SlideShare une entreprise Scribd logo
1  sur  12
Course: B.Sc CS.
Subject: Discrete Mathematics
Unit-1
RAI UNIVERSITY, AHMEDABAD
Unit-1 Successive Differentiation
 Review of Differentiation:
 The limit of incremental ratio. i.e. lim⁡
𝛿𝑦
𝛿𝑥
as ⁡𝛿𝑥 approaches zero is
called differential coefficient of 𝑦 with respect of 𝑥 and denoted by
𝑑𝑦
𝑑𝑥
.

𝑑𝑦
𝑑𝑥
=⁡ lim
𝛿𝑥→0
𝛿𝑦
𝛿𝑥

𝑑
𝑑𝑥
𝑓( 𝑥) = lim
𝛿𝑥→0
𝑓( 𝑥+⁡𝛿𝑥)−𝑓(𝑥)
⁡𝛿𝑥
 Standard Results:
 Successive Differentiation:
 If 𝑦 = 𝑓( 𝑥), its differential co-efficient
𝑑𝑦
𝑑𝑥
is also a function of 𝑥.
𝑑𝑦
𝑑𝑥
is
further differentiated and the derivative of
𝑑𝑦
𝑑𝑥
i.e.
𝑑
𝑑𝑥
(
𝑑𝑦
𝑑𝑥
) is called the
second differential co-efficient of 𝑦 and is denoted by
𝑑2 𝑦
𝑑𝑥2
.
Similarly third differential coefficient of 𝑦 with respect to 𝑥 is written
as
𝑑3 𝑦
𝑑𝑥3
.
 Other notations of successivederivatives are
𝐷𝑦, 𝐷2
𝑦, 𝐷3
𝑦,………. . 𝐷 𝑛
𝑦 …… ……
𝑦1,⁡⁡⁡𝑦2,⁡⁡⁡⁡𝑦3, ………..⁡⁡𝑦𝑛⁡ ……………..
𝑦′
, 𝑦′′
,⁡𝑦′′′
,……… 𝑦 𝑛
…………….
Thus
𝑑 𝑛 𝑦
𝑑𝑥 𝑛
is 𝑛𝑡ℎ⁡derivative of 𝑦 with respectto 𝑥.
 Example-1. Find the value of
𝒅 𝟑 𝒚
𝒅𝒙 𝟑
if 𝒚 = 𝐥𝐨𝐠⁡( 𝒂𝒙 + 𝒃)
Solution: Here we have 𝑦 = log⁡( 𝑎𝑥 + 𝑏)

𝑑𝑦
𝑑𝑥
=
𝑎
𝑎𝑥+𝑏
 Differentiating it again, we get

𝑑2 𝑦
𝑑𝑥2
=
−𝑎2
( 𝑎𝑥+𝑏)2
 Similarly, ⁡
𝑑3 𝑦
𝑑𝑥3
=
2𝑎3
( 𝑎𝑥+𝑏)3
 𝒏𝒕𝒉 Derivative of 𝒙 𝒎
:
 Let 𝑦 = 𝑥 𝑚
 𝑦1 = 𝑚𝑥 𝑚−1
 𝑦2 = 𝑚( 𝑚 − 1) 𝑥 𝑚−2
 𝑦3 = 𝑚( 𝑚 − 1)( 𝑚 − 2) 𝑥 𝑚−3
 ………………………………………………………..
 …………………………………………………………
 𝑦𝑛 = [ 𝑚( 𝑚 − 1)( 𝑚 − 2)… …up⁡to⁡n⁡factors]⁡× 𝑥 𝑚−𝑛
 𝒚 𝒏 = 𝒎( 𝒎− 𝟏)( 𝒎 − 𝟐) ……………( 𝒎 − 𝒏 + 𝟏) 𝒙 𝒎−𝒏
where 𝒎 <
𝑛
 Example-1. Find the 𝟏𝟎𝒕𝒉 derivative of 𝒙 𝟏𝟐
.
Solution: let 𝑦 = 𝑥12
 𝑦10 = 12 × 11 × 10× ………× 3 × 𝑥2
Note : If m be Positive integer and if 𝑚 = 𝑛 then
𝑑 𝑚
𝑑𝑥 𝑚
𝑥 𝑚
= 𝑚!
 𝒏𝒕𝒉⁡Derivative of 𝒆 𝒂𝒙
:
 𝑦 = 𝑒 𝑎𝑥
 𝑦1 = 𝑎𝑒 𝑎𝑥
 𝑦2 = 𝑎2
𝑒 𝑎𝑥
 𝑦3 = 𝑎3
𝑒 𝑎𝑥
 ………………………………………..
 ………………………………………..
 𝒚 𝒏 = 𝒂 𝒏
𝒆 𝒂𝒙
 Example-1. Find the 𝟓𝒕𝒉 derivative of⁡𝒆 𝒎𝒙
.
Solution: Let 𝑦 = 𝑒 𝑚𝑥
∴ 𝑦5 = 𝑚5
𝑒 𝑚𝑥
 𝒏𝒕𝒉⁡Derivative of 𝒂 𝒎𝒙
:
 Let 𝑦 = 𝑎 𝑚𝑥
 𝑦1 = 𝑚𝑎 𝑚𝑥
𝑙𝑜𝑔𝑎⁡
 𝑦2 = 𝑚2
𝑎 𝑚𝑥( 𝑙𝑜𝑔𝑎)2
 ……………………………………….
 ……………………………………….
By generalization,
 𝒚 𝒏 = 𝒎 𝒏
𝒂 𝒙(𝒍𝒐𝒈𝒂) 𝒏
Note: If 𝑚 = 1 i.e. 𝑦 = 𝑎 𝑥
then 𝑦𝑛 = 𝑎 𝑥( 𝑙𝑜𝑔𝑎) 𝑛
 Example-1. Find the 7th
derivative of 𝟐 𝟏𝟎𝒙
.
Solution: Let 𝑦 = 210𝑥
 We know that 𝑦𝑛 = 𝑚 𝑛
𝑎 𝑥( 𝑙𝑜𝑔𝑎) 𝑛
………………………(1)
 Putting 𝑎 = 2, 𝑚 = 10⁡&⁡𝑛 = 7 in (1) we get
 𝑦7⁡ = (10)7(2)10𝑥( 𝑙𝑜𝑔2)7
 𝒏𝒕𝒉⁡derivative of
𝟏
(𝒂𝒙+𝒃)
:
 Let 𝑦 =
𝟏
(𝒂𝒙+𝒃)
 𝑦1 =
−1
( 𝑎𝑥+𝑏)2
. 𝑎
 𝑦2 =
(−1)(−2)
( 𝑎𝑥+𝑏)3
𝑎2
 𝑦3 =
(−1)(−2)(−3)
( 𝑎𝑥+𝑏)4
𝑎3
=
(−1)33!
( 𝑎𝑥+𝑏)4
𝑎3
 ……………………………………………………
 ……………………………………………………
 Similarly 𝒚 𝒏 =
(−𝟏) 𝒏 𝒏!
( 𝒂𝒙+𝒃) 𝒏+𝟏
𝒂 𝒏
 Example-1. Find the 30th
derivative of
𝟏
(𝟐𝒙+𝟑)
.
Solution∶ Let ⁡𝑦 =
1
(2𝑥+3)
 𝑦30 =
(−1)30⁡30!
(2𝑥+3)31
230
 𝑦30 =
30!
(2𝑥+3)31
230
 𝒏𝒕𝒉⁡ Derivative of ( 𝒂𝒙 + 𝒃) 𝒎
:
 Let 𝑦 = ( 𝑎𝑥 + 𝑏) 𝑚
 𝑦1 = 𝑚𝑎(𝑎𝑥 + 𝑏) 𝑚−1
 𝑦2 = 𝑚( 𝑚 − 1) 𝑎2
(𝑎𝑥 + 𝑏) 𝑚−2
 𝑦3 = 𝑚( 𝑚 − 1)( 𝑚 − 2) 𝑎3
(𝑎𝑥 + 𝑏) 𝑚−3
 …………………………………………………………..
 …………………………………………………………..
 𝒚 𝒏 = 𝒎( 𝒎− 𝟏)( 𝒎 − 𝟐) ………( 𝒎 − 𝒏 + 𝟏) 𝒂 𝒏
(𝒂𝒙 + 𝒃) 𝒎−𝒏
 Example-1. Find the 10th
derivative of ( 𝟑𝒙 + 𝟒) 𝟏𝟓
.
Solution: Let 𝑦 = (3𝑥 + 4)15
 𝑦10 = 15(15− 1)(15 − 2)…… ……(15− 10 + 1)310(3𝑥 + 4)15−10
 𝑦10 = (15)(14)(13)(12)……………(6)310(3𝑥 + 4)5
 𝒏𝒕𝒉⁡derivative of 𝐥𝐨𝐠⁡( 𝒂𝒙 + 𝒃):
 Let 𝑦 = log⁡( 𝑎𝑥 + 𝑏)
 𝑦1 =
𝑎
𝑎𝑥+𝑏
 Differentiating again, we get
 𝑦2 =
(−1)
( 𝑎𝑥+𝑏)2
𝑎2
 𝑦3 =
(−1)(−2)
( 𝑎𝑥+𝑏)3
𝑎3
 𝑦4 =
(−1)(−2)(−3)
( 𝑎𝑥+𝑏)4
𝑎4
 ………………………………………………………………….
 ………………………………………………………………….
 𝑦𝑛 =
(−1)(−2)(−3)…(−𝑛+1)
( 𝑎𝑥+𝑏) 𝑛
𝑎 𝑛
 𝑦𝑛 =
(−1) 𝑛−11.2.3….(𝑛−1)
( 𝑎𝑥+𝑏) 𝑛
𝑎 𝑛
 𝒚 𝒏 =
(−𝟏) 𝒏−𝟏(𝒏−𝟏)!
( 𝒂𝒙+𝒃) 𝒏
𝒂 𝒏
 Example: 1. Find the 9th
derivative of⁡⁡𝒍𝒐𝒈(𝟓𝒙 + 𝟕).
Solution: Let 𝑦 = log(5𝑥 + 7)
 𝑦9 =
(−1)9−1(9−1)!
(5𝑥+7)9
59
 𝑦9 =
8!⁡59
(5𝑥+7)9
 𝒏𝒕𝒉 derivative of 𝐬𝐢𝐧( 𝒂𝒙 + 𝒃):
 Let 𝑦 = 𝑠𝑖𝑛(𝑎𝑥 + 𝑏)
 𝑦1 = ⁡𝑎𝑐𝑜𝑠(𝑎𝑥 + 𝑏) = 𝑎𝑠𝑖𝑛⁡( 𝑎𝑥 + 𝑏 +
𝜋
2
)
 𝑦2 = 𝑎2
cos (𝑎𝑥 + 𝑏 +
𝜋
2
) = 𝑎2
sin⁡( 𝑎𝑥 + 𝑏 +
2𝜋
2
)
 ………………………………………………………………………….
.
 ………………………………………………………………………….
.
 𝒚 𝒏 = 𝒂 𝒏
𝐬𝐢𝐧⁡( 𝒂𝒙 + 𝒃 +
𝒏𝝅
𝟐
)
 Similarly 𝒏𝒕𝒉 derivative of 𝒄𝒐𝒔( 𝒂𝒙 + 𝒃):
 𝒚 𝒏 = 𝒂 𝒏
𝒄𝒐𝒔(𝒂𝒙 + 𝒃 +
𝒏𝝅
𝟐
)
 Example-1. If⁡𝒚 = 𝒔𝒊𝒏𝟐𝒙𝒔𝒊𝒏𝟑𝒙, find⁡𝒚 𝒏.
 Here, we have 𝑦 = 𝑠𝑖𝑛2𝑥. 𝑠𝑖𝑛3𝑥
 𝑦 =
1
2
[2𝑠𝑖𝑛3𝑥𝑠𝑖𝑛2𝑥]
 𝑦 =
1
2
[𝑐𝑜𝑠𝑥 − 𝑐𝑜𝑠5𝑥]
 Differentiating 𝑛 times, we get
 𝑦𝑛 =
1
2
[
𝑑 𝑛
𝑑𝑥 𝑛
𝑐𝑜𝑠𝑥 −
𝑑 𝑛
𝑑𝑥 𝑛
𝑐𝑜𝑠5𝑥]
 𝑦𝑛 =
1
2
[𝑐𝑜𝑠(𝑥 +
𝑛𝜋
2
) − 5 𝑛
𝑐𝑜𝑠(5𝑥 +
𝑛𝜋
2
)]
 Example-2. If 𝒚 = 𝐬𝐢𝐧 𝟐
𝒙 𝐜𝐨𝐬 𝟑
𝒙 find⁡𝒚 𝒏.
Solution: Here we have
 𝑦 = 𝑠𝑖𝑛2
𝑥. 𝑐𝑜𝑠3
𝑥
 𝑦 = 𝑠𝑖𝑛2
𝑥. 𝑐𝑜𝑠2
𝑥. 𝑐𝑜𝑠𝑥⁡ (2𝑠𝑖𝑛𝑥. 𝑐𝑜𝑠𝑥 = 𝑠𝑖𝑛2𝑥)
 𝑦 =
1
4
( 𝑠𝑖𝑛2𝑥)2
𝑐𝑜𝑠𝑥 (sin2
2𝑥 =
1−𝑐𝑜𝑠4𝑥
2
)
 𝑦 =
1
8
(2 𝑠𝑖𝑛2
2𝑥)𝑐𝑜𝑠𝑥
 𝑦 =
1
8
(1 − 𝑐𝑜𝑠4𝑥) 𝑐𝑜𝑠𝑥
 𝑦 =
1
8
(𝑐𝑜𝑠𝑥 − 𝑐𝑜𝑠4𝑥. 𝑐𝑜𝑠𝑥)
 𝑦 =
1
8
( 𝑐𝑜𝑠𝑥) −
1
16
(2𝑐𝑜𝑠4𝑥. 𝑐𝑜𝑠𝑥)
 𝑦 =
1
8
𝑐𝑜𝑠𝑥 −
1
16
[𝑐𝑜𝑠5𝑥 + 𝑐𝑜𝑠3𝑥] ⁡⁡⁡⁡⁡⁡[∵ 2𝑐𝑜𝑠𝐴𝑐𝑜𝑠𝐵 = cos( 𝐴 + 𝐵) +
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡cos( 𝐴 − 𝐵)]
 Now Differentiating n times w.r.t. 𝑥 we get
 𝑦𝑛 =
1
8
cos (𝑥 +
𝑛𝜋
2
) −
1
16
5 𝑛
cos (5𝑥 +
𝑛𝜋
2
) −
1
16
. 3 𝑛
cos⁡(3𝑥 +
𝑛𝜋
2
)
 𝒏𝒕𝒉⁡derivative of 𝒆 𝒂𝒙
𝐬𝐢𝐧⁡( 𝒃𝒙 + 𝒄):
 Let 𝑦 = 𝑒 𝑎𝑥
𝑆𝑖𝑛(𝑏𝑥 + 𝑐)
 𝑦1 = 𝑎𝑒 𝑎𝑥
. sin( 𝑏𝑥 + 𝑐) + 𝑒 𝑎𝑥
. 𝑏cos( 𝑏𝑥 + 𝑐)
 𝑦1 = 𝑒 𝑎𝑥
[𝑎sin( 𝑏𝑥 + 𝑐) + 𝑏cos( 𝑏𝑥 + 𝑐)]
 𝑦1 = 𝑒 𝑎𝑥
[𝑟𝑐𝑜𝑠𝛼sin( 𝑏𝑥 + 𝑐) + 𝑟𝑠𝑖𝑛𝛼cos⁡( 𝑏𝑥 + 𝑐)]
 𝑦1 = 𝑒 𝑎𝑥
𝑟 sin( 𝑏𝑥 + 𝑐 + 𝛼)
 Similarly 𝑦2 = 𝑒 𝑎𝑥
𝑟2
sin( 𝑏𝑥 + 𝑐 + 2𝛼)
 …………………………………………………………………………………..
 …………………………………………………………………………………..
 𝑦𝑛 = 𝑒 𝑎𝑥
. 𝑟 𝑛
sin⁡( 𝑏𝑥 + 𝑐 + 𝑛𝛼)
Where 𝑟2
= 𝑎2
+ 𝑏2
and 𝑡𝑎𝑛𝛼 =
𝑏
𝑎
 Similarly if 𝒚 = 𝒆 𝒂𝒙
𝒄𝒐𝒔(𝒃𝒙 + 𝒄)
 𝒚 𝒏 = 𝒆 𝒂𝒙
. 𝒓 𝒏
. 𝒄𝒐𝒔(𝒃𝒙 + 𝒄 + 𝒏𝜶)
 Example: 1. Find the 𝒏𝒕𝒉 derivative of 𝒆 𝒙
. 𝐬𝐢𝐧 𝟑
𝒙
Solution: we have, 𝑦 = 𝑒 𝑥
sin3
𝑥
 We know that ,
 𝑠𝑖𝑛3𝑥 = 3𝑠𝑖𝑛𝑥 − 4sin3
𝑥
 ∴ 𝑆𝑖𝑛3
𝑥 =
1
4
[3𝑠𝑖𝑛𝑥 − 𝑠𝑖𝑛3𝑥]
 Let 𝑦 = 𝑒 𝑥
sin3
𝑥
 𝑦 = 𝑒 𝑥
.
1
4
[3𝑠𝑖𝑛𝑥 − 𝑠𝑖𝑛3𝑥]
 𝑦 =
3
4
𝑒 𝑥
𝑠𝑖𝑛𝑥 −
1
4
𝑒 𝑥
𝑠𝑖𝑛3𝑥
 Differentiating n times, we get
 𝑦𝑛 =
3
4
(12
+ 12)
𝑛
2. 𝑒 𝑥
sin (𝑥 + 𝑛𝑡𝑎𝑛−1 1
1
) −
1
4
(12
+ 32)
𝑛
2. 𝑒 𝑥
sin⁡[3𝑥 +
𝑛𝑡𝑎𝑛−1 3
1
]
 𝑦𝑛 =
3
4
2
𝑛
2 𝑒 𝑥
sin (𝑥 +
𝑛𝜋
4
) −
1
4
. 10
𝑛
2. 𝑒 𝑥
sin⁡(3𝑥 + 𝑛𝑡𝑎𝑛−1
3)
 Example: 2. Find the 𝒏𝒕𝒉 derivative of 𝒆 𝒂𝒙
. 𝒄𝒐𝒔 𝟐
𝒙. 𝒔𝒊𝒏𝒙
 𝑦 = 𝑒 𝑎𝑥
. 𝑐𝑜𝑠2
𝑥. 𝑠𝑖𝑛𝑥⁡
 𝑦 =
1
2
𝑒 𝑎𝑥 ( 𝑐𝑜𝑠2𝑥 + 1) 𝑠𝑖𝑛𝑥 (cos2
𝑥 =
1+𝑐𝑜𝑠2𝑥
2
)
 𝑦 =
1
2
𝑒 𝑎𝑥
. 𝑐𝑜𝑠2𝑥. 𝑠𝑖𝑛𝑥 +
1
2
𝑒 𝑎𝑥
𝑠𝑖𝑛𝑥
 𝑦 =
1
4
𝑒 𝑎𝑥 ( 𝑠𝑖𝑛3𝑥 − 𝑠𝑖𝑛𝑥) +
1
2
𝑒 𝑎𝑥
𝑠𝑖𝑛𝑥
{2𝑐𝑜𝑠𝐴𝑠𝑖𝑛𝐵 = 𝑆𝑖𝑛( 𝐴 + 𝐵) − 𝑆𝑖𝑛( 𝐴 − 𝐵)}
 𝑦 =
1
4
𝑒 𝑎𝑥
𝑠𝑖𝑛3𝑥 −
1
4
𝑒 𝑎𝑥
𝑠𝑖𝑛𝑥 +
1
2
𝑒 𝑎𝑥
𝑠𝑖𝑛𝑥
 𝑦 =
1
4
𝑒 𝑎𝑥
𝑠𝑖𝑛3𝑥 +
1
4
𝑒 𝑎𝑥
𝑠𝑖𝑛𝑥
 We know that
𝑑 𝑛
𝑑𝑥 𝑛
( 𝑒 𝑎𝑥
. 𝑠𝑖𝑛𝑏𝑥) = 𝑒 𝑎𝑥
. (𝑎2
+ 𝑏2
)
𝑛
2.sin⁡( 𝑏𝑥 +
𝑛 tan−1 𝑏
𝑎
)
 Thus,𝑦𝑛 =
1
4
( 𝑎2
+ 32)
𝑛
2 𝑒 𝑎𝑥
.sin⁡(3𝑥 + 𝑛 tan−1 3
𝑎
) +
1
4
( 𝑎2
+ 12)
𝑛
2 𝑒 𝑎𝑥
.
sin⁡( 𝑥 + 𝑛𝑡𝑎𝑛−1 1
𝑎
).
𝒏𝒕𝒉 derivative of function by using Partial Fraction:
 Example-1. If 𝒚 =
𝟏
𝟏−𝟓𝒙+𝟔𝒙 𝟐
⁡find 𝒚 𝒏.
Solution: Here, we have 𝑦 =
1
1−5𝑥+6𝑥2
 ∴ 𝑦 =
1
(2𝑥−1)(3𝑥−1)
 ∴
1
(2𝑥−1)(3𝑥−1)
=
𝐴
2𝑥−1
+
𝐵
3𝑥−1
 ∴ 1 = 𝐴(3𝑥 − 1) + 𝐵(2𝑥 − 1) -----------------------------------------(1)
 To find A and B
 we put first 𝑥 =
1
3
in equation (1) we get 𝐵 = −3
 we put 𝑥 =
1
2
in equation (1) we get 𝐴 = 2
 ∴
1
(2𝑥−1)(3𝑥−1)
=
2
2𝑥−1
−
3
3𝑥−1
 Differentiating n times ,we get 𝑦𝑛 = 2𝐷 𝑛
(
1
2𝑥−1
) − 3𝐷 𝑛
(
1
3𝑥−1
)
 𝑦𝑛 = 2[
(−1) 𝑛.𝑛!(2) 𝑛
(2𝑥−1) 𝑛+1
] − 3[
(−1) 𝑛 𝑛!(3) 𝑛
(3𝑥−1) 𝑛+1
]
 𝑦𝑛 = (−1) 𝑛
. 𝑛! [
2 𝑛+1
(2𝑥−1) 𝑛+1
−
3 𝑛+1
(3𝑥−1) 𝑛+1
]
 Example-2. If 𝒚 = 𝒙𝒍𝒐𝒈
𝒙−𝟏
𝒙+𝟏
, show that 𝒚 𝒏 = (−𝟏) 𝒏−𝟐( 𝒏 − 𝟐)![
𝒙−𝒏
( 𝒙−𝟏) 𝒏
−
𝒙+𝒏
( 𝒙+𝟏) 𝒏
]
Solution: Here, we have ⁡𝑦 = 𝑥𝑙𝑜𝑔
𝑥−1
𝑥+1
 𝑦 = 𝑥 [log( 𝑥 − 1) − log(𝑥 + 1)]
 Differentiating with respectto 𝑥 we get
 𝑦1 = 𝑥 (
1
𝑥−1
−
1
𝑥+1
) + log( 𝑥 − 1) − log( 𝑥 + 1)
 𝑦1 = (
𝑥
𝑥−1
−
𝑥
𝑥+1
) + log( 𝑥 − 1) − log( 𝑥 + 1)
 𝑦1 = 1 +
1
𝑥−1
− 1 +
1
𝑥+1
+ log( 𝑥 − 1) − log( 𝑥 + 1)
 𝑦1 =
1
𝑥−1
+
1
𝑥+1
+ log( 𝑥 − 1) − log( 𝑥 + 1)
 Again Differentiating ,(n-1) times with respectto ′𝑥′, we get
 𝑦𝑛 =
(−1) 𝑛−1(𝑛−1)!
( 𝑥−1) 𝑛
+
(−1) 𝑛−1(𝑛−1)!
( 𝑥+1) 𝑛
+
(−1) 𝑛−2(𝑛−2)!
( 𝑥−1) 𝑛−1
−
(−1) 𝑛−2(𝑛−2)!
( 𝑥+1) 𝑛−1
 𝑦𝑛 = (−1) 𝑛−2( 𝑛 − 2)![
(−1)( 𝑛−1)
( 𝑥−1) 𝑛
+
(−1)( 𝑛−1)
( 𝑥+1) 𝑛
+
𝑥−1
( 𝑥−1) 𝑛
−
𝑥+1
( 𝑥+1) 𝑛
]
 𝑦𝑛 = (−1) 𝑛−2( 𝑛 − 2)![
𝑥−𝑛
( 𝑥−1) 𝑛
−
𝑥+𝑛
( 𝑥+1) 𝑛
]
 Table for Important formula:
Sr.
No.
Function (𝒚) Formula of nth derivative of 𝒚 (𝒚 𝒏)
1 𝑥 𝑚
𝑦𝑛 = 𝑚( 𝑚 − 1)( 𝑚 − 2)………… …( 𝑚 − 𝑛 + 1) 𝑥 𝑚−𝑛
2 𝑒 𝑎𝑥
𝑦𝑛 = 𝑎 𝑛
𝑒 𝑎𝑥
3 𝑎 𝑚𝑥 𝑦𝑛 = 𝑚 𝑛
𝑎 𝑥 ( 𝑙𝑜𝑔𝑎) 𝑛
4 1
𝑎𝑥 + 𝑏
𝑦𝑛 =
(−1) 𝑛
𝑛!
( 𝑎𝑥 + 𝑏) 𝑛+1
𝑎 𝑛
5 ( 𝑎𝑥 + 𝑏) 𝑚 𝑦𝑛 = 𝑚( 𝑚 − 1)( 𝑚 − 2)…( 𝑚 − 𝑛 + 1) 𝑎 𝑛
(𝑎𝑥 + 𝑏) 𝑚−𝑛
6 𝑙𝑜𝑔(𝑎𝑥 + 𝑏)
𝑦𝑛 =
(−1) 𝑛−1
(𝑛 − 1)!
( 𝑎𝑥 + 𝑏) 𝑛
𝑎 𝑛
7 𝑠𝑖𝑛(𝑎𝑥 + 𝑏) 𝑦𝑛 = 𝑎 𝑛
sin⁡( 𝑎𝑥 + 𝑏 +
𝑛𝜋
2
)
8 𝑐𝑜𝑠(𝑎𝑥 + 𝑏) 𝑦𝑛 = 𝑎 𝑛
𝑐𝑜𝑠(𝑎𝑥 + 𝑏 +
𝑛𝜋
2
)
9 𝑒 𝑎𝑥
𝑠𝑖𝑛(𝑏𝑥 + 𝑐) 𝑦𝑛 = 𝑒 𝑎𝑥
. 𝑟 𝑛
sin⁡( 𝑏𝑥 + 𝑐 + 𝑛𝛼)
10 𝑒 𝑎𝑥
𝑐𝑜𝑠(𝑏𝑥 + 𝑐) 𝑦𝑛 = 𝑒 𝑎𝑥
. 𝑟 𝑛
. 𝑐𝑜𝑠(𝑏𝑥 + 𝑐 + 𝑛𝛼)
 Reference book andwebsite Name:
1. Engineering Mathematics – N.P.Bali and Dr. Manish Goyal
2. Introduction to Engineering Mathematics by H.K.Dass and Dr. Rama
Verma
3. http://wdjoyner.com/teach/calc1-sage/html/node102.html
4. http://zalakmaths.tripod.com/successive_differentiation.pdf
EXERCISE:1
 Q-1 Find the derivative of the following:
1. Obtain 5th ⁡derivative of 𝑒2𝑥
2. Obtain 3rd derivative of 35𝑥
3. Obtain 4th derivative of (2𝑥 + 3)5
4. Obtain 4th derivative of
1
2𝑥+3
 Q-2 Find the nth derivative of the following:
1. cos2
𝑥
2. 𝑠𝑖𝑛2𝑥𝑐𝑜𝑠3𝑥
3. 𝑒 𝑥
𝑠𝑖𝑛4𝑥𝑐𝑜𝑠6𝑥⁡
4. 𝑒2𝑥
𝑐𝑜𝑠𝑥𝑠𝑖𝑛2
2𝑥
5. 𝑐𝑜𝑠𝑥𝑐𝑜𝑠2𝑥𝑐𝑜𝑠3𝑥
 Q-3 Find the nth derivative of the following by using partial fraction:
1.
1
( 𝑥−1)2(𝑥−2)
2.
1
𝑎2−𝑥2
3.
𝑥4
( 𝑥−1)(𝑥−2)
4.
𝑥
( 𝑥−𝑎)(𝑥−𝑏)
5.
𝑥+1
𝑥2−4

Contenu connexe

Tendances

Introduction to Artificial Neural Networks (ANNs) - Step-by-Step Training & T...
Introduction to Artificial Neural Networks (ANNs) - Step-by-Step Training & T...Introduction to Artificial Neural Networks (ANNs) - Step-by-Step Training & T...
Introduction to Artificial Neural Networks (ANNs) - Step-by-Step Training & T...
Ahmed Gad
 
خطوات حل اسئلة الفصل الثالث
خطوات حل اسئلة الفصل الثالثخطوات حل اسئلة الفصل الثالث
خطوات حل اسئلة الفصل الثالث
Online
 
090 похідна
090 похідна090 похідна
090 похідна
jasperwtf
 

Tendances (20)

B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
 
Kamaratna tantram-hevajra-tantram
Kamaratna tantram-hevajra-tantramKamaratna tantram-hevajra-tantram
Kamaratna tantram-hevajra-tantram
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路
 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler method
 
Introduction to Artificial Neural Networks (ANNs) - Step-by-Step Training & T...
Introduction to Artificial Neural Networks (ANNs) - Step-by-Step Training & T...Introduction to Artificial Neural Networks (ANNs) - Step-by-Step Training & T...
Introduction to Artificial Neural Networks (ANNs) - Step-by-Step Training & T...
 
Hand book of Howard Anton calculus exercises 8th edition
Hand book of Howard Anton calculus exercises 8th editionHand book of Howard Anton calculus exercises 8th edition
Hand book of Howard Anton calculus exercises 8th edition
 
5 клас ДПА Математика 2011 контрольні роботи
5 клас ДПА Математика 2011 контрольні роботи5 клас ДПА Математика 2011 контрольні роботи
5 клас ДПА Математика 2011 контрольні роботи
 
Integration in the complex plane
Integration in the complex planeIntegration in the complex plane
Integration in the complex plane
 
34032 green func
34032 green func34032 green func
34032 green func
 
зразок виконання кр 2сем
зразок виконання кр  2семзразок виконання кр  2сем
зразок виконання кр 2сем
 
خطوات حل اسئلة الفصل الثالث
خطوات حل اسئلة الفصل الثالثخطوات حل اسئلة الفصل الثالث
خطوات حل اسئلة الفصل الثالث
 
Euler and runge kutta method
Euler and runge kutta methodEuler and runge kutta method
Euler and runge kutta method
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
090 похідна
090 похідна090 похідна
090 похідна
 
Elementary Linear Algebra 5th Edition Larson Solutions Manual
Elementary Linear Algebra 5th Edition Larson Solutions ManualElementary Linear Algebra 5th Edition Larson Solutions Manual
Elementary Linear Algebra 5th Edition Larson Solutions Manual
 
B.Tech-II_Unit-II
B.Tech-II_Unit-IIB.Tech-II_Unit-II
B.Tech-II_Unit-II
 
Solutions manual for calculus an applied approach brief international metric ...
Solutions manual for calculus an applied approach brief international metric ...Solutions manual for calculus an applied approach brief international metric ...
Solutions manual for calculus an applied approach brief international metric ...
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.3
ΠΛΗ30 ΜΑΘΗΜΑ 1.3ΠΛΗ30 ΜΑΘΗΜΑ 1.3
ΠΛΗ30 ΜΑΘΗΜΑ 1.3
 
Integral table
Integral tableIntegral table
Integral table
 
Newton backward interpolation
Newton backward interpolationNewton backward interpolation
Newton backward interpolation
 

En vedette

B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-III
Kundan Kumar
 

En vedette (20)

merged_document
merged_documentmerged_document
merged_document
 
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theoryBCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
 
B.Tech-II_Unit-IV
B.Tech-II_Unit-IVB.Tech-II_Unit-IV
B.Tech-II_Unit-IV
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
 
Unit 1 Introduction
Unit 1 IntroductionUnit 1 Introduction
Unit 1 Introduction
 
B.Tech-II_Unit-I
B.Tech-II_Unit-IB.Tech-II_Unit-I
B.Tech-II_Unit-I
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5
 
B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-III
 
B.Tech-II_Unit-V
B.Tech-II_Unit-VB.Tech-II_Unit-V
B.Tech-II_Unit-V
 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2
 
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
 
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
 
BCA_Semester-II-Discrete Mathematics_unit-ii_Relation and ordering
BCA_Semester-II-Discrete Mathematics_unit-ii_Relation and orderingBCA_Semester-II-Discrete Mathematics_unit-ii_Relation and ordering
BCA_Semester-II-Discrete Mathematics_unit-ii_Relation and ordering
 
MCA_UNIT-4_Computer Oriented Numerical Statistical Methods
MCA_UNIT-4_Computer Oriented Numerical Statistical MethodsMCA_UNIT-4_Computer Oriented Numerical Statistical Methods
MCA_UNIT-4_Computer Oriented Numerical Statistical Methods
 
MCA_UNIT-2_Computer Oriented Numerical Statistical Methods
MCA_UNIT-2_Computer Oriented Numerical Statistical MethodsMCA_UNIT-2_Computer Oriented Numerical Statistical Methods
MCA_UNIT-2_Computer Oriented Numerical Statistical Methods
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 

Similaire à BSC_Computer Science_Discrete Mathematics_Unit-I

Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau
 

Similaire à BSC_Computer Science_Discrete Mathematics_Unit-I (20)

Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptx
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2
 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptx
 
Z transforms
Z transformsZ transforms
Z transforms
 
INVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORINVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATOR
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
 
Interpolation
InterpolationInterpolation
Interpolation
 
On Bernstein Polynomials
On Bernstein PolynomialsOn Bernstein Polynomials
On Bernstein Polynomials
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 
Functions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questionsFunctions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questions
 
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي
ملزمة الرياضيات للصف السادس العلمي  الاحيائي -  التطبيقيملزمة الرياضيات للصف السادس العلمي  الاحيائي -  التطبيقي
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي
 
lec32.ppt
lec32.pptlec32.ppt
lec32.ppt
 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptx
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and Integration
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptx
 

Plus de Rai University

Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
Rai University
 

Plus de Rai University (20)

Brochure Rai University
Brochure Rai University Brochure Rai University
Brochure Rai University
 
Mm unit 4point2
Mm unit 4point2Mm unit 4point2
Mm unit 4point2
 
Mm unit 4point1
Mm unit 4point1Mm unit 4point1
Mm unit 4point1
 
Mm unit 4point3
Mm unit 4point3Mm unit 4point3
Mm unit 4point3
 
Mm unit 3point2
Mm unit 3point2Mm unit 3point2
Mm unit 3point2
 
Mm unit 3point1
Mm unit 3point1Mm unit 3point1
Mm unit 3point1
 
Mm unit 2point2
Mm unit 2point2Mm unit 2point2
Mm unit 2point2
 
Mm unit 2 point 1
Mm unit 2 point 1Mm unit 2 point 1
Mm unit 2 point 1
 
Mm unit 1point3
Mm unit 1point3Mm unit 1point3
Mm unit 1point3
 
Mm unit 1point2
Mm unit 1point2Mm unit 1point2
Mm unit 1point2
 
Mm unit 1point1
Mm unit 1point1Mm unit 1point1
Mm unit 1point1
 
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
 
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
 
Bsc agri 2 pae u-4.3 public expenditure
Bsc agri  2 pae  u-4.3 public expenditureBsc agri  2 pae  u-4.3 public expenditure
Bsc agri 2 pae u-4.3 public expenditure
 
Bsc agri 2 pae u-4.2 public finance
Bsc agri  2 pae  u-4.2 public financeBsc agri  2 pae  u-4.2 public finance
Bsc agri 2 pae u-4.2 public finance
 
Bsc agri 2 pae u-4.1 introduction
Bsc agri  2 pae  u-4.1 introductionBsc agri  2 pae  u-4.1 introduction
Bsc agri 2 pae u-4.1 introduction
 
Bsc agri 2 pae u-3.3 inflation
Bsc agri  2 pae  u-3.3  inflationBsc agri  2 pae  u-3.3  inflation
Bsc agri 2 pae u-3.3 inflation
 
Bsc agri 2 pae u-3.2 introduction to macro economics
Bsc agri  2 pae  u-3.2 introduction to macro economicsBsc agri  2 pae  u-3.2 introduction to macro economics
Bsc agri 2 pae u-3.2 introduction to macro economics
 
Bsc agri 2 pae u-3.1 marketstructure
Bsc agri  2 pae  u-3.1 marketstructureBsc agri  2 pae  u-3.1 marketstructure
Bsc agri 2 pae u-3.1 marketstructure
 
Bsc agri 2 pae u-3 perfect-competition
Bsc agri  2 pae  u-3 perfect-competitionBsc agri  2 pae  u-3 perfect-competition
Bsc agri 2 pae u-3 perfect-competition
 

Dernier

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Dernier (20)

Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 

BSC_Computer Science_Discrete Mathematics_Unit-I

  • 1. Course: B.Sc CS. Subject: Discrete Mathematics Unit-1 RAI UNIVERSITY, AHMEDABAD
  • 2. Unit-1 Successive Differentiation  Review of Differentiation:  The limit of incremental ratio. i.e. lim⁡ 𝛿𝑦 𝛿𝑥 as ⁡𝛿𝑥 approaches zero is called differential coefficient of 𝑦 with respect of 𝑥 and denoted by 𝑑𝑦 𝑑𝑥 .  𝑑𝑦 𝑑𝑥 =⁡ lim 𝛿𝑥→0 𝛿𝑦 𝛿𝑥  𝑑 𝑑𝑥 𝑓( 𝑥) = lim 𝛿𝑥→0 𝑓( 𝑥+⁡𝛿𝑥)−𝑓(𝑥) ⁡𝛿𝑥  Standard Results:  Successive Differentiation:  If 𝑦 = 𝑓( 𝑥), its differential co-efficient 𝑑𝑦 𝑑𝑥 is also a function of 𝑥. 𝑑𝑦 𝑑𝑥 is further differentiated and the derivative of 𝑑𝑦 𝑑𝑥 i.e. 𝑑 𝑑𝑥 ( 𝑑𝑦 𝑑𝑥 ) is called the second differential co-efficient of 𝑦 and is denoted by 𝑑2 𝑦 𝑑𝑥2 .
  • 3. Similarly third differential coefficient of 𝑦 with respect to 𝑥 is written as 𝑑3 𝑦 𝑑𝑥3 .  Other notations of successivederivatives are 𝐷𝑦, 𝐷2 𝑦, 𝐷3 𝑦,………. . 𝐷 𝑛 𝑦 …… …… 𝑦1,⁡⁡⁡𝑦2,⁡⁡⁡⁡𝑦3, ………..⁡⁡𝑦𝑛⁡ …………….. 𝑦′ , 𝑦′′ ,⁡𝑦′′′ ,……… 𝑦 𝑛 ……………. Thus 𝑑 𝑛 𝑦 𝑑𝑥 𝑛 is 𝑛𝑡ℎ⁡derivative of 𝑦 with respectto 𝑥.  Example-1. Find the value of 𝒅 𝟑 𝒚 𝒅𝒙 𝟑 if 𝒚 = 𝐥𝐨𝐠⁡( 𝒂𝒙 + 𝒃) Solution: Here we have 𝑦 = log⁡( 𝑎𝑥 + 𝑏)  𝑑𝑦 𝑑𝑥 = 𝑎 𝑎𝑥+𝑏  Differentiating it again, we get  𝑑2 𝑦 𝑑𝑥2 = −𝑎2 ( 𝑎𝑥+𝑏)2  Similarly, ⁡ 𝑑3 𝑦 𝑑𝑥3 = 2𝑎3 ( 𝑎𝑥+𝑏)3  𝒏𝒕𝒉 Derivative of 𝒙 𝒎 :  Let 𝑦 = 𝑥 𝑚  𝑦1 = 𝑚𝑥 𝑚−1  𝑦2 = 𝑚( 𝑚 − 1) 𝑥 𝑚−2  𝑦3 = 𝑚( 𝑚 − 1)( 𝑚 − 2) 𝑥 𝑚−3  ………………………………………………………..  …………………………………………………………  𝑦𝑛 = [ 𝑚( 𝑚 − 1)( 𝑚 − 2)… …up⁡to⁡n⁡factors]⁡× 𝑥 𝑚−𝑛  𝒚 𝒏 = 𝒎( 𝒎− 𝟏)( 𝒎 − 𝟐) ……………( 𝒎 − 𝒏 + 𝟏) 𝒙 𝒎−𝒏 where 𝒎 < 𝑛  Example-1. Find the 𝟏𝟎𝒕𝒉 derivative of 𝒙 𝟏𝟐 . Solution: let 𝑦 = 𝑥12  𝑦10 = 12 × 11 × 10× ………× 3 × 𝑥2 Note : If m be Positive integer and if 𝑚 = 𝑛 then 𝑑 𝑚 𝑑𝑥 𝑚 𝑥 𝑚 = 𝑚!  𝒏𝒕𝒉⁡Derivative of 𝒆 𝒂𝒙 :  𝑦 = 𝑒 𝑎𝑥
  • 4.  𝑦1 = 𝑎𝑒 𝑎𝑥  𝑦2 = 𝑎2 𝑒 𝑎𝑥  𝑦3 = 𝑎3 𝑒 𝑎𝑥  ………………………………………..  ………………………………………..  𝒚 𝒏 = 𝒂 𝒏 𝒆 𝒂𝒙  Example-1. Find the 𝟓𝒕𝒉 derivative of⁡𝒆 𝒎𝒙 . Solution: Let 𝑦 = 𝑒 𝑚𝑥 ∴ 𝑦5 = 𝑚5 𝑒 𝑚𝑥  𝒏𝒕𝒉⁡Derivative of 𝒂 𝒎𝒙 :  Let 𝑦 = 𝑎 𝑚𝑥  𝑦1 = 𝑚𝑎 𝑚𝑥 𝑙𝑜𝑔𝑎⁡  𝑦2 = 𝑚2 𝑎 𝑚𝑥( 𝑙𝑜𝑔𝑎)2  ……………………………………….  ………………………………………. By generalization,  𝒚 𝒏 = 𝒎 𝒏 𝒂 𝒙(𝒍𝒐𝒈𝒂) 𝒏 Note: If 𝑚 = 1 i.e. 𝑦 = 𝑎 𝑥 then 𝑦𝑛 = 𝑎 𝑥( 𝑙𝑜𝑔𝑎) 𝑛  Example-1. Find the 7th derivative of 𝟐 𝟏𝟎𝒙 . Solution: Let 𝑦 = 210𝑥  We know that 𝑦𝑛 = 𝑚 𝑛 𝑎 𝑥( 𝑙𝑜𝑔𝑎) 𝑛 ………………………(1)  Putting 𝑎 = 2, 𝑚 = 10⁡&⁡𝑛 = 7 in (1) we get  𝑦7⁡ = (10)7(2)10𝑥( 𝑙𝑜𝑔2)7  𝒏𝒕𝒉⁡derivative of 𝟏 (𝒂𝒙+𝒃) :  Let 𝑦 = 𝟏 (𝒂𝒙+𝒃)  𝑦1 = −1 ( 𝑎𝑥+𝑏)2 . 𝑎  𝑦2 = (−1)(−2) ( 𝑎𝑥+𝑏)3 𝑎2  𝑦3 = (−1)(−2)(−3) ( 𝑎𝑥+𝑏)4 𝑎3 = (−1)33! ( 𝑎𝑥+𝑏)4 𝑎3
  • 5.  ……………………………………………………  ……………………………………………………  Similarly 𝒚 𝒏 = (−𝟏) 𝒏 𝒏! ( 𝒂𝒙+𝒃) 𝒏+𝟏 𝒂 𝒏  Example-1. Find the 30th derivative of 𝟏 (𝟐𝒙+𝟑) . Solution∶ Let ⁡𝑦 = 1 (2𝑥+3)  𝑦30 = (−1)30⁡30! (2𝑥+3)31 230  𝑦30 = 30! (2𝑥+3)31 230  𝒏𝒕𝒉⁡ Derivative of ( 𝒂𝒙 + 𝒃) 𝒎 :  Let 𝑦 = ( 𝑎𝑥 + 𝑏) 𝑚  𝑦1 = 𝑚𝑎(𝑎𝑥 + 𝑏) 𝑚−1  𝑦2 = 𝑚( 𝑚 − 1) 𝑎2 (𝑎𝑥 + 𝑏) 𝑚−2  𝑦3 = 𝑚( 𝑚 − 1)( 𝑚 − 2) 𝑎3 (𝑎𝑥 + 𝑏) 𝑚−3  …………………………………………………………..  …………………………………………………………..  𝒚 𝒏 = 𝒎( 𝒎− 𝟏)( 𝒎 − 𝟐) ………( 𝒎 − 𝒏 + 𝟏) 𝒂 𝒏 (𝒂𝒙 + 𝒃) 𝒎−𝒏  Example-1. Find the 10th derivative of ( 𝟑𝒙 + 𝟒) 𝟏𝟓 . Solution: Let 𝑦 = (3𝑥 + 4)15  𝑦10 = 15(15− 1)(15 − 2)…… ……(15− 10 + 1)310(3𝑥 + 4)15−10  𝑦10 = (15)(14)(13)(12)……………(6)310(3𝑥 + 4)5  𝒏𝒕𝒉⁡derivative of 𝐥𝐨𝐠⁡( 𝒂𝒙 + 𝒃):  Let 𝑦 = log⁡( 𝑎𝑥 + 𝑏)  𝑦1 = 𝑎 𝑎𝑥+𝑏  Differentiating again, we get  𝑦2 = (−1) ( 𝑎𝑥+𝑏)2 𝑎2
  • 6.  𝑦3 = (−1)(−2) ( 𝑎𝑥+𝑏)3 𝑎3  𝑦4 = (−1)(−2)(−3) ( 𝑎𝑥+𝑏)4 𝑎4  ………………………………………………………………….  ………………………………………………………………….  𝑦𝑛 = (−1)(−2)(−3)…(−𝑛+1) ( 𝑎𝑥+𝑏) 𝑛 𝑎 𝑛  𝑦𝑛 = (−1) 𝑛−11.2.3….(𝑛−1) ( 𝑎𝑥+𝑏) 𝑛 𝑎 𝑛  𝒚 𝒏 = (−𝟏) 𝒏−𝟏(𝒏−𝟏)! ( 𝒂𝒙+𝒃) 𝒏 𝒂 𝒏  Example: 1. Find the 9th derivative of⁡⁡𝒍𝒐𝒈(𝟓𝒙 + 𝟕). Solution: Let 𝑦 = log(5𝑥 + 7)  𝑦9 = (−1)9−1(9−1)! (5𝑥+7)9 59  𝑦9 = 8!⁡59 (5𝑥+7)9  𝒏𝒕𝒉 derivative of 𝐬𝐢𝐧( 𝒂𝒙 + 𝒃):  Let 𝑦 = 𝑠𝑖𝑛(𝑎𝑥 + 𝑏)  𝑦1 = ⁡𝑎𝑐𝑜𝑠(𝑎𝑥 + 𝑏) = 𝑎𝑠𝑖𝑛⁡( 𝑎𝑥 + 𝑏 + 𝜋 2 )  𝑦2 = 𝑎2 cos (𝑎𝑥 + 𝑏 + 𝜋 2 ) = 𝑎2 sin⁡( 𝑎𝑥 + 𝑏 + 2𝜋 2 )  …………………………………………………………………………. .  …………………………………………………………………………. .  𝒚 𝒏 = 𝒂 𝒏 𝐬𝐢𝐧⁡( 𝒂𝒙 + 𝒃 + 𝒏𝝅 𝟐 )  Similarly 𝒏𝒕𝒉 derivative of 𝒄𝒐𝒔( 𝒂𝒙 + 𝒃):  𝒚 𝒏 = 𝒂 𝒏 𝒄𝒐𝒔(𝒂𝒙 + 𝒃 + 𝒏𝝅 𝟐 )  Example-1. If⁡𝒚 = 𝒔𝒊𝒏𝟐𝒙𝒔𝒊𝒏𝟑𝒙, find⁡𝒚 𝒏.  Here, we have 𝑦 = 𝑠𝑖𝑛2𝑥. 𝑠𝑖𝑛3𝑥  𝑦 = 1 2 [2𝑠𝑖𝑛3𝑥𝑠𝑖𝑛2𝑥]
  • 7.  𝑦 = 1 2 [𝑐𝑜𝑠𝑥 − 𝑐𝑜𝑠5𝑥]  Differentiating 𝑛 times, we get  𝑦𝑛 = 1 2 [ 𝑑 𝑛 𝑑𝑥 𝑛 𝑐𝑜𝑠𝑥 − 𝑑 𝑛 𝑑𝑥 𝑛 𝑐𝑜𝑠5𝑥]  𝑦𝑛 = 1 2 [𝑐𝑜𝑠(𝑥 + 𝑛𝜋 2 ) − 5 𝑛 𝑐𝑜𝑠(5𝑥 + 𝑛𝜋 2 )]  Example-2. If 𝒚 = 𝐬𝐢𝐧 𝟐 𝒙 𝐜𝐨𝐬 𝟑 𝒙 find⁡𝒚 𝒏. Solution: Here we have  𝑦 = 𝑠𝑖𝑛2 𝑥. 𝑐𝑜𝑠3 𝑥  𝑦 = 𝑠𝑖𝑛2 𝑥. 𝑐𝑜𝑠2 𝑥. 𝑐𝑜𝑠𝑥⁡ (2𝑠𝑖𝑛𝑥. 𝑐𝑜𝑠𝑥 = 𝑠𝑖𝑛2𝑥)  𝑦 = 1 4 ( 𝑠𝑖𝑛2𝑥)2 𝑐𝑜𝑠𝑥 (sin2 2𝑥 = 1−𝑐𝑜𝑠4𝑥 2 )  𝑦 = 1 8 (2 𝑠𝑖𝑛2 2𝑥)𝑐𝑜𝑠𝑥  𝑦 = 1 8 (1 − 𝑐𝑜𝑠4𝑥) 𝑐𝑜𝑠𝑥  𝑦 = 1 8 (𝑐𝑜𝑠𝑥 − 𝑐𝑜𝑠4𝑥. 𝑐𝑜𝑠𝑥)  𝑦 = 1 8 ( 𝑐𝑜𝑠𝑥) − 1 16 (2𝑐𝑜𝑠4𝑥. 𝑐𝑜𝑠𝑥)  𝑦 = 1 8 𝑐𝑜𝑠𝑥 − 1 16 [𝑐𝑜𝑠5𝑥 + 𝑐𝑜𝑠3𝑥] ⁡⁡⁡⁡⁡⁡[∵ 2𝑐𝑜𝑠𝐴𝑐𝑜𝑠𝐵 = cos( 𝐴 + 𝐵) + ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡cos( 𝐴 − 𝐵)]  Now Differentiating n times w.r.t. 𝑥 we get  𝑦𝑛 = 1 8 cos (𝑥 + 𝑛𝜋 2 ) − 1 16 5 𝑛 cos (5𝑥 + 𝑛𝜋 2 ) − 1 16 . 3 𝑛 cos⁡(3𝑥 + 𝑛𝜋 2 )  𝒏𝒕𝒉⁡derivative of 𝒆 𝒂𝒙 𝐬𝐢𝐧⁡( 𝒃𝒙 + 𝒄):  Let 𝑦 = 𝑒 𝑎𝑥 𝑆𝑖𝑛(𝑏𝑥 + 𝑐)  𝑦1 = 𝑎𝑒 𝑎𝑥 . sin( 𝑏𝑥 + 𝑐) + 𝑒 𝑎𝑥 . 𝑏cos( 𝑏𝑥 + 𝑐)  𝑦1 = 𝑒 𝑎𝑥 [𝑎sin( 𝑏𝑥 + 𝑐) + 𝑏cos( 𝑏𝑥 + 𝑐)]  𝑦1 = 𝑒 𝑎𝑥 [𝑟𝑐𝑜𝑠𝛼sin( 𝑏𝑥 + 𝑐) + 𝑟𝑠𝑖𝑛𝛼cos⁡( 𝑏𝑥 + 𝑐)]  𝑦1 = 𝑒 𝑎𝑥 𝑟 sin( 𝑏𝑥 + 𝑐 + 𝛼)  Similarly 𝑦2 = 𝑒 𝑎𝑥 𝑟2 sin( 𝑏𝑥 + 𝑐 + 2𝛼)
  • 8.  …………………………………………………………………………………..  …………………………………………………………………………………..  𝑦𝑛 = 𝑒 𝑎𝑥 . 𝑟 𝑛 sin⁡( 𝑏𝑥 + 𝑐 + 𝑛𝛼) Where 𝑟2 = 𝑎2 + 𝑏2 and 𝑡𝑎𝑛𝛼 = 𝑏 𝑎  Similarly if 𝒚 = 𝒆 𝒂𝒙 𝒄𝒐𝒔(𝒃𝒙 + 𝒄)  𝒚 𝒏 = 𝒆 𝒂𝒙 . 𝒓 𝒏 . 𝒄𝒐𝒔(𝒃𝒙 + 𝒄 + 𝒏𝜶)  Example: 1. Find the 𝒏𝒕𝒉 derivative of 𝒆 𝒙 . 𝐬𝐢𝐧 𝟑 𝒙 Solution: we have, 𝑦 = 𝑒 𝑥 sin3 𝑥  We know that ,  𝑠𝑖𝑛3𝑥 = 3𝑠𝑖𝑛𝑥 − 4sin3 𝑥  ∴ 𝑆𝑖𝑛3 𝑥 = 1 4 [3𝑠𝑖𝑛𝑥 − 𝑠𝑖𝑛3𝑥]  Let 𝑦 = 𝑒 𝑥 sin3 𝑥  𝑦 = 𝑒 𝑥 . 1 4 [3𝑠𝑖𝑛𝑥 − 𝑠𝑖𝑛3𝑥]  𝑦 = 3 4 𝑒 𝑥 𝑠𝑖𝑛𝑥 − 1 4 𝑒 𝑥 𝑠𝑖𝑛3𝑥  Differentiating n times, we get  𝑦𝑛 = 3 4 (12 + 12) 𝑛 2. 𝑒 𝑥 sin (𝑥 + 𝑛𝑡𝑎𝑛−1 1 1 ) − 1 4 (12 + 32) 𝑛 2. 𝑒 𝑥 sin⁡[3𝑥 + 𝑛𝑡𝑎𝑛−1 3 1 ]  𝑦𝑛 = 3 4 2 𝑛 2 𝑒 𝑥 sin (𝑥 + 𝑛𝜋 4 ) − 1 4 . 10 𝑛 2. 𝑒 𝑥 sin⁡(3𝑥 + 𝑛𝑡𝑎𝑛−1 3)  Example: 2. Find the 𝒏𝒕𝒉 derivative of 𝒆 𝒂𝒙 . 𝒄𝒐𝒔 𝟐 𝒙. 𝒔𝒊𝒏𝒙  𝑦 = 𝑒 𝑎𝑥 . 𝑐𝑜𝑠2 𝑥. 𝑠𝑖𝑛𝑥⁡  𝑦 = 1 2 𝑒 𝑎𝑥 ( 𝑐𝑜𝑠2𝑥 + 1) 𝑠𝑖𝑛𝑥 (cos2 𝑥 = 1+𝑐𝑜𝑠2𝑥 2 )  𝑦 = 1 2 𝑒 𝑎𝑥 . 𝑐𝑜𝑠2𝑥. 𝑠𝑖𝑛𝑥 + 1 2 𝑒 𝑎𝑥 𝑠𝑖𝑛𝑥  𝑦 = 1 4 𝑒 𝑎𝑥 ( 𝑠𝑖𝑛3𝑥 − 𝑠𝑖𝑛𝑥) + 1 2 𝑒 𝑎𝑥 𝑠𝑖𝑛𝑥
  • 9. {2𝑐𝑜𝑠𝐴𝑠𝑖𝑛𝐵 = 𝑆𝑖𝑛( 𝐴 + 𝐵) − 𝑆𝑖𝑛( 𝐴 − 𝐵)}  𝑦 = 1 4 𝑒 𝑎𝑥 𝑠𝑖𝑛3𝑥 − 1 4 𝑒 𝑎𝑥 𝑠𝑖𝑛𝑥 + 1 2 𝑒 𝑎𝑥 𝑠𝑖𝑛𝑥  𝑦 = 1 4 𝑒 𝑎𝑥 𝑠𝑖𝑛3𝑥 + 1 4 𝑒 𝑎𝑥 𝑠𝑖𝑛𝑥  We know that 𝑑 𝑛 𝑑𝑥 𝑛 ( 𝑒 𝑎𝑥 . 𝑠𝑖𝑛𝑏𝑥) = 𝑒 𝑎𝑥 . (𝑎2 + 𝑏2 ) 𝑛 2.sin⁡( 𝑏𝑥 + 𝑛 tan−1 𝑏 𝑎 )  Thus,𝑦𝑛 = 1 4 ( 𝑎2 + 32) 𝑛 2 𝑒 𝑎𝑥 .sin⁡(3𝑥 + 𝑛 tan−1 3 𝑎 ) + 1 4 ( 𝑎2 + 12) 𝑛 2 𝑒 𝑎𝑥 . sin⁡( 𝑥 + 𝑛𝑡𝑎𝑛−1 1 𝑎 ). 𝒏𝒕𝒉 derivative of function by using Partial Fraction:  Example-1. If 𝒚 = 𝟏 𝟏−𝟓𝒙+𝟔𝒙 𝟐 ⁡find 𝒚 𝒏. Solution: Here, we have 𝑦 = 1 1−5𝑥+6𝑥2  ∴ 𝑦 = 1 (2𝑥−1)(3𝑥−1)  ∴ 1 (2𝑥−1)(3𝑥−1) = 𝐴 2𝑥−1 + 𝐵 3𝑥−1  ∴ 1 = 𝐴(3𝑥 − 1) + 𝐵(2𝑥 − 1) -----------------------------------------(1)  To find A and B  we put first 𝑥 = 1 3 in equation (1) we get 𝐵 = −3  we put 𝑥 = 1 2 in equation (1) we get 𝐴 = 2  ∴ 1 (2𝑥−1)(3𝑥−1) = 2 2𝑥−1 − 3 3𝑥−1  Differentiating n times ,we get 𝑦𝑛 = 2𝐷 𝑛 ( 1 2𝑥−1 ) − 3𝐷 𝑛 ( 1 3𝑥−1 )  𝑦𝑛 = 2[ (−1) 𝑛.𝑛!(2) 𝑛 (2𝑥−1) 𝑛+1 ] − 3[ (−1) 𝑛 𝑛!(3) 𝑛 (3𝑥−1) 𝑛+1 ]  𝑦𝑛 = (−1) 𝑛 . 𝑛! [ 2 𝑛+1 (2𝑥−1) 𝑛+1 − 3 𝑛+1 (3𝑥−1) 𝑛+1 ]
  • 10.  Example-2. If 𝒚 = 𝒙𝒍𝒐𝒈 𝒙−𝟏 𝒙+𝟏 , show that 𝒚 𝒏 = (−𝟏) 𝒏−𝟐( 𝒏 − 𝟐)![ 𝒙−𝒏 ( 𝒙−𝟏) 𝒏 − 𝒙+𝒏 ( 𝒙+𝟏) 𝒏 ] Solution: Here, we have ⁡𝑦 = 𝑥𝑙𝑜𝑔 𝑥−1 𝑥+1  𝑦 = 𝑥 [log( 𝑥 − 1) − log(𝑥 + 1)]  Differentiating with respectto 𝑥 we get  𝑦1 = 𝑥 ( 1 𝑥−1 − 1 𝑥+1 ) + log( 𝑥 − 1) − log( 𝑥 + 1)  𝑦1 = ( 𝑥 𝑥−1 − 𝑥 𝑥+1 ) + log( 𝑥 − 1) − log( 𝑥 + 1)  𝑦1 = 1 + 1 𝑥−1 − 1 + 1 𝑥+1 + log( 𝑥 − 1) − log( 𝑥 + 1)  𝑦1 = 1 𝑥−1 + 1 𝑥+1 + log( 𝑥 − 1) − log( 𝑥 + 1)  Again Differentiating ,(n-1) times with respectto ′𝑥′, we get  𝑦𝑛 = (−1) 𝑛−1(𝑛−1)! ( 𝑥−1) 𝑛 + (−1) 𝑛−1(𝑛−1)! ( 𝑥+1) 𝑛 + (−1) 𝑛−2(𝑛−2)! ( 𝑥−1) 𝑛−1 − (−1) 𝑛−2(𝑛−2)! ( 𝑥+1) 𝑛−1  𝑦𝑛 = (−1) 𝑛−2( 𝑛 − 2)![ (−1)( 𝑛−1) ( 𝑥−1) 𝑛 + (−1)( 𝑛−1) ( 𝑥+1) 𝑛 + 𝑥−1 ( 𝑥−1) 𝑛 − 𝑥+1 ( 𝑥+1) 𝑛 ]  𝑦𝑛 = (−1) 𝑛−2( 𝑛 − 2)![ 𝑥−𝑛 ( 𝑥−1) 𝑛 − 𝑥+𝑛 ( 𝑥+1) 𝑛 ]
  • 11.  Table for Important formula: Sr. No. Function (𝒚) Formula of nth derivative of 𝒚 (𝒚 𝒏) 1 𝑥 𝑚 𝑦𝑛 = 𝑚( 𝑚 − 1)( 𝑚 − 2)………… …( 𝑚 − 𝑛 + 1) 𝑥 𝑚−𝑛 2 𝑒 𝑎𝑥 𝑦𝑛 = 𝑎 𝑛 𝑒 𝑎𝑥 3 𝑎 𝑚𝑥 𝑦𝑛 = 𝑚 𝑛 𝑎 𝑥 ( 𝑙𝑜𝑔𝑎) 𝑛 4 1 𝑎𝑥 + 𝑏 𝑦𝑛 = (−1) 𝑛 𝑛! ( 𝑎𝑥 + 𝑏) 𝑛+1 𝑎 𝑛 5 ( 𝑎𝑥 + 𝑏) 𝑚 𝑦𝑛 = 𝑚( 𝑚 − 1)( 𝑚 − 2)…( 𝑚 − 𝑛 + 1) 𝑎 𝑛 (𝑎𝑥 + 𝑏) 𝑚−𝑛 6 𝑙𝑜𝑔(𝑎𝑥 + 𝑏) 𝑦𝑛 = (−1) 𝑛−1 (𝑛 − 1)! ( 𝑎𝑥 + 𝑏) 𝑛 𝑎 𝑛 7 𝑠𝑖𝑛(𝑎𝑥 + 𝑏) 𝑦𝑛 = 𝑎 𝑛 sin⁡( 𝑎𝑥 + 𝑏 + 𝑛𝜋 2 ) 8 𝑐𝑜𝑠(𝑎𝑥 + 𝑏) 𝑦𝑛 = 𝑎 𝑛 𝑐𝑜𝑠(𝑎𝑥 + 𝑏 + 𝑛𝜋 2 ) 9 𝑒 𝑎𝑥 𝑠𝑖𝑛(𝑏𝑥 + 𝑐) 𝑦𝑛 = 𝑒 𝑎𝑥 . 𝑟 𝑛 sin⁡( 𝑏𝑥 + 𝑐 + 𝑛𝛼) 10 𝑒 𝑎𝑥 𝑐𝑜𝑠(𝑏𝑥 + 𝑐) 𝑦𝑛 = 𝑒 𝑎𝑥 . 𝑟 𝑛 . 𝑐𝑜𝑠(𝑏𝑥 + 𝑐 + 𝑛𝛼)  Reference book andwebsite Name: 1. Engineering Mathematics – N.P.Bali and Dr. Manish Goyal 2. Introduction to Engineering Mathematics by H.K.Dass and Dr. Rama Verma 3. http://wdjoyner.com/teach/calc1-sage/html/node102.html 4. http://zalakmaths.tripod.com/successive_differentiation.pdf EXERCISE:1  Q-1 Find the derivative of the following:
  • 12. 1. Obtain 5th ⁡derivative of 𝑒2𝑥 2. Obtain 3rd derivative of 35𝑥 3. Obtain 4th derivative of (2𝑥 + 3)5 4. Obtain 4th derivative of 1 2𝑥+3  Q-2 Find the nth derivative of the following: 1. cos2 𝑥 2. 𝑠𝑖𝑛2𝑥𝑐𝑜𝑠3𝑥 3. 𝑒 𝑥 𝑠𝑖𝑛4𝑥𝑐𝑜𝑠6𝑥⁡ 4. 𝑒2𝑥 𝑐𝑜𝑠𝑥𝑠𝑖𝑛2 2𝑥 5. 𝑐𝑜𝑠𝑥𝑐𝑜𝑠2𝑥𝑐𝑜𝑠3𝑥  Q-3 Find the nth derivative of the following by using partial fraction: 1. 1 ( 𝑥−1)2(𝑥−2) 2. 1 𝑎2−𝑥2 3. 𝑥4 ( 𝑥−1)(𝑥−2) 4. 𝑥 ( 𝑥−𝑎)(𝑥−𝑏) 5. 𝑥+1 𝑥2−4