SlideShare une entreprise Scribd logo
1  sur  7
Télécharger pour lire hors ligne
ELECTRICAL PROJECTS USING MATLAB/SIMULINK 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
Fuzzy-Logic-Controller-Based SEPIC Converter for 
Maximum Power Point Tracking 
ABSTRACT: 
This paper presents a fuzzy logic controller (FLC)-based single-ended primary-inductor 
converter (SEPIC) for maximum power point tracking (MPPT) operation of a photovoltaic (PV) 
system. The FLC proposed presents that the convergent distribution of the membership function 
offers faster response than the symmetrically distributed membership functions. The fuzzy 
controller for the SEPIC MPPT scheme shows high precision in current transition and keeps the 
voltage without any changes, in the variable-load case, represented in small steady-state error 
and small overshoot. The proposed scheme ensures optimal use of PV array and proves its 
efficacy in variable load conditions, unity, and lagging power factor at the inverter output (load) 
side. The real-time implementation of the MPPT SEPIC converter is done by a digital signal 
processor (DSP), i.e., TMS320F28335. The performance of the converter is tested in both 
simulation and experiment at different operating conditions. The performance of the proposed 
FLC-based MPPT operation of SEPIC converter is compared to that of the conventional 
proportional–integral (PI)-based SEPIC converter. The results show that the proposed FLC-based 
MPPT scheme for SEPIC can accurately track the reference signal and transfer power 
around 4.8% more than the conventional PI-based system. 
For Simulation Results of the project Contact Us 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
KEYWORDS: 
1. DC–DC power converters 
2. Fuzzy control 
3. Photovoltaic (PV) cells 
4. Proportional–integral (PI) controller
ELECTRICAL PROJECTS USING MATLAB/SIMULINK 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
For Simulation Results of the project Contact Us 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
5. Real-time system 
SOFTWARE: MATLAB/SIMULINK 
CIRCUIT DIAGRAM: 
Fig.1.Circuit diagram of the SEPIC converter for the FLC-based MPPT scheme. 
CONTROL SCHEME: 
Fig.2.Overall control scheme for the proposed FLC-based MPPT scheme for the SEPIC 
converter.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
EXPECTED SIMULATION RESULTS: 
Fig.3. Output (top) voltage and (bottom) current waveforms of the SEPIC converter with the 
proposed FLC-based MPPT scheme. 
Fig. 4. Error signal (difference between Vreal and Vref ) of the proposed FLC-based SEPIC 
converter. 
For Simulation Results of the project Contact Us 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245
ELECTRICAL PROJECTS USING MATLAB/SIMULINK 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
Fig. 5. Variable-load inverter current, voltage, and voltage error signals. 
Fig.6. Inverter current, voltage, and voltage error signals with lagging power factor load for the 
proposed FLC-based SEPIC and inverter system. 
Fig.7. FLC-based SEPIC’s output voltage. 
For Simulation Results of the project Contact Us 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245
ELECTRICAL PROJECTS USING MATLAB/SIMULINK 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
Fig. 8. Comparison of the power output for the proposed FLC- and PI-based SEPIC converters. 
Fig. 9. Experimental results for Vinv and Iinv with unity power factor load. 
Fig. 10. Experimental results for Vinv and Iinv with 0.766 lagging power factor load. 
For Simulation Results of the project Contact Us 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245
ELECTRICAL PROJECTS USING MATLAB/SIMULINK 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
Fig. 11. Harmonic analysis of the current waveform in Fig. 19. 
For Simulation Results of the project Contact Us 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
CONCLUSION: 
An FLC-based MPPT scheme for the SEPIC converter and inverter system for PV power 
applications has been presented in this paper. A prototype SEPIC converter-based PV inverter 
system has also been built in the laboratory. The DSP board TMS320F28335 is used for real-time 
implementation of the proposed FLC and MPPT control algorithms. The performance of the 
proposed controller has been found better than that of the conventional PI-based converters. 
Furthermore, as compared to the conventional multilevel inverter, experimental results indicated 
that the proposed FLC scheme can provide a better THD level at the inverter output. Thus, it 
reduces the cost of the inverter and the associated complexity in control algorithms. Therefore, 
the proposed FLC-based MPPT scheme for the SEPIC converter could be a potential candidate 
for real-time PV inverter applications under variable load conditions.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
For Simulation Results of the project Contact Us 
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 
0-9347143789/9949240245 
REFERENCES: 
[1] K.M. Tsang andW. L. Chan, “Fast acting regenerative DC electronic load based on a SEPIC 
converter,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 269–275, Jan. 2012. 
[2] S. J. Chiang, H.-J. Shieh, and M.-C. Chen, “Modeling and control of PV charger system with 
SEPIC converter,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4344–4353, Nov. 2009. 
[3] M. G. Umamaheswari, G. Uma, and K. M. Vijayalakshmi, “Design and implementation of 
reduced-order sliding mode controller for higher-order power factor correction converters,” IET 
Power Electron., vol. 4, no. 9, pp. 984–992, Nov. 2011. 
[4] A. A. Fardoun, E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “New efficient bridgeless 
Cuk rectifiers for PFC applications,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3292– 
3301, Jul. 2012. 
[5] M. Hongbo, L. Jih-Sheng, F. Quanyuan, Y. Wensong, Z. Cong, and Z. Zheng, “A novel 
valley-fill SEPIC-derived power supply without electrolytic capacitor for LED lighting 
application,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 3057–3071, Jun. 2012.

Contenu connexe

Plus de Asoka Technologies

A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
Asoka Technologies
 
Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...
Asoka Technologies
 
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Asoka Technologies
 
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Asoka Technologies
 
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Asoka Technologies
 
Implementation of solar pv battery and diesel generator based electric vehic...
Implementation of solar pv  battery and diesel generator based electric vehic...Implementation of solar pv  battery and diesel generator based electric vehic...
Implementation of solar pv battery and diesel generator based electric vehic...
Asoka Technologies
 
Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...
Asoka Technologies
 
Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...
Asoka Technologies
 

Plus de Asoka Technologies (20)

A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
 
A generalized multilevel inverter topology with reduction of total standing v...
A generalized multilevel inverter topology with reduction of total standing v...A generalized multilevel inverter topology with reduction of total standing v...
A generalized multilevel inverter topology with reduction of total standing v...
 
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
 
Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...
 
Reliability evaluation of MPPT based interleaved boost converter for PV system
Reliability evaluation of MPPT based interleaved boost converter for PV systemReliability evaluation of MPPT based interleaved boost converter for PV system
Reliability evaluation of MPPT based interleaved boost converter for PV system
 
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
 
Power optimisation scheme of induction motor using FLC for electric vehicle
Power optimisation scheme of induction motor using FLC for electric vehiclePower optimisation scheme of induction motor using FLC for electric vehicle
Power optimisation scheme of induction motor using FLC for electric vehicle
 
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
 
Power flow control of hybrid micro grids using modified uipc
Power flow control of hybrid micro grids using modified uipcPower flow control of hybrid micro grids using modified uipc
Power flow control of hybrid micro grids using modified uipc
 
Multifunctional grid tied pv system using modified klms control
Multifunctional grid tied pv system using modified klms controlMultifunctional grid tied pv system using modified klms control
Multifunctional grid tied pv system using modified klms control
 
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
 
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
 
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
 
Implementation of solar pv battery and diesel generator based electric vehic...
Implementation of solar pv  battery and diesel generator based electric vehic...Implementation of solar pv  battery and diesel generator based electric vehic...
Implementation of solar pv battery and diesel generator based electric vehic...
 
High step up quasi-z source dc-dc converter
High step up quasi-z source dc-dc converterHigh step up quasi-z source dc-dc converter
High step up quasi-z source dc-dc converter
 
Fuel cell integrated unified power quality conditioner for voltage and curren...
Fuel cell integrated unified power quality conditioner for voltage and curren...Fuel cell integrated unified power quality conditioner for voltage and curren...
Fuel cell integrated unified power quality conditioner for voltage and curren...
 
Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...
 
Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...
 
Application of Artificial Neural Networks for Shunt APF Control
Application of Artificial Neural Networks for Shunt APF ControlApplication of Artificial Neural Networks for Shunt APF Control
Application of Artificial Neural Networks for Shunt APF Control
 
Control strategy of pmsg based wind energy conversion system under strong win...
Control strategy of pmsg based wind energy conversion system under strong win...Control strategy of pmsg based wind energy conversion system under strong win...
Control strategy of pmsg based wind energy conversion system under strong win...
 

Dernier

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 

Dernier (20)

TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 

Fuzzy logic controller based sepic converter for maximum power point tracking (1)

  • 1. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fuzzy-Logic-Controller-Based SEPIC Converter for Maximum Power Point Tracking ABSTRACT: This paper presents a fuzzy logic controller (FLC)-based single-ended primary-inductor converter (SEPIC) for maximum power point tracking (MPPT) operation of a photovoltaic (PV) system. The FLC proposed presents that the convergent distribution of the membership function offers faster response than the symmetrically distributed membership functions. The fuzzy controller for the SEPIC MPPT scheme shows high precision in current transition and keeps the voltage without any changes, in the variable-load case, represented in small steady-state error and small overshoot. The proposed scheme ensures optimal use of PV array and proves its efficacy in variable load conditions, unity, and lagging power factor at the inverter output (load) side. The real-time implementation of the MPPT SEPIC converter is done by a digital signal processor (DSP), i.e., TMS320F28335. The performance of the converter is tested in both simulation and experiment at different operating conditions. The performance of the proposed FLC-based MPPT operation of SEPIC converter is compared to that of the conventional proportional–integral (PI)-based SEPIC converter. The results show that the proposed FLC-based MPPT scheme for SEPIC can accurately track the reference signal and transfer power around 4.8% more than the conventional PI-based system. For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 KEYWORDS: 1. DC–DC power converters 2. Fuzzy control 3. Photovoltaic (PV) cells 4. Proportional–integral (PI) controller
  • 2. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 5. Real-time system SOFTWARE: MATLAB/SIMULINK CIRCUIT DIAGRAM: Fig.1.Circuit diagram of the SEPIC converter for the FLC-based MPPT scheme. CONTROL SCHEME: Fig.2.Overall control scheme for the proposed FLC-based MPPT scheme for the SEPIC converter.
  • 3. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 EXPECTED SIMULATION RESULTS: Fig.3. Output (top) voltage and (bottom) current waveforms of the SEPIC converter with the proposed FLC-based MPPT scheme. Fig. 4. Error signal (difference between Vreal and Vref ) of the proposed FLC-based SEPIC converter. For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245
  • 4. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 5. Variable-load inverter current, voltage, and voltage error signals. Fig.6. Inverter current, voltage, and voltage error signals with lagging power factor load for the proposed FLC-based SEPIC and inverter system. Fig.7. FLC-based SEPIC’s output voltage. For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245
  • 5. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 8. Comparison of the power output for the proposed FLC- and PI-based SEPIC converters. Fig. 9. Experimental results for Vinv and Iinv with unity power factor load. Fig. 10. Experimental results for Vinv and Iinv with 0.766 lagging power factor load. For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245
  • 6. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 11. Harmonic analysis of the current waveform in Fig. 19. For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 CONCLUSION: An FLC-based MPPT scheme for the SEPIC converter and inverter system for PV power applications has been presented in this paper. A prototype SEPIC converter-based PV inverter system has also been built in the laboratory. The DSP board TMS320F28335 is used for real-time implementation of the proposed FLC and MPPT control algorithms. The performance of the proposed controller has been found better than that of the conventional PI-based converters. Furthermore, as compared to the conventional multilevel inverter, experimental results indicated that the proposed FLC scheme can provide a better THD level at the inverter output. Thus, it reduces the cost of the inverter and the associated complexity in control algorithms. Therefore, the proposed FLC-based MPPT scheme for the SEPIC converter could be a potential candidate for real-time PV inverter applications under variable load conditions.
  • 7. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 REFERENCES: [1] K.M. Tsang andW. L. Chan, “Fast acting regenerative DC electronic load based on a SEPIC converter,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 269–275, Jan. 2012. [2] S. J. Chiang, H.-J. Shieh, and M.-C. Chen, “Modeling and control of PV charger system with SEPIC converter,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4344–4353, Nov. 2009. [3] M. G. Umamaheswari, G. Uma, and K. M. Vijayalakshmi, “Design and implementation of reduced-order sliding mode controller for higher-order power factor correction converters,” IET Power Electron., vol. 4, no. 9, pp. 984–992, Nov. 2011. [4] A. A. Fardoun, E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “New efficient bridgeless Cuk rectifiers for PFC applications,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3292– 3301, Jul. 2012. [5] M. Hongbo, L. Jih-Sheng, F. Quanyuan, Y. Wensong, Z. Cong, and Z. Zheng, “A novel valley-fill SEPIC-derived power supply without electrolytic capacitor for LED lighting application,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 3057–3071, Jun. 2012.