SlideShare une entreprise Scribd logo
1  sur  35
Télécharger pour lire hors ligne
Graph-based Semi-supervised Learning Methods:
Comparison and Tuning
Konstantin Avrachenkov
Based on join works with
Marina Sokol (INRIA), Alexey Mishenin (SPSU),
Paulo Gon¸alves (INRIA) and Arnaud Legout (INRIA).
c

Yandex Workshop, Oct. 2013

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

1 / 35
Semi-supervised vs Supervised Learning

In the supervised learning the data are divided into training set and
unclassified set.
A classifier is first tuned on the training set and then it is applied for
classification of the raw data.
Often, expert classification of a large training set is expensive and might
even be infeasible.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

2 / 35
Semi-supervised vs Supervised Learning

The main idea of the semi-supervised learning is to use the raw data as
well as few labeled samples to construct a classifier.
One large class of semi-supervised learning algorithms is based on the use
of the similarity graph.
A data instance could be described by a fixed collection of attributes. For
example, all attributes can take real numbers as values and these numbers
can be normalized. In such a case, denote by Xi the i-th data point.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

3 / 35
Similarity graph

The similarity graph can be defined by a similarity matrix. One standard
method to construct the similarity matrix is based on the Radial Basis
Function (RBF)
Wij = exp(−||Xi − Xj ||2 /γ).
In some applications the similarity graph is naturally provided by the
application (e.g., Hyper-text graphs, P2P graphs, graph of social
connections).

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

4 / 35
Labeling and Classification Functions

Suppose we would like to classify N data points into K classes.
And assume that P data points are labelled. Denote by Vk , the set of
labelled points in class k = 1, ..., K . Thus, |V1 | + ... + |VK | = P.
Denote by D a diagonal matrix with its (i, i)-element equals to the sum of
the i-th row of matrix W . Define an N × K matrix Y as
Yik =

1, if i ∈ Vk , i.e., point i is labelled as a class k point,
0, otherwise.

We refer to each column Y∗k of matrix Y as a labeling function.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

5 / 35
Optimization Based Framework

Also define an N × K matrix F and call its columns F∗k classification
functions.
General ideas of the graph-based semi-supervised learning is to find
classification functions so that
on one hand they will be close to the corresponding labeling function,
on the other hand they will change smoothly over the graph
associated with the similarity matrix.
These ideas can be expressed with the help of optimization formulations.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

6 / 35
Optimization Based Framework
There are at least two well established optimization formulations.
Standard Laplacian based method (Zhou & Burges 2007):
N

N

min{
F

N

wij Fi∗ − Fj∗
i=1 j=1

2

dii Fi∗ − Yi∗ 2 }

+µ
i=1

Normalized Laplacian based method (Zhou & Sch¨lkopf 2004):
o
N
F

N

N

wij dii −1/2 Fi∗ − djj −1/2 Fj∗

min{
i=1 j=1

2

Fi∗ − Yi∗ 2 }

+µ
i=1

with µ as a regularization parameter.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

7 / 35
Optimization Based Framework

We suggest to find the classification functions as a solution of the
following optimization problem:
N
F

N

N

wij dii σ−1 Fi∗ − djj σ−1 Fj∗

min{
i=1 j=1

2

dii 2σ−1 Fi∗ − Yi∗ 2 } (1)

+µ
i=1

Now we have two parameters µ and σ.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

8 / 35
Optimization Based Framework

The proposed optimization framework generalizes the two known
graph-based semi-supervised learning methods:
Standard Laplacian based method (σ = 1);
Normalized Laplacian based method (σ = 1/2);
and provides new semi-supervised learning method,
PageRank based method (σ = 0).

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

9 / 35
Optimization Based Framework
One way to find F is to apply one of many efficient optimization methods
for convex optimization.
Another way to find F is to find it as a solution of the first order
optimality condition.
Fortunately, we can even find F in explicit form.

Proposition
The classification functions for the generalized semi-supervised learning are
given by
−1
µ
2
Y∗k ,
(2)
F∗k =
I−
D −σ WD σ−1
2+µ
2+µ
for k = 1, ..., K .

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

10 / 35
Optimization Based Framework

In particular cases, we have
if σ = 1, the Standard Laplacian method:
µ
2
F∗k = 2+µ (I − 2+µ D −1 W )−1 Y∗k ,
if σ = 1/2, the Normalized Laplacian method:
−1
−1
µ
2
F∗k = 2+µ (I − 2+µ D 2 WD 2 )−1 Y∗k ,
if σ = 0, PageRank based method:
µ
2
F∗k = 2+µ (I − 2+µ WD −1 )−1 Y∗k .

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

11 / 35
Random Walk interpretation

It is helpful to consider a random walk with absorption {St ∈ {1, ..., N},
t = 0, 1, ...}.
At each step with probability α the random walk chooses next node
among its neighbours uniformly and with probability 1 − α goes into the
absorbing state.
The probabilities of visiting nodes before absorption given the random
walk starts at node j, S0 = j, are provided by the distribution
ppr(j) = (1 − α)ejT I − αD −1 W

−1

,

(3)

which is the personalized PageRank vector with respect to seed node j.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

12 / 35
Random Walk interpretation (d(A, B) = d(B, A))

In the Standard Laplacian method, Fik gives up to a multiplicative
constant the expected number of visits before restart to the labeled
nodes of class k if the random walk starts from node i.
In the PageRank based method with normalized labeling functions,
Fik gives the expected number of visits to node i, if the random walk
starts from a uniform distribution over the labeled nodes of class k.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

13 / 35
Random Walk interpretation
Theorem
Data point i is classified by the generalized semi-supervised learning
method (1) into class k, if
σ
dp qpi >
p∈Vk

σ
ds qsi ,

∀k = k,

(4)

s∈Vk

where qpi is the probability of reaching node i before absorption if S0 = p.
A main ingredient of the proof is the following decomposition result (K.A.
& N. Litvak, 2006):
I − αD −1 W

K. Avrachenkov (INRIA)

−1
pi

= qpi I − αD −1 W

−1
,
ii

Yandex Workshop, Oct. 2013

14 / 35
Random Walk interpretation

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

15 / 35
Random Walk interpretation

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

16 / 35
An interesting auxiliary result
Lemma
If the graph is undirected (W T = W ), then the following relation holds
pprj (i) =

dj
ppri (j).
di

(5)

Proof: We can rewrite (3) as follows
ppr(i) = (1 − α)eiT [D − αW ]−1 D,
and hence,
ppr(i)D −1 = (1 − α)eiT [D − αW ]−1 .
Since matrix W is symmetric, [D − αW ]−1 is also symmetric and we have
[ppr(i)D −1 ]j = (1−α)eiT [D −αW ]−1 ej = (1−α)ejT [D −αW ]−1 ei = [ppr(j)D −1 ]i .

Thus, pprj (i)/dj = ppri (j)/di , which completes the proof.
K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

17 / 35
Random Walk interpretation
The auxiliary result implies an alternative interpretation in terms of the
“reversed” PageRank.

Theorem
Data point i is classified by the generalized semi-supervised learning
method (1) into class k, if
pprp (i)
p∈Vk

1−σ
dp

>
s∈Vk

pprs (i)
,
1−σ
ds

∀k = k.

(6)

The sweeps pprp (i)/dp introduced in (R. Andersen, F. Chung and K.
Lang, 2007) now have one more application.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

18 / 35
Random Walk interpretation
Theorem 1 has the following implications:
one can decouple the effects from the choice of α and σ;
when α goes to one, qpi goes to one and classes with the largest
σ
value of p∈Vk dp attract all points. In the case of σ = 0 and
|Vk | = const(k) there is a stability of classification;
if σ = 0 and |Vk | = const(k), one can expect that smaller classes will
attract a larger number of “border points” than larger classes;
Suppose that class k is smaller than class k . Then, it is natural to
expect that qpi > qsi with p ∈ Vk and s ∈ Vk . This observation will
be confirmed by examples in the next section. This effect, if needed,
can be compensated by increasing σ away from zero.
we have the following rather surprising conclusion. If labelled points
have the same degree (dp = d, p ∈ Vk , k = 1, ..., K ), all considered
semi-supervised learning methods provide the same classification.
K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

19 / 35
Characteristic network example

Let us consider an analytically tractable network example.

Figure: Characteristic network model.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

20 / 35
Characteristic network example

N1
20
20
200

N2
100
200
2000

PR
vN1 +1 → A if α ≥ α = 0.3849
¯
vN1 +1 → A if α ≥ α = 0.1911
¯
vN1 +1 → A if α ≥ α = 0.1991
¯

SL
vN1 → B if α ≥ α = 0.9803, A → B if α ≥ 0.9931
¯
¯
vN1 → B if α ≥ α = 0.9780, A → B if α ≥ 0.9923
¯
vN1 → B if α ≥ α = 0.9978, A → B if α ≥ 0.9992

Table: Comparison between different methods in terms of classification errors

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

21 / 35
Clustered preferential attachment model

The model produced 5 unbalanced classes (1500 / 240 / 120 / 100 / 50).
Once a node is generated, it has two links which it attaches independently
with probability 0.98 within its class and with probability 0.02 outside its
class.
In both cases a link is attached to a node with probability proportional to
the number of existing links.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

22 / 35
Clustered preferential attachment model

(a) Random Labelled Points

(b) Max Degree Labelled Points

Figure: Clustered Preferential Attachment Model: Precision of classification.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

23 / 35
Robustness of the PageRank based method

Consider a dataset derived from the English language Wikipedia.
Wikipedia forms a graph whose nodes represent articles and whose edges
represent hyper-text inter-article links.
We have chosen the following three mathematical topics:
“Discrete mathematics” (DM),
“Mathematical analysis” (MA),
“Applied mathematics” (AM).

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

24 / 35
Robustness of the PageRank based method (Wikipedia
example)

With the help of AMS MSC Classification and experts we have classified
related Wikipedia mathematical articles into the three above mentioned
topics.
According to the expert annotation we have built a subgraph of the
Wikipedia mathematical articles providing imbalanced classes DM (106),
MA (368) and AM (435).
Then, we have chosen uniformly at random 100 times 5 labeled nodes for
each class and plotted the average precision as a function of the
regularization parameter α.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

25 / 35
Robustness of the PageRank based method (Wikipedia
example)

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

26 / 35
SSL scales well (P2P classification)

Using methodology developed in Inria Planete team, we have collected
several snapshots of the P2P Torrents from the whole Internet.
Based on these data and employing the WebGraph framework (Boldi and
Vigna’04), we constructed:
User similarity graph (1 126 670 nodes and 124 753 790 edges, after
preprocessing);
Content similarity graph (200 413 nodes and 50 726 946 edges, after
preprocessing).

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

27 / 35
User similarity graph
Adjacency matrix of the user similarity graph:
u
Wij

> 0,
= 0,

K. Avrachenkov (INRIA)

if user i and user j downloaded the same content,
otherwise.

Yandex Workshop, Oct. 2013

28 / 35
Content similarity graph
Adjacency matrix of the content similarity graph:
c
Wkl

> 0, if contents k and l were downloaded by at least one same user,
= 0, otherwise.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

29 / 35
Baseline expert classification

Table: The quantity of language base line expert classifications.
Language
English
Spanish
French
Italian
Japanese

#content
36465
2481
1824
2450
720

#user
57632
2856
2021
3694
416

Table: The quantity of topic base line expert classifications.
Topic
Audio Music
Video Movies
TV shows
Porn movies
App. Windows
Games PC
Books Ebooks

K. Avrachenkov (INRIA)

# content
23639
20686
12087
8376
4831
4527
1185

# user
13950
43492
27260
7082
2874
8707
281

Yandex Workshop, Oct. 2013

30 / 35
Classification results for the complete graphs

Using very little amount of information, we are able to classify the content
and users with high accuracy.
For instance, for the dataset of 200 413 points (content classification by
language), using only 50 large degree labelled points for each language and
SL method, we are able to classify the content with 95% accuracy.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

31 / 35
Classification of untagged content
Let us see how our method works for untagged content.
We have taken all nodes for which we have topic tags as “other video”
and all edges induced by the supergraph.
(The subgraph contains 1189 nodes and 20702 edges.)
We made the expert evaluation manually by popular categories:
1

“Sport Tutorials” [ST] (116),

2

“Science Lectures” [SL] (127),

3

“Japanese Cartoons” [JC] (93),

4

“Porno” [P] (81),

5

“Software Tutorials” [SFT] (113),

6

“Movies” [M] (129).
K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

32 / 35
Classification of untagged content

The cross-valiadtion matrix has a strong diagonal domination.
Classified as→
JC
M
P
SFT
SL
ST

JC
65
6
0
3
5
2

M
2
47
8
4
5
9

P
1
18
59
3
3
5

SFT
1
6
4
91
10
8

SL
5
11
2
9
85
2

ST
8
21
3
3
19
85

Table: Cross-Validation matrix for “Other Video” subgraph classification, 10
labeled points for each class, α = 0.5.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

33 / 35
Classification of untagged content

Curious facts:
Most of the “other video” files with the content as “Dance Tutorials”
(21 from 27) are classified into “Sport Tutorials” [ST].
All tutorials about gun shooting (13) are classified in “Sport
Tutorials”, even though they have not initially been classified as
“Sport Tutorials”.
This automatic classification appears to be quite logical and suggests the
possibility of application of graph based semi-supervised learning for
refinement of P2P content and user categorization.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

34 / 35
Thank you!
Any questions and suggestions are welcome.

K. Avrachenkov (INRIA)

Yandex Workshop, Oct. 2013

35 / 35

Contenu connexe

Tendances

Subspace Indexing on Grassmannian Manifold for Large Scale Visual Identification
Subspace Indexing on Grassmannian Manifold for Large Scale Visual IdentificationSubspace Indexing on Grassmannian Manifold for Large Scale Visual Identification
Subspace Indexing on Grassmannian Manifold for Large Scale Visual Identification
United States Air Force Academy
 
Random Matrix Theory in Array Signal Processing: Application Examples
Random Matrix Theory in Array Signal Processing: Application ExamplesRandom Matrix Theory in Array Signal Processing: Application Examples
Random Matrix Theory in Array Signal Processing: Application Examples
Förderverein Technische Fakultät
 

Tendances (20)

Lec15 graph laplacian embedding
Lec15 graph laplacian embeddingLec15 graph laplacian embedding
Lec15 graph laplacian embedding
 
5 csp
5 csp5 csp
5 csp
 
Random Forest for Big Data
Random Forest for Big DataRandom Forest for Big Data
Random Forest for Big Data
 
Lecture2 xing
Lecture2 xingLecture2 xing
Lecture2 xing
 
From RNN to neural networks for cyclic undirected graphs
From RNN to neural networks for cyclic undirected graphsFrom RNN to neural networks for cyclic undirected graphs
From RNN to neural networks for cyclic undirected graphs
 
A short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction modelsA short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction models
 
Subspace Indexing on Grassmannian Manifold for Large Scale Visual Identification
Subspace Indexing on Grassmannian Manifold for Large Scale Visual IdentificationSubspace Indexing on Grassmannian Manifold for Large Scale Visual Identification
Subspace Indexing on Grassmannian Manifold for Large Scale Visual Identification
 
SASA 2016
SASA 2016SASA 2016
SASA 2016
 
Big Data Analysis with Signal Processing on Graphs
Big Data Analysis with Signal Processing on GraphsBig Data Analysis with Signal Processing on Graphs
Big Data Analysis with Signal Processing on Graphs
 
Random Matrix Theory in Array Signal Processing: Application Examples
Random Matrix Theory in Array Signal Processing: Application ExamplesRandom Matrix Theory in Array Signal Processing: Application Examples
Random Matrix Theory in Array Signal Processing: Application Examples
 
International Journal of Managing Information Technology (IJMIT)
International Journal of Managing Information Technology (IJMIT)International Journal of Managing Information Technology (IJMIT)
International Journal of Managing Information Technology (IJMIT)
 
An improved spfa algorithm for single source shortest path problem using forw...
An improved spfa algorithm for single source shortest path problem using forw...An improved spfa algorithm for single source shortest path problem using forw...
An improved spfa algorithm for single source shortest path problem using forw...
 
An improved spfa algorithm for single source shortest path problem using forw...
An improved spfa algorithm for single source shortest path problem using forw...An improved spfa algorithm for single source shortest path problem using forw...
An improved spfa algorithm for single source shortest path problem using forw...
 
Cryptography Baby Step Giant Step
Cryptography Baby Step Giant StepCryptography Baby Step Giant Step
Cryptography Baby Step Giant Step
 
master thesis presentation
master thesis presentationmaster thesis presentation
master thesis presentation
 
About functional SIR
About functional SIRAbout functional SIR
About functional SIR
 
Improving Performance of Back propagation Learning Algorithm
Improving Performance of Back propagation Learning AlgorithmImproving Performance of Back propagation Learning Algorithm
Improving Performance of Back propagation Learning Algorithm
 
Meta-learning and the ELBO
Meta-learning and the ELBOMeta-learning and the ELBO
Meta-learning and the ELBO
 
Dictionary Learning for Massive Matrix Factorization
Dictionary Learning for Massive Matrix FactorizationDictionary Learning for Massive Matrix Factorization
Dictionary Learning for Massive Matrix Factorization
 
Parallel Optimization in Machine Learning
Parallel Optimization in Machine LearningParallel Optimization in Machine Learning
Parallel Optimization in Machine Learning
 

En vedette

CVPR2010: Semi-supervised Learning in Vision: Part 2: Theory
CVPR2010: Semi-supervised Learning in Vision: Part 2: TheoryCVPR2010: Semi-supervised Learning in Vision: Part 2: Theory
CVPR2010: Semi-supervised Learning in Vision: Part 2: Theory
zukun
 
Graph based Semi Supervised Learning V1
Graph based Semi Supervised Learning V1Graph based Semi Supervised Learning V1
Graph based Semi Supervised Learning V1
Neeta Pande
 
02 probabilistic inference in graphical models
02 probabilistic inference in graphical models02 probabilistic inference in graphical models
02 probabilistic inference in graphical models
zukun
 
Label propagation - Semisupervised Learning with Applications to NLP
Label propagation - Semisupervised Learning with Applications to NLPLabel propagation - Semisupervised Learning with Applications to NLP
Label propagation - Semisupervised Learning with Applications to NLP
David Przybilla
 

En vedette (10)

Patterns in Interactive Tagging Networks
Patterns in Interactive Tagging NetworksPatterns in Interactive Tagging Networks
Patterns in Interactive Tagging Networks
 
CVPR2010: Semi-supervised Learning in Vision: Part 2: Theory
CVPR2010: Semi-supervised Learning in Vision: Part 2: TheoryCVPR2010: Semi-supervised Learning in Vision: Part 2: Theory
CVPR2010: Semi-supervised Learning in Vision: Part 2: Theory
 
Graph based Semi Supervised Learning V1
Graph based Semi Supervised Learning V1Graph based Semi Supervised Learning V1
Graph based Semi Supervised Learning V1
 
SocNL: Bayesian Label Propagation with Confidence
SocNL: Bayesian Label Propagation with ConfidenceSocNL: Bayesian Label Propagation with Confidence
SocNL: Bayesian Label Propagation with Confidence
 
02 probabilistic inference in graphical models
02 probabilistic inference in graphical models02 probabilistic inference in graphical models
02 probabilistic inference in graphical models
 
Semi supervised learning
Semi supervised learningSemi supervised learning
Semi supervised learning
 
Community detection in graphs
Community detection in graphsCommunity detection in graphs
Community detection in graphs
 
Community Detection in Social Media
Community Detection in Social MediaCommunity Detection in Social Media
Community Detection in Social Media
 
Semi-Supervised Learning
Semi-Supervised LearningSemi-Supervised Learning
Semi-Supervised Learning
 
Label propagation - Semisupervised Learning with Applications to NLP
Label propagation - Semisupervised Learning with Applications to NLPLabel propagation - Semisupervised Learning with Applications to NLP
Label propagation - Semisupervised Learning with Applications to NLP
 

Similaire à 4 avrachenkov

A comparison-of-first-and-second-order-training-algorithms-for-artificial-neu...
A comparison-of-first-and-second-order-training-algorithms-for-artificial-neu...A comparison-of-first-and-second-order-training-algorithms-for-artificial-neu...
A comparison-of-first-and-second-order-training-algorithms-for-artificial-neu...
Cemal Ardil
 
Data.Mining.C.6(II).classification and prediction
Data.Mining.C.6(II).classification and predictionData.Mining.C.6(II).classification and prediction
Data.Mining.C.6(II).classification and prediction
Margaret Wang
 
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge Graph
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge GraphJoint Word and Entity Embeddings for Entity Retrieval from Knowledge Graph
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge Graph
FedorNikolaev
 

Similaire à 4 avrachenkov (20)

A comparison-of-first-and-second-order-training-algorithms-for-artificial-neu...
A comparison-of-first-and-second-order-training-algorithms-for-artificial-neu...A comparison-of-first-and-second-order-training-algorithms-for-artificial-neu...
A comparison-of-first-and-second-order-training-algorithms-for-artificial-neu...
 
FINDING FREQUENT SUBPATHS IN A GRAPH
FINDING FREQUENT SUBPATHS IN A GRAPHFINDING FREQUENT SUBPATHS IN A GRAPH
FINDING FREQUENT SUBPATHS IN A GRAPH
 
New approaches for boosting to uniformity
New approaches for boosting to uniformityNew approaches for boosting to uniformity
New approaches for boosting to uniformity
 
Data.Mining.C.6(II).classification and prediction
Data.Mining.C.6(II).classification and predictionData.Mining.C.6(II).classification and prediction
Data.Mining.C.6(II).classification and prediction
 
2017: Prototype-based models in unsupervised and supervised machine learning
2017: Prototype-based models in unsupervised and supervised machine learning2017: Prototype-based models in unsupervised and supervised machine learning
2017: Prototype-based models in unsupervised and supervised machine learning
 
Implementation of K-Nearest Neighbor Algorithm
Implementation of K-Nearest Neighbor AlgorithmImplementation of K-Nearest Neighbor Algorithm
Implementation of K-Nearest Neighbor Algorithm
 
nnml.ppt
nnml.pptnnml.ppt
nnml.ppt
 
Tensor Train decomposition in machine learning
Tensor Train decomposition in machine learningTensor Train decomposition in machine learning
Tensor Train decomposition in machine learning
 
Machine Learning and Artificial Neural Networks.ppt
Machine Learning and Artificial Neural Networks.pptMachine Learning and Artificial Neural Networks.ppt
Machine Learning and Artificial Neural Networks.ppt
 
lecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdflecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdf
 
Multimodal Residual Networks for Visual QA
Multimodal Residual Networks for Visual QAMultimodal Residual Networks for Visual QA
Multimodal Residual Networks for Visual QA
 
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge Graph
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge GraphJoint Word and Entity Embeddings for Entity Retrieval from Knowledge Graph
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge Graph
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Instance Based Learning in Machine Learning
Instance Based Learning in Machine LearningInstance Based Learning in Machine Learning
Instance Based Learning in Machine Learning
 
QMC: Transition Workshop - Approximating Multivariate Functions When Function...
QMC: Transition Workshop - Approximating Multivariate Functions When Function...QMC: Transition Workshop - Approximating Multivariate Functions When Function...
QMC: Transition Workshop - Approximating Multivariate Functions When Function...
 
UofT_ML_lecture.pptx
UofT_ML_lecture.pptxUofT_ML_lecture.pptx
UofT_ML_lecture.pptx
 
A scalable collaborative filtering framework based on co clustering
A scalable collaborative filtering framework based on co clusteringA scalable collaborative filtering framework based on co clustering
A scalable collaborative filtering framework based on co clustering
 
Multiclass Logistic Regression: Derivation and Apache Spark Examples
Multiclass Logistic Regression: Derivation and Apache Spark ExamplesMulticlass Logistic Regression: Derivation and Apache Spark Examples
Multiclass Logistic Regression: Derivation and Apache Spark Examples
 
Ica group 3[1]
Ica group 3[1]Ica group 3[1]
Ica group 3[1]
 
prototypes-AMALEA.pdf
prototypes-AMALEA.pdfprototypes-AMALEA.pdf
prototypes-AMALEA.pdf
 

Plus de Yandex

Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Yandex
 
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров ЯндексаСтруктурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Yandex
 
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров ЯндексаПредставление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Yandex
 
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Yandex
 
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Yandex
 
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Yandex
 
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Yandex
 
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Yandex
 
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Yandex
 
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Yandex
 
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Yandex
 
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеровКак защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Yandex
 
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Yandex
 
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Yandex
 
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Yandex
 
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Yandex
 
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Yandex
 
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Yandex
 
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Yandex
 

Plus de Yandex (20)

Предсказание оттока игроков из World of Tanks
Предсказание оттока игроков из World of TanksПредсказание оттока игроков из World of Tanks
Предсказание оттока игроков из World of Tanks
 
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
 
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров ЯндексаСтруктурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
 
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров ЯндексаПредставление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
 
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
 
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
 
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
 
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
 
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
 
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
 
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
 
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
 
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеровКак защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
 
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
 
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
 
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
 
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
 
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
 
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
 
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
 

Dernier

Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Dernier (20)

Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 

4 avrachenkov

  • 1. Graph-based Semi-supervised Learning Methods: Comparison and Tuning Konstantin Avrachenkov Based on join works with Marina Sokol (INRIA), Alexey Mishenin (SPSU), Paulo Gon¸alves (INRIA) and Arnaud Legout (INRIA). c Yandex Workshop, Oct. 2013 K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 1 / 35
  • 2. Semi-supervised vs Supervised Learning In the supervised learning the data are divided into training set and unclassified set. A classifier is first tuned on the training set and then it is applied for classification of the raw data. Often, expert classification of a large training set is expensive and might even be infeasible. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 2 / 35
  • 3. Semi-supervised vs Supervised Learning The main idea of the semi-supervised learning is to use the raw data as well as few labeled samples to construct a classifier. One large class of semi-supervised learning algorithms is based on the use of the similarity graph. A data instance could be described by a fixed collection of attributes. For example, all attributes can take real numbers as values and these numbers can be normalized. In such a case, denote by Xi the i-th data point. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 3 / 35
  • 4. Similarity graph The similarity graph can be defined by a similarity matrix. One standard method to construct the similarity matrix is based on the Radial Basis Function (RBF) Wij = exp(−||Xi − Xj ||2 /γ). In some applications the similarity graph is naturally provided by the application (e.g., Hyper-text graphs, P2P graphs, graph of social connections). K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 4 / 35
  • 5. Labeling and Classification Functions Suppose we would like to classify N data points into K classes. And assume that P data points are labelled. Denote by Vk , the set of labelled points in class k = 1, ..., K . Thus, |V1 | + ... + |VK | = P. Denote by D a diagonal matrix with its (i, i)-element equals to the sum of the i-th row of matrix W . Define an N × K matrix Y as Yik = 1, if i ∈ Vk , i.e., point i is labelled as a class k point, 0, otherwise. We refer to each column Y∗k of matrix Y as a labeling function. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 5 / 35
  • 6. Optimization Based Framework Also define an N × K matrix F and call its columns F∗k classification functions. General ideas of the graph-based semi-supervised learning is to find classification functions so that on one hand they will be close to the corresponding labeling function, on the other hand they will change smoothly over the graph associated with the similarity matrix. These ideas can be expressed with the help of optimization formulations. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 6 / 35
  • 7. Optimization Based Framework There are at least two well established optimization formulations. Standard Laplacian based method (Zhou & Burges 2007): N N min{ F N wij Fi∗ − Fj∗ i=1 j=1 2 dii Fi∗ − Yi∗ 2 } +µ i=1 Normalized Laplacian based method (Zhou & Sch¨lkopf 2004): o N F N N wij dii −1/2 Fi∗ − djj −1/2 Fj∗ min{ i=1 j=1 2 Fi∗ − Yi∗ 2 } +µ i=1 with µ as a regularization parameter. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 7 / 35
  • 8. Optimization Based Framework We suggest to find the classification functions as a solution of the following optimization problem: N F N N wij dii σ−1 Fi∗ − djj σ−1 Fj∗ min{ i=1 j=1 2 dii 2σ−1 Fi∗ − Yi∗ 2 } (1) +µ i=1 Now we have two parameters µ and σ. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 8 / 35
  • 9. Optimization Based Framework The proposed optimization framework generalizes the two known graph-based semi-supervised learning methods: Standard Laplacian based method (σ = 1); Normalized Laplacian based method (σ = 1/2); and provides new semi-supervised learning method, PageRank based method (σ = 0). K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 9 / 35
  • 10. Optimization Based Framework One way to find F is to apply one of many efficient optimization methods for convex optimization. Another way to find F is to find it as a solution of the first order optimality condition. Fortunately, we can even find F in explicit form. Proposition The classification functions for the generalized semi-supervised learning are given by −1 µ 2 Y∗k , (2) F∗k = I− D −σ WD σ−1 2+µ 2+µ for k = 1, ..., K . K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 10 / 35
  • 11. Optimization Based Framework In particular cases, we have if σ = 1, the Standard Laplacian method: µ 2 F∗k = 2+µ (I − 2+µ D −1 W )−1 Y∗k , if σ = 1/2, the Normalized Laplacian method: −1 −1 µ 2 F∗k = 2+µ (I − 2+µ D 2 WD 2 )−1 Y∗k , if σ = 0, PageRank based method: µ 2 F∗k = 2+µ (I − 2+µ WD −1 )−1 Y∗k . K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 11 / 35
  • 12. Random Walk interpretation It is helpful to consider a random walk with absorption {St ∈ {1, ..., N}, t = 0, 1, ...}. At each step with probability α the random walk chooses next node among its neighbours uniformly and with probability 1 − α goes into the absorbing state. The probabilities of visiting nodes before absorption given the random walk starts at node j, S0 = j, are provided by the distribution ppr(j) = (1 − α)ejT I − αD −1 W −1 , (3) which is the personalized PageRank vector with respect to seed node j. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 12 / 35
  • 13. Random Walk interpretation (d(A, B) = d(B, A)) In the Standard Laplacian method, Fik gives up to a multiplicative constant the expected number of visits before restart to the labeled nodes of class k if the random walk starts from node i. In the PageRank based method with normalized labeling functions, Fik gives the expected number of visits to node i, if the random walk starts from a uniform distribution over the labeled nodes of class k. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 13 / 35
  • 14. Random Walk interpretation Theorem Data point i is classified by the generalized semi-supervised learning method (1) into class k, if σ dp qpi > p∈Vk σ ds qsi , ∀k = k, (4) s∈Vk where qpi is the probability of reaching node i before absorption if S0 = p. A main ingredient of the proof is the following decomposition result (K.A. & N. Litvak, 2006): I − αD −1 W K. Avrachenkov (INRIA) −1 pi = qpi I − αD −1 W −1 , ii Yandex Workshop, Oct. 2013 14 / 35
  • 15. Random Walk interpretation K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 15 / 35
  • 16. Random Walk interpretation K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 16 / 35
  • 17. An interesting auxiliary result Lemma If the graph is undirected (W T = W ), then the following relation holds pprj (i) = dj ppri (j). di (5) Proof: We can rewrite (3) as follows ppr(i) = (1 − α)eiT [D − αW ]−1 D, and hence, ppr(i)D −1 = (1 − α)eiT [D − αW ]−1 . Since matrix W is symmetric, [D − αW ]−1 is also symmetric and we have [ppr(i)D −1 ]j = (1−α)eiT [D −αW ]−1 ej = (1−α)ejT [D −αW ]−1 ei = [ppr(j)D −1 ]i . Thus, pprj (i)/dj = ppri (j)/di , which completes the proof. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 17 / 35
  • 18. Random Walk interpretation The auxiliary result implies an alternative interpretation in terms of the “reversed” PageRank. Theorem Data point i is classified by the generalized semi-supervised learning method (1) into class k, if pprp (i) p∈Vk 1−σ dp > s∈Vk pprs (i) , 1−σ ds ∀k = k. (6) The sweeps pprp (i)/dp introduced in (R. Andersen, F. Chung and K. Lang, 2007) now have one more application. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 18 / 35
  • 19. Random Walk interpretation Theorem 1 has the following implications: one can decouple the effects from the choice of α and σ; when α goes to one, qpi goes to one and classes with the largest σ value of p∈Vk dp attract all points. In the case of σ = 0 and |Vk | = const(k) there is a stability of classification; if σ = 0 and |Vk | = const(k), one can expect that smaller classes will attract a larger number of “border points” than larger classes; Suppose that class k is smaller than class k . Then, it is natural to expect that qpi > qsi with p ∈ Vk and s ∈ Vk . This observation will be confirmed by examples in the next section. This effect, if needed, can be compensated by increasing σ away from zero. we have the following rather surprising conclusion. If labelled points have the same degree (dp = d, p ∈ Vk , k = 1, ..., K ), all considered semi-supervised learning methods provide the same classification. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 19 / 35
  • 20. Characteristic network example Let us consider an analytically tractable network example. Figure: Characteristic network model. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 20 / 35
  • 21. Characteristic network example N1 20 20 200 N2 100 200 2000 PR vN1 +1 → A if α ≥ α = 0.3849 ¯ vN1 +1 → A if α ≥ α = 0.1911 ¯ vN1 +1 → A if α ≥ α = 0.1991 ¯ SL vN1 → B if α ≥ α = 0.9803, A → B if α ≥ 0.9931 ¯ ¯ vN1 → B if α ≥ α = 0.9780, A → B if α ≥ 0.9923 ¯ vN1 → B if α ≥ α = 0.9978, A → B if α ≥ 0.9992 Table: Comparison between different methods in terms of classification errors K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 21 / 35
  • 22. Clustered preferential attachment model The model produced 5 unbalanced classes (1500 / 240 / 120 / 100 / 50). Once a node is generated, it has two links which it attaches independently with probability 0.98 within its class and with probability 0.02 outside its class. In both cases a link is attached to a node with probability proportional to the number of existing links. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 22 / 35
  • 23. Clustered preferential attachment model (a) Random Labelled Points (b) Max Degree Labelled Points Figure: Clustered Preferential Attachment Model: Precision of classification. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 23 / 35
  • 24. Robustness of the PageRank based method Consider a dataset derived from the English language Wikipedia. Wikipedia forms a graph whose nodes represent articles and whose edges represent hyper-text inter-article links. We have chosen the following three mathematical topics: “Discrete mathematics” (DM), “Mathematical analysis” (MA), “Applied mathematics” (AM). K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 24 / 35
  • 25. Robustness of the PageRank based method (Wikipedia example) With the help of AMS MSC Classification and experts we have classified related Wikipedia mathematical articles into the three above mentioned topics. According to the expert annotation we have built a subgraph of the Wikipedia mathematical articles providing imbalanced classes DM (106), MA (368) and AM (435). Then, we have chosen uniformly at random 100 times 5 labeled nodes for each class and plotted the average precision as a function of the regularization parameter α. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 25 / 35
  • 26. Robustness of the PageRank based method (Wikipedia example) K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 26 / 35
  • 27. SSL scales well (P2P classification) Using methodology developed in Inria Planete team, we have collected several snapshots of the P2P Torrents from the whole Internet. Based on these data and employing the WebGraph framework (Boldi and Vigna’04), we constructed: User similarity graph (1 126 670 nodes and 124 753 790 edges, after preprocessing); Content similarity graph (200 413 nodes and 50 726 946 edges, after preprocessing). K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 27 / 35
  • 28. User similarity graph Adjacency matrix of the user similarity graph: u Wij > 0, = 0, K. Avrachenkov (INRIA) if user i and user j downloaded the same content, otherwise. Yandex Workshop, Oct. 2013 28 / 35
  • 29. Content similarity graph Adjacency matrix of the content similarity graph: c Wkl > 0, if contents k and l were downloaded by at least one same user, = 0, otherwise. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 29 / 35
  • 30. Baseline expert classification Table: The quantity of language base line expert classifications. Language English Spanish French Italian Japanese #content 36465 2481 1824 2450 720 #user 57632 2856 2021 3694 416 Table: The quantity of topic base line expert classifications. Topic Audio Music Video Movies TV shows Porn movies App. Windows Games PC Books Ebooks K. Avrachenkov (INRIA) # content 23639 20686 12087 8376 4831 4527 1185 # user 13950 43492 27260 7082 2874 8707 281 Yandex Workshop, Oct. 2013 30 / 35
  • 31. Classification results for the complete graphs Using very little amount of information, we are able to classify the content and users with high accuracy. For instance, for the dataset of 200 413 points (content classification by language), using only 50 large degree labelled points for each language and SL method, we are able to classify the content with 95% accuracy. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 31 / 35
  • 32. Classification of untagged content Let us see how our method works for untagged content. We have taken all nodes for which we have topic tags as “other video” and all edges induced by the supergraph. (The subgraph contains 1189 nodes and 20702 edges.) We made the expert evaluation manually by popular categories: 1 “Sport Tutorials” [ST] (116), 2 “Science Lectures” [SL] (127), 3 “Japanese Cartoons” [JC] (93), 4 “Porno” [P] (81), 5 “Software Tutorials” [SFT] (113), 6 “Movies” [M] (129). K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 32 / 35
  • 33. Classification of untagged content The cross-valiadtion matrix has a strong diagonal domination. Classified as→ JC M P SFT SL ST JC 65 6 0 3 5 2 M 2 47 8 4 5 9 P 1 18 59 3 3 5 SFT 1 6 4 91 10 8 SL 5 11 2 9 85 2 ST 8 21 3 3 19 85 Table: Cross-Validation matrix for “Other Video” subgraph classification, 10 labeled points for each class, α = 0.5. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 33 / 35
  • 34. Classification of untagged content Curious facts: Most of the “other video” files with the content as “Dance Tutorials” (21 from 27) are classified into “Sport Tutorials” [ST]. All tutorials about gun shooting (13) are classified in “Sport Tutorials”, even though they have not initially been classified as “Sport Tutorials”. This automatic classification appears to be quite logical and suggests the possibility of application of graph based semi-supervised learning for refinement of P2P content and user categorization. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 34 / 35
  • 35. Thank you! Any questions and suggestions are welcome. K. Avrachenkov (INRIA) Yandex Workshop, Oct. 2013 35 / 35