
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
 
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
 
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
 
Learn How Data Science Changes Our World
Learn How Data Science Changes Our WorldLearn How Data Science Changes Our World
Learn How Data Science Changes Our World
 
Call Girls in Saket 99530🔝 56974 Escort Service
Call Girls in Saket 99530🔝 56974 Escort ServiceCall Girls in Saket 99530🔝 56974 Escort Service
Call Girls in Saket 99530🔝 56974 Escort Service
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
 
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
 
INTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTDINTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTD
 
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
 
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一办理学位证纽约大学毕业证(NYU毕业证书)原版一比一
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一
 
Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024
 
Student profile product demonstration on grades, ability, well-being and mind...
Student profile product demonstration on grades, ability, well-being and mind...Student profile product demonstration on grades, ability, well-being and mind...
Student profile product demonstration on grades, ability, well-being and mind...
 
2006_GasProcessing_HB (1).pdf HYDROCARBON PROCESSING
2006_GasProcessing_HB (1).pdf HYDROCARBON PROCESSING2006_GasProcessing_HB (1).pdf HYDROCARBON PROCESSING
2006_GasProcessing_HB (1).pdf HYDROCARBON PROCESSING
 
Multiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdfMultiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdf
 
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
 
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
 
Data Factory in Microsoft Fabric (MsBIP #82)
Data Factory in Microsoft Fabric (MsBIP #82)Data Factory in Microsoft Fabric (MsBIP #82)
Data Factory in Microsoft Fabric (MsBIP #82)
 
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制南十字星大学毕业证(SCU毕业证)#文凭成绩单#真实留信学历认证永久存档
 

Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)

  • 1. [course site] #DLUPC Kevin McGuinness kevin.mcguinness@dcu.ie Research Fellow Insight Centre for Data Analytics Dublin City University Unsupervised Learning Day 2 Lecture 6
  • 2. Motivation Vast amounts of unlabelled data Most data has structure; we would like to discover hidden structure Modelling the probability density of the data P(X) Fighting the curse of dimensionality Visualizing high-dimensional data Supervised learning tasks: learning from fewer training examples 2
  • 3. Using unlabelled examples: 1D example Max margin decision boundary 3
  • 4. Using unlabelled examples: 1D example Semi supervised decision boundary 4
  • 7. A probabilistic perspective ● P(Y|X) depends on P(X|Y) and P(X) ● Knowledge of P(X) can help to predict P(Y|X) ● Good model of P(X) must have Y as an implicit latent variable Bayes rule 7
  • 9. Example x1 x2 Cluster 1 Cluster 2 Cluster 3 Cluster 4 1 2 3 4 1 2 3 4 4D BoW representation Separable! https://github.com/kevinmcguinness/ml-examples/blob/master/notebooks/Semi_Supervised_Simple.ipynb 9
  • 10. Assumptions To model P(X) given data, it is necessary to make some assumptions “You can’t do inference without making assumptions” -- David MacKay, Information Theory, Inference, and Learning Algorithms Typical assumptions: ● Smoothness assumption ○ Points which are close to each other are more likely to share a label. ● Cluster assumption ○ The data form discrete clusters; points in the same cluster are likely to share a label ● Manifold assumption ○ The data lie approximately on a manifold of much lower dimension than the input space. 10
  • 11. Examples Smoothness assumption ● Label propagation ○ Recursively propagate labels to nearby points ○ Problem: in high-D, your nearest neighbour may be very far away! Cluster assumption ● Bag of words models ○ K-means, etc. ○ Represent points by cluster centers ○ Soft assignment ○ VLAD ● Gaussian mixture models ○ Fisher vectors Manifold assumption ● Linear manifolds ○ PCA ○ Linear autoencoders ○ Random projections ○ ICA ● Non-linear manifolds: ○ Non-linear autoencoders ○ Deep autoencoders ○ Restricted Boltzmann machines ○ Deep belief nets 11
  • 12. The manifold hypothesis The data distribution lie close to a low-dimensional manifold Example: consider image data ● Very high dimensional (1,000,000D) ● A randomly generated image will almost certainly not look like any real world scene ○ The space of images that occur in nature is almost completely empty ● Hypothesis: real world images lie on a smooth, low-dimensional manifold ○ Manifold distance is a good measure of similarity Similar for audio and text 12
  • 13. The manifold hypothesis x1 x2 Linear manifold wT x + b x1 x2 Non-linear manifold 13
  • 14. Energy-based models Often intractable to explicitly model probability density Energy-based model: high energy for data far from manifold, low energy for data near manifold of observed data Fitting energy-based models ● Push down on area near observations. ● Push up everywhere else. Examples Encoder-decoder models: measure energy with reconstruction error ● K-Means: push down near prototypes. Push up based on distance from prototypes. ● PCA: push down near line of maximum variation. Push up based on distance to line. ● Autoencoders: non-linear manifolds... LeCun et al, A Tutorial on Energy-Based Learning, Predicting Structured Data, 2006 http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf 14
  • 17. Autoencoders Need to somehow push up on energy far from manifold ● Undercomplete autoencoders: limit the dimension of the hidden representation. ● Sparse autoencoders: add penalty to make hidden representation sparse. ● Denoising autoencoders: add noise to the data, reconstruct without noise. ● Contractive autoencoders: regularizer to encourage gradient of hidden layer activations wrt inputs to be small. Can stack autoencoders to attempt to learn higher-level features Can train stacked autoencoders by greedy layerwise training Finetune for classification using backprop 17
  • 18. Greedy layerwise training Input Reconstruction of input Layer 1 Reconstruction of layer 1 Layer 2 Reconstruction of layer 2 Layer 3 Supervised objective Y Backprop 18
  • 19. Unsupervised learning from video Slow feature analysis ● Temporal coherence assumption: features should change slowly over time in video Steady feature analysis ● Second order changes also small: changes in the past should resemble changes in the future Train on triples of frames from video Loss encourages nearby frames to have slow and steady features, and far frames to have different features Jayaraman and Grauman. Slow and steady feature analysis: higher order temporal coherence in video CVPR 2016. https://arxiv.org/abs/1506.04714 19
  • 20. Learning to see by moving: ego-motion prediction L1 L1 L2 Lk L2 Lk F1 F2 ... ... transform parameters BaseCNN Siamese net Idea: predict relationship between pairs of images. E.g. predict the transform. Translation, rotation. Can use real-world training data if you know something about the ego-motion Can easily simulate training data by transforming images: 8.7% error MNIST w/ 100 examples Agrawal et al. Learning to see by moving. ICCV. 2015. 20
  • 21. Split-brain autoencoders Simultaneously train two networks to predict one part of the data from the other. E.g. predict chrominance from luminance and vice versa. Predict depth from RGB. Concat two networks and use features for other tasks. Zhang et al., Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction, arXiv 2016 21
  • 22. Split-brain autoencoders Zhang et al., Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction, arXiv 2016 22
  • 23. Ladder networks Combine supervised and unsupervised objectives and train together ● Clean path and noisy path ● Decoder which can invert the mappings on each layer ● Loss is weighted sum of supervised and unsupervised cost 1.13% error on permutation invariant MNIST with only 100 examples Rasmus et al. Semi-Supervised Learning with Ladder Networks. NIPS 2015. http://arxiv.org/abs/1507.02672 23
  • 24. Summary Many methods available for learning from unlabelled data ● Autoencoders (many variations) ● Restricted boltzmann machines ● Video and ego-motion ● Semi-supervised methods (e.g. ladder networks) Very active research area! 24