SlideShare une entreprise Scribd logo
1  sur  4
Télécharger pour lire hors ligne
A CUMULANT BASED ALGORITHM FOR THE
IDENTIFICATION OF INPUT OUTPUT QUADRATIC
SYSTEMS
P. Koukoulas V. Tsoulkas N. Kalouptsidis
Dept. of Informatics, Division of Communications and Signal Processing
Panepistimiopolis, 157 71, Athens, GREECE
Tel: +301 7275304 fax: +301 7275601
e-mail: kalou@di.uoa.gr, vtsoulk@cc.uoa.gr
ABSTRACT
A parameter estimation algorithm is developed for the
identification of an input output quadratic model. The
excitation is a zero mean white Gaussian input and the
output is corrupted by additive measurement noise. In-
put output crosscumulants up to fifth order are em-
ployed and the identification problem of the unknown
model parameters is reduced to the solution of succesive
linear systems of equations that are solved iteratively.
Simulation results are provided for different SNR’s illus-
trating the performance of the algorithm and confirming
the theoretical set up.
1 INTRODUCTION
Identification of nonlinear discrete time input output
models plays an increasingly central role in today’s ap-
plications in many different areas of science and engi-
neering [1],[2]. Realistic situations where nonlinearities
are present and must be taken into account, include
communication channels, control of idustrial processes,
time series analysis and others. The Volterra functional
representation is a useful approach to model the above
type of systems. The nonparametric identification case
has been treated extensively in [10],[11],[12], and closed
form crosscumulant solutions are provided. In this work
we are concerned with the parametric identification of a
special class of polynomial models [3], the input out-
put quadratic models, generalizing previous work on
identification of bilinear systems [4]. In contrast to
the existing methods which depend on adaptive least
squares techniques [5],[6],[7] we have developed a cumu-
land based algorithm that is capable of directly com-
puting the uknown model coefficients. The approach
reduces the identification problem to the solution of lin-
ear systems of equations that are computed iteratively
at each step of the estimation process.
2 PROBLEM STATEMENT
The plant we seek to identify is of the following single
input single output quadratic type :
z(n) =
k1
i=1
aiz(n − i) +
k2
i=0
biu(n − i)+
k3
i=1
k3
j=i
Aijz(n−i)z(n−j)+
k4
i=0
k4
j=i
Biju(n−i)u(n−j)+
+
k5
i=1
k5
j=1
cijz(n − i)u(n − j)
and
y(n) = z(n) + η(n) (1)
The input u(n) is a stationary zero mean white Gaussian
process and the measurement noise η(n) is zero mean
white and independent of the input. It is assumed that
B00 = 0, B0k4
= 0. The p-th order cumulant sequence
of a stationary random signal x(k) [8],[9] is denoted by:
cpx(k1, k2, . . . , kp−1) =
cum[x(n), x(n − k1), x(n − k2) . . . , x(n − kp−1)]
Since the input is a stationary zero mean white Gaussian
random process:
c2u(n) = γ2δ(n) =
γ2 if n = 0
0 otherwise
and cku(n1, n2, . . . , nk−1) = 0 for all k > 2. Moreover
cum[y(n), y(k), u(l)] = cum[z(n), z(k), u(l)]
It is assumed that both input and output sequences
are stationary. To compute the coefficients of the
quadratic model sufficient crosscumulant information
between the output and copies of the input is generated
up to fifth order and in particular cyu(l), cyuu(l1, l2),
cyuuu(l1, l2, l3), cyuuuu(l1, l2, l3, l4) which are evaluated
on specific cumulant slices. The Leonov-Shiryaev the-
orem is repeatedly applied to arrive at the appropriate
relations.
It is remarked that the input output quadratic type
model admits a Volterra series expansion of the following
form:
y(n) =
∞
k1=0
h1(k1)u(n − k1)+
+
∞
k1=0
∞
k2=0
h2(k1, k2)u(n − k1)u(n − k2)+
+
∞
k1=1
∞
k2=1
∞
k3=1
h3(k1, k2, k3)u(n−k1)u(n−k2)u(n−k3)
+ · · · + η(n)
2.1 A useful lemma
The above Volterra representation is a key ingredient
to prove the following lemma which establishes some
causality properties that are essential for the derivation
of the algorithm.
Lemma
cyu(l) = 0, l < 0
cyuu(l1, l2) = 0, l1 < 0, or l2 < 0
cyuuu(l1, l2, l3) = 0 l1 ≤ 0, or l2 ≤ 0, or l3 ≤ 0
cyuuuu(l1, l2, l3, l4) = 0 l1 ≤ 0, or l2 ≤ 0,
or l3 ≤ 0, or l4 ≤ 0
3 IDENTIFICATION STEPS
Step 1. Computation of b0, B0l, 0 ≤ l ≤ k4
This is the initial step which is realized only in the
first iteration.
b0 =
cyu(0)
γ2
, B00 =
cyuu(0, 0)
2γ2
2
B0l =
cyuu(0, l)
γ2
2
1 ≤ l ≤ k4 (2)
The above equations correspond to the linear system
(R1, Q1) where R1 is a diagonal matrix coefficient.
From the initial model assumptions cyuu(0, 0) = 0 and
cyuu(0, k4) = 0 since B00 = 0 and B0k4
= 0. These con-
ditions constitute sufficient persistence excitation con-
ditions for the identification algorithm.
Step 2. Computation of Al1l2
, 1 ≤ l1 ≤ k3, l1 ≤
l2 ≤ k3
Step 2 is common to all iterations. In fact iterations
are indexed by l1. Thus the first iteration engages step
2 to determine the first row A1l2
, the second iteration in
step 2 computes the second row A2l2
and so forth. The
linear system R2(l1)x(l1) = Q2(l1) is generated where
R2(l1) is columnwise
R2(l1) = r1 r2 . . . r3
r1 is the column





6c2
yuu(0, 0)
2cyuu(0, 0)cyuu(1, 1) + 4c2
yuu(0, 1)
...
2cyuu(0, 0)cyuu(k3 − l1, k3 − l1) + 4c2
yuu(0, k3 − l1)





r2, r3 are respectively, the columns





0
c2
yuu(0, 0)
...
cyuu(0, 0)cyuu(k3 − l1, k3 − l1)





,





0
0
...
c2
yuu(0, 0)





and
x(l1) = (Al1l1
Al1l1+1 . . . Al1k3
)
T
Q2(l1) = (ql1
ql1+1 . . . qk3
)
T
(3)
For fixed l1, the right hand side Q2(l1) =
cyuuuu(l1, l1, l2, l2) − L4(l1, l1, l2, l2) is a known column
vector. L4(l1, l1, l2, l2) is a function of crosscumulants
and previously computed parameters.
Step 3. Computation of cl1l2
, 1 ≤ l1 ≤ k5, l1 ≤ l2 ≤
k5
As before step 3 enters all iterations indexed by l1.
The upper triangular part of C is determined via a set of
linear systems having the same triangular matrix. The
triangular system R3(l1)x(l1) = Q3(l1) is generated and
R3(l1) has the form





3γ2cyuu(0, 0) 0 . . . 0
2γ2cyuu(0, 1) γ2cyuu(0, 0) . . . 0
...
...
...
...
2γ2cyuu(0, k5 − l1) 0 . . . γ2cyuu(0, 0)





with
x(l1) = (cl1l1
cl1l1+1 . . . cl1k5
)
T
Q3(l1) = (ql1
ql1+1 . . . qk5
)
T
where, for fixed l1, the right hand side
Q3(l1) = cyuuu(l1, l1, l2) − L3(l1, l1, l2) (4)
is a known column vector. L3(l1, l1, l2) is a function of
crosscumulants and previously computed parameters.
Step 4. Computation of cl2l1
, 1 ≤ l1 ≤ k5, l1 < l2 ≤
k5
Iterations are indexed by l1 and provide the columns
of C succesively. To determine the lower triangular part
of C, the linear system R4(l1)x(l1) = Q4(l1) is generated
where
R4(l1) = r1 r2 . . . r3
The column vector r1 is





γ2cyuu(0, 0)
γ2cyuu(1, 1)
...
γ2cyuu(k5 − l1 − 1, k5 − l1 − 1)





r2, r3 are respectively the columns





0
γ2cyuu(0, 0)
...
γ2cyuu(k5 − l1 − 2, k5 − l1 − 2)





,





0
0
...
γ2cyuu(0, 0)





with
x(l1) = (cl1+1l1
cl1+2l1
. . . ck5l1
)
T
Q4(l1) = (ql1+1 ql1+2 . . . qk5
)
T
(5)
For fixed l1, Q4(l1) = cyuuu(l1, l2, l2) − L3(l1, l2, l2) is a
known column vector.
Step 5. Computation of al1
and Bl1l2
, 1 ≤ l1 ≤
k4, l1 ≤ l2 ≤ k4
Specific crosscumulant expressions are evaluated on
the above specified slices as well as at the points (l1, k4 +
l1). The block of a is determined in conjunction with
the upper half part of B through a series of systems
R5(l1)x(l1) = Q5(l1) where:
R5(l1) =







cyuu(0, k4) 0 0 . . . 0
cyuu(0, 0) 2γ2
2 0 . . . 0
cyuu(0, 1) 0 γ2
2 . . . 0
...
...
...
...
...
cyuu(0, k4 − l1) 0 0 . . . γ2
2







x(l1) = (al1
Bl1l1
Bl1l1+1 . . . Bl1k4
)
T
Q5(l1) = (p ql1
ql1+1 . . . qk4
)
T
(6)
where for fixed l1, Q5(l1) = cyuu(l1, l2) − L2(l1, l2) is a
known column vector with
p = cyuu(l1, k4 + l1) − L2(l1, k4 + l1)
and
qm = cyuu(l1, m) − L2(l1, m), l1 ≤ m ≤ k4
Step 6. Computation of bl, 1 ≤ l ≤ k2
The bl coefficients are directly computed from
bl =
1
γ2
[cyu(l) − L1(l)]
As in previous steps L1(l) is a function of crosscumulants
and previously determined coefficients. Clearly R6 =
γ2I. The description of the algorithm is complete.
4 SIMULATION RESULTS
Consider the following input output quadratic model:
z(n) = a1z(n − 1) + b0u(n) +
2
i=1
A1jz(n − 1)z(n − j)
+
1
i=0
1
j=i
Biju(n−i)u(n−j)+
2
i=1
2
j=1
cijz(n−i)u(n−j)
and y(n) = z(n) + η(n) with B00 = 0 and B01 = 0.
Simulation results for eleven coefficients are summa-
rized in the following tables for two SNR’s at 10dB and
30dB.
Table 1: N=40,000 samples, M=500 runs, Gaussian
white input
Parameters True Value Mean Variance
SNR=30dB
a1 0.1 0.0989 9.60 × 10−3
b0 1 0.9999 1.08 × 10−4
B00 1 1.0001 2.45 × 10−4
B01 -0.5 -0.4985 4.47 × 10−4
B11 -0.2 -0.1994 8.20 × 10−3
A11 -0.01 -0.0099 8.75 × 10−5
A12 0.05 0.0504 3.88 × 10−4
c11 0.15 0.1494 4.82 × 10−4
c12 -0.2 -0.2002 7.45 × 10−4
c21 -0.1 -0.1008 6.02 × 10−4
c22 -0.13 -0.1308 2.92 × 10−4
Table 2: N=40,000 samples, M=500 runs, Gaussian
white input
Parameters True Value Mean Variance
SNR=10dB
a1 0.1 0.1033 1.07 × 10−2
b0 1 1.0004 1.21 × 10−4
B00 1 0.9998 2.17 × 10−4
B01 -0.5 -0.4994 4.54 × 10−4
B11 -0.2 -0.2021 9.0 × 10−3
A11 -0.01 -0.0104 8.01 × 10−5
A12 0.05 0.0497 3.56 × 10−4
c11 0.15 0.1504 5.00 × 10−4
c12 -0.2 -0.1984 8.18 × 10−4
c21 -0.1 -0.1005 5.56 × 10−4
c22 -0.13 -0.1301 2.98 × 10−4
The insensitivity of the algorithm to independent
measurement noise is evident.
Table 3: N=5,000 samples, M=500 runs, Gaussian white
input
Parameters True Value Mean Variance
SNR=30dB
a1 0.1 0.0892 7.91 × 10−2
b0 1 0.9985 9.14 × 10−4
B00 1 0.9999 2.10 × 10−3
B01 -0.5 -0.5034 3.47 × 10−3
B11 -0.2 -0.1895 5.82 × 10−2
A11 -0.01 -0.0111 7.34 × 10−4
A12 0.05 0.0534 2.80 × 10−3
c11 0.15 0.1525 3.70 × 10−3
c12 -0.2 -0.2042 6.00 × 10−3
c21 -0.1 -0.1062 4.40 × 10−3
c22 -0.13 -0.1350 4.01 × 10−3
Table 4: N=5,000 samples, M=500 runs, Gaussian white
input
Parameters True Value Mean Variance
SNR=10dB
a1 0.1 0.1043 8.5 × 10−2
b0 1 1.0002 9.49 × 10−4
B00 1 1.0007 2.10 × 10−3
B01 -0.5 -0.5012 3.50 × 10−3
B11 -0.2 -0.2015 7.18 × 10−2
A11 -0.01 -0.0117 6.35 × 10−4
A12 0.05 0.0484 3.20 × 10−3
c11 0.15 0.1526 3.90 × 10−3
c12 -0.2 -0.1974 6.20 × 10−3
c21 -0.1 -0.1005 5.10 × 10−3
c22 -0.13 -0.1303 2.80 × 10−3
5 Conclusion
Identification of quadratic models has been addressed in
this paper. An algorithm based on input output cross-
cumulant information up to order 5 has been developed
using zero mean white Gaussian input. The proposed
scheme is an exact estimation method and yields the
desired parameters via a series of nonsingular triangu-
lar linear systems. We were able to directly identify the
unknown coefficients by isolating each one separately,
using appropriate input shifts in the crosscumulant ex-
pressions and thus forming linear systems of equations of
lower triangular structure. Simulations were performed
for different SNR’s at 30dB and 10dB and for differ-
ent sample lengths. The overall performance of the al-
gorithm was quite satisfactory in the presence of inde-
pendent measurement noise, confirming the theoretical
development.
Aknowledgment This work was supported by the
General Secreteriat of Research and Technology, Athens,
Greece.
References
[1] S.A. Billings, “Identification of Nonlinear Systems
- A Survey”, IEEE Proc., vol. 127, part D, no. 6,
pp. 272-285, November 1980.
[2] V. J. Mathews, “Polynomial Signal Processing”,
John Wiley, in press.
[3] S. Chen and S. A. Billings, “Representations of
non-linear systems:the NARMAX model”, Interna-
tional Journal of Control, vol. 49, no. 3, pp. 1013-
1032.
[4] V. Tsoulkas, P. Koukoulas and N. Kalouptsidis,
“ Identification of Input Output Bilinear Systems
using Cumulants ”, Proceedings of the 6th IEEE
ICECS’99, Pafos, Cyprus, September 5-8, 1999,
vol. 2, pp. 1105-1108.
[5] M. Syed and V. J. Mathews, “QR-Decomposition
based algorithms for adaptive Volterra filtering”,
IEEE Trans. on Circuits and Systems-I, vol.40,
no.6, pp.372-381, June 1993.
[6] J. Lee and V. J. Mathews, “A fast recursive least
squares adaptive second order Volterra filter and
its performance analysis”, IEEE Trans. on Signal
Processing, vol.41, no.3, March 1993.
[7] M. Syed and V. J. Mathews, “Lattice algorithms
for recursive least squares adaptive second order
Volterra filtering”, IEEE Trans. on CAS-II, vol.41,
no.3, pp.202-214, March 1994.
[8] V.P. Leonov and A.N. Shiryaev, “On a Method
of Calculation of Semi-Invariants”, Theory Prob.
Appl., vol. 4, pp.319-329, 1959.
[9] N. Kalouptsidis, Signal Processing Systems: The-
ory and Design, John Wiley, 1997
[10] P. Koukoulas and N. Kalouptsidis, “Nonlinear Sys-
tem Identification using Gaussian Inputs”, IEEE
Trans. on Signal Processing, vol. SP-43, pp. 1831-
1841, August 1995.
[11] P. Koukoulas, V. Tsoulkas, G. Gatt and N.
Kalouptsidis, “Identification of Discrete Time
Volterra Series using Higher Order Statistics”,
Preprints of the first Nonlinear Control Network
(NCN) Pedagogical School, pp.149-201, Athens,
Greece, Sept. 6-10,1999.
[12] M. Schetzen, The Volterra and Wiener Theories of
Nonlinear Systems, New York:Wiley 1980.

Contenu connexe

Tendances

Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)Amr Mohamed
 
Ch 02 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 02 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 02 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 02 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Chyi-Tsong Chen
 
Engineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answersEngineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answersMzr Zia
 
Introduction to Information Technology Lecture 2
Introduction to Information Technology Lecture 2Introduction to Information Technology Lecture 2
Introduction to Information Technology Lecture 2MikeCrea
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functionsTarun Gehlot
 
Engg. math 1 question bank by mohammad imran
Engg. math  1 question bank by mohammad imran Engg. math  1 question bank by mohammad imran
Engg. math 1 question bank by mohammad imran Mohammad Imran
 

Tendances (15)

Integration
IntegrationIntegration
Integration
 
Calculo integral - Larson
Calculo integral - LarsonCalculo integral - Larson
Calculo integral - Larson
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
 
Ch 02 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 02 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 02 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 02 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
 
Correlation & regression uwsb
Correlation & regression   uwsbCorrelation & regression   uwsb
Correlation & regression uwsb
 
Engineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answersEngineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answers
 
Introduction to Information Technology Lecture 2
Introduction to Information Technology Lecture 2Introduction to Information Technology Lecture 2
Introduction to Information Technology Lecture 2
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
 
Ch08 3
Ch08 3Ch08 3
Ch08 3
 
Engg. math 1 question bank by mohammad imran
Engg. math  1 question bank by mohammad imran Engg. math  1 question bank by mohammad imran
Engg. math 1 question bank by mohammad imran
 
Ch08 1
Ch08 1Ch08 1
Ch08 1
 
Bender schmidt method
Bender schmidt methodBender schmidt method
Bender schmidt method
 
Correlation & regression
Correlation & regression Correlation & regression
Correlation & regression
 
Correlation & regression (2)
Correlation & regression (2)Correlation & regression (2)
Correlation & regression (2)
 
Respose surface methods
Respose surface methodsRespose surface methods
Respose surface methods
 

En vedette

Proekt rozporyadzhennya evrovidenie2
Proekt rozporyadzhennya evrovidenie2Proekt rozporyadzhennya evrovidenie2
Proekt rozporyadzhennya evrovidenie2Michael Yudkovich
 
Decentralization newsletter - May 2016
Decentralization newsletter - May 2016Decentralization newsletter - May 2016
Decentralization newsletter - May 2016Oleksandr Virnyk
 
Vendre'tips utiliser pinterest - juillet 2013
Vendre'tips   utiliser pinterest - juillet 2013Vendre'tips   utiliser pinterest - juillet 2013
Vendre'tips utiliser pinterest - juillet 2013Lily G
 
Decentralization newsletter October
Decentralization newsletter OctoberDecentralization newsletter October
Decentralization newsletter OctoberOleksandr Virnyk
 
Vendre'tips améliorer son profil linkedIn - mars 2013
Vendre'tips   améliorer son profil linkedIn - mars 2013Vendre'tips   améliorer son profil linkedIn - mars 2013
Vendre'tips améliorer son profil linkedIn - mars 2013Lily G
 
Risque securite svt 2015
Risque securite svt 2015Risque securite svt 2015
Risque securite svt 2015vguili
 
Résultats enquête de satisfaction Repères décembre 2012
Résultats enquête de satisfaction Repères décembre 2012Résultats enquête de satisfaction Repères décembre 2012
Résultats enquête de satisfaction Repères décembre 2012François Abiven
 
Cours sécurité maintenance mécanique
Cours sécurité maintenance mécanique Cours sécurité maintenance mécanique
Cours sécurité maintenance mécanique VILLATTE
 
Vensim presentation modelisation-pinsons
Vensim   presentation modelisation-pinsonsVensim   presentation modelisation-pinsons
Vensim presentation modelisation-pinsonsvguili
 
Diaporama3 tâche complexe jd-ijan2011
Diaporama3 tâche complexe jd-ijan2011Diaporama3 tâche complexe jd-ijan2011
Diaporama3 tâche complexe jd-ijan2011vguili
 
Long Read в обучении. Мирослав Боцула
Long Read в обучении. Мирослав БоцулаLong Read в обучении. Мирослав Боцула
Long Read в обучении. Мирослав БоцулаCorporate_E-Learning_UA
 
Презентація Юрія Ганущака, директора Інституту розвитку територій на тему 'Де...
Презентація Юрія Ганущака, директора Інституту розвитку територій на тему 'Де...Презентація Юрія Ганущака, директора Інституту розвитку територій на тему 'Де...
Презентація Юрія Ганущака, директора Інституту розвитку територій на тему 'Де...tamara_uaror
 
Evaluation de l’activité bactéricide et bactériostatique des huiles essentiel...
Evaluation de l’activité bactéricide et bactériostatique des huiles essentiel...Evaluation de l’activité bactéricide et bactériostatique des huiles essentiel...
Evaluation de l’activité bactéricide et bactériostatique des huiles essentiel...Abdesselam Zhiri
 
#PortraitDeStartuper #6 - Lunii - Maëlle Chassard
#PortraitDeStartuper #6 - Lunii - Maëlle Chassard#PortraitDeStartuper #6 - Lunii - Maëlle Chassard
#PortraitDeStartuper #6 - Lunii - Maëlle ChassardSébastien Bourguignon
 

En vedette (19)

Proekt rozporyadzhennya evrovidenie2
Proekt rozporyadzhennya evrovidenie2Proekt rozporyadzhennya evrovidenie2
Proekt rozporyadzhennya evrovidenie2
 
Presentation MSc 2
Presentation MSc 2Presentation MSc 2
Presentation MSc 2
 
Decentralization newsletter - May 2016
Decentralization newsletter - May 2016Decentralization newsletter - May 2016
Decentralization newsletter - May 2016
 
Scan nbu
Scan nbuScan nbu
Scan nbu
 
Vendre'tips utiliser pinterest - juillet 2013
Vendre'tips   utiliser pinterest - juillet 2013Vendre'tips   utiliser pinterest - juillet 2013
Vendre'tips utiliser pinterest - juillet 2013
 
Decentralization newsletter October
Decentralization newsletter OctoberDecentralization newsletter October
Decentralization newsletter October
 
Фінансовий звіт партії "Наш край" за ІІІ квартал
Фінансовий звіт партії "Наш край" за ІІІ кварталФінансовий звіт партії "Наш край" за ІІІ квартал
Фінансовий звіт партії "Наш край" за ІІІ квартал
 
Vendre'tips améliorer son profil linkedIn - mars 2013
Vendre'tips   améliorer son profil linkedIn - mars 2013Vendre'tips   améliorer son profil linkedIn - mars 2013
Vendre'tips améliorer son profil linkedIn - mars 2013
 
Risque securite svt 2015
Risque securite svt 2015Risque securite svt 2015
Risque securite svt 2015
 
Résultats enquête de satisfaction Repères décembre 2012
Résultats enquête de satisfaction Repères décembre 2012Résultats enquête de satisfaction Repères décembre 2012
Résultats enquête de satisfaction Repères décembre 2012
 
Cours sécurité maintenance mécanique
Cours sécurité maintenance mécanique Cours sécurité maintenance mécanique
Cours sécurité maintenance mécanique
 
Vensim presentation modelisation-pinsons
Vensim   presentation modelisation-pinsonsVensim   presentation modelisation-pinsons
Vensim presentation modelisation-pinsons
 
Diaporama3 tâche complexe jd-ijan2011
Diaporama3 tâche complexe jd-ijan2011Diaporama3 tâche complexe jd-ijan2011
Diaporama3 tâche complexe jd-ijan2011
 
Long Read в обучении. Мирослав Боцула
Long Read в обучении. Мирослав БоцулаLong Read в обучении. Мирослав Боцула
Long Read в обучении. Мирослав Боцула
 
Презентація Юрія Ганущака, директора Інституту розвитку територій на тему 'Де...
Презентація Юрія Ганущака, директора Інституту розвитку територій на тему 'Де...Презентація Юрія Ганущака, директора Інституту розвитку територій на тему 'Де...
Презентація Юрія Ганущака, директора Інституту розвитку територій на тему 'Де...
 
Evaluation de l’activité bactéricide et bactériostatique des huiles essentiel...
Evaluation de l’activité bactéricide et bactériostatique des huiles essentiel...Evaluation de l’activité bactéricide et bactériostatique des huiles essentiel...
Evaluation de l’activité bactéricide et bactériostatique des huiles essentiel...
 
Thématiques French Tech Côte d'Azur
Thématiques French Tech Côte d'AzurThématiques French Tech Côte d'Azur
Thématiques French Tech Côte d'Azur
 
#PortraitDeStartuper #6 - Lunii - Maëlle Chassard
#PortraitDeStartuper #6 - Lunii - Maëlle Chassard#PortraitDeStartuper #6 - Lunii - Maëlle Chassard
#PortraitDeStartuper #6 - Lunii - Maëlle Chassard
 
Agile testing
Agile testingAgile testing
Agile testing
 

Similaire à tsoulkas_cumulants

Functional Regression Analysis
Functional Regression AnalysisFunctional Regression Analysis
Functional Regression AnalysisNeuroMat
 
System Identification Based on Hammerstein Models Using Cubic Splines
System Identification Based on Hammerstein Models Using Cubic SplinesSystem Identification Based on Hammerstein Models Using Cubic Splines
System Identification Based on Hammerstein Models Using Cubic Splinesa3labdsp
 
Computer organiztion3
Computer organiztion3Computer organiztion3
Computer organiztion3Umang Gupta
 
EC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPER
EC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPEREC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPER
EC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPERVISHNUPRABHANKAIMAL
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinantsKum Visal
 
Count-Distinct Problem
Count-Distinct ProblemCount-Distinct Problem
Count-Distinct ProblemKai Zhang
 
Maneuvering target track prediction model
Maneuvering target track prediction modelManeuvering target track prediction model
Maneuvering target track prediction modelIJCI JOURNAL
 
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdf
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdfObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdf
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdfMohammedArish6
 
Add math may june 2016 p1
Add math may june 2016 p1Add math may june 2016 p1
Add math may june 2016 p1Don Cunningham
 
The Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachThe Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachYang Hong
 
Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05Charlton Inao
 
Paper computer
Paper computerPaper computer
Paper computerbikram ...
 

Similaire à tsoulkas_cumulants (20)

Section9 stochastic
Section9 stochasticSection9 stochastic
Section9 stochastic
 
AsymptoticAnalysis.ppt
AsymptoticAnalysis.pptAsymptoticAnalysis.ppt
AsymptoticAnalysis.ppt
 
Control assignment#2
Control assignment#2Control assignment#2
Control assignment#2
 
Functional Regression Analysis
Functional Regression AnalysisFunctional Regression Analysis
Functional Regression Analysis
 
System Identification Based on Hammerstein Models Using Cubic Splines
System Identification Based on Hammerstein Models Using Cubic SplinesSystem Identification Based on Hammerstein Models Using Cubic Splines
System Identification Based on Hammerstein Models Using Cubic Splines
 
3.pdf
3.pdf3.pdf
3.pdf
 
Digitalcontrolsystems
DigitalcontrolsystemsDigitalcontrolsystems
Digitalcontrolsystems
 
Computer organiztion3
Computer organiztion3Computer organiztion3
Computer organiztion3
 
EC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPER
EC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPEREC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPER
EC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPER
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 
4th Semester CS / IS (2013-June) Question Papers
4th Semester CS / IS (2013-June) Question Papers 4th Semester CS / IS (2013-June) Question Papers
4th Semester CS / IS (2013-June) Question Papers
 
Count-Distinct Problem
Count-Distinct ProblemCount-Distinct Problem
Count-Distinct Problem
 
Maneuvering target track prediction model
Maneuvering target track prediction modelManeuvering target track prediction model
Maneuvering target track prediction model
 
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdf
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdfObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdf
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdf
 
Add math may june 2016 p1
Add math may june 2016 p1Add math may june 2016 p1
Add math may june 2016 p1
 
The Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachThe Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space Approach
 
Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05
 
Digital Signal Processing Assignment Help
Digital Signal Processing Assignment HelpDigital Signal Processing Assignment Help
Digital Signal Processing Assignment Help
 
05_AJMS_332_21.pdf
05_AJMS_332_21.pdf05_AJMS_332_21.pdf
05_AJMS_332_21.pdf
 
Paper computer
Paper computerPaper computer
Paper computer
 

tsoulkas_cumulants

  • 1. A CUMULANT BASED ALGORITHM FOR THE IDENTIFICATION OF INPUT OUTPUT QUADRATIC SYSTEMS P. Koukoulas V. Tsoulkas N. Kalouptsidis Dept. of Informatics, Division of Communications and Signal Processing Panepistimiopolis, 157 71, Athens, GREECE Tel: +301 7275304 fax: +301 7275601 e-mail: kalou@di.uoa.gr, vtsoulk@cc.uoa.gr ABSTRACT A parameter estimation algorithm is developed for the identification of an input output quadratic model. The excitation is a zero mean white Gaussian input and the output is corrupted by additive measurement noise. In- put output crosscumulants up to fifth order are em- ployed and the identification problem of the unknown model parameters is reduced to the solution of succesive linear systems of equations that are solved iteratively. Simulation results are provided for different SNR’s illus- trating the performance of the algorithm and confirming the theoretical set up. 1 INTRODUCTION Identification of nonlinear discrete time input output models plays an increasingly central role in today’s ap- plications in many different areas of science and engi- neering [1],[2]. Realistic situations where nonlinearities are present and must be taken into account, include communication channels, control of idustrial processes, time series analysis and others. The Volterra functional representation is a useful approach to model the above type of systems. The nonparametric identification case has been treated extensively in [10],[11],[12], and closed form crosscumulant solutions are provided. In this work we are concerned with the parametric identification of a special class of polynomial models [3], the input out- put quadratic models, generalizing previous work on identification of bilinear systems [4]. In contrast to the existing methods which depend on adaptive least squares techniques [5],[6],[7] we have developed a cumu- land based algorithm that is capable of directly com- puting the uknown model coefficients. The approach reduces the identification problem to the solution of lin- ear systems of equations that are computed iteratively at each step of the estimation process. 2 PROBLEM STATEMENT The plant we seek to identify is of the following single input single output quadratic type : z(n) = k1 i=1 aiz(n − i) + k2 i=0 biu(n − i)+ k3 i=1 k3 j=i Aijz(n−i)z(n−j)+ k4 i=0 k4 j=i Biju(n−i)u(n−j)+ + k5 i=1 k5 j=1 cijz(n − i)u(n − j) and y(n) = z(n) + η(n) (1) The input u(n) is a stationary zero mean white Gaussian process and the measurement noise η(n) is zero mean white and independent of the input. It is assumed that B00 = 0, B0k4 = 0. The p-th order cumulant sequence of a stationary random signal x(k) [8],[9] is denoted by: cpx(k1, k2, . . . , kp−1) = cum[x(n), x(n − k1), x(n − k2) . . . , x(n − kp−1)] Since the input is a stationary zero mean white Gaussian random process: c2u(n) = γ2δ(n) = γ2 if n = 0 0 otherwise and cku(n1, n2, . . . , nk−1) = 0 for all k > 2. Moreover cum[y(n), y(k), u(l)] = cum[z(n), z(k), u(l)] It is assumed that both input and output sequences are stationary. To compute the coefficients of the quadratic model sufficient crosscumulant information between the output and copies of the input is generated up to fifth order and in particular cyu(l), cyuu(l1, l2), cyuuu(l1, l2, l3), cyuuuu(l1, l2, l3, l4) which are evaluated on specific cumulant slices. The Leonov-Shiryaev the- orem is repeatedly applied to arrive at the appropriate relations.
  • 2. It is remarked that the input output quadratic type model admits a Volterra series expansion of the following form: y(n) = ∞ k1=0 h1(k1)u(n − k1)+ + ∞ k1=0 ∞ k2=0 h2(k1, k2)u(n − k1)u(n − k2)+ + ∞ k1=1 ∞ k2=1 ∞ k3=1 h3(k1, k2, k3)u(n−k1)u(n−k2)u(n−k3) + · · · + η(n) 2.1 A useful lemma The above Volterra representation is a key ingredient to prove the following lemma which establishes some causality properties that are essential for the derivation of the algorithm. Lemma cyu(l) = 0, l < 0 cyuu(l1, l2) = 0, l1 < 0, or l2 < 0 cyuuu(l1, l2, l3) = 0 l1 ≤ 0, or l2 ≤ 0, or l3 ≤ 0 cyuuuu(l1, l2, l3, l4) = 0 l1 ≤ 0, or l2 ≤ 0, or l3 ≤ 0, or l4 ≤ 0 3 IDENTIFICATION STEPS Step 1. Computation of b0, B0l, 0 ≤ l ≤ k4 This is the initial step which is realized only in the first iteration. b0 = cyu(0) γ2 , B00 = cyuu(0, 0) 2γ2 2 B0l = cyuu(0, l) γ2 2 1 ≤ l ≤ k4 (2) The above equations correspond to the linear system (R1, Q1) where R1 is a diagonal matrix coefficient. From the initial model assumptions cyuu(0, 0) = 0 and cyuu(0, k4) = 0 since B00 = 0 and B0k4 = 0. These con- ditions constitute sufficient persistence excitation con- ditions for the identification algorithm. Step 2. Computation of Al1l2 , 1 ≤ l1 ≤ k3, l1 ≤ l2 ≤ k3 Step 2 is common to all iterations. In fact iterations are indexed by l1. Thus the first iteration engages step 2 to determine the first row A1l2 , the second iteration in step 2 computes the second row A2l2 and so forth. The linear system R2(l1)x(l1) = Q2(l1) is generated where R2(l1) is columnwise R2(l1) = r1 r2 . . . r3 r1 is the column      6c2 yuu(0, 0) 2cyuu(0, 0)cyuu(1, 1) + 4c2 yuu(0, 1) ... 2cyuu(0, 0)cyuu(k3 − l1, k3 − l1) + 4c2 yuu(0, k3 − l1)      r2, r3 are respectively, the columns      0 c2 yuu(0, 0) ... cyuu(0, 0)cyuu(k3 − l1, k3 − l1)      ,      0 0 ... c2 yuu(0, 0)      and x(l1) = (Al1l1 Al1l1+1 . . . Al1k3 ) T Q2(l1) = (ql1 ql1+1 . . . qk3 ) T (3) For fixed l1, the right hand side Q2(l1) = cyuuuu(l1, l1, l2, l2) − L4(l1, l1, l2, l2) is a known column vector. L4(l1, l1, l2, l2) is a function of crosscumulants and previously computed parameters. Step 3. Computation of cl1l2 , 1 ≤ l1 ≤ k5, l1 ≤ l2 ≤ k5 As before step 3 enters all iterations indexed by l1. The upper triangular part of C is determined via a set of linear systems having the same triangular matrix. The triangular system R3(l1)x(l1) = Q3(l1) is generated and R3(l1) has the form      3γ2cyuu(0, 0) 0 . . . 0 2γ2cyuu(0, 1) γ2cyuu(0, 0) . . . 0 ... ... ... ... 2γ2cyuu(0, k5 − l1) 0 . . . γ2cyuu(0, 0)      with x(l1) = (cl1l1 cl1l1+1 . . . cl1k5 ) T Q3(l1) = (ql1 ql1+1 . . . qk5 ) T where, for fixed l1, the right hand side Q3(l1) = cyuuu(l1, l1, l2) − L3(l1, l1, l2) (4) is a known column vector. L3(l1, l1, l2) is a function of crosscumulants and previously computed parameters. Step 4. Computation of cl2l1 , 1 ≤ l1 ≤ k5, l1 < l2 ≤ k5 Iterations are indexed by l1 and provide the columns of C succesively. To determine the lower triangular part of C, the linear system R4(l1)x(l1) = Q4(l1) is generated where R4(l1) = r1 r2 . . . r3
  • 3. The column vector r1 is      γ2cyuu(0, 0) γ2cyuu(1, 1) ... γ2cyuu(k5 − l1 − 1, k5 − l1 − 1)      r2, r3 are respectively the columns      0 γ2cyuu(0, 0) ... γ2cyuu(k5 − l1 − 2, k5 − l1 − 2)      ,      0 0 ... γ2cyuu(0, 0)      with x(l1) = (cl1+1l1 cl1+2l1 . . . ck5l1 ) T Q4(l1) = (ql1+1 ql1+2 . . . qk5 ) T (5) For fixed l1, Q4(l1) = cyuuu(l1, l2, l2) − L3(l1, l2, l2) is a known column vector. Step 5. Computation of al1 and Bl1l2 , 1 ≤ l1 ≤ k4, l1 ≤ l2 ≤ k4 Specific crosscumulant expressions are evaluated on the above specified slices as well as at the points (l1, k4 + l1). The block of a is determined in conjunction with the upper half part of B through a series of systems R5(l1)x(l1) = Q5(l1) where: R5(l1) =        cyuu(0, k4) 0 0 . . . 0 cyuu(0, 0) 2γ2 2 0 . . . 0 cyuu(0, 1) 0 γ2 2 . . . 0 ... ... ... ... ... cyuu(0, k4 − l1) 0 0 . . . γ2 2        x(l1) = (al1 Bl1l1 Bl1l1+1 . . . Bl1k4 ) T Q5(l1) = (p ql1 ql1+1 . . . qk4 ) T (6) where for fixed l1, Q5(l1) = cyuu(l1, l2) − L2(l1, l2) is a known column vector with p = cyuu(l1, k4 + l1) − L2(l1, k4 + l1) and qm = cyuu(l1, m) − L2(l1, m), l1 ≤ m ≤ k4 Step 6. Computation of bl, 1 ≤ l ≤ k2 The bl coefficients are directly computed from bl = 1 γ2 [cyu(l) − L1(l)] As in previous steps L1(l) is a function of crosscumulants and previously determined coefficients. Clearly R6 = γ2I. The description of the algorithm is complete. 4 SIMULATION RESULTS Consider the following input output quadratic model: z(n) = a1z(n − 1) + b0u(n) + 2 i=1 A1jz(n − 1)z(n − j) + 1 i=0 1 j=i Biju(n−i)u(n−j)+ 2 i=1 2 j=1 cijz(n−i)u(n−j) and y(n) = z(n) + η(n) with B00 = 0 and B01 = 0. Simulation results for eleven coefficients are summa- rized in the following tables for two SNR’s at 10dB and 30dB. Table 1: N=40,000 samples, M=500 runs, Gaussian white input Parameters True Value Mean Variance SNR=30dB a1 0.1 0.0989 9.60 × 10−3 b0 1 0.9999 1.08 × 10−4 B00 1 1.0001 2.45 × 10−4 B01 -0.5 -0.4985 4.47 × 10−4 B11 -0.2 -0.1994 8.20 × 10−3 A11 -0.01 -0.0099 8.75 × 10−5 A12 0.05 0.0504 3.88 × 10−4 c11 0.15 0.1494 4.82 × 10−4 c12 -0.2 -0.2002 7.45 × 10−4 c21 -0.1 -0.1008 6.02 × 10−4 c22 -0.13 -0.1308 2.92 × 10−4 Table 2: N=40,000 samples, M=500 runs, Gaussian white input Parameters True Value Mean Variance SNR=10dB a1 0.1 0.1033 1.07 × 10−2 b0 1 1.0004 1.21 × 10−4 B00 1 0.9998 2.17 × 10−4 B01 -0.5 -0.4994 4.54 × 10−4 B11 -0.2 -0.2021 9.0 × 10−3 A11 -0.01 -0.0104 8.01 × 10−5 A12 0.05 0.0497 3.56 × 10−4 c11 0.15 0.1504 5.00 × 10−4 c12 -0.2 -0.1984 8.18 × 10−4 c21 -0.1 -0.1005 5.56 × 10−4 c22 -0.13 -0.1301 2.98 × 10−4 The insensitivity of the algorithm to independent measurement noise is evident.
  • 4. Table 3: N=5,000 samples, M=500 runs, Gaussian white input Parameters True Value Mean Variance SNR=30dB a1 0.1 0.0892 7.91 × 10−2 b0 1 0.9985 9.14 × 10−4 B00 1 0.9999 2.10 × 10−3 B01 -0.5 -0.5034 3.47 × 10−3 B11 -0.2 -0.1895 5.82 × 10−2 A11 -0.01 -0.0111 7.34 × 10−4 A12 0.05 0.0534 2.80 × 10−3 c11 0.15 0.1525 3.70 × 10−3 c12 -0.2 -0.2042 6.00 × 10−3 c21 -0.1 -0.1062 4.40 × 10−3 c22 -0.13 -0.1350 4.01 × 10−3 Table 4: N=5,000 samples, M=500 runs, Gaussian white input Parameters True Value Mean Variance SNR=10dB a1 0.1 0.1043 8.5 × 10−2 b0 1 1.0002 9.49 × 10−4 B00 1 1.0007 2.10 × 10−3 B01 -0.5 -0.5012 3.50 × 10−3 B11 -0.2 -0.2015 7.18 × 10−2 A11 -0.01 -0.0117 6.35 × 10−4 A12 0.05 0.0484 3.20 × 10−3 c11 0.15 0.1526 3.90 × 10−3 c12 -0.2 -0.1974 6.20 × 10−3 c21 -0.1 -0.1005 5.10 × 10−3 c22 -0.13 -0.1303 2.80 × 10−3 5 Conclusion Identification of quadratic models has been addressed in this paper. An algorithm based on input output cross- cumulant information up to order 5 has been developed using zero mean white Gaussian input. The proposed scheme is an exact estimation method and yields the desired parameters via a series of nonsingular triangu- lar linear systems. We were able to directly identify the unknown coefficients by isolating each one separately, using appropriate input shifts in the crosscumulant ex- pressions and thus forming linear systems of equations of lower triangular structure. Simulations were performed for different SNR’s at 30dB and 10dB and for differ- ent sample lengths. The overall performance of the al- gorithm was quite satisfactory in the presence of inde- pendent measurement noise, confirming the theoretical development. Aknowledgment This work was supported by the General Secreteriat of Research and Technology, Athens, Greece. References [1] S.A. Billings, “Identification of Nonlinear Systems - A Survey”, IEEE Proc., vol. 127, part D, no. 6, pp. 272-285, November 1980. [2] V. J. Mathews, “Polynomial Signal Processing”, John Wiley, in press. [3] S. Chen and S. A. Billings, “Representations of non-linear systems:the NARMAX model”, Interna- tional Journal of Control, vol. 49, no. 3, pp. 1013- 1032. [4] V. Tsoulkas, P. Koukoulas and N. Kalouptsidis, “ Identification of Input Output Bilinear Systems using Cumulants ”, Proceedings of the 6th IEEE ICECS’99, Pafos, Cyprus, September 5-8, 1999, vol. 2, pp. 1105-1108. [5] M. Syed and V. J. Mathews, “QR-Decomposition based algorithms for adaptive Volterra filtering”, IEEE Trans. on Circuits and Systems-I, vol.40, no.6, pp.372-381, June 1993. [6] J. Lee and V. J. Mathews, “A fast recursive least squares adaptive second order Volterra filter and its performance analysis”, IEEE Trans. on Signal Processing, vol.41, no.3, March 1993. [7] M. Syed and V. J. Mathews, “Lattice algorithms for recursive least squares adaptive second order Volterra filtering”, IEEE Trans. on CAS-II, vol.41, no.3, pp.202-214, March 1994. [8] V.P. Leonov and A.N. Shiryaev, “On a Method of Calculation of Semi-Invariants”, Theory Prob. Appl., vol. 4, pp.319-329, 1959. [9] N. Kalouptsidis, Signal Processing Systems: The- ory and Design, John Wiley, 1997 [10] P. Koukoulas and N. Kalouptsidis, “Nonlinear Sys- tem Identification using Gaussian Inputs”, IEEE Trans. on Signal Processing, vol. SP-43, pp. 1831- 1841, August 1995. [11] P. Koukoulas, V. Tsoulkas, G. Gatt and N. Kalouptsidis, “Identification of Discrete Time Volterra Series using Higher Order Statistics”, Preprints of the first Nonlinear Control Network (NCN) Pedagogical School, pp.149-201, Athens, Greece, Sept. 6-10,1999. [12] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems, New York:Wiley 1980.