SlideShare une entreprise Scribd logo
1  sur  5
Télécharger pour lire hors ligne
http://www.uneeducationpourdemain.org	
  
	
  
Page 1 sur 5	
  
Humanising Mathematical Education
Chris Breen
In attempting to look more closely at mathematical activities in an attempt to explore their
possibilities, I believe we must start from the words and ideas of maths educators such as
David Kent, Caleb Gattegno and David Wheeler rather than from our pre-conceived
judgements.
For example, what are our views on children's mathematical powers?
Do we agree with Gattegno when he writes: "Children spontaneously stay with problems.
And they stay for as long as is required. They consider abstraction (the simultaneous use of
stressing and ignoring) naturally as their birthright. They give proof that they know many
concepts but, more than that, that they know how to generate them in their awareness....
Moreover, they live close to their powers of transformation and their mental dynamics."
(Gattegno, 1981)
I believe that we have to take time to watch young children learning to make sense of the
world to re-discover and appreciate the powers that children possess of their own. If we are
sensitized by some of the questions posed by Gattegno in the above article, we may begin to
share Wheeler's "strong rational conviction that children have the necessary functionings to
mathematize." (Wheeler, 1975)
Gattegno feels strongly about the lessons to be learnt from such observations. "A method of
educating for the future does exist - if we know how to acknowledge what is given us and
already is in us, and with this, encounter what is but is not yet part of us... It happened that
every one of us as a child did precisely this. For a while we did not talk, we did not speak, and
after a while we did both. That is to say, we met what was and we managed to make it our
own." (Gattegno, 1970)
It is important to start with a belief in the powers of children and their ability to mathematize
before the tackling of the issue of pupil-centered activities in mathematics, because if we do
not recognize these powers we can never be in a position to set suitable tasks.
Wheeler (1975) provides an additional insight into the ways in which we have allowed
mathematical activities to become constrained. "We need to consider how to avoid the danger
that mathematical activity becomes a label for something too diffused and generalized, a way
of learning in which almost anything goes. It may be another step... to substitute for the
encouragement of mathematical activity an education which zeroes in on mathematization...
the shift of emphasis can take us ever further away from an exclusive reliance on external
criteria of quality derived from the mathematics of the past.
http://www.uneeducationpourdemain.org	
  
	
  
Page 2 sur 5	
  
"Even though the aim of mathematical activity was designed to stress the importance of the
'process' over the 'product,' we have tended to reassure ourselves that what we were
encouraging was actually mathematical activity by making sure that the product was
recognizably familiar mathematics. So, in a way the nature of the product still dominates our
judgements."
I am certain that this is the major dilemma facing anyone attempting to allow pupil-centered
mathematical activity to take place in their classroom. How can I justify the time spent? Is the
work that they are doing obviously in the syllabus? Are they working reasonably quietly? Is it
just a fun lesson? Do I really believe the activity is benefiting their learning?
If all the activity is only to make the lesson more fun, we can learn from John Trivett's
insights. "I began to see what I had been doing over the previous years: glamorize the
mathematics, obscure it... to make it attractive and pleasing to the learners. I had dressed up
the subject matter and the learning of it with the subtle implication that real mathematics is
hard, is dull, is unattainable for the majority of boys and girls and that the best we teachers
can therefore do is to sweeten the outward appearance, give extraneous rewards and indulge
in entertainment to sweeten the bitter pill." (Trivett, 1981)
These comments bring into question the whole role of the mathematics teacher during pupil-
centered activities. Perhaps the key answer to this problem lies in a genuine belief in the
following views expressed over a century ago
"That if real success is to attend the effort to bring a man to a definite position, one must first
of all take pains to find HIM where he is and begin there. ...For to be a teacher does not mean
simply to affirm that such a thing is so, or to deliver a lecture, etc. No, to be a teacher in the
right sense is to be a learner, put yourself in his place so that you understand what he
understands and in the way that he understands it..." (Kierkegaard, 1854
I maintain that the only way in which we can attempt to fulfill what I believe are essential
requirements of teaching is to remove ourselves from the center of the stage. To realistically
do this, we need to design material that occupies children and this gives mathematical
activities an added attraction. David Wheeler describes his vision of the role of the teacher as
follows:
"...the teacher must withdraw as much of himself as possible in the teaching situation... He
must use every means he can to focus the attention of the children on the problem, and this
means that he must efface himself from their attention...
"If we watch the teacher at work we see that: --He sets the situation, giving essential
information, but beyond that he tells the children nothing;
--He obtains as much information from the children as possible, by observing, asking
questions, and asking for particular actions;
--He works with this feedback immediately;
--Except on rare occasions he does not indicate whether a response is right or not, though he
often asks the children which it is;
--He accepts errors as important feedback telling him more than correct responses, and by
directing children's attention back to the problem he urges them to use what they know to
correct themselves..." (Wheeler, l970)
The main problem that remains if we accept the value of this teaching model is to "set the
situation." Certainly we will not easily feel free to ignore the syllabus and satisfy ourselves
(and the inspectors!) that it does not matter that the end-point of the activity is not
http://www.uneeducationpourdemain.org	
  
	
  
Page 3 sur 5	
  
recognizable as mathematics.
What sort of activity can we set that will allow us to meet these requirements as to our role? I
believe that there are at least three different levels at which we can choose to work, and for
each of them some guidelines are available as help.
1. Investigations.
Lingard (1980) presents an account of the use of mathematical investigations in the
classroom. An investigation is typified by the presentation of a situation whose question is
posed as an open-ended invitation to investigate. This leaves the pupil with the power to
select an aspect of the problem that she finds interesting, identify and define her own
parameters and rules, and to decide when the task has been completed, e.g. Draw 4 straight
lines on a piece of plain paper so that you get the maximum number of crossing points. How
many inside regions are there? Outside regions? Investigate for other numbers of lines.
The advantage of this type of activity is that the problems are interesting and give the teacher
an opportunity to practice using a different, listening role. The disadvantage is obviously that
the topics covered tend not to be in the syllabus, and anyway, if the teacher has withdrawn
from a position of authority, she cannot guarantee what route will be taken nor can she know
the destination.
Nevertheless my experience of using the ATM books listed below as resources for an
introduction to pupil-centered lessons both for myself and for my students has been extremely
positive, and I strongly recommend their use to anyone seriously contemplating this approach.
2. Do, Talk and Record activities.
The Open University has prepared an excellent course entitled "Developing Mathematical
Thinking." In a reader (Floyd 1981) and a series of five topic books (using accompanying
sound and video accessories) they develop the idea of designing activities that pupils can stay
with for a long time, forcing them to become involved in doing, then talking to one another
about what they did, and finally attempting to record their work. A particularly useful booklet
is "Topic 5," on fractions. The booklet takes the student through the process of designing and
refining a set of suitable activities using available resource material as a starting point.
Promising ideas are identified, discussed and refined until the presenter feels that the activity
is reasonable.
For example, to play the "Shade-In Game," you will each need four pieces of scrap paper.
You'll have to fold each piece of paper in half and then in half again. Then fold the piece
twice more. When you unfold the paper you should find that the fold lines mark out sixteen
equal sections. Each group will then need one die marked with one-sixteenth, one eighth, one
fourth, two eighths, three sixteenths, and one half. Each of you should throw the die in turn.
The score on the die tells you how much of one piece of paper to shade in. Gradually, the first
piece of paper will become completely shaded-in and you will need to move on to the next
sheet of paper. The first to shade all four bits of paper is the winner of round one. By turning
the four bits of paper over, you can play a second round.
BUT nobody is allowed to shade in any part of their paper without first telling everybody else
in the group what areas they are going to shade and why. That's why the game is called
"What-and-Why-Shade-in Game."
Student teachers have found that this approach to designing suitable resource materials for
mathematical activities has been extremely useful and informative.
http://www.uneeducationpourdemain.org	
  
	
  
Page 4 sur 5	
  
3. Deeper Structures.
While both the previous sections make a start in the search towards genuine pupil-centered
mathematical activities, I will not feel content until an attempt has been made to investigate
the activity into the key concepts that are to be found in the syllabus. The task now becomes
extremely difficult.
For me, the critical understandings that I have to show in trying to penetrate to this deep
structure of the topic are:
(a) What are the key concepts in the topic, (b) What awarenesses are required to gain access
to the topic, (c) What entry points will help the student?
Gattegno (1982) discusses the dilemma of designing activities. "How can I present this
challenge so that
[a] I make sure everyone will find an entry into it, [b] Everyone will find it engaging and
rewarding, and [c] It will be easily extended into other challenges?"
Wheeler (1975) expresses it slightly differently: "We must accept the responsibility of
presenting them with meaningful challenges:
--Not too far beyond their reach --Not so easy as to appear trivial --Not so mechanical as to be
soul killing --But assuredly capable of exciting them."
"This sounds very daunting and abstract. What does it mean when we turn our attention to the
syllabus, for example, the teaching of geometry? Perhaps the sort of questions we should be
asking are:
"What do children already know, before we try to teach them geometry, that we could use?
What appropriate functionings or powers do children bring with them?
"Given that children already have relevant experiences and the capabilities to work with them,
what special structurings of their experience will lead to geometry?" (Wheeler 1975)
The progress from these questions to carefully worded instructions for a mathematical activity
that forces each pupil to become involved with the key concept will undoubtedly be slow and
painful. In order to show any progress at all we will need to become learners and
acknowledge our ignorance.
I believe that this is the final stage in the search toward genuine pupil-centered mathematical
activities. Perhaps we will never be able to tackle the challenge, but at least in making the
attempt, we move away from the pseudo activities that really constitute nothing more than a
sugar coating.
References
A. T. M. (1980) Points of Departure 1. Derby: ATM
A. T. M. (1982) Points of Departure 2. Derby: ATM
Floyd, A (ed) (1981) Developing Mathematical Thinking. London: Addison-Wesley
Gattegno, C. (1970) What We Owe Children. London: Routledge and Kegan Paul
__________ (1981) "Children and Mathematics: A New Appraisal." Mathematical Thinking,
94, 5-7.
__________ (1982) "Thirty Years Later." Mathematical Thinking, 100, 42-45.
http://www.uneeducationpourdemain.org	
  
	
  
Page 5 sur 5	
  
Kent, D. (1978) "Linda's Story." Mathematical Thinking, 83, 13-15
Kierkegaard, S. (1854) The Journals. Oxford: Oxford University Press
Lingard, D. (1980) Mathematical Investigations in the Classroom. Derby: ATM
Trivett, D (1981) "The Rise and Fall of the Coloured Rods." Mathematical Teaching, 96, 37-
41
Wheeler, D (1970) "The Role of the Teacher." Mathematical Thinking, 50, 23-29
Wheeler, D. (1975) "Humanistic Mathematical Education." Mathematical Thinking, 71, 4-9
© Chris Breen Education Department, University of Cape Town Cape Town, South Africa [A
slightly different version of this paper appeared previously in the Proceedings of the
Mathematical Association of South Africa, 8th National Congress] The Science of
Education in Questions - N° 12 - February 1999
"Humanising Mathematical Education" by C J Breen is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License.

Contenu connexe

Tendances

How do you make lessons stick?
How do you make lessons stick?How do you make lessons stick?
How do you make lessons stick?shaggyhill
 
Stereotype Threats’ Influence on Elementary Pre-service Teachers\' Attitude T...
Stereotype Threats’ Influence on Elementary Pre-service Teachers\' Attitude T...Stereotype Threats’ Influence on Elementary Pre-service Teachers\' Attitude T...
Stereotype Threats’ Influence on Elementary Pre-service Teachers\' Attitude T...lilsnickr
 
February 2013 pdf
February 2013 pdfFebruary 2013 pdf
February 2013 pdfCindy Smith
 
Newsletter Sept 2021
Newsletter Sept 2021Newsletter Sept 2021
Newsletter Sept 2021Cindy Smith
 
2nd That Emotion: Support for the Affective Domain
2nd That Emotion: Support for the Affective Domain2nd That Emotion: Support for the Affective Domain
2nd That Emotion: Support for the Affective DomainFred Feldon
 
From novice to expert: A critical evaluation of direct instruction
From novice to expert: A critical evaluation of direct instructionFrom novice to expert: A critical evaluation of direct instruction
From novice to expert: A critical evaluation of direct instructionChristian Bokhove
 
Franke productive struggle_5pmtalk
Franke productive struggle_5pmtalkFranke productive struggle_5pmtalk
Franke productive struggle_5pmtalkkdtanker
 
Chest of Secrets - TOC program for children who can't write or read
Chest of Secrets - TOC program for children who can't write or readChest of Secrets - TOC program for children who can't write or read
Chest of Secrets - TOC program for children who can't write or readTOC dla Edukacji Polska Sp. z o.o.
 
Ba pt ppp directed task week 15
Ba pt ppp directed task week 15Ba pt ppp directed task week 15
Ba pt ppp directed task week 15Lee Hazeldine
 
JAM 2015 Session Shouting through their fingertips
JAM 2015 Session Shouting through their fingertipsJAM 2015 Session Shouting through their fingertips
JAM 2015 Session Shouting through their fingertipsSusan Wegmann
 
Kazemi am talk_powerpoint
Kazemi am talk_powerpointKazemi am talk_powerpoint
Kazemi am talk_powerpointkdtanker
 
Franke std explan_11amtalk
Franke std explan_11amtalkFranke std explan_11amtalk
Franke std explan_11amtalkkdtanker
 
Philipp pm slides
Philipp pm slidesPhilipp pm slides
Philipp pm slideskdtanker
 
Getting feedback right
Getting feedback rightGetting feedback right
Getting feedback rightDavid Didau
 
Anatomy of outstanding article
Anatomy of outstanding articleAnatomy of outstanding article
Anatomy of outstanding articleDavid Didau
 
USAFA - JiTT Success Brown Bag - Aug 2014 - Jeff Loats
USAFA - JiTT Success Brown Bag - Aug 2014 - Jeff LoatsUSAFA - JiTT Success Brown Bag - Aug 2014 - Jeff Loats
USAFA - JiTT Success Brown Bag - Aug 2014 - Jeff LoatsJeff Loats
 
Kazemi pm talk_powerpoint
Kazemi pm talk_powerpointKazemi pm talk_powerpoint
Kazemi pm talk_powerpointkdtanker
 
Pedagoo London 2014
Pedagoo London 2014Pedagoo London 2014
Pedagoo London 2014David Didau
 

Tendances (20)

How do you make lessons stick?
How do you make lessons stick?How do you make lessons stick?
How do you make lessons stick?
 
Learning Theories
Learning TheoriesLearning Theories
Learning Theories
 
Stereotype Threats’ Influence on Elementary Pre-service Teachers\' Attitude T...
Stereotype Threats’ Influence on Elementary Pre-service Teachers\' Attitude T...Stereotype Threats’ Influence on Elementary Pre-service Teachers\' Attitude T...
Stereotype Threats’ Influence on Elementary Pre-service Teachers\' Attitude T...
 
February 2013 pdf
February 2013 pdfFebruary 2013 pdf
February 2013 pdf
 
Newsletter Sept 2021
Newsletter Sept 2021Newsletter Sept 2021
Newsletter Sept 2021
 
Supporting children as mindful mathematicians
Supporting children as mindful mathematiciansSupporting children as mindful mathematicians
Supporting children as mindful mathematicians
 
2nd That Emotion: Support for the Affective Domain
2nd That Emotion: Support for the Affective Domain2nd That Emotion: Support for the Affective Domain
2nd That Emotion: Support for the Affective Domain
 
From novice to expert: A critical evaluation of direct instruction
From novice to expert: A critical evaluation of direct instructionFrom novice to expert: A critical evaluation of direct instruction
From novice to expert: A critical evaluation of direct instruction
 
Franke productive struggle_5pmtalk
Franke productive struggle_5pmtalkFranke productive struggle_5pmtalk
Franke productive struggle_5pmtalk
 
Chest of Secrets - TOC program for children who can't write or read
Chest of Secrets - TOC program for children who can't write or readChest of Secrets - TOC program for children who can't write or read
Chest of Secrets - TOC program for children who can't write or read
 
Ba pt ppp directed task week 15
Ba pt ppp directed task week 15Ba pt ppp directed task week 15
Ba pt ppp directed task week 15
 
JAM 2015 Session Shouting through their fingertips
JAM 2015 Session Shouting through their fingertipsJAM 2015 Session Shouting through their fingertips
JAM 2015 Session Shouting through their fingertips
 
Kazemi am talk_powerpoint
Kazemi am talk_powerpointKazemi am talk_powerpoint
Kazemi am talk_powerpoint
 
Franke std explan_11amtalk
Franke std explan_11amtalkFranke std explan_11amtalk
Franke std explan_11amtalk
 
Philipp pm slides
Philipp pm slidesPhilipp pm slides
Philipp pm slides
 
Getting feedback right
Getting feedback rightGetting feedback right
Getting feedback right
 
Anatomy of outstanding article
Anatomy of outstanding articleAnatomy of outstanding article
Anatomy of outstanding article
 
USAFA - JiTT Success Brown Bag - Aug 2014 - Jeff Loats
USAFA - JiTT Success Brown Bag - Aug 2014 - Jeff LoatsUSAFA - JiTT Success Brown Bag - Aug 2014 - Jeff Loats
USAFA - JiTT Success Brown Bag - Aug 2014 - Jeff Loats
 
Kazemi pm talk_powerpoint
Kazemi pm talk_powerpointKazemi pm talk_powerpoint
Kazemi pm talk_powerpoint
 
Pedagoo London 2014
Pedagoo London 2014Pedagoo London 2014
Pedagoo London 2014
 

En vedette

Android App Security Solution
Android App Security SolutionAndroid App Security Solution
Android App Security SolutionJay Li
 
16267 Holiday Survival Guide FINAL E
16267 Holiday Survival Guide FINAL E16267 Holiday Survival Guide FINAL E
16267 Holiday Survival Guide FINAL EJamie Briggs
 
Automated testing for client-side - Adam Klein, 500 Tech
Automated testing for client-side - Adam Klein, 500 TechAutomated testing for client-side - Adam Klein, 500 Tech
Automated testing for client-side - Adam Klein, 500 TechCodemotion Tel Aviv
 
FAMILIA Paulette Rodriguez Gallegos
FAMILIA Paulette Rodriguez GallegosFAMILIA Paulette Rodriguez Gallegos
FAMILIA Paulette Rodriguez GallegosFernandaPaulette
 
How to actually use promises - Jakob Mattsson, FishBrain
How to actually use promises - Jakob Mattsson, FishBrainHow to actually use promises - Jakob Mattsson, FishBrain
How to actually use promises - Jakob Mattsson, FishBrainCodemotion Tel Aviv
 
Row Houses and Villas in Sarjapur Road
Row Houses and Villas in Sarjapur RoadRow Houses and Villas in Sarjapur Road
Row Houses and Villas in Sarjapur RoadHeritage Homes
 
Le professioni
Le professioniLe professioni
Le professionisilviaddea
 
روابط بین دختر و پسر و روابط آسیب زا - روان شناس خانم روحی بروجنی
روابط بین دختر و پسر و روابط آسیب زا - روان شناس خانم روحی بروجنیروابط بین دختر و پسر و روابط آسیب زا - روان شناس خانم روحی بروجنی
روابط بین دختر و پسر و روابط آسیب زا - روان شناس خانم روحی بروجنیsh k
 
Alma De Agave Tequila presentation
Alma De Agave Tequila presentationAlma De Agave Tequila presentation
Alma De Agave Tequila presentationnenexamay
 
UCR New Grid Project
UCR New Grid ProjectUCR New Grid Project
UCR New Grid ProjectJonathan Wong
 
마마인하우스No17 web
마마인하우스No17 web마마인하우스No17 web
마마인하우스No17 webphghome
 
New pdf portfolio
New pdf portfolioNew pdf portfolio
New pdf portfolioaqeeln
 

En vedette (18)

Case power point
Case power pointCase power point
Case power point
 
Android App Security Solution
Android App Security SolutionAndroid App Security Solution
Android App Security Solution
 
16267 Holiday Survival Guide FINAL E
16267 Holiday Survival Guide FINAL E16267 Holiday Survival Guide FINAL E
16267 Holiday Survival Guide FINAL E
 
Megrette Fletcher
Megrette FletcherMegrette Fletcher
Megrette Fletcher
 
Las normas APA
Las normas APALas normas APA
Las normas APA
 
Automated testing for client-side - Adam Klein, 500 Tech
Automated testing for client-side - Adam Klein, 500 TechAutomated testing for client-side - Adam Klein, 500 Tech
Automated testing for client-side - Adam Klein, 500 Tech
 
FAMILIA Paulette Rodriguez Gallegos
FAMILIA Paulette Rodriguez GallegosFAMILIA Paulette Rodriguez Gallegos
FAMILIA Paulette Rodriguez Gallegos
 
How to actually use promises - Jakob Mattsson, FishBrain
How to actually use promises - Jakob Mattsson, FishBrainHow to actually use promises - Jakob Mattsson, FishBrain
How to actually use promises - Jakob Mattsson, FishBrain
 
Row Houses and Villas in Sarjapur Road
Row Houses and Villas in Sarjapur RoadRow Houses and Villas in Sarjapur Road
Row Houses and Villas in Sarjapur Road
 
RECICLAJE
RECICLAJERECICLAJE
RECICLAJE
 
Old local railway
Old local railwayOld local railway
Old local railway
 
Le professioni
Le professioniLe professioni
Le professioni
 
A psb
A psbA psb
A psb
 
روابط بین دختر و پسر و روابط آسیب زا - روان شناس خانم روحی بروجنی
روابط بین دختر و پسر و روابط آسیب زا - روان شناس خانم روحی بروجنیروابط بین دختر و پسر و روابط آسیب زا - روان شناس خانم روحی بروجنی
روابط بین دختر و پسر و روابط آسیب زا - روان شناس خانم روحی بروجنی
 
Alma De Agave Tequila presentation
Alma De Agave Tequila presentationAlma De Agave Tequila presentation
Alma De Agave Tequila presentation
 
UCR New Grid Project
UCR New Grid ProjectUCR New Grid Project
UCR New Grid Project
 
마마인하우스No17 web
마마인하우스No17 web마마인하우스No17 web
마마인하우스No17 web
 
New pdf portfolio
New pdf portfolioNew pdf portfolio
New pdf portfolio
 

Similaire à Humanising Mathematical Education Through Pupil-Centered Activities

Similaire à Humanising Mathematical Education Through Pupil-Centered Activities (18)

Active learning
Active learningActive learning
Active learning
 
Math Essay
Math EssayMath Essay
Math Essay
 
Teaching Strategies - The Secrets
Teaching Strategies - The SecretsTeaching Strategies - The Secrets
Teaching Strategies - The Secrets
 
What I learned from 20 years of Student Journals
What I learned from 20 years of Student JournalsWhat I learned from 20 years of Student Journals
What I learned from 20 years of Student Journals
 
What I learned from 20 Years of Student Journals
What I learned from 20 Years of Student JournalsWhat I learned from 20 Years of Student Journals
What I learned from 20 Years of Student Journals
 
Teaching for tomorrow
Teaching for tomorrowTeaching for tomorrow
Teaching for tomorrow
 
Yess 4 Laurinda Brown
Yess 4 Laurinda BrownYess 4 Laurinda Brown
Yess 4 Laurinda Brown
 
Mathematics and Present challenges.pptx
Mathematics and Present challenges.pptxMathematics and Present challenges.pptx
Mathematics and Present challenges.pptx
 
Math Reform
Math ReformMath Reform
Math Reform
 
539MAY 2003What Children Say aboutProblem SolvingOver .docx
539MAY 2003What Children Say aboutProblem SolvingOver .docx539MAY 2003What Children Say aboutProblem SolvingOver .docx
539MAY 2003What Children Say aboutProblem SolvingOver .docx
 
Apprenticeship
ApprenticeshipApprenticeship
Apprenticeship
 
Apprenticeship
ApprenticeshipApprenticeship
Apprenticeship
 
Math Essays
Math EssaysMath Essays
Math Essays
 
605Good Curriculum as a Basis for Differentiation.docx
605Good Curriculum as a  Basis for Differentiation.docx605Good Curriculum as a  Basis for Differentiation.docx
605Good Curriculum as a Basis for Differentiation.docx
 
Final reflection paper
Final reflection paperFinal reflection paper
Final reflection paper
 
Final reflection paper
Final reflection paperFinal reflection paper
Final reflection paper
 
Designing Life Experience
Designing Life ExperienceDesigning Life Experience
Designing Life Experience
 
Scaffolding maths at Noarlunga
Scaffolding maths at NoarlungaScaffolding maths at Noarlunga
Scaffolding maths at Noarlunga
 

Plus de Centre de ressources pédagogique : formations et matériels

Plus de Centre de ressources pédagogique : formations et matériels (20)

La « classe » en pédagogie des Mathématiques - Caleb Gattegno
La « classe » en pédagogie des Mathématiques - Caleb GattegnoLa « classe » en pédagogie des Mathématiques - Caleb Gattegno
La « classe » en pédagogie des Mathématiques - Caleb Gattegno
 
Articles en silent way_13
Articles en silent way_13Articles en silent way_13
Articles en silent way_13
 
Articles fr les mathematiques_1
Articles fr les mathematiques_1Articles fr les mathematiques_1
Articles fr les mathematiques_1
 
Articles fr lecture en couleurs_12
Articles fr lecture en couleurs_12Articles fr lecture en couleurs_12
Articles fr lecture en couleurs_12
 
Articles en words_incolor_13
Articles en words_incolor_13Articles en words_incolor_13
Articles en words_incolor_13
 
Articles en words_incolor_12
Articles en words_incolor_12Articles en words_incolor_12
Articles en words_incolor_12
 
Articles en words_incolor_11
Articles en words_incolor_11Articles en words_incolor_11
Articles en words_incolor_11
 
Articles en words_incolor_10
Articles en words_incolor_10Articles en words_incolor_10
Articles en words_incolor_10
 
Articles en words_incolor_9
Articles en words_incolor_9Articles en words_incolor_9
Articles en words_incolor_9
 
Articles en words_incolor_8
Articles en words_incolor_8Articles en words_incolor_8
Articles en words_incolor_8
 
Articles en words_incolor_7
Articles en words_incolor_7Articles en words_incolor_7
Articles en words_incolor_7
 
Articles en words_incolor_5
Articles en words_incolor_5Articles en words_incolor_5
Articles en words_incolor_5
 
Articles en words_incolor_4
Articles en words_incolor_4Articles en words_incolor_4
Articles en words_incolor_4
 
Articles en words_incolor_3
Articles en words_incolor_3Articles en words_incolor_3
Articles en words_incolor_3
 
Articles en words_incolor_2
Articles en words_incolor_2Articles en words_incolor_2
Articles en words_incolor_2
 
Articles en words_incolor_1
Articles en words_incolor_1Articles en words_incolor_1
Articles en words_incolor_1
 
Articles en therotical_reflections_9
Articles en therotical_reflections_9Articles en therotical_reflections_9
Articles en therotical_reflections_9
 
Articles en therotical_reflections_8
Articles en therotical_reflections_8Articles en therotical_reflections_8
Articles en therotical_reflections_8
 
Articles en therotical_reflections_6
Articles en therotical_reflections_6Articles en therotical_reflections_6
Articles en therotical_reflections_6
 
Articles en therotical_reflections_5
Articles en therotical_reflections_5Articles en therotical_reflections_5
Articles en therotical_reflections_5
 

Humanising Mathematical Education Through Pupil-Centered Activities

  • 1. http://www.uneeducationpourdemain.org     Page 1 sur 5   Humanising Mathematical Education Chris Breen In attempting to look more closely at mathematical activities in an attempt to explore their possibilities, I believe we must start from the words and ideas of maths educators such as David Kent, Caleb Gattegno and David Wheeler rather than from our pre-conceived judgements. For example, what are our views on children's mathematical powers? Do we agree with Gattegno when he writes: "Children spontaneously stay with problems. And they stay for as long as is required. They consider abstraction (the simultaneous use of stressing and ignoring) naturally as their birthright. They give proof that they know many concepts but, more than that, that they know how to generate them in their awareness.... Moreover, they live close to their powers of transformation and their mental dynamics." (Gattegno, 1981) I believe that we have to take time to watch young children learning to make sense of the world to re-discover and appreciate the powers that children possess of their own. If we are sensitized by some of the questions posed by Gattegno in the above article, we may begin to share Wheeler's "strong rational conviction that children have the necessary functionings to mathematize." (Wheeler, 1975) Gattegno feels strongly about the lessons to be learnt from such observations. "A method of educating for the future does exist - if we know how to acknowledge what is given us and already is in us, and with this, encounter what is but is not yet part of us... It happened that every one of us as a child did precisely this. For a while we did not talk, we did not speak, and after a while we did both. That is to say, we met what was and we managed to make it our own." (Gattegno, 1970) It is important to start with a belief in the powers of children and their ability to mathematize before the tackling of the issue of pupil-centered activities in mathematics, because if we do not recognize these powers we can never be in a position to set suitable tasks. Wheeler (1975) provides an additional insight into the ways in which we have allowed mathematical activities to become constrained. "We need to consider how to avoid the danger that mathematical activity becomes a label for something too diffused and generalized, a way of learning in which almost anything goes. It may be another step... to substitute for the encouragement of mathematical activity an education which zeroes in on mathematization... the shift of emphasis can take us ever further away from an exclusive reliance on external criteria of quality derived from the mathematics of the past.
  • 2. http://www.uneeducationpourdemain.org     Page 2 sur 5   "Even though the aim of mathematical activity was designed to stress the importance of the 'process' over the 'product,' we have tended to reassure ourselves that what we were encouraging was actually mathematical activity by making sure that the product was recognizably familiar mathematics. So, in a way the nature of the product still dominates our judgements." I am certain that this is the major dilemma facing anyone attempting to allow pupil-centered mathematical activity to take place in their classroom. How can I justify the time spent? Is the work that they are doing obviously in the syllabus? Are they working reasonably quietly? Is it just a fun lesson? Do I really believe the activity is benefiting their learning? If all the activity is only to make the lesson more fun, we can learn from John Trivett's insights. "I began to see what I had been doing over the previous years: glamorize the mathematics, obscure it... to make it attractive and pleasing to the learners. I had dressed up the subject matter and the learning of it with the subtle implication that real mathematics is hard, is dull, is unattainable for the majority of boys and girls and that the best we teachers can therefore do is to sweeten the outward appearance, give extraneous rewards and indulge in entertainment to sweeten the bitter pill." (Trivett, 1981) These comments bring into question the whole role of the mathematics teacher during pupil- centered activities. Perhaps the key answer to this problem lies in a genuine belief in the following views expressed over a century ago "That if real success is to attend the effort to bring a man to a definite position, one must first of all take pains to find HIM where he is and begin there. ...For to be a teacher does not mean simply to affirm that such a thing is so, or to deliver a lecture, etc. No, to be a teacher in the right sense is to be a learner, put yourself in his place so that you understand what he understands and in the way that he understands it..." (Kierkegaard, 1854 I maintain that the only way in which we can attempt to fulfill what I believe are essential requirements of teaching is to remove ourselves from the center of the stage. To realistically do this, we need to design material that occupies children and this gives mathematical activities an added attraction. David Wheeler describes his vision of the role of the teacher as follows: "...the teacher must withdraw as much of himself as possible in the teaching situation... He must use every means he can to focus the attention of the children on the problem, and this means that he must efface himself from their attention... "If we watch the teacher at work we see that: --He sets the situation, giving essential information, but beyond that he tells the children nothing; --He obtains as much information from the children as possible, by observing, asking questions, and asking for particular actions; --He works with this feedback immediately; --Except on rare occasions he does not indicate whether a response is right or not, though he often asks the children which it is; --He accepts errors as important feedback telling him more than correct responses, and by directing children's attention back to the problem he urges them to use what they know to correct themselves..." (Wheeler, l970) The main problem that remains if we accept the value of this teaching model is to "set the situation." Certainly we will not easily feel free to ignore the syllabus and satisfy ourselves (and the inspectors!) that it does not matter that the end-point of the activity is not
  • 3. http://www.uneeducationpourdemain.org     Page 3 sur 5   recognizable as mathematics. What sort of activity can we set that will allow us to meet these requirements as to our role? I believe that there are at least three different levels at which we can choose to work, and for each of them some guidelines are available as help. 1. Investigations. Lingard (1980) presents an account of the use of mathematical investigations in the classroom. An investigation is typified by the presentation of a situation whose question is posed as an open-ended invitation to investigate. This leaves the pupil with the power to select an aspect of the problem that she finds interesting, identify and define her own parameters and rules, and to decide when the task has been completed, e.g. Draw 4 straight lines on a piece of plain paper so that you get the maximum number of crossing points. How many inside regions are there? Outside regions? Investigate for other numbers of lines. The advantage of this type of activity is that the problems are interesting and give the teacher an opportunity to practice using a different, listening role. The disadvantage is obviously that the topics covered tend not to be in the syllabus, and anyway, if the teacher has withdrawn from a position of authority, she cannot guarantee what route will be taken nor can she know the destination. Nevertheless my experience of using the ATM books listed below as resources for an introduction to pupil-centered lessons both for myself and for my students has been extremely positive, and I strongly recommend their use to anyone seriously contemplating this approach. 2. Do, Talk and Record activities. The Open University has prepared an excellent course entitled "Developing Mathematical Thinking." In a reader (Floyd 1981) and a series of five topic books (using accompanying sound and video accessories) they develop the idea of designing activities that pupils can stay with for a long time, forcing them to become involved in doing, then talking to one another about what they did, and finally attempting to record their work. A particularly useful booklet is "Topic 5," on fractions. The booklet takes the student through the process of designing and refining a set of suitable activities using available resource material as a starting point. Promising ideas are identified, discussed and refined until the presenter feels that the activity is reasonable. For example, to play the "Shade-In Game," you will each need four pieces of scrap paper. You'll have to fold each piece of paper in half and then in half again. Then fold the piece twice more. When you unfold the paper you should find that the fold lines mark out sixteen equal sections. Each group will then need one die marked with one-sixteenth, one eighth, one fourth, two eighths, three sixteenths, and one half. Each of you should throw the die in turn. The score on the die tells you how much of one piece of paper to shade in. Gradually, the first piece of paper will become completely shaded-in and you will need to move on to the next sheet of paper. The first to shade all four bits of paper is the winner of round one. By turning the four bits of paper over, you can play a second round. BUT nobody is allowed to shade in any part of their paper without first telling everybody else in the group what areas they are going to shade and why. That's why the game is called "What-and-Why-Shade-in Game." Student teachers have found that this approach to designing suitable resource materials for mathematical activities has been extremely useful and informative.
  • 4. http://www.uneeducationpourdemain.org     Page 4 sur 5   3. Deeper Structures. While both the previous sections make a start in the search towards genuine pupil-centered mathematical activities, I will not feel content until an attempt has been made to investigate the activity into the key concepts that are to be found in the syllabus. The task now becomes extremely difficult. For me, the critical understandings that I have to show in trying to penetrate to this deep structure of the topic are: (a) What are the key concepts in the topic, (b) What awarenesses are required to gain access to the topic, (c) What entry points will help the student? Gattegno (1982) discusses the dilemma of designing activities. "How can I present this challenge so that [a] I make sure everyone will find an entry into it, [b] Everyone will find it engaging and rewarding, and [c] It will be easily extended into other challenges?" Wheeler (1975) expresses it slightly differently: "We must accept the responsibility of presenting them with meaningful challenges: --Not too far beyond their reach --Not so easy as to appear trivial --Not so mechanical as to be soul killing --But assuredly capable of exciting them." "This sounds very daunting and abstract. What does it mean when we turn our attention to the syllabus, for example, the teaching of geometry? Perhaps the sort of questions we should be asking are: "What do children already know, before we try to teach them geometry, that we could use? What appropriate functionings or powers do children bring with them? "Given that children already have relevant experiences and the capabilities to work with them, what special structurings of their experience will lead to geometry?" (Wheeler 1975) The progress from these questions to carefully worded instructions for a mathematical activity that forces each pupil to become involved with the key concept will undoubtedly be slow and painful. In order to show any progress at all we will need to become learners and acknowledge our ignorance. I believe that this is the final stage in the search toward genuine pupil-centered mathematical activities. Perhaps we will never be able to tackle the challenge, but at least in making the attempt, we move away from the pseudo activities that really constitute nothing more than a sugar coating. References A. T. M. (1980) Points of Departure 1. Derby: ATM A. T. M. (1982) Points of Departure 2. Derby: ATM Floyd, A (ed) (1981) Developing Mathematical Thinking. London: Addison-Wesley Gattegno, C. (1970) What We Owe Children. London: Routledge and Kegan Paul __________ (1981) "Children and Mathematics: A New Appraisal." Mathematical Thinking, 94, 5-7. __________ (1982) "Thirty Years Later." Mathematical Thinking, 100, 42-45.
  • 5. http://www.uneeducationpourdemain.org     Page 5 sur 5   Kent, D. (1978) "Linda's Story." Mathematical Thinking, 83, 13-15 Kierkegaard, S. (1854) The Journals. Oxford: Oxford University Press Lingard, D. (1980) Mathematical Investigations in the Classroom. Derby: ATM Trivett, D (1981) "The Rise and Fall of the Coloured Rods." Mathematical Teaching, 96, 37- 41 Wheeler, D (1970) "The Role of the Teacher." Mathematical Thinking, 50, 23-29 Wheeler, D. (1975) "Humanistic Mathematical Education." Mathematical Thinking, 71, 4-9 © Chris Breen Education Department, University of Cape Town Cape Town, South Africa [A slightly different version of this paper appeared previously in the Proceedings of the Mathematical Association of South Africa, 8th National Congress] The Science of Education in Questions - N° 12 - February 1999 "Humanising Mathematical Education" by C J Breen is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.