SlideShare une entreprise Scribd logo
1  sur  22
Télécharger pour lire hors ligne
1




                       EE 560
               MOS TRANSISTOR THEORY
                                               PART 1




Kenneth R. Laker, University of Pennsylvania
2
     TWO TERMINAL MOS STRUCTURE
                                                    VG (GATE VOLTAGE)
     GATE
    OXIDE
     SiO2
SUBSTRATE
                                                                                tox
                                                p-type doped Si
                                            (NA = 1015 to 1016 cm-3)


                                                        VB (SUBSTRATE VOLTAGE)
  EQUILIBRIUM: n p = ni2 (ni ≈ 1.45 x 1010 cm-3)
   Let SUBSTRATE be uniformy doped @ NA
                                             n i2
                                    np 0 ≈        and pp0 = NA
Kenneth R. Laker, University of Pennsylvania
                                             NA                  (BULK concentrations)
3

ENERGY BAND DIAGRAM FOR p - TYPE SUBSTRATE

                                               qΧ = electron affinity of Si

                                                              E F − Ei
                                                       φF =       q

                                                    Work Function
                                                   q ΦS = q χ + (E c − E F )


            kT n i (N >> n )                   kT N D
      φFp =      ln       A    i
                                        φF n =    ln    (ND >> ni)
             q NA                               q    ni
ni = 1.45 x 10-10 cm-3 @ room temp,
k = 1.38 x 10-23 J/oK,
                          => kT/q = 26 mV @ room temp
q = 1.6 x 10 C-19



Kenneth R. Laker, University of Pennsylvania
4
                 ENERGY BAND DIAGRAMS FOR
                COMPONENTS OF MOS STRUCTURE
       METAL (Al)       OXIDE        SEMICONDUCTOR (Si)
Eo      qΦM =              qχox= 0.95 eV
        qχm = 4.1 eV Ec                   qΦS qχSi = 4.15 eV
EFm
                                       Ec
                                                                    band-gap: Eg = 1.1 eV
                                               band-gap:       Ei
                                               Eg = 8 eV                qφFp
                                                           EFp
                                                               Ev

                                      Ev
                                        ΦS > ΦM => p-type Si
                                        ΦM > ΦS => n-type Si

Kenneth R. Laker, University of Pennsylvania
VG = 0                        5

        Equilibrium

                                                 Oxide

                                          p-type Si Substrate

                                                     VB = 0
Flat-band voltage:
VFB = ΦM - ΦS volts                                              Equilibrium

 Built-in potential:
                                                                             Ec
                                           qΦM                  qΦS
                                                                            Ei
                                                      qφs             qφF
                   EFm                                                      EFp
           φs = surface potential                                           Ev
                         METAL (Al)               OXIDE         SEMICONDUCTOR (Si)
Kenneth R. Laker, University of Pennsylvania
MOS SYSTEM WITH EXTERNAL BIAS                                           7

     Accumulation Region VG < 0


                                          EOX     EOX Oxide       holes
                                                                  ACCUMULATED
                                                                  on the Si surface
                                    p-type Si Substrate

                                                    VB = 0
                                                         VG = 0

          Equilibrium
                                                      Oxide

                                               p-type Si Substrate

                                                          VB = 0
Kenneth R. Laker, University of Pennsylvania
MOS SYSTEM WITH EXTERNAL BIAS                                      8

                         VG > 0 (small)
   Depletion Region

                                          EOX     EOX Oxide
                                                               DEPLETION
                                                               Region
                                     p-type Si Substrate

                                                   VB = 0



                                                                     Ec
                                                                     Ei
                                qVG                                  EFp
         EFm                                                         Ev
                METAL (Al)                      OXIDE       SEMICONDUCTOR (Si)
Kenneth R. Laker, University of Pennsylvania
MOS SYSTEM BIASED IN DEPLETION REGION                                    9
                                VG > 0 (small)

                                           EOX   EOX Oxide
                   0 x                                         DEPLETION
                  xd d                                         Region
                   x                 p-type Si Substrate

                                                  VB = 0
                                                           Mobile charge in thin layer
                                                           parallel to Si surface
                                                           Change in surface potential
                                                           to displace dQ



                                                           Depletion Region Charge

Kenneth R. Laker, University of Pennsylvania
MOS SYSTEM WITH EXTERNAL BIAS                                       10

                         VG > 0 (large)
   Inversion Region

                                          EOX    EOX Oxide
                        xdm                                   Electrons
                                                              attracted to Si
                                     p-type Si Substrate      surface

Inversion Condition                               VB = 0
     φs = -φF
                          2ε Si | 2φF |
 x dm   = x d φs = − φF =                                                   Ec
                             qN A
                                                                            Ei
                                                                            EFp
                   EFm                     qVG     φs = -φF                 Ev
                          METAL (Al)              OXIDE       SEMICONDUCTOR (Si)
Kenneth R. Laker, University of Pennsylvania
G                                                     G
                                                                                                                 11
    G                             G                          G                    G


D                S        D               S S           DS              D S                 D                     S

       B           B                                B                                                     B
                                                             B               B
    n-channel enhancement                                         p-channel enhancement
    I DS                                                                         I DS
    IDS                                                                                  IDS
                                                                                   -VTp
                                                                                   -V Tp
                                                                                                          V
                                                                                                          VGS
                                                                                                 0          GS



                                             V
                                             VGS
        0                                      GS
                     +VTn
                      +V
                         Tn
    n-channel depletion                                          I DS
                       G
                                                                 IDS
       I                                                                         p-channel depletion
            I
            DS                                                          +VTp
                                                                        +VTp
            DS                                                                            VGS
                                                                                          V
                                                                                            GS
                              D               S                     0

                                      B
                                      V
                                      VGS
        -VTn
        -V            0                 GS
                Tn                                                       Kenneth R. Laker, University of Pennsylvania
B            S                G                           D                   12
                                                                    W

                                             L
                                    oxide


                   n+                                   n+

                                conducting
                                  channel
   substrate                                         depletion layer
   or bulk B
                        p

N-CHANNEL ENHANCEMENT-TYPE MOSFET
                       nMOS Layout

                                                          polysilicon gate
                                                          active area
                                                          metal
                                                          contact area
                            W
               L                                        Kenneth R. Laker, University of Pennsylvania
B            S      G          D                   D           G          S         B              13



                 p+                    p+                  n+                    n+
                          n-well

               p -substrate

VGS < VTn                CUT-OFF REGION

                                        DEPLETION REGION
 0 < VGS < VTn                                   VGS                   VDS

                                                       G   oxide
            B (G2)           S                                             D
                                              C
                                              CGC
                                                  GC
                            n+
                            n+               CBC                      n+
                                                                      n+
                                                 CBC
                                              depletion region
                                            depletion region

               substrate
                  substrate
                                             p
               or or bulk B
                  bulk B
                                   p
                                                                 Kenneth R. Laker, University of Pennsylvania
VGS > VTn             INVERSION REGION                                            14

                                                      VGS                VDS

                                                         G       oxide
             B (G2 )                S                                     D
                                                   CGC
                                                   C  GC
                                   n+
                                   n+              CBC                   n+
                                                                         n+
                                                    CBC
                                                  conducting
                                                    channel
                   substrate
                    substrate                                    depletion region
                                                       or
                                                       or
                   or bulk B
                    or bulk B                  inversion region
                                                inversion region
                                         p
                                         p




        Underneath Gate                                                             Ec
        VG = VTn
                                                                                    Ei
                                                                         φF
                                                  2φF                               EFp
               EFm                      qVTn               -φF
                                                                                    Ev
                       METAL (Al)                 OXIDE          SEMICONDUCTOR (Si)
Kenneth R. Laker, University of Pennsylvania
MOS Capacitance C = WLC , C = ε ox                                              15
                                                                [tox -> TOX in SPICE]
                    GC    ox  ox
                                 t ox
                                                               [Cox -> COX in SPICE]
   tox = 50 nm, εox = 0.34 pF/cm => Cox = 6.8 x 10-8 F/cm2
       W x L = 50 µm x 50 µm => CGC = 170 fF
   Depletion Capacitance C BC = WLC j , C j = εSi
                                              xd
                                                              [NSUB -> NSUB in SPICE]
                                                   NSUB (p - substrate)
                              kT n i
                                 ln     φFp =
                               q NA
NA = 3 x 1017 cm-3, ni = 1.45 x 1010 cm-3 => φF = -0.438 V
                 (recall that at room temp or 27oC kT/q = 26 mV)
VSB = 0 V, εSi = 1.06 pF/cm, q = 1.6 x 10-19 C, NA, φF => xd = 6.22 µm
                                  εSi, xd => Cj = 0.17 x 10-8 F/cm2
                            W x L = 50 µm x 50 µm => CBC = 42.5 fF
Kenneth R. Laker, University of Pennsylvania
16

             Threshold Voltage for MOS Transistors
   n-channel enhancement
  For VSB = 0, the threshold voltage is denoted as VT0 or VT0n,p T0 -> VT0 in SPICE]
                                                             [V

                                                             QB 0 Q ox
                                          VT 0 = ΦGC − 2φF −     −
                                                             C ox C ox
Threshold Voltage factors:                     (+ for nMOS and - for pMOS)
                                                                             [2φ F = PHI in SPICE]
-> Gate conductor material;
-> Gate oxide material &                                                     [N A = NSUB in SPICE]
   thickness;
-> Channel doping;
-> Impurities in Si-oxide
   interface;
                                       ΦGC = φF(substrate) -φM        metal gate
                                       ΦGC = φF(substrate) -φF (gate) polysilicon gate
-> Source-bulk voltage Vsb;
-> Temperature.                                  [Qox = qNSS in SPICE]


Kenneth R. Laker, University of Pennsylvania
17
            Threshold Voltage for MOS Transistors
    n-channel enhancement
    For       : the threshold voltage is denoted as VT or VTn,p


                                                QB Q ox
                       VT = ΦGC − 2φF −              −
                                                C ox C ox
                                                Q B 0 Q ox Q B − Q B0
                            = ΦGC       − 2φF −      −    −
                                                C ox C ox     C ox
           where                         VT0



                            (γ = Body-effect coefficient) [γ = GAMMA in SPICE]
                                               +


Kenneth R. Laker, University of Pennsylvania
18

             Threshold Voltage for MOS Transistors
                             n-channel -> p-channel

         ****BE CAREFULL*** WITH SIGNS
    • φF is negative in nMOS, positive in pMOS
    • QB0, QB are negtive in nMOS, positive in pMOS
    • γ is positive in nMOS, negative in pMOS
    • VSB is negative in nMOS, positive in pMOS
                      C BC
            NOTE: γ ∝
                      C GC



Kenneth R. Laker, University of Pennsylvania
19
             Threshold Voltage for MOS Transistors
                                                      VT0
                                               3V                    nMOS             NBULK = NA


                                                14                          16                   NBULK
                                                                                                 NA
                                           10                          10
                                                                                 pMOS
                                                                                      NBULK = ND
                                               -3V

                                                         VT
                                                                       16
                                                3V            (nMOS 10 /cm 3 )

                                                                                        14
                                                                     (nMOS 3 x10 /cm 3 )

                                                     0
                                                                                                  VBS
                                                                                                  V SB
                                                                        3                    6
                                                                                 16
                                                                   (pMOS 10 /cm3 )

                                               -3V
Kenneth R. Laker, University of Pennsylvania
20
   EXAMPLE 3.2 Calculate the threshold voltage VT0 at VBS = 0, for
   a polysilicon gate n-channel MOS transistor with the following
   parameters:
          substrate doping density NA = 1016 cm-3,
          polysilicon doping density ND = 2 x 1020 cm-3,
          gate oxide thickness tox = 500 Angstroms,
          oxide-interface fixed charge density Nox = 4 x 1010 cm-2.
                                          QB 0 Q ox
                 VT 0 = ΦGC − 2φF(sub) −      −
                                          C ox C ox
   φF(sub), ΦGC: ΦGC = φF(sub) − φF(gate)
                                 kT n i            1.45x10 
                                                           10
                    φF(sub)    =   ln   = 0.026Vln            = −0.35V
                                  q NA             10  16
                                                              
                                 kT N D                2 x10 20 
                   φF( gate)   =    ln    = 0.026 Vln          10  = 0.60 V
                                  q    ni              1.45x10 
                         ΦGC = φF(sub) − φF(gate) = -0.35 V - 0.60 V = -0.95 V

Kenneth R. Laker, University of Pennsylvania
QB 0 Q ox        21
   EXAMPLE 3-2 CONT.                               VT 0 = ΦGC − 2φF(sub) −     −
                                                                           C ox C ox
   QB0:


                = − 2(1.6x10 −19 C)(1016 cm −3 )(1.06 x10 −12 Fcm −1 ) | 2 x 0.35V|
                                                         F = C/V
                              -8    2
                 = - 4.87 x 10 C/cm
   Cox:
                       ε ox 0.34 x10 −12 Fcm −1         −8
                C ox =      =                   = 6.8x10 F/cm 2
                       t ox   500 x10 −8 cm

     Qox:
               Q ox = qNox = (1.6x10 −19 C)(4 x1010 cm −2 ) = 6.4 x10 −9 C/cm 2

   Q B 0 −4.87x10 C/cm          −8             2               Q ox 6.4 x10 −9 C/cm 2
        =               = −0.716 V                                 =        −8     2 = 0.094 V
                −8    2                                        Cox 6.8x10 F/cm
   C ox   6.8x10 F/cm
                VT 0 = −0.95V− (−0.70 V) − (−0.72 V) − (0.09V) = 0.38V
Kenneth R. Laker, University of Pennsylvania
EXAMPLE 3.3 Consider the n-channel MOS transistor with the 22
    following process parameters:
           substrate doping density NA = 1016 cm-3,
           polysilicon doping density ND = 2 x 1020 cm-3,
           gate oxide thickness tox = 500 Angstroms,
           oxide-interface fixed charge density Nox = 4 x 1010 cm-2.
    In digital circuit design, the condition VSB = 0 can not always be
    quaranteed for all transistors. Plot the threshold voltage VT as a
    function of VSB.


   γ - Body-effect coefficient:                               F = C/V
          2 qN A e Si   2(1.6 x10 −19 C)(1016 cm −3 )(1.06 x10 −12 Fcm −1 )
       γ=             =                        −8
            C ox                       6.8x10 F/cm 2
                                   5.824 x10 −8 C/V −1/ 2 cm 2
                                 =           −8                = 0.85V1/ 2
                                      6.8x10 C/Vcm 2

Kenneth R. Laker, University of Pennsylvania
23
   EXAMPLE 3-3 CONT.

        where
                       VT 0 = 0.38V (from EX 3-2)
                        γ = 0.85V1 /2

                       VT(Volts)
          1.60
          1.40
         1.20
         1.00
         0.80
         0.60
         0.40
         0.20                                                      VSB(Volts)
             -1              0          1      2   3   4   5   6
Kenneth R. Laker, University of Pennsylvania

Contenu connexe

Tendances

Unit 3- OPTICAL SOURCES AND DETECTORS
Unit 3- OPTICAL SOURCES AND DETECTORS Unit 3- OPTICAL SOURCES AND DETECTORS
Unit 3- OPTICAL SOURCES AND DETECTORS tamil arasan
 
Optical amplifier
Optical amplifierOptical amplifier
Optical amplifierchnru
 
Monolithic implementation of parasitic elements
Monolithic implementation of parasitic elementsMonolithic implementation of parasitic elements
Monolithic implementation of parasitic elementsGOPICHAND NAGUBOINA
 
Pin photodiode.pptx ashvani
Pin photodiode.pptx ashvaniPin photodiode.pptx ashvani
Pin photodiode.pptx ashvaniAshvani Shukla
 
Antennas and Wave Propagation
Antennas and Wave Propagation Antennas and Wave Propagation
Antennas and Wave Propagation VenkataRatnam14
 
Design of IIR filters
Design of IIR filtersDesign of IIR filters
Design of IIR filtersop205
 
Ese570 mos theory_p206
Ese570 mos theory_p206Ese570 mos theory_p206
Ese570 mos theory_p206bheemsain
 
Free space optical communication
Free space optical communicationFree space optical communication
Free space optical communicationNaveen Kumar
 
Isi and nyquist criterion
Isi and nyquist criterionIsi and nyquist criterion
Isi and nyquist criterionsrkrishna341
 
Application WDM(wavelength division multiplexing) For COMPSE
Application WDM(wavelength division multiplexing) For COMPSEApplication WDM(wavelength division multiplexing) For COMPSE
Application WDM(wavelength division multiplexing) For COMPSEPatel Ankit
 
Transmission lines and RF systems
Transmission lines and RF systemsTransmission lines and RF systems
Transmission lines and RF systemsGopinathD17
 
Link power and rise time budget analysis
Link power and rise time budget analysisLink power and rise time budget analysis
Link power and rise time budget analysisCKSunith1
 
Frequency-Shift Keying
Frequency-Shift KeyingFrequency-Shift Keying
Frequency-Shift KeyingJessie Rama
 

Tendances (20)

Twin well process
Twin well processTwin well process
Twin well process
 
Unit 3- OPTICAL SOURCES AND DETECTORS
Unit 3- OPTICAL SOURCES AND DETECTORS Unit 3- OPTICAL SOURCES AND DETECTORS
Unit 3- OPTICAL SOURCES AND DETECTORS
 
Optical amplifier
Optical amplifierOptical amplifier
Optical amplifier
 
Monolithic implementation of parasitic elements
Monolithic implementation of parasitic elementsMonolithic implementation of parasitic elements
Monolithic implementation of parasitic elements
 
Dynamic logic circuits
Dynamic logic circuitsDynamic logic circuits
Dynamic logic circuits
 
Pin photodiode.pptx ashvani
Pin photodiode.pptx ashvaniPin photodiode.pptx ashvani
Pin photodiode.pptx ashvani
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor Logic
 
Antennas and Wave Propagation
Antennas and Wave Propagation Antennas and Wave Propagation
Antennas and Wave Propagation
 
Design of IIR filters
Design of IIR filtersDesign of IIR filters
Design of IIR filters
 
FET AMPLIFIER
FET AMPLIFIERFET AMPLIFIER
FET AMPLIFIER
 
Ese570 mos theory_p206
Ese570 mos theory_p206Ese570 mos theory_p206
Ese570 mos theory_p206
 
Free space optical communication
Free space optical communicationFree space optical communication
Free space optical communication
 
Isi and nyquist criterion
Isi and nyquist criterionIsi and nyquist criterion
Isi and nyquist criterion
 
Application WDM(wavelength division multiplexing) For COMPSE
Application WDM(wavelength division multiplexing) For COMPSEApplication WDM(wavelength division multiplexing) For COMPSE
Application WDM(wavelength division multiplexing) For COMPSE
 
Gunn Diode
Gunn Diode Gunn Diode
Gunn Diode
 
Transmission lines and RF systems
Transmission lines and RF systemsTransmission lines and RF systems
Transmission lines and RF systems
 
Link power and rise time budget analysis
Link power and rise time budget analysisLink power and rise time budget analysis
Link power and rise time budget analysis
 
Antenna (2)
Antenna (2)Antenna (2)
Antenna (2)
 
Frequency-Shift Keying
Frequency-Shift KeyingFrequency-Shift Keying
Frequency-Shift Keying
 
CMOS Logic
CMOS LogicCMOS Logic
CMOS Logic
 

En vedette

Vlsi design mosfet
Vlsi design mosfetVlsi design mosfet
Vlsi design mosfetvennila12
 
Types of MOSFET Applications and Working Operation
Types of MOSFET Applications and Working OperationTypes of MOSFET Applications and Working Operation
Types of MOSFET Applications and Working OperationEdgefxkits & Solutions
 
Dielectric Q-V Measurements using COS technique
Dielectric Q-V Measurements using COS techniqueDielectric Q-V Measurements using COS technique
Dielectric Q-V Measurements using COS techniqueMichael Shifrin
 
Seminar: Fabrication and Characteristics of CMOS
Seminar: Fabrication and Characteristics of CMOSSeminar: Fabrication and Characteristics of CMOS
Seminar: Fabrication and Characteristics of CMOSJay Baxi
 
Very Large Scale Integration -VLSI
Very Large Scale Integration -VLSIVery Large Scale Integration -VLSI
Very Large Scale Integration -VLSIPRABHAHARAN429
 
CMOS Analog Design Lect 4
CMOS Analog Design  Lect 4CMOS Analog Design  Lect 4
CMOS Analog Design Lect 4carlosgalup
 
Performance Analysis of Double Hetero-gate Tunnel Field Effect Transistor
Performance Analysis of Double Hetero-gate Tunnel Field Effect TransistorPerformance Analysis of Double Hetero-gate Tunnel Field Effect Transistor
Performance Analysis of Double Hetero-gate Tunnel Field Effect TransistorIDES Editor
 
CMOS Analog Design Lect 2
CMOS Analog Design   Lect 2CMOS Analog Design   Lect 2
CMOS Analog Design Lect 2carlosgalup
 
Operation of mosfet with different vgs and vds
Operation of mosfet with different vgs and vdsOperation of mosfet with different vgs and vds
Operation of mosfet with different vgs and vdsHaris Hassan
 
Unit 1 Traditional CMOS Design
Unit 1 Traditional CMOS DesignUnit 1 Traditional CMOS Design
Unit 1 Traditional CMOS Designimran khan
 
半導體第六章
半導體第六章半導體第六章
半導體第六章5045033
 

En vedette (20)

Vlsi design mosfet
Vlsi design mosfetVlsi design mosfet
Vlsi design mosfet
 
Types of MOSFET Applications and Working Operation
Types of MOSFET Applications and Working OperationTypes of MOSFET Applications and Working Operation
Types of MOSFET Applications and Working Operation
 
mos transistor
mos transistormos transistor
mos transistor
 
Dielectric Q-V Measurements using COS technique
Dielectric Q-V Measurements using COS techniqueDielectric Q-V Measurements using COS technique
Dielectric Q-V Measurements using COS technique
 
Seminar: Fabrication and Characteristics of CMOS
Seminar: Fabrication and Characteristics of CMOSSeminar: Fabrication and Characteristics of CMOS
Seminar: Fabrication and Characteristics of CMOS
 
Very Large Scale Integration -VLSI
Very Large Scale Integration -VLSIVery Large Scale Integration -VLSI
Very Large Scale Integration -VLSI
 
Acdppt
AcdpptAcdppt
Acdppt
 
Chapter 3 cmos(class2)
Chapter 3 cmos(class2)Chapter 3 cmos(class2)
Chapter 3 cmos(class2)
 
CMOS Analog Design Lect 4
CMOS Analog Design  Lect 4CMOS Analog Design  Lect 4
CMOS Analog Design Lect 4
 
GAA nano wire FET
GAA nano wire FETGAA nano wire FET
GAA nano wire FET
 
Performance Analysis of Double Hetero-gate Tunnel Field Effect Transistor
Performance Analysis of Double Hetero-gate Tunnel Field Effect TransistorPerformance Analysis of Double Hetero-gate Tunnel Field Effect Transistor
Performance Analysis of Double Hetero-gate Tunnel Field Effect Transistor
 
Aicd cmos layouts
Aicd cmos layoutsAicd cmos layouts
Aicd cmos layouts
 
CMOS Analog Design Lect 2
CMOS Analog Design   Lect 2CMOS Analog Design   Lect 2
CMOS Analog Design Lect 2
 
Operation of mosfet with different vgs and vds
Operation of mosfet with different vgs and vdsOperation of mosfet with different vgs and vds
Operation of mosfet with different vgs and vds
 
Unit 1 Traditional CMOS Design
Unit 1 Traditional CMOS DesignUnit 1 Traditional CMOS Design
Unit 1 Traditional CMOS Design
 
半導體第六章
半導體第六章半導體第六章
半導體第六章
 
MOSFET AND JFET
MOSFET AND JFETMOSFET AND JFET
MOSFET AND JFET
 
15 mosfet threshold voltage
15 mosfet threshold voltage15 mosfet threshold voltage
15 mosfet threshold voltage
 
1 mosfet 1 basics
1 mosfet 1 basics1 mosfet 1 basics
1 mosfet 1 basics
 
About MOSFET
About MOSFETAbout MOSFET
About MOSFET
 

Similaire à MOS Transistor Theory Part 1

Solar Cells Lecture 1: Introduction to Photovoltaics
Solar Cells Lecture 1: Introduction to PhotovoltaicsSolar Cells Lecture 1: Introduction to Photovoltaics
Solar Cells Lecture 1: Introduction to PhotovoltaicsTuong Do
 
Solar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsSolar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsTuong Do
 
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...Tuong Do
 
Science Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative EnergyScience Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative EnergyEngenuitySC
 
Solar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar CellsSolar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar CellsTuong Do
 
Cs with active load
Cs with active loadCs with active load
Cs with active loadsam910
 
05 reverse biased junction &amp; breakdown
05 reverse biased junction &amp; breakdown05 reverse biased junction &amp; breakdown
05 reverse biased junction &amp; breakdownZerihunDemere
 
Photo Electron Spectroscopy
Photo Electron SpectroscopyPhoto Electron Spectroscopy
Photo Electron SpectroscopyRadha Mini
 
CHAPTER_3_P2 - Concentration Rev2.pdf
CHAPTER_3_P2 - Concentration Rev2.pdfCHAPTER_3_P2 - Concentration Rev2.pdf
CHAPTER_3_P2 - Concentration Rev2.pdfLINHTRANHOANG2
 
PN JUNCTION DIODE PPT PRESENTATION
PN JUNCTION DIODE PPT PRESENTATIONPN JUNCTION DIODE PPT PRESENTATION
PN JUNCTION DIODE PPT PRESENTATIONharishankarchaurasia
 
Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometrynirupam12
 
cch-LecuresF07-semiconductor-animation.ppt
cch-LecuresF07-semiconductor-animation.pptcch-LecuresF07-semiconductor-animation.ppt
cch-LecuresF07-semiconductor-animation.pptmurali44365
 
Photoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional OxidesPhotoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional Oxidesnirupam12
 
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Tuong Do
 

Similaire à MOS Transistor Theory Part 1 (20)

Solar Cells Lecture 1: Introduction to Photovoltaics
Solar Cells Lecture 1: Introduction to PhotovoltaicsSolar Cells Lecture 1: Introduction to Photovoltaics
Solar Cells Lecture 1: Introduction to Photovoltaics
 
Lecture 5: Junctions
Lecture 5: JunctionsLecture 5: Junctions
Lecture 5: Junctions
 
Semiconductor lasers
Semiconductor lasersSemiconductor lasers
Semiconductor lasers
 
veeranagoud
veeranagoudveeranagoud
veeranagoud
 
Solar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsSolar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic Photovoltaics
 
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
 
Science Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative EnergyScience Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative Energy
 
Solar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar CellsSolar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar Cells
 
Cs with active load
Cs with active loadCs with active load
Cs with active load
 
Mos
MosMos
Mos
 
Pn junction
Pn junctionPn junction
Pn junction
 
05 reverse biased junction &amp; breakdown
05 reverse biased junction &amp; breakdown05 reverse biased junction &amp; breakdown
05 reverse biased junction &amp; breakdown
 
Photo Electron Spectroscopy
Photo Electron SpectroscopyPhoto Electron Spectroscopy
Photo Electron Spectroscopy
 
CHAPTER_3_P2 - Concentration Rev2.pdf
CHAPTER_3_P2 - Concentration Rev2.pdfCHAPTER_3_P2 - Concentration Rev2.pdf
CHAPTER_3_P2 - Concentration Rev2.pdf
 
PN JUNCTION DIODE PPT PRESENTATION
PN JUNCTION DIODE PPT PRESENTATIONPN JUNCTION DIODE PPT PRESENTATION
PN JUNCTION DIODE PPT PRESENTATION
 
semiconductor Physics.pptx
semiconductor Physics.pptxsemiconductor Physics.pptx
semiconductor Physics.pptx
 
Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometry
 
cch-LecuresF07-semiconductor-animation.ppt
cch-LecuresF07-semiconductor-animation.pptcch-LecuresF07-semiconductor-animation.ppt
cch-LecuresF07-semiconductor-animation.ppt
 
Photoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional OxidesPhotoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional Oxides
 
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
 

Plus de bheemsain

Wierless networks ch3 (1)
Wierless networks ch3 (1)Wierless networks ch3 (1)
Wierless networks ch3 (1)bheemsain
 
Last year paper2
Last year paper2Last year paper2
Last year paper2bheemsain
 
Fiber signal degradation final
Fiber  signal degradation finalFiber  signal degradation final
Fiber signal degradation finalbheemsain
 
Ese570 inv stat12
Ese570 inv stat12Ese570 inv stat12
Ese570 inv stat12bheemsain
 
Ch 6 data and computer communicationwilliam stallings
Ch 6 data and computer communicationwilliam stallingsCh 6 data and computer communicationwilliam stallings
Ch 6 data and computer communicationwilliam stallingsbheemsain
 
Ch 6 data and computer communicationwilliam stallings (1)
Ch 6 data and computer communicationwilliam stallings (1)Ch 6 data and computer communicationwilliam stallings (1)
Ch 6 data and computer communicationwilliam stallings (1)bheemsain
 
86409 interfacing the keyboard to 8051 microcontroller
86409 interfacing the keyboard to 8051 microcontroller86409 interfacing the keyboard to 8051 microcontroller
86409 interfacing the keyboard to 8051 microcontrollerbheemsain
 

Plus de bheemsain (20)

Wierless networks ch3 (1)
Wierless networks ch3 (1)Wierless networks ch3 (1)
Wierless networks ch3 (1)
 
Man
ManMan
Man
 
Last year paper2
Last year paper2Last year paper2
Last year paper2
 
Frame relay
Frame relayFrame relay
Frame relay
 
Foc ppt
Foc pptFoc ppt
Foc ppt
 
Fiber signal degradation final
Fiber  signal degradation finalFiber  signal degradation final
Fiber signal degradation final
 
Ese570 inv stat12
Ese570 inv stat12Ese570 inv stat12
Ese570 inv stat12
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Ch07 2
Ch07 2Ch07 2
Ch07 2
 
Ch07 1
Ch07 1Ch07 1
Ch07 1
 
Ch03 2
Ch03 2Ch03 2
Ch03 2
 
Ch03 1
Ch03 1Ch03 1
Ch03 1
 
Ch02 2
Ch02 2Ch02 2
Ch02 2
 
Ch02 1
Ch02 1Ch02 1
Ch02 1
 
Ch01
Ch01Ch01
Ch01
 
Ch 6 data and computer communicationwilliam stallings
Ch 6 data and computer communicationwilliam stallingsCh 6 data and computer communicationwilliam stallings
Ch 6 data and computer communicationwilliam stallings
 
Ch 6 data and computer communicationwilliam stallings (1)
Ch 6 data and computer communicationwilliam stallings (1)Ch 6 data and computer communicationwilliam stallings (1)
Ch 6 data and computer communicationwilliam stallings (1)
 
86409 interfacing the keyboard to 8051 microcontroller
86409 interfacing the keyboard to 8051 microcontroller86409 interfacing the keyboard to 8051 microcontroller
86409 interfacing the keyboard to 8051 microcontroller
 
802.11
802.11802.11
802.11
 

MOS Transistor Theory Part 1

  • 1. 1 EE 560 MOS TRANSISTOR THEORY PART 1 Kenneth R. Laker, University of Pennsylvania
  • 2. 2 TWO TERMINAL MOS STRUCTURE VG (GATE VOLTAGE) GATE OXIDE SiO2 SUBSTRATE tox p-type doped Si (NA = 1015 to 1016 cm-3) VB (SUBSTRATE VOLTAGE) EQUILIBRIUM: n p = ni2 (ni ≈ 1.45 x 1010 cm-3) Let SUBSTRATE be uniformy doped @ NA n i2 np 0 ≈ and pp0 = NA Kenneth R. Laker, University of Pennsylvania NA (BULK concentrations)
  • 3. 3 ENERGY BAND DIAGRAM FOR p - TYPE SUBSTRATE qΧ = electron affinity of Si E F − Ei φF = q Work Function q ΦS = q χ + (E c − E F ) kT n i (N >> n ) kT N D φFp = ln A i φF n = ln (ND >> ni) q NA q ni ni = 1.45 x 10-10 cm-3 @ room temp, k = 1.38 x 10-23 J/oK, => kT/q = 26 mV @ room temp q = 1.6 x 10 C-19 Kenneth R. Laker, University of Pennsylvania
  • 4. 4 ENERGY BAND DIAGRAMS FOR COMPONENTS OF MOS STRUCTURE METAL (Al) OXIDE SEMICONDUCTOR (Si) Eo qΦM = qχox= 0.95 eV qχm = 4.1 eV Ec qΦS qχSi = 4.15 eV EFm Ec band-gap: Eg = 1.1 eV band-gap: Ei Eg = 8 eV qφFp EFp Ev Ev ΦS > ΦM => p-type Si ΦM > ΦS => n-type Si Kenneth R. Laker, University of Pennsylvania
  • 5. VG = 0 5 Equilibrium Oxide p-type Si Substrate VB = 0 Flat-band voltage: VFB = ΦM - ΦS volts Equilibrium Built-in potential: Ec qΦM qΦS Ei qφs qφF EFm EFp φs = surface potential Ev METAL (Al) OXIDE SEMICONDUCTOR (Si) Kenneth R. Laker, University of Pennsylvania
  • 6. MOS SYSTEM WITH EXTERNAL BIAS 7 Accumulation Region VG < 0 EOX EOX Oxide holes ACCUMULATED on the Si surface p-type Si Substrate VB = 0 VG = 0 Equilibrium Oxide p-type Si Substrate VB = 0 Kenneth R. Laker, University of Pennsylvania
  • 7. MOS SYSTEM WITH EXTERNAL BIAS 8 VG > 0 (small) Depletion Region EOX EOX Oxide DEPLETION Region p-type Si Substrate VB = 0 Ec Ei qVG EFp EFm Ev METAL (Al) OXIDE SEMICONDUCTOR (Si) Kenneth R. Laker, University of Pennsylvania
  • 8. MOS SYSTEM BIASED IN DEPLETION REGION 9 VG > 0 (small) EOX EOX Oxide 0 x DEPLETION xd d Region x p-type Si Substrate VB = 0 Mobile charge in thin layer parallel to Si surface Change in surface potential to displace dQ Depletion Region Charge Kenneth R. Laker, University of Pennsylvania
  • 9. MOS SYSTEM WITH EXTERNAL BIAS 10 VG > 0 (large) Inversion Region EOX EOX Oxide xdm Electrons attracted to Si p-type Si Substrate surface Inversion Condition VB = 0 φs = -φF 2ε Si | 2φF | x dm = x d φs = − φF = Ec qN A Ei EFp EFm qVG φs = -φF Ev METAL (Al) OXIDE SEMICONDUCTOR (Si) Kenneth R. Laker, University of Pennsylvania
  • 10. G G 11 G G G G D S D S S DS D S D S B B B B B B n-channel enhancement p-channel enhancement I DS I DS IDS IDS -VTp -V Tp V VGS 0 GS V VGS 0 GS +VTn +V Tn n-channel depletion I DS G IDS I p-channel depletion I DS +VTp +VTp DS VGS V GS D S 0 B V VGS -VTn -V 0 GS Tn Kenneth R. Laker, University of Pennsylvania
  • 11. B S G D 12 W L oxide n+ n+ conducting channel substrate depletion layer or bulk B p N-CHANNEL ENHANCEMENT-TYPE MOSFET nMOS Layout polysilicon gate active area metal contact area W L Kenneth R. Laker, University of Pennsylvania
  • 12. B S G D D G S B 13 p+ p+ n+ n+ n-well p -substrate VGS < VTn CUT-OFF REGION DEPLETION REGION 0 < VGS < VTn VGS VDS G oxide B (G2) S D C CGC GC n+ n+ CBC n+ n+ CBC depletion region depletion region substrate substrate p or or bulk B bulk B p Kenneth R. Laker, University of Pennsylvania
  • 13. VGS > VTn INVERSION REGION 14 VGS VDS G oxide B (G2 ) S D CGC C GC n+ n+ CBC n+ n+ CBC conducting channel substrate substrate depletion region or or or bulk B or bulk B inversion region inversion region p p Underneath Gate Ec VG = VTn Ei φF 2φF EFp EFm qVTn -φF Ev METAL (Al) OXIDE SEMICONDUCTOR (Si) Kenneth R. Laker, University of Pennsylvania
  • 14. MOS Capacitance C = WLC , C = ε ox 15 [tox -> TOX in SPICE] GC ox ox t ox [Cox -> COX in SPICE] tox = 50 nm, εox = 0.34 pF/cm => Cox = 6.8 x 10-8 F/cm2 W x L = 50 µm x 50 µm => CGC = 170 fF Depletion Capacitance C BC = WLC j , C j = εSi xd [NSUB -> NSUB in SPICE] NSUB (p - substrate) kT n i ln φFp = q NA NA = 3 x 1017 cm-3, ni = 1.45 x 1010 cm-3 => φF = -0.438 V (recall that at room temp or 27oC kT/q = 26 mV) VSB = 0 V, εSi = 1.06 pF/cm, q = 1.6 x 10-19 C, NA, φF => xd = 6.22 µm εSi, xd => Cj = 0.17 x 10-8 F/cm2 W x L = 50 µm x 50 µm => CBC = 42.5 fF Kenneth R. Laker, University of Pennsylvania
  • 15. 16 Threshold Voltage for MOS Transistors n-channel enhancement For VSB = 0, the threshold voltage is denoted as VT0 or VT0n,p T0 -> VT0 in SPICE] [V QB 0 Q ox VT 0 = ΦGC − 2φF − − C ox C ox Threshold Voltage factors: (+ for nMOS and - for pMOS) [2φ F = PHI in SPICE] -> Gate conductor material; -> Gate oxide material & [N A = NSUB in SPICE] thickness; -> Channel doping; -> Impurities in Si-oxide interface; ΦGC = φF(substrate) -φM metal gate ΦGC = φF(substrate) -φF (gate) polysilicon gate -> Source-bulk voltage Vsb; -> Temperature. [Qox = qNSS in SPICE] Kenneth R. Laker, University of Pennsylvania
  • 16. 17 Threshold Voltage for MOS Transistors n-channel enhancement For : the threshold voltage is denoted as VT or VTn,p QB Q ox VT = ΦGC − 2φF − − C ox C ox Q B 0 Q ox Q B − Q B0 = ΦGC − 2φF − − − C ox C ox C ox where VT0 (γ = Body-effect coefficient) [γ = GAMMA in SPICE] + Kenneth R. Laker, University of Pennsylvania
  • 17. 18 Threshold Voltage for MOS Transistors n-channel -> p-channel ****BE CAREFULL*** WITH SIGNS • φF is negative in nMOS, positive in pMOS • QB0, QB are negtive in nMOS, positive in pMOS • γ is positive in nMOS, negative in pMOS • VSB is negative in nMOS, positive in pMOS C BC NOTE: γ ∝ C GC Kenneth R. Laker, University of Pennsylvania
  • 18. 19 Threshold Voltage for MOS Transistors VT0 3V nMOS NBULK = NA 14 16 NBULK NA 10 10 pMOS NBULK = ND -3V VT 16 3V (nMOS 10 /cm 3 ) 14 (nMOS 3 x10 /cm 3 ) 0 VBS V SB 3 6 16 (pMOS 10 /cm3 ) -3V Kenneth R. Laker, University of Pennsylvania
  • 19. 20 EXAMPLE 3.2 Calculate the threshold voltage VT0 at VBS = 0, for a polysilicon gate n-channel MOS transistor with the following parameters: substrate doping density NA = 1016 cm-3, polysilicon doping density ND = 2 x 1020 cm-3, gate oxide thickness tox = 500 Angstroms, oxide-interface fixed charge density Nox = 4 x 1010 cm-2. QB 0 Q ox VT 0 = ΦGC − 2φF(sub) − − C ox C ox φF(sub), ΦGC: ΦGC = φF(sub) − φF(gate) kT n i  1.45x10  10 φF(sub) = ln = 0.026Vln  = −0.35V q NA  10 16  kT N D  2 x10 20  φF( gate) = ln = 0.026 Vln  10  = 0.60 V q ni  1.45x10  ΦGC = φF(sub) − φF(gate) = -0.35 V - 0.60 V = -0.95 V Kenneth R. Laker, University of Pennsylvania
  • 20. QB 0 Q ox 21 EXAMPLE 3-2 CONT. VT 0 = ΦGC − 2φF(sub) − − C ox C ox QB0: = − 2(1.6x10 −19 C)(1016 cm −3 )(1.06 x10 −12 Fcm −1 ) | 2 x 0.35V| F = C/V -8 2 = - 4.87 x 10 C/cm Cox: ε ox 0.34 x10 −12 Fcm −1 −8 C ox = = = 6.8x10 F/cm 2 t ox 500 x10 −8 cm Qox: Q ox = qNox = (1.6x10 −19 C)(4 x1010 cm −2 ) = 6.4 x10 −9 C/cm 2 Q B 0 −4.87x10 C/cm −8 2 Q ox 6.4 x10 −9 C/cm 2 = = −0.716 V = −8 2 = 0.094 V −8 2 Cox 6.8x10 F/cm C ox 6.8x10 F/cm VT 0 = −0.95V− (−0.70 V) − (−0.72 V) − (0.09V) = 0.38V Kenneth R. Laker, University of Pennsylvania
  • 21. EXAMPLE 3.3 Consider the n-channel MOS transistor with the 22 following process parameters: substrate doping density NA = 1016 cm-3, polysilicon doping density ND = 2 x 1020 cm-3, gate oxide thickness tox = 500 Angstroms, oxide-interface fixed charge density Nox = 4 x 1010 cm-2. In digital circuit design, the condition VSB = 0 can not always be quaranteed for all transistors. Plot the threshold voltage VT as a function of VSB. γ - Body-effect coefficient: F = C/V 2 qN A e Si 2(1.6 x10 −19 C)(1016 cm −3 )(1.06 x10 −12 Fcm −1 ) γ= = −8 C ox 6.8x10 F/cm 2 5.824 x10 −8 C/V −1/ 2 cm 2 = −8 = 0.85V1/ 2 6.8x10 C/Vcm 2 Kenneth R. Laker, University of Pennsylvania
  • 22. 23 EXAMPLE 3-3 CONT. where VT 0 = 0.38V (from EX 3-2) γ = 0.85V1 /2 VT(Volts) 1.60 1.40 1.20 1.00 0.80 0.60 0.40 0.20 VSB(Volts) -1 0 1 2 3 4 5 6 Kenneth R. Laker, University of Pennsylvania