SlideShare une entreprise Scribd logo
1  sur  23
1. Isobaric Process ( P = C): An Isobaric Process is an internally
reversible constant pressure process.
A. Closed System:(Nonflow)
P
V
21P
dV
Q = U + W  1 any substance
W = PdV  2 any substance
U = m(U2 - U1)  3 any substance
W = P(V2 - V1)  4 any substance
Q = h = m(h2-h1)  5 any substance
T
S
1
2
dS
T
P = C
PROCESSES OF FLUIDS
For Ideal Gas:
PV = mRT
W =mR(T2-T1)  5
U = mCv(T2-T1)  6
Q = h = mCP (T2-T1)  7
Entropy Change
S = dQ/T  8 any substance
dQ = dh
For Ideal Gas
dh = mCPdT
S = dQ/T
S = mCP dT/T
S = mCP ln(T2/T1)  9
B. Open System:
Q = h + KE + PE + W  10 any substance
W = - VdP - KE - PE  11 any substance
- VdP = 0
Q = h  12
W = - KE - PE  13
If KE = 0 and PE = 0
W = 0  14
Q = mCP(T2-T1)  15 Ideal Gas
2. Isometric Process (V = C): An Isometric process is internally
reversible constant volume process.
A. Closed System: (Nonflow)
P
V
1
2
T
S
T
dS
1
2V = C
Q = U + W  1 any substance
W = PdV at V = C; dV = 0
W = 0
Q = U = m(U2 - U1)  2 any substance
h = m(h2-h1)  3 any substance
For Ideal Gas:
Q = U = mCv(T2-T1)  4
h = mCP(T2-T1)  5
Entropy Change:
S = dQ/T  6 any substance
dQ = dU
dU = mCvdT for ideal gas
S = dU/T = mCvdT/T
S = mCv ln(T2/T1)  6
B. Open System:
Q = h + KE + PE + W  7 any substance
W = - VdP - KE - PE  8 any substance
-VdP = -V(P2-P1)  9 any substance
Q = U = m(U2 - U1)  10 any substance
h = m(h2-h1)  11 any substance
For Ideal Gas:
-VdP = -V(P2-P1) = mR(T1-T2)
Q = U = mCv(T2-T1)  12
h = mCP(T2-T1)  13
If KE = 0 and PE = 0
Q = h + W  14 any substance
W = - VdP  15
W = -VdP = -V(P2-P1)  16 any substance
W = mR(T1-T2)  16 ideal gas
h = mCP(T2-T1)  17 ideal gas
3. Isothermal Process(T = C): An Isothermal process is a reversible
constant temperature process.
A. Closed System (Nonflow)
dS
T
S
T
1 2
P
V
1
2P
dV
PV = C or
T = C
Q = U + W  1 any substance
W = PdV  2 any substance
U = m(U2 - U1)  3 any substance
For Ideal Gas:
dU = mCv dT; at T = C ; dT = 0
Q = W  4
W = PdV ; at PV = C ;
P1V1 = P2V2 = C; P = C/V
Substituting P = C/V to W = PdV
W = P1V1 ln(V2/V1)  5
Where (V2/V1) = P1/P2
W = P1V1 ln(P1/P2)  6
P1V1 = mRT1
Entropy Change:
dS = dQ/T  7
S = dQ/T
dQ = TdS ;at T = C
Q = T(S2-S1)
(S2-S1) = S = Q/T  8
S = Q/T = W/T  9 For Ideal Gas
B. Open System (Steady Flow)
Q = h + KE + PE + W  10 any substance
W = - VdP - KE - PE  11 any substance
-VdP = -V(P2-P1)  12 any substance
h = m(h2-h1)  13 any substance
For Ideal Gas:
-VdP = -P1V1ln(P2/P1)  14
-VdP = P1V1ln(P1/P2)  15
P1/P2 = V2/V1  16
dh = CPdT; at T = C; dT = 0
h = 0  16
If KE = 0 and PE = 0
Q = h + W  17 any substance
W = - VdP = P1V1ln(P1/P2)  18
For Ideal Gas
h = 0  19
Q = W = - VdP = P1V1ln(P1/P2)  20
4. Isentropic Process (S = C): An Isentropic Process is an internally
“Reversible Adiabatic” process in which the entropy remains constant
where S = C and PVk = C for an ideal or perfect gas.
For Ideal Gas
1
2
1
1
1
2
1
2
2
22
1






















k
k
k
k
22
k
11
11
k
V
V
P
P
T
T
VPVPand
T
VP
T
VP
CPVandC
T
PV
Using
A. Closed System (Nonflow)
T
S
1
2
P
V
1
2
dV
P
S = C or
PVk = C
Q = U + W  1 any substance
W = PdV  2 any substance
U = m(U2 - U1)  3 any substance
Q = 0  4
W = - U = U = -m(U2 - U1)  5
For Ideal Gas
U = mCV(T2-T1)  6
From PVk = C, P =C/Vk, and substituting P =C/Vk
to W = ∫PdV, then by integration,
 














































1
1
1
1
1
1
1
211
1
1
21
k
k
VP
k
k
12
1122
P
P
k
PdV
P
P
k
mRT
k-1
T-TmR
PdV
k
VP-VP
PdVW  7
 8
 9
Q = 0
Entropy Change
S = 0
S1 = S2
B. Open System (Steady Flow)
Q = h + KE + PE + W  10 any substance
W = - VdP - KE - PE  11 any substance
h = m(h2-h1)  12 any substance
Q = 0
W = -h - KE - PE  13
From PVk = C ,V =[C/P]1/k, substituting V to
-∫VdP, then by integration,
 
 















































1
1
1
1
1
1
1
211
1
1
21
k
k
k
k
12
1122
P
P
k
VkP
VdP
P
P
k
kmRT
k-1
T-TkmR
VdP
k
VP-VPk
VdP
PdVkVdP
 14
 15
 16
If KE = 0 and PE = 0
0 = h + W  17 any substance
W = - VdP = - h  18 any substance
h = m(h2-h1)  19 any substance
Q = 0
 
 
 12P
k
k
k
k
12
1122
T-TmChW
P
P
k
VkP
W
P
P
k
kmRT
k-1
T-TkmR
W
k
VP-VPk
PdVkVdPW















































1
1
1
1
1
1
1
211
1
1
21
 20
 22
 21
 23
P
V
dP
V
Area = -VdP
S = C
1
2
1
1
1
2
1
2
2
22
1






















n
n
n
n
22
n
11
11
n
V
V
P
P
T
T
VPVPand
T
VP
T
VP
CPVandC
T
PV
Using
5. Polytropic Process ( PVn = C): A Polytropic Process is an
internally reversible process of an Ideal or Perfect Gas in which
PVn = C, where n stands for any constant.
A. Closed System: (Nonflow)
Q = U + W  1
W = PdV  2
U = m(U2 - U1)  3
Q = mCn(T2-T1)  4
U = m(U2 - U1)  5
P
V
1
2
dV
P
PVn = C
T
S
2
1
dS
T
PVn = C
K-kg
KJ
or
C-kg
KJ
heatspecificpolytropicC
n1
nk
CC
n
vn











From PVn = C, P =C/Vn, and substituting
P =C/Vn to W = ∫PdV, then by integration,
 














































1
1
1
1
1
1
1
211
1
1
21
n
n
VP
n
n
12
1122
P
P
n
PdVW
P
P
n
mRT
n-1
T-TmR
PdVW
n
VP-VP
PdVW
Entropy Change
dS = dQ/T
dQ = mCndT
S = mCnln(T2/T1)
 6
 8
 9
 10
B. Open System (Steady Flow)
Q = h + KE + PE + W  11
W = - VdP - KE - PE  12
h = m(h2-h1)  13
Q = mCn(T2-T1)  14
dQ = mCn dT
W = Q - h - KE - PE  15
From PVn = C ,V =[C/P]1/n, substituting V to
-∫VdP, then by integration,
 
n
VP-VPn
VdP
PdVnVdP
1122



1
 16
 












































1
1
1
1
1
1
211
1
1
21
n
n
n
n
12
P
P
n
VnP
VdP
P
P
n
nmRT
n-1
T-TnmR
VdP
If KE = 0 and PE = 0
Q = h + W  19 any substance
W = - VdP = Q - h  20 any substance
h = m(h2-h1)  21 any substance
h = mCp(T2-T1)
Q = mCn(T2-T1)  22
 17
 18
 












































1
1
1
1
1
1
211
1
1
21
n
n
n
n
12
P
P
n
VnP
W
P
P
n
nmRT
n-1
T-TnmR
W
 24
 23
6. Isoenthalpic or Throttling Process: It is a steady - state, steady
flow process in which Q = 0; PE = 0; KE = 0; W = 0 and the
enthalpy remains constant.
h1 = h2 or h = C
Throttling valve
Main steam line
thermometer
Pressure Gauge
Pressure Gauge
To main steam line
Throttling Calorimeter
Irreversible or Paddle Work
m
W
Q
U
Wp
Q = U + W - Wp
where: Wp - irreversible or paddle work

Contenu connexe

Tendances

Prof.n.nagraj pneumatic control
Prof.n.nagraj pneumatic controlProf.n.nagraj pneumatic control
Prof.n.nagraj pneumatic control
Praveen Djadhav
 
Thermodynamics (2013 new edition) copy
Thermodynamics (2013 new edition)   copyThermodynamics (2013 new edition)   copy
Thermodynamics (2013 new edition) copy
Yuri Melliza
 
Hydraulic Systems for Sugar Mills
Hydraulic Systems for Sugar MillsHydraulic Systems for Sugar Mills
Hydraulic Systems for Sugar Mills
Vineet Taneja
 

Tendances (20)

Gain Scheduling (GS)
Gain Scheduling (GS)Gain Scheduling (GS)
Gain Scheduling (GS)
 
refrigeration.pptx
refrigeration.pptxrefrigeration.pptx
refrigeration.pptx
 
Nyquist plot
Nyquist plotNyquist plot
Nyquist plot
 
Chapter 6 Gas Mixture
Chapter 6 Gas MixtureChapter 6 Gas Mixture
Chapter 6 Gas Mixture
 
Refrigerator (TACK).pptx
Refrigerator (TACK).pptxRefrigerator (TACK).pptx
Refrigerator (TACK).pptx
 
Gas Power Cycles.ppt
Gas Power Cycles.pptGas Power Cycles.ppt
Gas Power Cycles.ppt
 
Prof.n.nagraj pneumatic control
Prof.n.nagraj pneumatic controlProf.n.nagraj pneumatic control
Prof.n.nagraj pneumatic control
 
Availability and irreversibility
Availability and irreversibilityAvailability and irreversibility
Availability and irreversibility
 
STATIC & DYNAMIC PRESSURE
STATIC & DYNAMIC PRESSURESTATIC & DYNAMIC PRESSURE
STATIC & DYNAMIC PRESSURE
 
Combustion engineering summer 2019
Combustion engineering summer 2019Combustion engineering summer 2019
Combustion engineering summer 2019
 
Thermodynamics (2013 new edition) copy
Thermodynamics (2013 new edition)   copyThermodynamics (2013 new edition)   copy
Thermodynamics (2013 new edition) copy
 
Psychrometry (air conditioning processes)
Psychrometry (air conditioning processes)Psychrometry (air conditioning processes)
Psychrometry (air conditioning processes)
 
Hydraulic Systems for Sugar Mills
Hydraulic Systems for Sugar MillsHydraulic Systems for Sugar Mills
Hydraulic Systems for Sugar Mills
 
Fanno Flow
Fanno FlowFanno Flow
Fanno Flow
 
Compressor
CompressorCompressor
Compressor
 
Refrigeration Engineering Lecture Notes
Refrigeration Engineering Lecture NotesRefrigeration Engineering Lecture Notes
Refrigeration Engineering Lecture Notes
 
Fan and blowers (mech 326)
Fan and blowers (mech 326)Fan and blowers (mech 326)
Fan and blowers (mech 326)
 
Air Compressor in mechanical Engineering
Air Compressor in mechanical EngineeringAir Compressor in mechanical Engineering
Air Compressor in mechanical Engineering
 
Unit1 COALBASEDPOWER PLANTS
Unit1 COALBASEDPOWER PLANTSUnit1 COALBASEDPOWER PLANTS
Unit1 COALBASEDPOWER PLANTS
 
THERMODYNAMICS Unit III
THERMODYNAMICS Unit  III THERMODYNAMICS Unit  III
THERMODYNAMICS Unit III
 

Similaire à Chapter 7 Processes of Fluids

Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)
Yuri Melliza
 
psychrometry and HVAC 2015 11 24.ppt
psychrometry and HVAC 2015 11 24.pptpsychrometry and HVAC 2015 11 24.ppt
psychrometry and HVAC 2015 11 24.ppt
ShreeyaS4
 
2 the first law of thermodynamic
2 the first law of thermodynamic2 the first law of thermodynamic
2 the first law of thermodynamic
Ranny Rolinda R
 
Chapter 3 (law of conservation of mass & and 1st law)
Chapter 3 (law of conservation of mass & and 1st law)Chapter 3 (law of conservation of mass & and 1st law)
Chapter 3 (law of conservation of mass & and 1st law)
Yuri Melliza
 
Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard Cycle
Muhammad Surahman
 

Similaire à Chapter 7 Processes of Fluids (20)

Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)
 
Module 7 (processes of fluids)
Module 7 (processes of fluids)Module 7 (processes of fluids)
Module 7 (processes of fluids)
 
Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022
 
psychrometry and HVAC 2015 11 24.ppt
psychrometry and HVAC 2015 11 24.pptpsychrometry and HVAC 2015 11 24.ppt
psychrometry and HVAC 2015 11 24.ppt
 
Cy101 thermodynamics
Cy101  thermodynamicsCy101  thermodynamics
Cy101 thermodynamics
 
2 the first law of thermodynamic
2 the first law of thermodynamic2 the first law of thermodynamic
2 the first law of thermodynamic
 
Chapter 3 (law of conservation of mass & and 1st law)
Chapter 3 (law of conservation of mass & and 1st law)Chapter 3 (law of conservation of mass & and 1st law)
Chapter 3 (law of conservation of mass & and 1st law)
 
2. fluids 2
2. fluids 22. fluids 2
2. fluids 2
 
Thermodynamics1
Thermodynamics1Thermodynamics1
Thermodynamics1
 
Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237
 
Introduction
IntroductionIntroduction
Introduction
 
Thermodynamics - Unit - II
Thermodynamics - Unit - II Thermodynamics - Unit - II
Thermodynamics - Unit - II
 
Lecture 16 thermal processes.
Lecture 16   thermal processes.Lecture 16   thermal processes.
Lecture 16 thermal processes.
 
Chapter 6 availability
Chapter 6 availabilityChapter 6 availability
Chapter 6 availability
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Chemical Thermodynamics - power point new.pptx
Chemical Thermodynamics - power point new.pptxChemical Thermodynamics - power point new.pptx
Chemical Thermodynamics - power point new.pptx
 
Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard Cycle
 
unit-6-thermodynamics.ppt
unit-6-thermodynamics.pptunit-6-thermodynamics.ppt
unit-6-thermodynamics.ppt
 
chap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdfchap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdf
 
process.ppt
process.pptprocess.ppt
process.ppt
 

Plus de Yuri Melliza

Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022
Yuri Melliza
 
Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)
Yuri Melliza
 
Chapter 1(terms and definition)
Chapter 1(terms and definition)Chapter 1(terms and definition)
Chapter 1(terms and definition)
Yuri Melliza
 

Plus de Yuri Melliza (20)

Airconditioning system (ppt)
Airconditioning system (ppt)Airconditioning system (ppt)
Airconditioning system (ppt)
 
Fundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesFundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notes
 
Module 10 (air standard cycle)
Module 10 (air standard cycle)Module 10 (air standard cycle)
Module 10 (air standard cycle)
 
Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)
 
Module 8 (fuels and combustion)
Module 8 (fuels and combustion)Module 8 (fuels and combustion)
Module 8 (fuels and combustion)
 
Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022
 
Module 2 (forms of energy) 2021 2022
Module 2 (forms of energy) 2021   2022Module 2 (forms of energy) 2021   2022
Module 2 (forms of energy) 2021 2022
 
Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022
 
Me 312 module 1
Me 312 module 1Me 312 module 1
Me 312 module 1
 
Fuels and Combustion
Fuels and CombustionFuels and Combustion
Fuels and Combustion
 
Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLE
 
Me 12 quiz no. 3
Me 12 quiz no. 3Me 12 quiz no. 3
Me 12 quiz no. 3
 
Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)
 
Chapter 2
Chapter 2 Chapter 2
Chapter 2
 
Chapter 1(terms and definition)
Chapter 1(terms and definition)Chapter 1(terms and definition)
Chapter 1(terms and definition)
 
ME 12 F1 Assignment 2 & 3
ME 12 F1 Assignment 2 & 3ME 12 F1 Assignment 2 & 3
ME 12 F1 Assignment 2 & 3
 
ME 12 Assignment No. 1
ME 12 Assignment No. 1ME 12 Assignment No. 1
ME 12 Assignment No. 1
 
ME 12 FI QUIZ NO. 2
ME 12 FI QUIZ NO. 2ME 12 FI QUIZ NO. 2
ME 12 FI QUIZ NO. 2
 
ME 12 F1 QUIZ NO. 1
ME 12 F1 QUIZ NO. 1ME 12 F1 QUIZ NO. 1
ME 12 F1 QUIZ NO. 1
 

Dernier

Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
pritamlangde
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 

Dernier (20)

School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 

Chapter 7 Processes of Fluids

  • 1. 1. Isobaric Process ( P = C): An Isobaric Process is an internally reversible constant pressure process. A. Closed System:(Nonflow) P V 21P dV Q = U + W  1 any substance W = PdV  2 any substance U = m(U2 - U1)  3 any substance W = P(V2 - V1)  4 any substance Q = h = m(h2-h1)  5 any substance T S 1 2 dS T P = C PROCESSES OF FLUIDS
  • 2. For Ideal Gas: PV = mRT W =mR(T2-T1)  5 U = mCv(T2-T1)  6 Q = h = mCP (T2-T1)  7 Entropy Change S = dQ/T  8 any substance dQ = dh For Ideal Gas dh = mCPdT S = dQ/T S = mCP dT/T S = mCP ln(T2/T1)  9 B. Open System: Q = h + KE + PE + W  10 any substance W = - VdP - KE - PE  11 any substance - VdP = 0
  • 3. Q = h  12 W = - KE - PE  13 If KE = 0 and PE = 0 W = 0  14 Q = mCP(T2-T1)  15 Ideal Gas 2. Isometric Process (V = C): An Isometric process is internally reversible constant volume process. A. Closed System: (Nonflow) P V 1 2 T S T dS 1 2V = C
  • 4. Q = U + W  1 any substance W = PdV at V = C; dV = 0 W = 0 Q = U = m(U2 - U1)  2 any substance h = m(h2-h1)  3 any substance For Ideal Gas: Q = U = mCv(T2-T1)  4 h = mCP(T2-T1)  5 Entropy Change: S = dQ/T  6 any substance dQ = dU dU = mCvdT for ideal gas S = dU/T = mCvdT/T S = mCv ln(T2/T1)  6
  • 5. B. Open System: Q = h + KE + PE + W  7 any substance W = - VdP - KE - PE  8 any substance -VdP = -V(P2-P1)  9 any substance Q = U = m(U2 - U1)  10 any substance h = m(h2-h1)  11 any substance For Ideal Gas: -VdP = -V(P2-P1) = mR(T1-T2) Q = U = mCv(T2-T1)  12 h = mCP(T2-T1)  13 If KE = 0 and PE = 0 Q = h + W  14 any substance W = - VdP  15 W = -VdP = -V(P2-P1)  16 any substance W = mR(T1-T2)  16 ideal gas h = mCP(T2-T1)  17 ideal gas
  • 6. 3. Isothermal Process(T = C): An Isothermal process is a reversible constant temperature process. A. Closed System (Nonflow) dS T S T 1 2 P V 1 2P dV PV = C or T = C Q = U + W  1 any substance W = PdV  2 any substance U = m(U2 - U1)  3 any substance For Ideal Gas: dU = mCv dT; at T = C ; dT = 0 Q = W  4
  • 7. W = PdV ; at PV = C ; P1V1 = P2V2 = C; P = C/V Substituting P = C/V to W = PdV W = P1V1 ln(V2/V1)  5 Where (V2/V1) = P1/P2 W = P1V1 ln(P1/P2)  6 P1V1 = mRT1 Entropy Change: dS = dQ/T  7 S = dQ/T dQ = TdS ;at T = C Q = T(S2-S1) (S2-S1) = S = Q/T  8 S = Q/T = W/T  9 For Ideal Gas
  • 8. B. Open System (Steady Flow) Q = h + KE + PE + W  10 any substance W = - VdP - KE - PE  11 any substance -VdP = -V(P2-P1)  12 any substance h = m(h2-h1)  13 any substance For Ideal Gas: -VdP = -P1V1ln(P2/P1)  14 -VdP = P1V1ln(P1/P2)  15 P1/P2 = V2/V1  16 dh = CPdT; at T = C; dT = 0 h = 0  16 If KE = 0 and PE = 0 Q = h + W  17 any substance W = - VdP = P1V1ln(P1/P2)  18 For Ideal Gas h = 0  19 Q = W = - VdP = P1V1ln(P1/P2)  20
  • 9. 4. Isentropic Process (S = C): An Isentropic Process is an internally “Reversible Adiabatic” process in which the entropy remains constant where S = C and PVk = C for an ideal or perfect gas. For Ideal Gas 1 2 1 1 1 2 1 2 2 22 1                       k k k k 22 k 11 11 k V V P P T T VPVPand T VP T VP CPVandC T PV Using
  • 10. A. Closed System (Nonflow) T S 1 2 P V 1 2 dV P S = C or PVk = C Q = U + W  1 any substance W = PdV  2 any substance U = m(U2 - U1)  3 any substance Q = 0  4 W = - U = U = -m(U2 - U1)  5
  • 11. For Ideal Gas U = mCV(T2-T1)  6 From PVk = C, P =C/Vk, and substituting P =C/Vk to W = ∫PdV, then by integration,                                                 1 1 1 1 1 1 1 211 1 1 21 k k VP k k 12 1122 P P k PdV P P k mRT k-1 T-TmR PdV k VP-VP PdVW  7  8  9 Q = 0
  • 12. Entropy Change S = 0 S1 = S2 B. Open System (Steady Flow) Q = h + KE + PE + W  10 any substance W = - VdP - KE - PE  11 any substance h = m(h2-h1)  12 any substance Q = 0 W = -h - KE - PE  13 From PVk = C ,V =[C/P]1/k, substituting V to -∫VdP, then by integration,
  • 14.      12P k k k k 12 1122 T-TmChW P P k VkP W P P k kmRT k-1 T-TkmR W k VP-VPk PdVkVdPW                                                1 1 1 1 1 1 1 211 1 1 21  20  22  21  23
  • 16. 1 2 1 1 1 2 1 2 2 22 1                       n n n n 22 n 11 11 n V V P P T T VPVPand T VP T VP CPVandC T PV Using 5. Polytropic Process ( PVn = C): A Polytropic Process is an internally reversible process of an Ideal or Perfect Gas in which PVn = C, where n stands for any constant.
  • 17. A. Closed System: (Nonflow) Q = U + W  1 W = PdV  2 U = m(U2 - U1)  3 Q = mCn(T2-T1)  4 U = m(U2 - U1)  5 P V 1 2 dV P PVn = C T S 2 1 dS T PVn = C K-kg KJ or C-kg KJ heatspecificpolytropicC n1 nk CC n vn           
  • 18. From PVn = C, P =C/Vn, and substituting P =C/Vn to W = ∫PdV, then by integration,                                                 1 1 1 1 1 1 1 211 1 1 21 n n VP n n 12 1122 P P n PdVW P P n mRT n-1 T-TmR PdVW n VP-VP PdVW Entropy Change dS = dQ/T dQ = mCndT S = mCnln(T2/T1)  6  8  9  10
  • 19. B. Open System (Steady Flow) Q = h + KE + PE + W  11 W = - VdP - KE - PE  12 h = m(h2-h1)  13 Q = mCn(T2-T1)  14 dQ = mCn dT W = Q - h - KE - PE  15 From PVn = C ,V =[C/P]1/n, substituting V to -∫VdP, then by integration,   n VP-VPn VdP PdVnVdP 1122    1  16
  • 20.                                               1 1 1 1 1 1 211 1 1 21 n n n n 12 P P n VnP VdP P P n nmRT n-1 T-TnmR VdP If KE = 0 and PE = 0 Q = h + W  19 any substance W = - VdP = Q - h  20 any substance h = m(h2-h1)  21 any substance h = mCp(T2-T1) Q = mCn(T2-T1)  22  17  18
  • 22. 6. Isoenthalpic or Throttling Process: It is a steady - state, steady flow process in which Q = 0; PE = 0; KE = 0; W = 0 and the enthalpy remains constant. h1 = h2 or h = C Throttling valve Main steam line thermometer Pressure Gauge Pressure Gauge To main steam line Throttling Calorimeter
  • 23. Irreversible or Paddle Work m W Q U Wp Q = U + W - Wp where: Wp - irreversible or paddle work