SlideShare une entreprise Scribd logo
1  sur  69
Télécharger pour lire hors ligne
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Nonparametric estimation of copula
densities
A. Charpentier1
, J.D. Fermanian2
& O. Scaillet3
Gemeinsame Jahrestagung der Deutschen Mathematiker-Vereinigung und der
Gesellschaft für Didaktik der Mathematik,
Multivariate Dependence Modelling using Copulas - Applications in Finance
Humboldt-Universität zu Berlin, March 2007
1ensae-ensai-crest & Katholieke Universiteit Leuven, 2CoopeNeff A.M. & crest et 3HEC Genève & FAME
1
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
One (short) word on copulas
Definition 1. A 2-dimensional copula is a 2-dimensional cumulative
distribution function restricted to [0, 1]2
with standard uniform margins.
Copula (cumulative distribution function) Level curves of the copula
Copula density Level curves of the copula
If C is twice differentiable, let c denote the density of the copula.
2
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Theorem 2. (Sklar) Let C be a copula, and FX and FY two marginal
distributions, then F(x, y) = C(FX(x), FY (y)) is a bivariate distribution
function, with F ∈ F(FX, FY ).
Conversely, if F ∈ F(FX, FY ), there exists C such that
F(x, y) = C(FX(x), FY (y). Further, if FX and FY are continuous, then C is
unique, and given by
C(u, v) = F(F−1
X (u), F−1
Y (v)) for all (u, v) ∈ [0, 1] × [0, 1]
We will then define the copula of F, or the copula of (X, Y ).
3
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Motivation
Example Loss-ALAE: consider the following dataset, were the Xi’s are loss
amount (paid to the insured) and the Yi’s are allocated expenses. Denote by
Ri and Si the respective ranks of Xi and Yi. Set Ui = Ri/n = ˆFX(Xi) and
Vi = Si/n = ˆFY (Yi).
Figure 1 shows the log-log scatterplot (log Xi, log Yi), and the associate copula
based scatterplot (Ui, Vi).
Figure 2 is simply an histogram of the (Ui, Vi), which is a nonparametric
estimation of the copula density.
Note that the histogram suggests strong dependence in upper tails (the
interesting part in an insurance/reinsurance context).
4
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
1 2 3 4 5 6
12345
Log−log scatterplot, Loss−ALAE
log(LOSS)
log(ALAE)
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Copula type scatterplot, Loss−ALAE
Probability level LOSSProbabilitylevelALAE
Figure 1: Loss-ALAE, scatterplots (log-log and copula type).
5
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Figure 2: Loss-ALAE, histogram of copula type transformation.
6
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Basic notions on nonparametric estimation of densities
Let {X1, ..., Xn} denote an i.i.d. sample with density f.
The standard kernel estimate of a density is,
f(x) =
1
nh
n
i=1
K
x − Xi
h
,
where K is a kernel function (e.g. K(ω) = I(|ω| ≤ 1)/2 for the moving
histogram).
If {X1, ..., Xn} of positive random variable (Xi ∈ [0, ∞[). Let K denote a
symmetric kernel, then
E(f(0, h) =
1
2
f(0) + O(h)
7
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Exponential random variables
Density
−1 0 1 2 3 4 5 6
0.00.20.40.60.81.01.2
Exponential random variables
Density
−1 0 1 2 3 4 5 6
0.00.20.40.60.81.01.2Figure 3: Density estimation of an exponential density, 100 points.
8
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.01.2
Kernel based estimation of the uniform density on [0,1]
Density
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.01.2
Kernel based estimation of the uniform density on [0,1]
Density
Figure 4: Density estimation of an uniform density on [0, 1].
9
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
How to get a proper estimation on the border
Several techniques have been introduce to get a better estimation on the
border,
• boundary kernel (Müller (1991))
• mirror image modification (Deheuvels & Hominal (1989), Schuster
(1985))
• transformed kernel (Devroye & Györfi (1981), Wand, Marron &
Ruppert (1991))
In the particular case of densities on [0, 1],
• Beta kernel (Brown & Chen (1999), Chen (1999, 2000)),
• average of histograms inspired by Dersko (1998).
10
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
The mirror image modification
The idea is to fit a density to the enlarged sample −X1, ..., −Xn, X1, ..., Xn
(for a positive distribution) and −X1, ..., −Xn, X1, ..., Xn, 2 − X1, ..., 2 − Xn
(for a distribution with support [0, 1]).
The estimator of the density is
f(x, h) =
1
nh
n
i=1
K
x − Xi
h
+ K
x + Xi
h
.
Remark: It works well when the density f has a null derivative in 0.
11
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.00.51.01.52.0
Density estimation using mirror image
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
Density estimation using mirror image
Figure 5: The mirror image principle.
12
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
The transformed Kernel estimate
The idea was developed in Devroye & Györfi (1981) for univariate
densities.
Consider a transformation T : R → [0, 1] strictly increasing, continuously
differentiable, one-to-one, with a continuously differentiable inverse.
Set Y = T(X). Then Y has density
fY (y) = fX(T−1
(y)) · (T−1
) (y).
If fY is estimated by fY , then fX is estimated by
fX(x) = fY (T(x)) · T (x).
13
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
−3 −2 −1 0 1 2 3
0.00.10.20.30.40.5
Density estimation transformed kernel
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
Density estimation transformed kernel
Figure 6: The transform kernel principle (with a Φ−1
-transformation).
14
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
The Beta Kernel estimate
The Beta-kernel based estimator of a density with support [0, 1] at point x, is
obtained using beta kernels, which yields
f(x) =
1
n
n
i=1
K Xi,
u
b
+ 1,
1 − u
b
+ 1
where K(·, α, β) denotes the density of the Beta distribution with parameters
α and β,
K(x, α, β) =
Γ(α + β)
Γ(α)Γ(β)
xα
(1 − x)β−1
1(x ∈ [0, 1]).
15
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.0 0.2 0.4 0.6 0.8 1.0
0246810
Gaussian Kernel approach
0.0 0.2 0.4 0.6 0.8 1.0
0246810
Beta Kernel approach
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
Density estimation using beta kernels
Figure 7: The beta-kernel estimate.
16
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
The average of histograms
In a very general context Dersko (1998) introduced the intrinsic estimator of
the density, as the average of all possible histograms. Consider the case of a
density on the unit interval [0, 1]. Let Jm denote the set of all partitions of
[0, 1) into m + 1 subintervals. Define fm(·) as the average of all the histograms,
fm(·) =
1
#Jm
Im∈Jm
fIm
(x), (1)
as in Dersko (1998).
Let Im = (I0:m, I1:m, I2:m, . . . , Im:m) a partition of [0, 1) into m + 1
subintervals, I = i Ii:m. Set Ii:m = [ui−1:m, ui:m), where
u0:m = 0 < u1:m < · · · < uk:m < uk+1:m = 1. The histogram of X1, . . . , Xn
associated to Ik is
fIm
(x) =
1
n · [ui:m − ui−1:m]
n
j=1
1(Xi ∈ Ii:m), where x ∈ Ii:m.
17
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.5
Average of histograms, m=1
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.5
Average of histograms, m=1
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.5
Average of histograms, m=1
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.5
Average of histograms, m=1
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
Density as average of randomized histograms, n=250, m=1
Figure 8: Average of histograms, m = 1.
18
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.5
Average of histograms, m=2
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.5
Average of histograms, m=2
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.5
Average of histograms, m=2
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.5
Average of histograms, m=2
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
Density as average of randomized histograms, n=250, m=2
Figure 9: Average of histograms, m = 2.
19
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.5
Average of histograms, m=5
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.5
Average of histograms, m=5
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.5
Average of histograms, m=5
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.5
Average of histograms, m=5
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
Density as average of randomized histograms, n=250, m=5
Figure 10: Average of histograms, m = 5.
20
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
Density as average of randomized histograms, n=250, m=10
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
Density as average of randomized histograms, n=250, m=20
Figure 11: Average of histograms, m = 10 and m = 20.
21
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.0 0.2 0.4 0.6 0.8 1.0
0246810
Gaussian Kernel approach
0.0 0.2 0.4 0.6 0.8 1.0
0246810
Beta Kernel approach
0.0 0.2 0.4 0.6 0.8 1.0
0246810
Average of histograms
0.0 0.2 0.4 0.6 0.8 1.00246810
Average of histograms
Figure 12: Shape of the induced kernel based on uniform averaging.
22
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Copula density estimation: the boundary problem
Let (U1, V1), ..., (Un, Vn) denote a sample with support [0, 1]2
, and with density
c(u, v), which is assumed to be twice continuously differentiable on (0, 1)2
.
If K denotes a symmetric kernel, with support [−1, +1], then for all
(u, v) ∈ [0, 1] × [0, 1], in any corners (e.g. (0, 0))
E(c(0, 0, h)) =
1
4
· c(u, v) −
1
2
[c1(0, 0) + c2(0, 0)]
1
0
ωK(ω)dω · h + o(h).
on the interior of the borders (e.g. u = 0 and v ∈ (0, 1)),
E(c(0, v, h)) =
1
2
· c(u, v) − [c1(0, v)]
1
0
ωK(ω)dω · h + o(h).
and in the interior ((u, v) ∈ (0, 1) × (0, 1)),
E(c(u, v, h)) = c(u, v) +
1
2
[c1,1(u, v) + c2,2(u, v)]
1
−1
ω2
K(ω)dω · h2
+ o(h2
).
23
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
On borders, there is a multiplicative bias and the order of the bias is O(h)
(while it is O(h2
) in the interior).
If K denotes a symmetric kernel, with support [−1, +1], then for all
(u, v) ∈ [0, 1] × [0, 1], in any corners (e.g. (0, 0))
V ar(c(0, 0, h)) = c(0, 0)
1
0
K(ω)2
dω
2
·
1
nh2
+ o
1
nh2
.
on the interior of the borders (e.g. u = 0 and v ∈ (0, 1)),
V ar(c(0, v, h)) = c(0, v)
1
−1
K(ω)2
dω
1
0
K(ω)2
dω ·
1
nh2
+ o
1
nh2
.
and in the interior ((u, v) ∈ (0, 1) × (0, 1)),
V ar(c(u, v, h)) = c(u, v)
1
−1
K(ω)2
dω
2
d ·
1
nh2
+ o
1
nh2
.
24
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Figure 13: Theoretical density of Frank copula.
25
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Figure 14: Estimated density of Frank copula, using standard Gaussian (inde-
pendent) kernels, h = h∗
.
26
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Transformed kernel technique
Consider the kernel estimator of the density of the
(Xi, Yi) = (G−1
(Ui), G−1
(Vi))’s, where G is a strictly increasing distribution
function, with a differentiable density. Since density f is continuous, twice
differentiable, and bounded above, for all (x, y) ∈ R2
, define
f(x, y) =
1
nh2
n
i=1
K
x − Xi
h
K
y − Yi
h
,
Since
f(x, y) = g(x)g(y)c[G(x), G(y)]. (2)
can be inverted in
c(u, v) =
f(G−1
(u), G−1
(v))
g(G−1(u))g(G−1(v))
, (u, v) ∈ [0, 1] × [0, 1], (3)
27
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
one gets, substituting f in (3)
c(u, v) =
1
nh · g(G−1(u)) · g(G−1(v))
n
i=1
K
G−1
(u) − G−1
(Ui)
h
,
G−1
(v) − G−1
(Vi)
h
,
(4)
Therefore,
E(c(u, v, h)) = c(u, v) +
o(h)
g(G−1(u))g(G−1(v))
.
Similarly,
V ar(c(u, v, h)) =
1
g(G−1(u))g(G−1(v))
c(u, v)
nh2
K(ω)2
dω
2
+
1
g(G−1(u))2g(G−1(v))2
o
1
nh2
.
Asymptotic normality and also be derived.
28
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
0.2 0.4 0.6 0.8
0.20.40.60.8
Figure 15: Estimated density of Frank copula, using a Gaussian kernel, after a
Gaussian normalization.
29
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
0.2 0.4 0.6 0.8
0.20.40.60.8
Figure 16: Estimated density of Frank copula, using a Gaussian kernel, after a
Student normalization, with 5 degrees of freedom.
30
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
0.2 0.4 0.6 0.8
0.20.40.60.8
Figure 17: Estimated density of Frank copula, using a Gaussian kernel, after a
Student normalization, with 3 degrees of freedom.
31
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Using the mirror reflection principle
Instead of using only the (Ui, Vi)’s the mirror image consists in reflecting each
data point with respect to all edges and corners of the unit square [0, 1] × [0, 1].
Hence, additional observations can be considered, i.e. the (±Ui, ±Vi)’s, the
(±Ui, 2 − Vi)’s, the (2 − Ui, ±Vi)’s and the (2 − Ui, 2 − Vi)’s. Hence, consider
ˆc(u, v) =
1
nh
n
i=1
K
u − Ui
h
K
v − Vi
h
+ K
u + Ui
h
K
v − Vi
h
+
K
u − Ui
h
K
v + Vi
h
+ K
u + Ui
h
K
v + Vi
h
+
K
u − Ui
h
K
v − 2 + Vi
h
+ K
u + Ui
h
K
v − 2 + Vi
h
+
K
u − 2 + Ui
h
K
v − Vi
h
+ K
u − 2 + Ui
h
K
v + Vi
h
+
K
u − 2 + Ui
h
K
v − 2 + Vi
h
.
32
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
In the case of uniformly continuous copula density c on [0, 1] × [0, 1], if K is a
bounded symmetric kernel that vanishes off [−1, 1], with ωK(ω) → 0 as
ω → ∞, and if nh2
→ ∞ as h → 0 and n → ∞, then f satisfies standard
asymptotic properties, e.g. for every (u, v) ∈ [0, 1] × [0, 1]
E(c(u, v, h)) = c(u, v) + O(h) on the borders,
= c(u, v) + O(h2
) in the interior,
and moreover, if σ2
=
1
−1
K(ω)2
dω
V ar(c(u, v, h)) = 4c(u, v)(nh2
)−1
σ4
+ o((nh2
)−1
) in corner,
= 2c(u, v)(nh2
)−1
σ4
+ o((nh2
)−1
) in the interior of borders,
= c(u, v)(nh2
)−1
σ4
+ o((nh2
)−1
) in the interior.
Furthermore, asymptotic normality can also be obtained,
√
nh2 (c(u, v, h) − c(u, v))
L
→ N 0, κc(u, v) K2
(ω)dω ,
33
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−1.0−0.50.00.51.01.52.0
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Estimation of the copula density
−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−1.0−0.50.00.51.01.52.0
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Estimation of the copula density
Figure 18: Copula density estimation - mirror reflection (n = 100, 1000).
34
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−1.0−0.50.00.51.01.52.0
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Estimation of the copula density (mirror reflection)
−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−1.0−0.50.00.51.01.52.0
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Estimation of the copula density (mirror reflection)
Figure 19: Copula density estimation - mirror reflection (n = 100, 1000).
35
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Estimation of the copula density (mirror reflection) Estimation of the copula density (mirror reflection)
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Figure 20: Estimated density of Frank copula, mirror reflection principle
36
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Bivariate Beta kernels
The Beta-kernel based estimator of the copula density at point (u, v), is
obtained using product beta kernels, which yields
c(u, v) =
1
n
n
i=1
K Xi,
u
b
+ 1,
1 − u
b
+ 1 · K Yi,
v
b
+ 1,
1 − v
b
+ 1 ,
where K(·, α, β) denotes the density of the Beta distribution with parameters
α and β.
37
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Beta (independent) bivariate kernel , x=0.0, y=0.0 Beta (independent) bivariate kernel , x=0.2, y=0.0 Beta (independent) bivariate kernel , x=0.5, y=0.0
Beta (independent) bivariate kernel , x=0.0, y=0.2 Beta (independent) bivariate kernel , x=0.2, y=0.2 Beta (independent) bivariate kernel , x=0.5, y=0.2
Beta (independent) bivariate kernel , x=0.0, y=0.5 Beta (independent) bivariate kernel , x=0.2, y=0.5 Beta (independent) bivariate kernel , x=0.5, y=0.5
Figure 21: Shape of bivariate Beta kernels K(·, x/b+1, (1−x)/b+1)×K(·, y/b+
1, (1 − y)/b + 1) for b = 0.2.
38
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Assume that the copula density c is twice differentiable on [0, 1] × [0, 1]. Let
(u, v) ∈ [0, 1] × [0, 1]. The bias of c(u, v) is of order b, i.e.
E(c(u, v)) = c(u, v) + Q(u, v) · b + o(b),
where the bias Q(u, v) is
Q(u, v) = (1−2u)c1(u, v)+(1−2v)c2(u, v)+
1
2
[u(1 − u)c1,1(u, v) + v(1 − v)c2,2(u, v)] .
The bias here is O(b) (everywhere) while it is O(h2
) using standard kernels.
Assume that the copula density c is twice differentiable on [0, 1] × [0, 1]. Let
(u, v) ∈ [0, 1] × [0, 1]. The variance of c(u, v) is in corners, e.g. (0, 0),
V ar(c(0, 0)) =
1
nb2
[c(0, 0) + o(n−1
)],
in the interior of borders, e.g. u = 0 and v ∈ (0, 1)
V ar(c(0, v)) =
1
2nb3/2 πv(1 − v)
[c(0, v) + o(n−1
)],
39
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
and in the interior,(u, v) ∈ (0, 1) × (0, 1)
V ar(c(u, v)) =
1
4nbπ v(1 − v)u(1 − u)
[c(u, v) + o(n−1
)].
Remark From those properties, an (asymptotically) optimal bandwidth b can
be deduced, maximizing asymptotic mean squared error,
b∗
≡
1
16πnQ(u, v)2
·
1
v(1 − v)u(1 − u)
1/3
.
Note (see Charpentier, Fermanian & Scaillet (2005)) that all those results can
be obtained in dimension d ≥ 2.
Example For n = 100 simulated data, from Frank copula, the optimal
bandwidth is b ∼ 0.05.
40
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Estimation of the copula density (Beta kernel, b=0.1) Estimation of the copula density (Beta kernel, b=0.1)
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Figure 22: Estimated density of Frank copula, Beta kernels, b = 0.1
41
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Estimation of the copula density (Beta kernel, b=0.05) Estimation of the copula density (Beta kernel, b=0.05)
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Figure 23: Estimated density of Frank copula, Beta kernels, b = 0.05
42
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.0 0.2 0.4 0.6 0.8 1.0
01234 Standard Gaussian kernel estimator, n=100
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Standard Gaussian kernel estimator, n=1000
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Standard Gaussian kernel estimator, n=10000
Estimation of the density on the diagonal
Densityoftheestimator
Figure 24: Density estimation on the diagonal, standard kernel.
43
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.0 0.2 0.4 0.6 0.8 1.0
01234 Transformed kernel estimator (Gaussian), n=100
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Transformed kernel estimator (Gaussian), n=1000
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Transformed kernel estimator (Gaussian), n=10000
Estimation of the density on the diagonal
Densityoftheestimator
Figure 25: Density estimation on the diagonal, transformed kernel.
44
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.0 0.2 0.4 0.6 0.8 1.0
01234 Beta kernel estimator, b=0.05, n=100
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Beta kernel estimator, b=0.02, n=1000
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Beta kernel estimator, b=0.005, n=10000
Estimation of the density on the diagonal
Densityoftheestimator
Figure 26: Density estimation on the diagonal, Beta kernel.
45
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Average of histograms and copulas
A natural idea would be to extend the notion of average of histograms in
higher dimension. But note that the notion of partition can be more
complicated.
Recall that C is a copula if for any u1 ≤ u2 and v1 ≤ v2,
C(u2, v2) − C(u1, v2) − C(u2, v1) + C(u1, v1) ≥ 0,
and C is a semicopula (Durante & Sempi (2004)) if for any u1 ≤ u2 and
v1 ≤ v2, C(u2, v2) − C(u1, v2) ≥ 0 and C(u2, v2) − C(u2, v1) ≥ 0.
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Copula, positive area
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Semicopula, positive area
46
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Histogram in dimension 2
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Histogram in dimension 2
Figure 27: Partitioning the unit square.
47
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Copula density as average of randomized histograms, m=2 Copula density as average of randomized histograms, m=2
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Copula density as average of randomized histograms, m=5 Copula density as average of randomized histograms, m=5
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Figure 28: Copula density using average of histograms.
48
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Copula density as average of randomized histograms, m=10 Copula density as average of randomized histograms, m=10
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Copula density as average of randomized histograms, m=15 Copula density as average of randomized histograms, m=15
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Figure 29: Copula density using average of histograms.
49
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.0 0.2 0.4 0.6 0.8 1.0
01234 Average of histograms, n=1000, m=5
Estimation of the density on the diagonal
Estimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Average of histograms, n=1000, m=10
Estimation of the density on the diagonal
Estimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Average of histograms, n=1000, m=15
Estimation of the density on the diagonal
Estimator
Figure 30: Density estimation on the diagonal, average of histograms.
50
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Copula density estimation
Gijbels & Mielniczuk (1990): given an i.i.d. sample, a natural estimate for
the normed density is obtained using the transformed sample
(FX(X1), FY (Y1)), ..., (FX(Xn), FY (Yn)), where FX and FY are the empirical
distribution function of the marginal distribution. The copula density can be
constructed as some density estimate based on this sample (Behnen,
Husková & Neuhaus (1985) investigated the kernel method).
The natural kernel type estimator c of c is
c(u, v) =
1
nh2
n
i=1
K
u − FX(Xi)
h
,
v − FY (Yi)
h
, (u, v) ∈ [0, 1].
“this estimator is not consistent in the points on the boundary of the unit
square.”
51
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Copula density estimation and pseudo-observations
Figure 31 shows scatterplots when margins are known (i.e.
(FX(Xi), FY (Yi))’s), and when margins are estimated (i.e.
( ˆFX(Xi), ˆFY (Yi)’s). Note that the pseudo sample is more “uniform”, in the
sense of a lower discrepancy (as in Quasi Monte Carlo techniques, see e.g.
Niederreiter, H. (1992)).
52
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Scatterplot of observations (Xi,Yi)
Value of the Xis
ValueoftheYis
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Scatterplot of pseudo−observations (Ui,Vi)
Value of the Uis (ranks)ValueoftheVis(ranks)
Figure 31: Observations and pseudo-observation, 500 simulated observations
from Frank copula (Xi, Yi) and the associate pseudo-sample ( ˆFX(Xi), ˆFY (Yi)).
53
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Because samples are more “uniform” using ranks and pseudo-observations, the
variance of the estimator of the density, at some given point
(u, v) ∈ (0, 1) × (0, 1) is usually smaller. For instance, Figure 32 shows the
impact of considering pseudo observations, i.e. substituting ˆFX and ˆFY to
unknown marginal distributions FX and FY . The dotted line shows the
density of ˆc(u, v) from a n = 100 sample (Ui, Vi) (from Frank copula), and the
straight line shows the density of ˆc(u, v) from the sample ( ˆFU (Ui), ˆFV (Vi))
(i.e. ranks of observations).
54
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0 1 2 3 4
0.00.51.01.52.0
Impact of pseudo−observations (n=100)
Distribution of the estimation of the density c(u,v)
Densityoftheestimator
Figure 32: The impact of estimating from pseudo-observations.
55
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
The problem of censored data
In the case of censored data, consider sample of ((Xi, δX
i ), (Yi, δY
i ))’s, where
δX
i = 0 when Xi is censored. Xi = min{X0
i , CX
i } and Yi = min{X0
i , CY
i }
where the Ci’s are censoring variates. The (Xi, Yi) are observed data, the
(X0
i , Y 0
i )’s are the variables of interest, that might be unobservable.
Kaplan-Meier estimator can be considered, based on the transformed sample
made of the non-zero elements.
The transformed sample is denoted by (Xi, Yi ), i = 1, ..., n , and its size is
n =
n
i=1 δX
i · δY
i of fully uncensored data.
The marginal Kaplan-Meier of the distribution function is
ˆFKM
X (x) = 1 −
i:Xi≤x
n − i
n − i + 1
δX
i
.
The nonparametric estimator of the copula density at point (u, v) can be
obtained using product beta kernels, on
56
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
( ˆUKM
i , V KM
i ) = (FKM
X (Xi), FKM
Y (Yi )), i = 1, ..., n .
Remark In the LOSS-ALAE dataset, the loss amounts Xi’s are censored,
because of a policy limit. Hence, Xi = min{loss, limit}.
57
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
2 4 6 8 10 12 14
4681012
Log(LOSS)
Log(ALAE)
Figure 33: The LOSS-ALAE dataset and censoring.
58
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Unfortunately, such a procedure suffers from the so-called stock sampling (or
selection bias) issue. Actually, the subsample used is far from being an i.i.d.
sample drawn from the law of (X, Y ).
The observations in hand are chosen as fully uncensored. Thus, small
observed (Xi, Yi) are more frequent in the subsample than they should be in a
usual i.i.d. sample. Therefore, the previous estimator can be advised only
when the proportion of censoring is small. Otherwise the bias induced by
stock sampling can become large.
59
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
0.2 0.4 0.6 0.8
0.20.40.60.8
Figure 34: Estimated density of Frank copula, using Beta kernels, n = 1000,
b = 0.050 and no-censoring.
60
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
0.2 0.4 0.6 0.8
0.20.40.60.8
Figure 35: Estimated density of Frank copula, using Beta kernels, n = 1000,
b = 0.050 and 1.7% censored data.
61
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
0.2 0.4 0.6 0.8
0.20.40.60.8
Figure 36: Estimated density of Frank copula, using Beta kernels, n = 1000,
b = 0.050 and 7.8% censored data.
62
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
0.2 0.4 0.6 0.8
0.20.40.60.8
Figure 37: Estimated density of Frank copula, using Beta kernels, n = 1000,
b = 0.050 and 24% censored data.
63
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.0 0.2 0.4 0.6 0.8 1.0
01234
Beta kernel estimator, b=0.01, n=1000, no censoring
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Beta kernel estimator, b=0.01, n=1000, 5% censoring
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Beta kernel estimator, b=0.01, n=1000, 25% censoring
Estimation of the density on the diagonal
Densityoftheestimator
Figure 38: Estimation of the density on the diagonal, with censored data .
64
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Stock sampling can be observe as the bias increases as u goes to 1, and as the
proportion of censored data increases.
Figure 39 shows the estimated density c(12/13, 12/13) with no censoring, and
25% censored observations.
Following the idea proposed in Efron and Tibshirani (1993), bootstrap
techniques can be used to estimate the bias. Consider B bootstrap samples
drawn independently from the original censored data, with replacement,
X∗
i,b, Y ∗
i,b, δ∗
i,b , i = 1, ..., n and b = 1, ..., B. The bias of the density
estimator at point (u, v) can be estimated from
bias (u, v) =
1
B
B
i=1
c (u, v)
∗,b
− c (u, v)
where c (u)
∗,b
is the density obtained from the bth bootstrap sample.
65
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0 1 2 3 4 5 6
0.00.20.40.60.8
Standard Beta kernel estimator
Estimation of the density near the lower corner
Densityoftheestimator
Figure 39: c(12/13, 12/13) using Beta kernels, with censored data (dotted line).
66
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.0 0.2 0.4 0.6 0.8 1.0
01234
Transformed kernel estimator (Gaussian), n=1000
Estimation of the density on the diagonal, 25% censoring
Densityoftheestimator,bootstrapbiascorrection
0.0 0.2 0.4 0.6 0.8 1.0
01234
Beta kernel estimator, b=0.01, n=1000
Estimation of the density on the diagonal, 25% censoringDensityoftheestimator,bootstrapbiascorrection
Figure 40: Censoring bias correction using bootstrap techniques.
67
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
Figure 40 shows the the evolution of
u →
1
B
B
i=1
c (u, u)
∗,b
,
on the diagonal using bootstrap techniques (as in Efron (1981)).
For each bootstrap sample, unobservable value Y 0
i,b and censoring value Ci,b
are simulated using Kaplan-Meier estimate of the density, and then a sample
(Xi,b, Y i, b, δi, b), i = 1, ..., n is obtained, and a new Kaplan-Meier estimation
is obtained, F0
b , and is used to obtain the estimation of the copula density for
this bootstrap sample.
The application to the Loss-ALAE dataset confirms Gumbel model.
68
Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules
0.0 0.2 0.4 0.6 0.8 1.0
01234567
Beta kernel estimator, b=0.01, n=1000
Estimation of the density on the diagonal, LOSS−ALAE
Densityoftheestimator,bootstrapbiascorrection
0.75 0.80 0.85 0.90 0.95 1.00
01234567
Beta kernel estimator, b=0.005, n=1000
Estimation of the density on the diagonal, LOSS−ALAEDensityoftheestimator,bootstrapbiascorrection
Figure 41: Beta kernel estimator for Loss-ALAE, compare with Gumbel copula.
69

Contenu connexe

Tendances (20)

Slides astin
Slides astinSlides astin
Slides astin
 
Slides risk-rennes
Slides risk-rennesSlides risk-rennes
Slides risk-rennes
 
Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017
 
Slides erm
Slides ermSlides erm
Slides erm
 
Slides guanauato
Slides guanauatoSlides guanauato
Slides guanauato
 
Slides ensae 9
Slides ensae 9Slides ensae 9
Slides ensae 9
 
Slides ensae-2016-11
Slides ensae-2016-11Slides ensae-2016-11
Slides ensae-2016-11
 
Lundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentierLundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentier
 
Slides Bank England
Slides Bank EnglandSlides Bank England
Slides Bank England
 
Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-web
 
Slides edf-2
Slides edf-2Slides edf-2
Slides edf-2
 
Testing for Extreme Volatility Transmission
Testing for Extreme Volatility Transmission Testing for Extreme Volatility Transmission
Testing for Extreme Volatility Transmission
 
Slides ineq-3b
Slides ineq-3bSlides ineq-3b
Slides ineq-3b
 
Econometrics 2017-graduate-3
Econometrics 2017-graduate-3Econometrics 2017-graduate-3
Econometrics 2017-graduate-3
 
Classification
ClassificationClassification
Classification
 
Sildes buenos aires
Sildes buenos airesSildes buenos aires
Sildes buenos aires
 
Econometrics, PhD Course, #1 Nonlinearities
Econometrics, PhD Course, #1 NonlinearitiesEconometrics, PhD Course, #1 Nonlinearities
Econometrics, PhD Course, #1 Nonlinearities
 
HdR
HdRHdR
HdR
 
Slides smart-2015
Slides smart-2015Slides smart-2015
Slides smart-2015
 
Slides ensae 8
Slides ensae 8Slides ensae 8
Slides ensae 8
 

En vedette (15)

Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2
 
Slides axa
Slides axaSlides axa
Slides axa
 
Slides edf-1
Slides edf-1Slides edf-1
Slides edf-1
 
Slides angers-sfds
Slides angers-sfdsSlides angers-sfds
Slides angers-sfds
 
Slides sales-forecasting-session1-web
Slides sales-forecasting-session1-webSlides sales-forecasting-session1-web
Slides sales-forecasting-session1-web
 
Slides picard-6
Slides picard-6Slides picard-6
Slides picard-6
 
Slides inequality 2017
Slides inequality 2017Slides inequality 2017
Slides inequality 2017
 
Slides laval stat avril 2011
Slides laval stat avril 2011Slides laval stat avril 2011
Slides laval stat avril 2011
 
Slides p6
Slides p6Slides p6
Slides p6
 
Slides dauphine
Slides dauphineSlides dauphine
Slides dauphine
 
Slides saopaulo-catastrophe (1)
Slides saopaulo-catastrophe (1)Slides saopaulo-catastrophe (1)
Slides saopaulo-catastrophe (1)
 
Cours add-r1-part5
Cours add-r1-part5Cours add-r1-part5
Cours add-r1-part5
 
Lg ph d_slides_vfinal
Lg ph d_slides_vfinalLg ph d_slides_vfinal
Lg ph d_slides_vfinal
 
Soutenance julie viard_partie_1
Soutenance julie viard_partie_1Soutenance julie viard_partie_1
Soutenance julie viard_partie_1
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 

Similaire à Berlin

fb69b412-97cb-4e8d-8a28-574c09557d35-160618025920
fb69b412-97cb-4e8d-8a28-574c09557d35-160618025920fb69b412-97cb-4e8d-8a28-574c09557d35-160618025920
fb69b412-97cb-4e8d-8a28-574c09557d35-160618025920Karl Rudeen
 
Two algorithms to accelerate training of back-propagation neural networks
Two algorithms to accelerate training of back-propagation neural networksTwo algorithms to accelerate training of back-propagation neural networks
Two algorithms to accelerate training of back-propagation neural networksESCOM
 
Robust Super-Resolution by minimizing a Gaussian-weighted L2 error norm
Robust Super-Resolution by minimizing a Gaussian-weighted L2 error normRobust Super-Resolution by minimizing a Gaussian-weighted L2 error norm
Robust Super-Resolution by minimizing a Gaussian-weighted L2 error normTuan Q. Pham
 
Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Arthur Charpentier
 
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Bayesian inference for mixed-effects models driven by SDEs and other stochast...Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Bayesian inference for mixed-effects models driven by SDEs and other stochast...Umberto Picchini
 
The Binomial,poisson _ Normal Distribution (1).ppt
The Binomial,poisson _ Normal Distribution (1).pptThe Binomial,poisson _ Normal Distribution (1).ppt
The Binomial,poisson _ Normal Distribution (1).pptIjaz Manzoor
 
Selection of bin width and bin number in histograms
Selection of bin width and bin number in histogramsSelection of bin width and bin number in histograms
Selection of bin width and bin number in histogramsKushal Kumar Dey
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statisticsTarun Gehlot
 
2012 mdsp pr05 particle filter
2012 mdsp pr05 particle filter2012 mdsp pr05 particle filter
2012 mdsp pr05 particle filternozomuhamada
 
Using R Tool for Probability and Statistics
Using R Tool for Probability and Statistics Using R Tool for Probability and Statistics
Using R Tool for Probability and Statistics nazlitemu
 
Image formation
Image formationImage formation
Image formationpotaters
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...Wireilla
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...ijfls
 
Fuzzy relations
Fuzzy relationsFuzzy relations
Fuzzy relationsnaugariya
 
Multiple estimators for Monte Carlo approximations
Multiple estimators for Monte Carlo approximationsMultiple estimators for Monte Carlo approximations
Multiple estimators for Monte Carlo approximationsChristian Robert
 

Similaire à Berlin (20)

Slides ima
Slides imaSlides ima
Slides ima
 
Slides mevt
Slides mevtSlides mevt
Slides mevt
 
Montecarlophd
MontecarlophdMontecarlophd
Montecarlophd
 
fb69b412-97cb-4e8d-8a28-574c09557d35-160618025920
fb69b412-97cb-4e8d-8a28-574c09557d35-160618025920fb69b412-97cb-4e8d-8a28-574c09557d35-160618025920
fb69b412-97cb-4e8d-8a28-574c09557d35-160618025920
 
Project Paper
Project PaperProject Paper
Project Paper
 
Two algorithms to accelerate training of back-propagation neural networks
Two algorithms to accelerate training of back-propagation neural networksTwo algorithms to accelerate training of back-propagation neural networks
Two algorithms to accelerate training of back-propagation neural networks
 
Robust Super-Resolution by minimizing a Gaussian-weighted L2 error norm
Robust Super-Resolution by minimizing a Gaussian-weighted L2 error normRobust Super-Resolution by minimizing a Gaussian-weighted L2 error norm
Robust Super-Resolution by minimizing a Gaussian-weighted L2 error norm
 
Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4
 
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Bayesian inference for mixed-effects models driven by SDEs and other stochast...Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
 
The Binomial,poisson _ Normal Distribution (1).ppt
The Binomial,poisson _ Normal Distribution (1).pptThe Binomial,poisson _ Normal Distribution (1).ppt
The Binomial,poisson _ Normal Distribution (1).ppt
 
Selection of bin width and bin number in histograms
Selection of bin width and bin number in histogramsSelection of bin width and bin number in histograms
Selection of bin width and bin number in histograms
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
 
2012 mdsp pr05 particle filter
2012 mdsp pr05 particle filter2012 mdsp pr05 particle filter
2012 mdsp pr05 particle filter
 
Using R Tool for Probability and Statistics
Using R Tool for Probability and Statistics Using R Tool for Probability and Statistics
Using R Tool for Probability and Statistics
 
A2100106
A2100106A2100106
A2100106
 
Image formation
Image formationImage formation
Image formation
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 
Fuzzy relations
Fuzzy relationsFuzzy relations
Fuzzy relations
 
Multiple estimators for Monte Carlo approximations
Multiple estimators for Monte Carlo approximationsMultiple estimators for Monte Carlo approximations
Multiple estimators for Monte Carlo approximations
 

Plus de Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

Dernier

Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesZilliz
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 

Dernier (20)

Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector Databases
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 

Berlin

  • 1. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Nonparametric estimation of copula densities A. Charpentier1 , J.D. Fermanian2 & O. Scaillet3 Gemeinsame Jahrestagung der Deutschen Mathematiker-Vereinigung und der Gesellschaft für Didaktik der Mathematik, Multivariate Dependence Modelling using Copulas - Applications in Finance Humboldt-Universität zu Berlin, March 2007 1ensae-ensai-crest & Katholieke Universiteit Leuven, 2CoopeNeff A.M. & crest et 3HEC Genève & FAME 1
  • 2. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules One (short) word on copulas Definition 1. A 2-dimensional copula is a 2-dimensional cumulative distribution function restricted to [0, 1]2 with standard uniform margins. Copula (cumulative distribution function) Level curves of the copula Copula density Level curves of the copula If C is twice differentiable, let c denote the density of the copula. 2
  • 3. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Theorem 2. (Sklar) Let C be a copula, and FX and FY two marginal distributions, then F(x, y) = C(FX(x), FY (y)) is a bivariate distribution function, with F ∈ F(FX, FY ). Conversely, if F ∈ F(FX, FY ), there exists C such that F(x, y) = C(FX(x), FY (y). Further, if FX and FY are continuous, then C is unique, and given by C(u, v) = F(F−1 X (u), F−1 Y (v)) for all (u, v) ∈ [0, 1] × [0, 1] We will then define the copula of F, or the copula of (X, Y ). 3
  • 4. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Motivation Example Loss-ALAE: consider the following dataset, were the Xi’s are loss amount (paid to the insured) and the Yi’s are allocated expenses. Denote by Ri and Si the respective ranks of Xi and Yi. Set Ui = Ri/n = ˆFX(Xi) and Vi = Si/n = ˆFY (Yi). Figure 1 shows the log-log scatterplot (log Xi, log Yi), and the associate copula based scatterplot (Ui, Vi). Figure 2 is simply an histogram of the (Ui, Vi), which is a nonparametric estimation of the copula density. Note that the histogram suggests strong dependence in upper tails (the interesting part in an insurance/reinsurance context). 4
  • 5. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 1 2 3 4 5 6 12345 Log−log scatterplot, Loss−ALAE log(LOSS) log(ALAE) 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Copula type scatterplot, Loss−ALAE Probability level LOSSProbabilitylevelALAE Figure 1: Loss-ALAE, scatterplots (log-log and copula type). 5
  • 6. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Figure 2: Loss-ALAE, histogram of copula type transformation. 6
  • 7. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Basic notions on nonparametric estimation of densities Let {X1, ..., Xn} denote an i.i.d. sample with density f. The standard kernel estimate of a density is, f(x) = 1 nh n i=1 K x − Xi h , where K is a kernel function (e.g. K(ω) = I(|ω| ≤ 1)/2 for the moving histogram). If {X1, ..., Xn} of positive random variable (Xi ∈ [0, ∞[). Let K denote a symmetric kernel, then E(f(0, h) = 1 2 f(0) + O(h) 7
  • 8. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Exponential random variables Density −1 0 1 2 3 4 5 6 0.00.20.40.60.81.01.2 Exponential random variables Density −1 0 1 2 3 4 5 6 0.00.20.40.60.81.01.2Figure 3: Density estimation of an exponential density, 100 points. 8
  • 9. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.01.2 Kernel based estimation of the uniform density on [0,1] Density 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.01.2 Kernel based estimation of the uniform density on [0,1] Density Figure 4: Density estimation of an uniform density on [0, 1]. 9
  • 10. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules How to get a proper estimation on the border Several techniques have been introduce to get a better estimation on the border, • boundary kernel (Müller (1991)) • mirror image modification (Deheuvels & Hominal (1989), Schuster (1985)) • transformed kernel (Devroye & Györfi (1981), Wand, Marron & Ruppert (1991)) In the particular case of densities on [0, 1], • Beta kernel (Brown & Chen (1999), Chen (1999, 2000)), • average of histograms inspired by Dersko (1998). 10
  • 11. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules The mirror image modification The idea is to fit a density to the enlarged sample −X1, ..., −Xn, X1, ..., Xn (for a positive distribution) and −X1, ..., −Xn, X1, ..., Xn, 2 − X1, ..., 2 − Xn (for a distribution with support [0, 1]). The estimator of the density is f(x, h) = 1 nh n i=1 K x − Xi h + K x + Xi h . Remark: It works well when the density f has a null derivative in 0. 11
  • 12. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 0.00.51.01.52.0 Density estimation using mirror image 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 Density estimation using mirror image Figure 5: The mirror image principle. 12
  • 13. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules The transformed Kernel estimate The idea was developed in Devroye & Györfi (1981) for univariate densities. Consider a transformation T : R → [0, 1] strictly increasing, continuously differentiable, one-to-one, with a continuously differentiable inverse. Set Y = T(X). Then Y has density fY (y) = fX(T−1 (y)) · (T−1 ) (y). If fY is estimated by fY , then fX is estimated by fX(x) = fY (T(x)) · T (x). 13
  • 14. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules −3 −2 −1 0 1 2 3 0.00.10.20.30.40.5 Density estimation transformed kernel 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 Density estimation transformed kernel Figure 6: The transform kernel principle (with a Φ−1 -transformation). 14
  • 15. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules The Beta Kernel estimate The Beta-kernel based estimator of a density with support [0, 1] at point x, is obtained using beta kernels, which yields f(x) = 1 n n i=1 K Xi, u b + 1, 1 − u b + 1 where K(·, α, β) denotes the density of the Beta distribution with parameters α and β, K(x, α, β) = Γ(α + β) Γ(α)Γ(β) xα (1 − x)β−1 1(x ∈ [0, 1]). 15
  • 16. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.0 0.2 0.4 0.6 0.8 1.0 0246810 Gaussian Kernel approach 0.0 0.2 0.4 0.6 0.8 1.0 0246810 Beta Kernel approach 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 Density estimation using beta kernels Figure 7: The beta-kernel estimate. 16
  • 17. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules The average of histograms In a very general context Dersko (1998) introduced the intrinsic estimator of the density, as the average of all possible histograms. Consider the case of a density on the unit interval [0, 1]. Let Jm denote the set of all partitions of [0, 1) into m + 1 subintervals. Define fm(·) as the average of all the histograms, fm(·) = 1 #Jm Im∈Jm fIm (x), (1) as in Dersko (1998). Let Im = (I0:m, I1:m, I2:m, . . . , Im:m) a partition of [0, 1) into m + 1 subintervals, I = i Ii:m. Set Ii:m = [ui−1:m, ui:m), where u0:m = 0 < u1:m < · · · < uk:m < uk+1:m = 1. The histogram of X1, . . . , Xn associated to Ik is fIm (x) = 1 n · [ui:m − ui−1:m] n j=1 1(Xi ∈ Ii:m), where x ∈ Ii:m. 17
  • 18. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.5 Average of histograms, m=1 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.5 Average of histograms, m=1 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.5 Average of histograms, m=1 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.5 Average of histograms, m=1 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 Density as average of randomized histograms, n=250, m=1 Figure 8: Average of histograms, m = 1. 18
  • 19. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.5 Average of histograms, m=2 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.5 Average of histograms, m=2 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.5 Average of histograms, m=2 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.5 Average of histograms, m=2 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 Density as average of randomized histograms, n=250, m=2 Figure 9: Average of histograms, m = 2. 19
  • 20. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.5 Average of histograms, m=5 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.5 Average of histograms, m=5 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.5 Average of histograms, m=5 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.5 Average of histograms, m=5 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 Density as average of randomized histograms, n=250, m=5 Figure 10: Average of histograms, m = 5. 20
  • 21. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 Density as average of randomized histograms, n=250, m=10 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 Density as average of randomized histograms, n=250, m=20 Figure 11: Average of histograms, m = 10 and m = 20. 21
  • 22. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.0 0.2 0.4 0.6 0.8 1.0 0246810 Gaussian Kernel approach 0.0 0.2 0.4 0.6 0.8 1.0 0246810 Beta Kernel approach 0.0 0.2 0.4 0.6 0.8 1.0 0246810 Average of histograms 0.0 0.2 0.4 0.6 0.8 1.00246810 Average of histograms Figure 12: Shape of the induced kernel based on uniform averaging. 22
  • 23. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Copula density estimation: the boundary problem Let (U1, V1), ..., (Un, Vn) denote a sample with support [0, 1]2 , and with density c(u, v), which is assumed to be twice continuously differentiable on (0, 1)2 . If K denotes a symmetric kernel, with support [−1, +1], then for all (u, v) ∈ [0, 1] × [0, 1], in any corners (e.g. (0, 0)) E(c(0, 0, h)) = 1 4 · c(u, v) − 1 2 [c1(0, 0) + c2(0, 0)] 1 0 ωK(ω)dω · h + o(h). on the interior of the borders (e.g. u = 0 and v ∈ (0, 1)), E(c(0, v, h)) = 1 2 · c(u, v) − [c1(0, v)] 1 0 ωK(ω)dω · h + o(h). and in the interior ((u, v) ∈ (0, 1) × (0, 1)), E(c(u, v, h)) = c(u, v) + 1 2 [c1,1(u, v) + c2,2(u, v)] 1 −1 ω2 K(ω)dω · h2 + o(h2 ). 23
  • 24. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules On borders, there is a multiplicative bias and the order of the bias is O(h) (while it is O(h2 ) in the interior). If K denotes a symmetric kernel, with support [−1, +1], then for all (u, v) ∈ [0, 1] × [0, 1], in any corners (e.g. (0, 0)) V ar(c(0, 0, h)) = c(0, 0) 1 0 K(ω)2 dω 2 · 1 nh2 + o 1 nh2 . on the interior of the borders (e.g. u = 0 and v ∈ (0, 1)), V ar(c(0, v, h)) = c(0, v) 1 −1 K(ω)2 dω 1 0 K(ω)2 dω · 1 nh2 + o 1 nh2 . and in the interior ((u, v) ∈ (0, 1) × (0, 1)), V ar(c(u, v, h)) = c(u, v) 1 −1 K(ω)2 dω 2 d · 1 nh2 + o 1 nh2 . 24
  • 25. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Figure 13: Theoretical density of Frank copula. 25
  • 26. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Figure 14: Estimated density of Frank copula, using standard Gaussian (inde- pendent) kernels, h = h∗ . 26
  • 27. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Transformed kernel technique Consider the kernel estimator of the density of the (Xi, Yi) = (G−1 (Ui), G−1 (Vi))’s, where G is a strictly increasing distribution function, with a differentiable density. Since density f is continuous, twice differentiable, and bounded above, for all (x, y) ∈ R2 , define f(x, y) = 1 nh2 n i=1 K x − Xi h K y − Yi h , Since f(x, y) = g(x)g(y)c[G(x), G(y)]. (2) can be inverted in c(u, v) = f(G−1 (u), G−1 (v)) g(G−1(u))g(G−1(v)) , (u, v) ∈ [0, 1] × [0, 1], (3) 27
  • 28. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules one gets, substituting f in (3) c(u, v) = 1 nh · g(G−1(u)) · g(G−1(v)) n i=1 K G−1 (u) − G−1 (Ui) h , G−1 (v) − G−1 (Vi) h , (4) Therefore, E(c(u, v, h)) = c(u, v) + o(h) g(G−1(u))g(G−1(v)) . Similarly, V ar(c(u, v, h)) = 1 g(G−1(u))g(G−1(v)) c(u, v) nh2 K(ω)2 dω 2 + 1 g(G−1(u))2g(G−1(v))2 o 1 nh2 . Asymptotic normality and also be derived. 28
  • 29. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 0.2 0.4 0.6 0.8 0.20.40.60.8 Figure 15: Estimated density of Frank copula, using a Gaussian kernel, after a Gaussian normalization. 29
  • 30. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 0.2 0.4 0.6 0.8 0.20.40.60.8 Figure 16: Estimated density of Frank copula, using a Gaussian kernel, after a Student normalization, with 5 degrees of freedom. 30
  • 31. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 0.2 0.4 0.6 0.8 0.20.40.60.8 Figure 17: Estimated density of Frank copula, using a Gaussian kernel, after a Student normalization, with 3 degrees of freedom. 31
  • 32. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Using the mirror reflection principle Instead of using only the (Ui, Vi)’s the mirror image consists in reflecting each data point with respect to all edges and corners of the unit square [0, 1] × [0, 1]. Hence, additional observations can be considered, i.e. the (±Ui, ±Vi)’s, the (±Ui, 2 − Vi)’s, the (2 − Ui, ±Vi)’s and the (2 − Ui, 2 − Vi)’s. Hence, consider ˆc(u, v) = 1 nh n i=1 K u − Ui h K v − Vi h + K u + Ui h K v − Vi h + K u − Ui h K v + Vi h + K u + Ui h K v + Vi h + K u − Ui h K v − 2 + Vi h + K u + Ui h K v − 2 + Vi h + K u − 2 + Ui h K v − Vi h + K u − 2 + Ui h K v + Vi h + K u − 2 + Ui h K v − 2 + Vi h . 32
  • 33. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules In the case of uniformly continuous copula density c on [0, 1] × [0, 1], if K is a bounded symmetric kernel that vanishes off [−1, 1], with ωK(ω) → 0 as ω → ∞, and if nh2 → ∞ as h → 0 and n → ∞, then f satisfies standard asymptotic properties, e.g. for every (u, v) ∈ [0, 1] × [0, 1] E(c(u, v, h)) = c(u, v) + O(h) on the borders, = c(u, v) + O(h2 ) in the interior, and moreover, if σ2 = 1 −1 K(ω)2 dω V ar(c(u, v, h)) = 4c(u, v)(nh2 )−1 σ4 + o((nh2 )−1 ) in corner, = 2c(u, v)(nh2 )−1 σ4 + o((nh2 )−1 ) in the interior of borders, = c(u, v)(nh2 )−1 σ4 + o((nh2 )−1 ) in the interior. Furthermore, asymptotic normality can also be obtained, √ nh2 (c(u, v, h) − c(u, v)) L → N 0, κc(u, v) K2 (ω)dω , 33
  • 34. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 −1.0−0.50.00.51.01.52.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Estimation of the copula density −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 −1.0−0.50.00.51.01.52.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Estimation of the copula density Figure 18: Copula density estimation - mirror reflection (n = 100, 1000). 34
  • 35. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 −1.0−0.50.00.51.01.52.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Estimation of the copula density (mirror reflection) −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 −1.0−0.50.00.51.01.52.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Estimation of the copula density (mirror reflection) Figure 19: Copula density estimation - mirror reflection (n = 100, 1000). 35
  • 36. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Estimation of the copula density (mirror reflection) Estimation of the copula density (mirror reflection) 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Figure 20: Estimated density of Frank copula, mirror reflection principle 36
  • 37. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Bivariate Beta kernels The Beta-kernel based estimator of the copula density at point (u, v), is obtained using product beta kernels, which yields c(u, v) = 1 n n i=1 K Xi, u b + 1, 1 − u b + 1 · K Yi, v b + 1, 1 − v b + 1 , where K(·, α, β) denotes the density of the Beta distribution with parameters α and β. 37
  • 38. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Beta (independent) bivariate kernel , x=0.0, y=0.0 Beta (independent) bivariate kernel , x=0.2, y=0.0 Beta (independent) bivariate kernel , x=0.5, y=0.0 Beta (independent) bivariate kernel , x=0.0, y=0.2 Beta (independent) bivariate kernel , x=0.2, y=0.2 Beta (independent) bivariate kernel , x=0.5, y=0.2 Beta (independent) bivariate kernel , x=0.0, y=0.5 Beta (independent) bivariate kernel , x=0.2, y=0.5 Beta (independent) bivariate kernel , x=0.5, y=0.5 Figure 21: Shape of bivariate Beta kernels K(·, x/b+1, (1−x)/b+1)×K(·, y/b+ 1, (1 − y)/b + 1) for b = 0.2. 38
  • 39. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Assume that the copula density c is twice differentiable on [0, 1] × [0, 1]. Let (u, v) ∈ [0, 1] × [0, 1]. The bias of c(u, v) is of order b, i.e. E(c(u, v)) = c(u, v) + Q(u, v) · b + o(b), where the bias Q(u, v) is Q(u, v) = (1−2u)c1(u, v)+(1−2v)c2(u, v)+ 1 2 [u(1 − u)c1,1(u, v) + v(1 − v)c2,2(u, v)] . The bias here is O(b) (everywhere) while it is O(h2 ) using standard kernels. Assume that the copula density c is twice differentiable on [0, 1] × [0, 1]. Let (u, v) ∈ [0, 1] × [0, 1]. The variance of c(u, v) is in corners, e.g. (0, 0), V ar(c(0, 0)) = 1 nb2 [c(0, 0) + o(n−1 )], in the interior of borders, e.g. u = 0 and v ∈ (0, 1) V ar(c(0, v)) = 1 2nb3/2 πv(1 − v) [c(0, v) + o(n−1 )], 39
  • 40. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules and in the interior,(u, v) ∈ (0, 1) × (0, 1) V ar(c(u, v)) = 1 4nbπ v(1 − v)u(1 − u) [c(u, v) + o(n−1 )]. Remark From those properties, an (asymptotically) optimal bandwidth b can be deduced, maximizing asymptotic mean squared error, b∗ ≡ 1 16πnQ(u, v)2 · 1 v(1 − v)u(1 − u) 1/3 . Note (see Charpentier, Fermanian & Scaillet (2005)) that all those results can be obtained in dimension d ≥ 2. Example For n = 100 simulated data, from Frank copula, the optimal bandwidth is b ∼ 0.05. 40
  • 41. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Estimation of the copula density (Beta kernel, b=0.1) Estimation of the copula density (Beta kernel, b=0.1) 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Figure 22: Estimated density of Frank copula, Beta kernels, b = 0.1 41
  • 42. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Estimation of the copula density (Beta kernel, b=0.05) Estimation of the copula density (Beta kernel, b=0.05) 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Figure 23: Estimated density of Frank copula, Beta kernels, b = 0.05 42
  • 43. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.0 0.2 0.4 0.6 0.8 1.0 01234 Standard Gaussian kernel estimator, n=100 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Standard Gaussian kernel estimator, n=1000 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Standard Gaussian kernel estimator, n=10000 Estimation of the density on the diagonal Densityoftheestimator Figure 24: Density estimation on the diagonal, standard kernel. 43
  • 44. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.0 0.2 0.4 0.6 0.8 1.0 01234 Transformed kernel estimator (Gaussian), n=100 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Transformed kernel estimator (Gaussian), n=1000 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Transformed kernel estimator (Gaussian), n=10000 Estimation of the density on the diagonal Densityoftheestimator Figure 25: Density estimation on the diagonal, transformed kernel. 44
  • 45. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.0 0.2 0.4 0.6 0.8 1.0 01234 Beta kernel estimator, b=0.05, n=100 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Beta kernel estimator, b=0.02, n=1000 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Beta kernel estimator, b=0.005, n=10000 Estimation of the density on the diagonal Densityoftheestimator Figure 26: Density estimation on the diagonal, Beta kernel. 45
  • 46. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Average of histograms and copulas A natural idea would be to extend the notion of average of histograms in higher dimension. But note that the notion of partition can be more complicated. Recall that C is a copula if for any u1 ≤ u2 and v1 ≤ v2, C(u2, v2) − C(u1, v2) − C(u2, v1) + C(u1, v1) ≥ 0, and C is a semicopula (Durante & Sempi (2004)) if for any u1 ≤ u2 and v1 ≤ v2, C(u2, v2) − C(u1, v2) ≥ 0 and C(u2, v2) − C(u2, v1) ≥ 0. 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Copula, positive area 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Semicopula, positive area 46
  • 47. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Histogram in dimension 2 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Histogram in dimension 2 Figure 27: Partitioning the unit square. 47
  • 48. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Copula density as average of randomized histograms, m=2 Copula density as average of randomized histograms, m=2 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Copula density as average of randomized histograms, m=5 Copula density as average of randomized histograms, m=5 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Figure 28: Copula density using average of histograms. 48
  • 49. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Copula density as average of randomized histograms, m=10 Copula density as average of randomized histograms, m=10 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Copula density as average of randomized histograms, m=15 Copula density as average of randomized histograms, m=15 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Figure 29: Copula density using average of histograms. 49
  • 50. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.0 0.2 0.4 0.6 0.8 1.0 01234 Average of histograms, n=1000, m=5 Estimation of the density on the diagonal Estimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Average of histograms, n=1000, m=10 Estimation of the density on the diagonal Estimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Average of histograms, n=1000, m=15 Estimation of the density on the diagonal Estimator Figure 30: Density estimation on the diagonal, average of histograms. 50
  • 51. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Copula density estimation Gijbels & Mielniczuk (1990): given an i.i.d. sample, a natural estimate for the normed density is obtained using the transformed sample (FX(X1), FY (Y1)), ..., (FX(Xn), FY (Yn)), where FX and FY are the empirical distribution function of the marginal distribution. The copula density can be constructed as some density estimate based on this sample (Behnen, Husková & Neuhaus (1985) investigated the kernel method). The natural kernel type estimator c of c is c(u, v) = 1 nh2 n i=1 K u − FX(Xi) h , v − FY (Yi) h , (u, v) ∈ [0, 1]. “this estimator is not consistent in the points on the boundary of the unit square.” 51
  • 52. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Copula density estimation and pseudo-observations Figure 31 shows scatterplots when margins are known (i.e. (FX(Xi), FY (Yi))’s), and when margins are estimated (i.e. ( ˆFX(Xi), ˆFY (Yi)’s). Note that the pseudo sample is more “uniform”, in the sense of a lower discrepancy (as in Quasi Monte Carlo techniques, see e.g. Niederreiter, H. (1992)). 52
  • 53. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Scatterplot of observations (Xi,Yi) Value of the Xis ValueoftheYis 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Scatterplot of pseudo−observations (Ui,Vi) Value of the Uis (ranks)ValueoftheVis(ranks) Figure 31: Observations and pseudo-observation, 500 simulated observations from Frank copula (Xi, Yi) and the associate pseudo-sample ( ˆFX(Xi), ˆFY (Yi)). 53
  • 54. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Because samples are more “uniform” using ranks and pseudo-observations, the variance of the estimator of the density, at some given point (u, v) ∈ (0, 1) × (0, 1) is usually smaller. For instance, Figure 32 shows the impact of considering pseudo observations, i.e. substituting ˆFX and ˆFY to unknown marginal distributions FX and FY . The dotted line shows the density of ˆc(u, v) from a n = 100 sample (Ui, Vi) (from Frank copula), and the straight line shows the density of ˆc(u, v) from the sample ( ˆFU (Ui), ˆFV (Vi)) (i.e. ranks of observations). 54
  • 55. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0 1 2 3 4 0.00.51.01.52.0 Impact of pseudo−observations (n=100) Distribution of the estimation of the density c(u,v) Densityoftheestimator Figure 32: The impact of estimating from pseudo-observations. 55
  • 56. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules The problem of censored data In the case of censored data, consider sample of ((Xi, δX i ), (Yi, δY i ))’s, where δX i = 0 when Xi is censored. Xi = min{X0 i , CX i } and Yi = min{X0 i , CY i } where the Ci’s are censoring variates. The (Xi, Yi) are observed data, the (X0 i , Y 0 i )’s are the variables of interest, that might be unobservable. Kaplan-Meier estimator can be considered, based on the transformed sample made of the non-zero elements. The transformed sample is denoted by (Xi, Yi ), i = 1, ..., n , and its size is n = n i=1 δX i · δY i of fully uncensored data. The marginal Kaplan-Meier of the distribution function is ˆFKM X (x) = 1 − i:Xi≤x n − i n − i + 1 δX i . The nonparametric estimator of the copula density at point (u, v) can be obtained using product beta kernels, on 56
  • 57. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules ( ˆUKM i , V KM i ) = (FKM X (Xi), FKM Y (Yi )), i = 1, ..., n . Remark In the LOSS-ALAE dataset, the loss amounts Xi’s are censored, because of a policy limit. Hence, Xi = min{loss, limit}. 57
  • 58. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 2 4 6 8 10 12 14 4681012 Log(LOSS) Log(ALAE) Figure 33: The LOSS-ALAE dataset and censoring. 58
  • 59. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Unfortunately, such a procedure suffers from the so-called stock sampling (or selection bias) issue. Actually, the subsample used is far from being an i.i.d. sample drawn from the law of (X, Y ). The observations in hand are chosen as fully uncensored. Thus, small observed (Xi, Yi) are more frequent in the subsample than they should be in a usual i.i.d. sample. Therefore, the previous estimator can be advised only when the proportion of censoring is small. Otherwise the bias induced by stock sampling can become large. 59
  • 60. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 0.2 0.4 0.6 0.8 0.20.40.60.8 Figure 34: Estimated density of Frank copula, using Beta kernels, n = 1000, b = 0.050 and no-censoring. 60
  • 61. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 0.2 0.4 0.6 0.8 0.20.40.60.8 Figure 35: Estimated density of Frank copula, using Beta kernels, n = 1000, b = 0.050 and 1.7% censored data. 61
  • 62. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 0.2 0.4 0.6 0.8 0.20.40.60.8 Figure 36: Estimated density of Frank copula, using Beta kernels, n = 1000, b = 0.050 and 7.8% censored data. 62
  • 63. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 0.2 0.4 0.6 0.8 0.20.40.60.8 Figure 37: Estimated density of Frank copula, using Beta kernels, n = 1000, b = 0.050 and 24% censored data. 63
  • 64. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.0 0.2 0.4 0.6 0.8 1.0 01234 Beta kernel estimator, b=0.01, n=1000, no censoring Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Beta kernel estimator, b=0.01, n=1000, 5% censoring Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Beta kernel estimator, b=0.01, n=1000, 25% censoring Estimation of the density on the diagonal Densityoftheestimator Figure 38: Estimation of the density on the diagonal, with censored data . 64
  • 65. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Stock sampling can be observe as the bias increases as u goes to 1, and as the proportion of censored data increases. Figure 39 shows the estimated density c(12/13, 12/13) with no censoring, and 25% censored observations. Following the idea proposed in Efron and Tibshirani (1993), bootstrap techniques can be used to estimate the bias. Consider B bootstrap samples drawn independently from the original censored data, with replacement, X∗ i,b, Y ∗ i,b, δ∗ i,b , i = 1, ..., n and b = 1, ..., B. The bias of the density estimator at point (u, v) can be estimated from bias (u, v) = 1 B B i=1 c (u, v) ∗,b − c (u, v) where c (u) ∗,b is the density obtained from the bth bootstrap sample. 65
  • 66. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0 1 2 3 4 5 6 0.00.20.40.60.8 Standard Beta kernel estimator Estimation of the density near the lower corner Densityoftheestimator Figure 39: c(12/13, 12/13) using Beta kernels, with censored data (dotted line). 66
  • 67. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.0 0.2 0.4 0.6 0.8 1.0 01234 Transformed kernel estimator (Gaussian), n=1000 Estimation of the density on the diagonal, 25% censoring Densityoftheestimator,bootstrapbiascorrection 0.0 0.2 0.4 0.6 0.8 1.0 01234 Beta kernel estimator, b=0.01, n=1000 Estimation of the density on the diagonal, 25% censoringDensityoftheestimator,bootstrapbiascorrection Figure 40: Censoring bias correction using bootstrap techniques. 67
  • 68. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules Figure 40 shows the the evolution of u → 1 B B i=1 c (u, u) ∗,b , on the diagonal using bootstrap techniques (as in Efron (1981)). For each bootstrap sample, unobservable value Y 0 i,b and censoring value Ci,b are simulated using Kaplan-Meier estimate of the density, and then a sample (Xi,b, Y i, b, δi, b), i = 1, ..., n is obtained, and a new Kaplan-Meier estimation is obtained, F0 b , and is used to obtain the estimation of the copula density for this bootstrap sample. The application to the Loss-ALAE dataset confirms Gumbel model. 68
  • 69. Arthur CHARPENTIER - Estimation non-paramétrique des densités de copules 0.0 0.2 0.4 0.6 0.8 1.0 01234567 Beta kernel estimator, b=0.01, n=1000 Estimation of the density on the diagonal, LOSS−ALAE Densityoftheestimator,bootstrapbiascorrection 0.75 0.80 0.85 0.90 0.95 1.00 01234567 Beta kernel estimator, b=0.005, n=1000 Estimation of the density on the diagonal, LOSS−ALAEDensityoftheestimator,bootstrapbiascorrection Figure 41: Beta kernel estimator for Loss-ALAE, compare with Gumbel copula. 69