SlideShare une entreprise Scribd logo
1  sur  36
RAÍCES DE ECUACIONES MÓNICA YAMILE CAMACHO  2010
RAÍCES DE ECUACIONES CONTENIDO Definición Métodos para la aproximación de soluciones 1. Método grafico  2. Cerrado o acotado : a) Bisección b) Falsa Posición 3. Abierto: c) Secante d) Newton-Raphson e) Punto Fijo
RAÍCES DE ECUACIONES DEFINICIÓN El objeto del cálculo de las raíces de una ecuación es determinar los valores de  x  para los que se cumple:  f ( x ) = 0  Su importancia radica en que si podemos determinar las raíces de una ecuación también podemos determinar máximos y mínimos, valores propios de matrices, resolver sistemas de ecuaciones lineales y diferenciales, etc...
RAÍCES DE ECUACIONES Para resolver ecuaciones no lineales existen varios métodos numéricos  que los podemos clasificar así: Método grafico   Cerrado o acotado:   (requiere de dos valores de x que encierren la raíz) ,[object Object],[object Object],Abierto:  ( requiere de uno o dos valores de x, pero no necesariamente encierran la raíz) ,[object Object],[object Object],[object Object]
RAÍCES DE ECUACIONES La mayoría de los métodos utilizados para el cálculo de las raíces de una ecuación son iterativos y se basan en modelos de aproximaciones sucesivas. Estos métodos trabajan del siguiente modo: a partir de una primera aproximación al valor de la raíz, determinamos una aproximación mejor aplicando una determinada regla de cálculo y así sucesivamente hasta que se determine el valor de la raíz con el grado de aproximación deseado.
MÉTODO GRAFICO Consiste en graficar una función y determinar visualmente donde corta el eje x. En  y= f(x), establece el valor  de x para el cual f(x)=0. x 1.  Si en un intervalo {a,b} cerrado se cumple que :  no existen raíces reales en el intervalo, pues y=f(x) no toca el eje x, por el contrario pueden encontrarse una o más raíces imaginarias.  f(a).f(b)>0 f(x) a b
MÉTODO GRAFICO 2.  Si en un intervalo {a,b} cerrado se cumple que :  Entonces existen dos raíces reales  f(a).f(b)>0 f(x) a b x
MÉTODO GRAFICO 3.  Si en un intervalo {a,b} cerrado se cumple que :  da la certeza de encontrar una sola raíz real en el intervalo.  f(a).f(b)<0 x f(x) a b
MÉTODO GRAFICO 4.  Si en un intervalo {a,b} cerrado se cumple que :  hay más de dos raíces.  f(a).f(b)<0 f(x) a b x
MÉTODO GRAFICO 5.  También puede existir una función  , para la que existe una raíz real doble en x=0 , que no es apreciable por el método gráfico,  pues la ecuación es tangente al eje x .  f(x) a b x
MÉTODO DE BISECCIÓN   Este método, también conocido como método de partición del intervalo, parte de una ecuación algebraica o trascendental  f ( x ) y un intervalo [ x i,  x s], tal que  f ( x i) y  f ( x s) tienen signos contrarios, es decir, tal que existe por lo menos una raíz en ese intervalo.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MÉTODO DE BISECCIÓN f(x) f(xi) f(xr) f(xs) xi xr xs xi=xr x
[object Object],[object Object],[object Object],[object Object],xi xs ,[object Object],Donde:  ∆x = longitud del intervalo  n= numero de iteraciones error
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MÉTODO DE BISECCIÓN Ejemplo: Calcule la raíz de: 3X 0,00125541 1,7252E-07 -1,1992E-07 -0,00106276 -0,00016234 0,0007387 0,35048828 0,35004883 0,34960938 11 0,00250766 3,0414E-06 -7,8506E-07 -0,00286179 -0,00106276 0,0007387 0,35136719 0,35048828 0,34960938 10 0,00500278 1,8466E-05 -2,114E-06 -0,00645259 -0,00286179 0,0007387 0,353125 0,35136719 0,34960938 9 0,01005587 -4,7665E-06 5,8866E-06 -0,00645259 0,0007387 0,00796895 0,353125 0,34960938 0,34609375 8 0,02031603 -5,142E-05 0,00017968 -0,00645259 0,00796895 0,02254804 0,353125 0,34609375 0,3390625 7 0,04147465 -0,00014549 0,00117684 -0,00645259 0,02254804 0,05219235 0,353125 0,3390625 0,325 6 0,07964602 0,00040411 -0,00033678 -0,06262805 -0,00645259 0,05219235 0,38125 0,353125 0,325 5 0,14754098 0,01054366 -0,00326871 -0,16835365 -0,06262805 0,05219235 0,4375 0,38125 0,325 4 0,25714286 0,0602622 -0,00878677 -0,35795009 -0,16835365 0,05219235 0,55 0,4375 0,325 3 0,69230769 -0,01868226 0,03344581 -0,35795009 0,05219235 0,64081822 0,55 0,325 0,1 2 0,34012881 -0,22938094 -0,95021293 -0,35795009 0,64081822 1 0,55 0,1 1 error f(xr)f(xs) f(xi)f(xr) f(xs) f(xr) f(xi) xs xr xi iter
FALSA POSICIÓN Este método, como en el método de la bisección, parte de dos puntos que rodean a la raíz  f ( x ) = 0, es decir, dos puntos  x i y  x s tales que  f ( x i) f ( x s) < 0. La siguiente aproximación,  x r, se calcula como la intersección con el eje  X  de la recta que une ambos puntos empleando la ecuación  La asignación del nuevo intervalo de búsqueda se realiza como en el método de la bisección: entre ambos intervalos, [ x i, x r] y [ x r, x s], se toma aquel que cumpla  f ( xi ) f ( x r) < 0 ;  f ( xr ) f ( x s) < 0.
FALSA POSICIÓN Raíz falsa Raíz verdadera xi xr xs f(x)
FALSA POSICIÓN Ejemplo: Calcule la raíz de: 0,00813106 1,0663E-09 -9,3671E-06 -7,2949E-05 -1,4617E-05 0,64081822 0,35000522 0,34997676 0,1 7 0,04057728 2,6556E-08 -4,6747E-05 -0,00036404 -7,2949E-05 0,64081822 0,35014724 0,35000522 0,1 6 0,20245435 6,6109E-07 -0,00023328 -0,001816 -0,00036404 0,64081822 0,35085613 0,35014724 0,1 5 1,00905905 1,6424E-05 -0,00116373 -0,0090439 -0,001816 0,64081822 0,35439648 0,35085613 0,1 4 5,00381971 0,00040399 -0,0057955 -0,04466988 -0,0090439 0,64081822 0,37212984 0,35439648 0,1 3 24,2824855 0,0095052 -0,02862527 -0,2127876 -0,04466988 0,64081822 0,46249221 0,37212984 0,1 2 0,20219353 -0,13635817 -0,95021293 -0,2127876 0,64081822 1 0,46249221 0,1 1 error f(xs).f(xr) f(xi).f(xr) f(xs) f(xr) f(xi) xs xr xi iter 3X
MÉTODO DE   PUNTO FIJO Usando el concepto de replantear la forma original del problema: Si Tal que Tal que
MÉTODO DE   PUNTO FIJO Se pueden presentar cuatro situaciones al momento de buscar la raíz. 1. Que  y solución monotónicamente convergente  (mayor acercamiento a la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE   PUNTO FIJO 2. Que  y  solución oscilatoriamente convergente  (mayor acercamiento de manera oscilatoria a la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE   PUNTO FIJO 3. Que  y  solución monotónicamente divergente  (mayor alejamiento de la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE PUNTO FIJO 4. Que  y  solución oscilatoriamente divergente  (mayor alejamiento de manera oscilatoria de la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE PUNTO FIJO 0,02098221 -2,5837E-09 3,8279E-05 -6,7496E-05 0,56711886 0,56718636 14 0,03700515 -8,0326E-09 -6,7496E-05 0,00011901 0,56718636 0,56706735 13 0,06522085 -2,4973E-08 0,00011901 -0,00020984 0,56706735 0,5672772 12 0,11508432 -7,7639E-08 -0,00020984 0,00036998 0,5672772 0,56690721 11 0,20265386 -2,4138E-07 0,00036998 -0,00065242 0,56690721 0,56755963 10 0,35814989 -7,504E-07 -0,00065242 0,00115018 0,56755963 0,56640945 9 0,62893408 -2,3333E-06 0,00115018 -0,00202859 0,56640945 0,56843805 8 1,11694386 -7,2524E-06 -0,00202859 0,0035751 0,56843805 0,56486295 7 1,94468884 -2,2556E-05 0,0035751 -0,0063092 0,56486295 0,57117215 6 3,50646443 -7,008E-05 -0,0063092 0,01110752 0,57117215 0,56006463 5 5,94509212 -0,00021813 0,01110752 -0,01963847 0,56006463 0,57970309 4 11,2412032 -0,00067682 -0,01963847 0,03446388 0,57970309 0,54523921 3 17,5639365 -0,00211234 0,03446388 -0,06129145 0,54523921 0,60653066 2   -0,00652942 -0,06129145 0,10653066 0,60653066 0,5 1 error f(xi).f(x(i+1) f(x(i+1) f(xi) x(i+1) xi iter Ejemplo: Calcule la raíz de:
MÉTODO DE NEWTON – RAPHSON Es uno de los métodos mas usados en la ingeniería, por llegar al resultado del problema de forma mas rápida. Se basa en trazar rectas tangentes que “toman la forma” de la función por medio de su primera derivada. Se usa la proyección de la recta tangente para encontrar el valor aproximado de la raíz.
MÉTODO DE NEWTON – RAPHSON f(x) f(xi) f(xi+1) Xi+1 xi RAIZ
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MÉTODO DE NEWTON – RAPHSON Ejemplo: Calcule la raíz de: 3X 0,01570641 -1,9947E-05 0,34997936 -1,349989337 3,8473E-05 0,34995086 13 0,03028815 3,8473E-05 0,34995086 -1,34993163 -7,4199E-05 0,35000583 12 0,0584342 -7,4199E-05 0,35000583 -1,350042937 0,00014312 0,34989982 11 0,11263635 0,00014312 0,34989982 -1,349828292 -0,00027599 0,35010428 10 0,21748478 -0,00027599 0,35010428 -1,350242396 0,00053246 0,34970993 9 0,41855733 0,00053246 0,34970993 -1,34944416 -0,00102634 0,3504705 8 0,81064494 -0,00102634 0,3504705 -1,350985368 0,00198179 0,34900358 7 1,55100642 0,00198179 0,34900358 -1,348018973 -0,00381379 0,35183276 6 3,03839078 -0,00381379 0,35183276 -1,353763228 0,00738742 0,34637581 5 5,68922458 0,00738742 0,34637581 -1,342768431 -0,01413163 0,35690006 4 11,6372509 -0,01413163 0,35690006 -1,364297058 0,02770184 0,33659522 3 20,1630051 0,02770184 0,33659522 -1,323907616 -0,05185803 0,37576565 2 -0,05185803 0,37576565 -1,40656966 0,10656966 0,3 1 error f(xi+1) x(i+1) f``(xi) f(xi) xi iter
MÉTODO DE SECANTE   Este método, a diferencia del de bisección y regla falsa, casi nunca falla ya que solo requiere de 2 puntos al principio, y después el mismo método se va retroalimentando.  Lo que hace básicamente es ir tirando rectas secantes a la curva de la ecuación que se tiene originalmente, y va checando la intersección de esas rectas con el eje de las X para ver si es la raíz que se busca.
MÉTODO DE SECANTE   El método se define por: Como se puede ver, este método necesitará dos aproximaciones iniciales de la raíz para poder inducir una pendiente inicial.
MÉTODO DE SECANTE   X i-1 x i X i+1 f(xi-1) f(xi) A E B D C x
MÉTODO DE SECANTE   0,86518885 7,4283E-07 -1,0173E-05 -0,00777908 -9,5491E-05 0,10653066 0,57211161 0,56720422 0,5 3 74,7910687 7,4283E-07 -0,00082871 -9,5491E-05 -0,00777908 0,10653066 0,56720422 0,57211161 0,5 2   0,00491732 -0,06734022 -0,00777908 -0,63212056 0,10653066 0,57211161 1 0,5 1 error f(xi+1).f(xi) f(xi-1).f(xi) f(xi+1) f(xi) f(xi-1) x(i+1) xi x(i-1) iter Ejemplo: Calcule la raíz de:
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
F i n

Contenu connexe

En vedette

En vedette (9)

metodos numericos
 metodos numericos metodos numericos
metodos numericos
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5
 
Metodos Numericos
Metodos NumericosMetodos Numericos
Metodos Numericos
 
Métodos numéricos
Métodos numéricosMétodos numéricos
Métodos numéricos
 
Metodos numericos tema 3
Metodos numericos tema 3Metodos numericos tema 3
Metodos numericos tema 3
 
el metodo
el metodoel metodo
el metodo
 
METODOS NUMERICOS para ingenieria -Chapra
METODOS NUMERICOS para ingenieria -ChapraMETODOS NUMERICOS para ingenieria -Chapra
METODOS NUMERICOS para ingenieria -Chapra
 
Métodos de investigacion
Métodos de investigacionMétodos de investigacion
Métodos de investigacion
 

Similaire à Raíces ecuaciones métodos

Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2monica
 
Metodosnumericos2 100720142006-phpapp02
Metodosnumericos2 100720142006-phpapp02Metodosnumericos2 100720142006-phpapp02
Metodosnumericos2 100720142006-phpapp02wnorabuena
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2monica
 
Busqueda de una raiz-Metodos numericos
Busqueda de una raiz-Metodos numericosBusqueda de una raiz-Metodos numericos
Busqueda de una raiz-Metodos numericosjorgeduardooo
 
Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9Xavier Davias
 
RAÍCES DE ECUACIONES
RAÍCES DE ECUACIONESRAÍCES DE ECUACIONES
RAÍCES DE ECUACIONESJenny López
 
MÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOSMÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOSAnahi Daza
 
Aplicacion de la derivada
Aplicacion de la derivadaAplicacion de la derivada
Aplicacion de la derivadayicel abella
 
2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptx2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptxCrisbelChvez
 
Método de Newton
Método de NewtonMétodo de Newton
Método de NewtonKike Prieto
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuacionesluisrial15
 
Métodos numéricos - Solución de Raíces De Ecuaciones
Métodos numéricos - Solución de Raíces De EcuacionesMétodos numéricos - Solución de Raíces De Ecuaciones
Métodos numéricos - Solución de Raíces De EcuacionesDavid A. Baxin López
 
ECUACIONES NO LINEALES
ECUACIONES NO LINEALESECUACIONES NO LINEALES
ECUACIONES NO LINEALESsdiupg1
 

Similaire à Raíces ecuaciones métodos (20)

No lineales
No linealesNo lineales
No lineales
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Metodosnumericos2 100720142006-phpapp02
Metodosnumericos2 100720142006-phpapp02Metodosnumericos2 100720142006-phpapp02
Metodosnumericos2 100720142006-phpapp02
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Busqueda de una raiz-Metodos numericos
Busqueda de una raiz-Metodos numericosBusqueda de una raiz-Metodos numericos
Busqueda de una raiz-Metodos numericos
 
Derivadas. aplicaciones
Derivadas. aplicacionesDerivadas. aplicaciones
Derivadas. aplicaciones
 
Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9
 
RAÍCES DE ECUACIONES
RAÍCES DE ECUACIONESRAÍCES DE ECUACIONES
RAÍCES DE ECUACIONES
 
Resumen de analisis_matii
Resumen de analisis_matiiResumen de analisis_matii
Resumen de analisis_matii
 
MÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOSMÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOS
 
Aplicacion de la derivada
Aplicacion de la derivadaAplicacion de la derivada
Aplicacion de la derivada
 
Metodos deber
Metodos deberMetodos deber
Metodos deber
 
Practica4 newton-raph-resuelta
Practica4 newton-raph-resueltaPractica4 newton-raph-resuelta
Practica4 newton-raph-resuelta
 
2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptx2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptx
 
Método de Newton
Método de NewtonMétodo de Newton
Método de Newton
 
Unidad 1 tema 1.1 biseccion
Unidad 1 tema 1.1 biseccionUnidad 1 tema 1.1 biseccion
Unidad 1 tema 1.1 biseccion
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuaciones
 
Funcion cuadratic a
Funcion cuadratic aFuncion cuadratic a
Funcion cuadratic a
 
Métodos numéricos - Solución de Raíces De Ecuaciones
Métodos numéricos - Solución de Raíces De EcuacionesMétodos numéricos - Solución de Raíces De Ecuaciones
Métodos numéricos - Solución de Raíces De Ecuaciones
 
ECUACIONES NO LINEALES
ECUACIONES NO LINEALESECUACIONES NO LINEALES
ECUACIONES NO LINEALES
 

Plus de monica

Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5monica
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2monica
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3monica
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4monica
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4monica
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 

Plus de monica (11)

Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 

Dernier

2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdfBaker Publishing Company
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxKarlaMassielMartinez
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptxFelicitasAsuncionDia
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuaDANNYISAACCARVAJALGA
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...JonathanCovena1
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxjosetrinidadchavez
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdfDemetrio Ccesa Rayme
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaDecaunlz
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfMaritzaRetamozoVera
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 

Dernier (20)

2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdfTema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
 
Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahua
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdf
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 

Raíces ecuaciones métodos

  • 1. RAÍCES DE ECUACIONES MÓNICA YAMILE CAMACHO 2010
  • 2. RAÍCES DE ECUACIONES CONTENIDO Definición Métodos para la aproximación de soluciones 1. Método grafico 2. Cerrado o acotado : a) Bisección b) Falsa Posición 3. Abierto: c) Secante d) Newton-Raphson e) Punto Fijo
  • 3. RAÍCES DE ECUACIONES DEFINICIÓN El objeto del cálculo de las raíces de una ecuación es determinar los valores de x para los que se cumple: f ( x ) = 0 Su importancia radica en que si podemos determinar las raíces de una ecuación también podemos determinar máximos y mínimos, valores propios de matrices, resolver sistemas de ecuaciones lineales y diferenciales, etc...
  • 4.
  • 5. RAÍCES DE ECUACIONES La mayoría de los métodos utilizados para el cálculo de las raíces de una ecuación son iterativos y se basan en modelos de aproximaciones sucesivas. Estos métodos trabajan del siguiente modo: a partir de una primera aproximación al valor de la raíz, determinamos una aproximación mejor aplicando una determinada regla de cálculo y así sucesivamente hasta que se determine el valor de la raíz con el grado de aproximación deseado.
  • 6. MÉTODO GRAFICO Consiste en graficar una función y determinar visualmente donde corta el eje x. En y= f(x), establece el valor de x para el cual f(x)=0. x 1. Si en un intervalo {a,b} cerrado se cumple que : no existen raíces reales en el intervalo, pues y=f(x) no toca el eje x, por el contrario pueden encontrarse una o más raíces imaginarias. f(a).f(b)>0 f(x) a b
  • 7. MÉTODO GRAFICO 2. Si en un intervalo {a,b} cerrado se cumple que : Entonces existen dos raíces reales f(a).f(b)>0 f(x) a b x
  • 8. MÉTODO GRAFICO 3. Si en un intervalo {a,b} cerrado se cumple que : da la certeza de encontrar una sola raíz real en el intervalo. f(a).f(b)<0 x f(x) a b
  • 9. MÉTODO GRAFICO 4. Si en un intervalo {a,b} cerrado se cumple que : hay más de dos raíces. f(a).f(b)<0 f(x) a b x
  • 10. MÉTODO GRAFICO 5. También puede existir una función , para la que existe una raíz real doble en x=0 , que no es apreciable por el método gráfico, pues la ecuación es tangente al eje x . f(x) a b x
  • 11. MÉTODO DE BISECCIÓN Este método, también conocido como método de partición del intervalo, parte de una ecuación algebraica o trascendental f ( x ) y un intervalo [ x i, x s], tal que f ( x i) y f ( x s) tienen signos contrarios, es decir, tal que existe por lo menos una raíz en ese intervalo.
  • 12.
  • 13. MÉTODO DE BISECCIÓN f(x) f(xi) f(xr) f(xs) xi xr xs xi=xr x
  • 14.
  • 15.
  • 16.
  • 17. MÉTODO DE BISECCIÓN Ejemplo: Calcule la raíz de: 3X 0,00125541 1,7252E-07 -1,1992E-07 -0,00106276 -0,00016234 0,0007387 0,35048828 0,35004883 0,34960938 11 0,00250766 3,0414E-06 -7,8506E-07 -0,00286179 -0,00106276 0,0007387 0,35136719 0,35048828 0,34960938 10 0,00500278 1,8466E-05 -2,114E-06 -0,00645259 -0,00286179 0,0007387 0,353125 0,35136719 0,34960938 9 0,01005587 -4,7665E-06 5,8866E-06 -0,00645259 0,0007387 0,00796895 0,353125 0,34960938 0,34609375 8 0,02031603 -5,142E-05 0,00017968 -0,00645259 0,00796895 0,02254804 0,353125 0,34609375 0,3390625 7 0,04147465 -0,00014549 0,00117684 -0,00645259 0,02254804 0,05219235 0,353125 0,3390625 0,325 6 0,07964602 0,00040411 -0,00033678 -0,06262805 -0,00645259 0,05219235 0,38125 0,353125 0,325 5 0,14754098 0,01054366 -0,00326871 -0,16835365 -0,06262805 0,05219235 0,4375 0,38125 0,325 4 0,25714286 0,0602622 -0,00878677 -0,35795009 -0,16835365 0,05219235 0,55 0,4375 0,325 3 0,69230769 -0,01868226 0,03344581 -0,35795009 0,05219235 0,64081822 0,55 0,325 0,1 2 0,34012881 -0,22938094 -0,95021293 -0,35795009 0,64081822 1 0,55 0,1 1 error f(xr)f(xs) f(xi)f(xr) f(xs) f(xr) f(xi) xs xr xi iter
  • 18. FALSA POSICIÓN Este método, como en el método de la bisección, parte de dos puntos que rodean a la raíz f ( x ) = 0, es decir, dos puntos x i y x s tales que  f ( x i) f ( x s) < 0. La siguiente aproximación, x r, se calcula como la intersección con el eje X de la recta que une ambos puntos empleando la ecuación La asignación del nuevo intervalo de búsqueda se realiza como en el método de la bisección: entre ambos intervalos, [ x i, x r] y [ x r, x s], se toma aquel que cumpla f ( xi ) f ( x r) < 0 ; f ( xr ) f ( x s) < 0.
  • 19. FALSA POSICIÓN Raíz falsa Raíz verdadera xi xr xs f(x)
  • 20. FALSA POSICIÓN Ejemplo: Calcule la raíz de: 0,00813106 1,0663E-09 -9,3671E-06 -7,2949E-05 -1,4617E-05 0,64081822 0,35000522 0,34997676 0,1 7 0,04057728 2,6556E-08 -4,6747E-05 -0,00036404 -7,2949E-05 0,64081822 0,35014724 0,35000522 0,1 6 0,20245435 6,6109E-07 -0,00023328 -0,001816 -0,00036404 0,64081822 0,35085613 0,35014724 0,1 5 1,00905905 1,6424E-05 -0,00116373 -0,0090439 -0,001816 0,64081822 0,35439648 0,35085613 0,1 4 5,00381971 0,00040399 -0,0057955 -0,04466988 -0,0090439 0,64081822 0,37212984 0,35439648 0,1 3 24,2824855 0,0095052 -0,02862527 -0,2127876 -0,04466988 0,64081822 0,46249221 0,37212984 0,1 2 0,20219353 -0,13635817 -0,95021293 -0,2127876 0,64081822 1 0,46249221 0,1 1 error f(xs).f(xr) f(xi).f(xr) f(xs) f(xr) f(xi) xs xr xi iter 3X
  • 21. MÉTODO DE PUNTO FIJO Usando el concepto de replantear la forma original del problema: Si Tal que Tal que
  • 22. MÉTODO DE PUNTO FIJO Se pueden presentar cuatro situaciones al momento de buscar la raíz. 1. Que y solución monotónicamente convergente (mayor acercamiento a la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 23. MÉTODO DE PUNTO FIJO 2. Que y solución oscilatoriamente convergente (mayor acercamiento de manera oscilatoria a la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 24. MÉTODO DE PUNTO FIJO 3. Que y solución monotónicamente divergente (mayor alejamiento de la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 25. MÉTODO DE PUNTO FIJO 4. Que y solución oscilatoriamente divergente (mayor alejamiento de manera oscilatoria de la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 26. MÉTODO DE PUNTO FIJO 0,02098221 -2,5837E-09 3,8279E-05 -6,7496E-05 0,56711886 0,56718636 14 0,03700515 -8,0326E-09 -6,7496E-05 0,00011901 0,56718636 0,56706735 13 0,06522085 -2,4973E-08 0,00011901 -0,00020984 0,56706735 0,5672772 12 0,11508432 -7,7639E-08 -0,00020984 0,00036998 0,5672772 0,56690721 11 0,20265386 -2,4138E-07 0,00036998 -0,00065242 0,56690721 0,56755963 10 0,35814989 -7,504E-07 -0,00065242 0,00115018 0,56755963 0,56640945 9 0,62893408 -2,3333E-06 0,00115018 -0,00202859 0,56640945 0,56843805 8 1,11694386 -7,2524E-06 -0,00202859 0,0035751 0,56843805 0,56486295 7 1,94468884 -2,2556E-05 0,0035751 -0,0063092 0,56486295 0,57117215 6 3,50646443 -7,008E-05 -0,0063092 0,01110752 0,57117215 0,56006463 5 5,94509212 -0,00021813 0,01110752 -0,01963847 0,56006463 0,57970309 4 11,2412032 -0,00067682 -0,01963847 0,03446388 0,57970309 0,54523921 3 17,5639365 -0,00211234 0,03446388 -0,06129145 0,54523921 0,60653066 2   -0,00652942 -0,06129145 0,10653066 0,60653066 0,5 1 error f(xi).f(x(i+1) f(x(i+1) f(xi) x(i+1) xi iter Ejemplo: Calcule la raíz de:
  • 27. MÉTODO DE NEWTON – RAPHSON Es uno de los métodos mas usados en la ingeniería, por llegar al resultado del problema de forma mas rápida. Se basa en trazar rectas tangentes que “toman la forma” de la función por medio de su primera derivada. Se usa la proyección de la recta tangente para encontrar el valor aproximado de la raíz.
  • 28. MÉTODO DE NEWTON – RAPHSON f(x) f(xi) f(xi+1) Xi+1 xi RAIZ
  • 29.
  • 30. MÉTODO DE NEWTON – RAPHSON Ejemplo: Calcule la raíz de: 3X 0,01570641 -1,9947E-05 0,34997936 -1,349989337 3,8473E-05 0,34995086 13 0,03028815 3,8473E-05 0,34995086 -1,34993163 -7,4199E-05 0,35000583 12 0,0584342 -7,4199E-05 0,35000583 -1,350042937 0,00014312 0,34989982 11 0,11263635 0,00014312 0,34989982 -1,349828292 -0,00027599 0,35010428 10 0,21748478 -0,00027599 0,35010428 -1,350242396 0,00053246 0,34970993 9 0,41855733 0,00053246 0,34970993 -1,34944416 -0,00102634 0,3504705 8 0,81064494 -0,00102634 0,3504705 -1,350985368 0,00198179 0,34900358 7 1,55100642 0,00198179 0,34900358 -1,348018973 -0,00381379 0,35183276 6 3,03839078 -0,00381379 0,35183276 -1,353763228 0,00738742 0,34637581 5 5,68922458 0,00738742 0,34637581 -1,342768431 -0,01413163 0,35690006 4 11,6372509 -0,01413163 0,35690006 -1,364297058 0,02770184 0,33659522 3 20,1630051 0,02770184 0,33659522 -1,323907616 -0,05185803 0,37576565 2 -0,05185803 0,37576565 -1,40656966 0,10656966 0,3 1 error f(xi+1) x(i+1) f``(xi) f(xi) xi iter
  • 31. MÉTODO DE SECANTE Este método, a diferencia del de bisección y regla falsa, casi nunca falla ya que solo requiere de 2 puntos al principio, y después el mismo método se va retroalimentando. Lo que hace básicamente es ir tirando rectas secantes a la curva de la ecuación que se tiene originalmente, y va checando la intersección de esas rectas con el eje de las X para ver si es la raíz que se busca.
  • 32. MÉTODO DE SECANTE El método se define por: Como se puede ver, este método necesitará dos aproximaciones iniciales de la raíz para poder inducir una pendiente inicial.
  • 33. MÉTODO DE SECANTE X i-1 x i X i+1 f(xi-1) f(xi) A E B D C x
  • 34. MÉTODO DE SECANTE 0,86518885 7,4283E-07 -1,0173E-05 -0,00777908 -9,5491E-05 0,10653066 0,57211161 0,56720422 0,5 3 74,7910687 7,4283E-07 -0,00082871 -9,5491E-05 -0,00777908 0,10653066 0,56720422 0,57211161 0,5 2   0,00491732 -0,06734022 -0,00777908 -0,63212056 0,10653066 0,57211161 1 0,5 1 error f(xi+1).f(xi) f(xi-1).f(xi) f(xi+1) f(xi) f(xi-1) x(i+1) xi x(i-1) iter Ejemplo: Calcule la raíz de:
  • 35.
  • 36. F i n