SlideShare une entreprise Scribd logo
1  sur  41
William Stallings
Computer Organization
and Architecture
8th Edition


Chapter 9
Computer Arithmetic
Arithmetic & Logic Unit
• Does the calculations
• Everything else in the computer is there to
  service this unit
• Handles integers
• May handle floating point (real) numbers
• May be separate FPU (maths co-
  processor)
• May be on chip separate FPU (486DX +)
ALU Inputs and Outputs
Integer Representation
• Only have 0 & 1 to represent everything
• Positive numbers stored in binary
    —e.g. 41=00101001
•   No minus sign
•   No period
•   Sign-Magnitude
•   Two’s compliment
Sign-Magnitude
•   Left most bit is sign bit
•   0 means positive
•   1 means negative
•   +18 = 00010010
•    -18 = 10010010
•   Problems
    —Need to consider both sign and magnitude in
     arithmetic
    —Two representations of zero (+0 and -0)
Two’s Compliment
•   +3   =   00000011
•   +2   =   00000010
•   +1   =   00000001
•   +0   =   00000000
•   -1   =   11111111
•   -2   =   11111110
•   -3   =   11111101
Benefits
• One representation of zero
• Arithmetic works easily (see later)
• Negating is fairly easy
  —3 = 00000011
  —Boolean complement gives    11111100
  —Add 1 to LSB                11111101
Geometric Depiction of Twos
Complement Integers
Negation Special Case 1
•    0=             00000000
•   Bitwise not     11111111
•   Add 1 to LSB           +1
•   Result        1 00000000
•   Overflow is ignored, so:
•   -0=0√
Negation Special Case 2
•   -128 =        10000000
•   bitwise not   01111111
•   Add 1 to LSB         +1
•   Result        10000000
•   So:
•   -(-128) = -128 X
•   Monitor MSB (sign bit)
•   It should change during negation
Range of Numbers
• 8 bit 2s compliment
  —+127 = 01111111 = 27 -1
  — -128 = 10000000 = -27
• 16 bit 2s compliment
  —+32767 = 011111111 11111111 = 215 - 1
  — -32768 = 100000000 00000000 = -215
Conversion Between Lengths
•   Positive number pack with leading zeros
•   +18 =             00010010
•   +18 = 00000000 00010010
•   Negative numbers pack with leading ones
•   -18 =            10010010
•   -18 = 11111111 10010010
•   i.e. pack with MSB (sign bit)
Addition and Subtraction
• Normal binary addition
• Monitor sign bit for overflow

• Take twos compliment of substahend and
  add to minuend
  —i.e. a - b = a + (-b)


• So we only need addition and complement
  circuits
Hardware for Addition and Subtraction
Multiplication
•   Complex
•   Work out partial product for each digit
•   Take care with place value (column)
•   Add partial products
Multiplication Example
•     1011 Multiplicand (11 dec)
•   x 1101 Multiplier     (13 dec)
•     1011 Partial products
•   0000    Note: if multiplier bit is 1 copy
• 1011       multiplicand (place value)
• 1011       otherwise zero
• 10001111 Product (143 dec)
• Note: need double length result
Unsigned Binary Multiplication
Execution of Example
Flowchart for Unsigned Binary
Multiplication
Multiplying Negative Numbers
• This does not work!
• Solution 1
  —Convert to positive if required
  —Multiply as above
  —If signs were different, negate answer
• Solution 2
  —Booth’s algorithm
Booth’s Algorithm
Example of Booth’s Algorithm
Division
• More complex than multiplication
• Negative numbers are really bad!
• Based on long division
Division of Unsigned Binary Integers


                  00001101    Quotient
   Divisor   1011 10010011    Dividend
                   1011
                  001110
   Partial          1011
   Remainders
                    001111
                      1011
                               Remainder
                        100
Flowchart for Unsigned Binary Division
Real Numbers
• Numbers with fractions
• Could be done in pure binary
  —1001.1010 = 24 + 20 +2-1 + 2-3 =9.625
• Where is the binary point?
• Fixed?
  —Very limited
• Moving?
  —How do you show where it is?
Floating Point




• +/- .significand x 2exponent
• Misnomer
• Point is actually fixed between sign bit and body
  of mantissa
• Exponent indicates place value (point position)
Floating Point Examples
Signs for Floating Point
• Mantissa is stored in 2s compliment
• Exponent is in excess or biased notation
  —e.g. Excess (bias) 128 means
  —8 bit exponent field
  —Pure value range 0-255
  —Subtract 128 to get correct value
  —Range -128 to +127
Normalization
• FP numbers are usually normalized
• i.e. exponent is adjusted so that leading
  bit (MSB) of mantissa is 1
• Since it is always 1 there is no need to
  store it
• (c.f. Scientific notation where numbers are
  normalized to give a single digit before
  the decimal point
• e.g. 3.123 x 103)
FP Ranges
• For a 32 bit number
  —8 bit exponent
  —+/- 2256 ≈ 1.5 x 1077
• Accuracy
  —The effect of changing lsb of mantissa
  —23 bit mantissa 2-23 ≈ 1.2 x 10-7
  —About 6 decimal places
Expressible Numbers
Density of Floating Point Numbers
IEEE 754
•   Standard for floating point storage
•   32 and 64 bit standards
•   8 and 11 bit exponent respectively
•   Extended formats (both mantissa and
    exponent) for intermediate results
IEEE 754 Formats
FP Arithmetic +/-
•   Check for zeros
•   Align significands (adjusting exponents)
•   Add or subtract significands
•   Normalize result
FP Addition & Subtraction Flowchart
FP Arithmetic x/÷
•   Check for zero
•   Add/subtract exponents
•   Multiply/divide significands (watch sign)
•   Normalize
•   Round
•   All intermediate results should be in
    double length storage
Floating Point Multiplication
Floating Point Division
Required Reading
• Stallings Chapter 9
• IEEE 754 on IEEE Web site

Contenu connexe

Tendances

Integer represention
Integer representionInteger represention
Integer representionSaif Ullah
 
Representation of Integers
Representation of IntegersRepresentation of Integers
Representation of IntegersSusantha Herath
 
Number system and codes
Number system and codesNumber system and codes
Number system and codesAbhiraj Bohra
 
Quick tutorial on IEEE 754 FLOATING POINT representation
Quick tutorial on IEEE 754 FLOATING POINT representationQuick tutorial on IEEE 754 FLOATING POINT representation
Quick tutorial on IEEE 754 FLOATING POINT representationRitu Ranjan Shrivastwa
 
Number systems and conversions
Number systems and conversionsNumber systems and conversions
Number systems and conversionsSusantha Herath
 
Arithmetic Operations
Arithmetic OperationsArithmetic Operations
Arithmetic Operationsgueste99d9a
 
Integer Representation
Integer RepresentationInteger Representation
Integer Representationgavhays
 
Floating point representation
Floating point representationFloating point representation
Floating point representationmissstevenson01
 
FYBSC IT Digital Electronics Unit I Chapter II Number System and Binary Arith...
FYBSC IT Digital Electronics Unit I Chapter II Number System and Binary Arith...FYBSC IT Digital Electronics Unit I Chapter II Number System and Binary Arith...
FYBSC IT Digital Electronics Unit I Chapter II Number System and Binary Arith...Arti Parab Academics
 
Digital fundamendals r001a
Digital fundamendals r001aDigital fundamendals r001a
Digital fundamendals r001aarunachalamr16
 
BOOTH ALGO, DIVISION(RESTORING _ NON RESTORING) etc etc
BOOTH ALGO, DIVISION(RESTORING _ NON RESTORING) etc etcBOOTH ALGO, DIVISION(RESTORING _ NON RESTORING) etc etc
BOOTH ALGO, DIVISION(RESTORING _ NON RESTORING) etc etcAbhishek Rajpoot
 
Fixed point and floating-point numbers
Fixed point and  floating-point numbersFixed point and  floating-point numbers
Fixed point and floating-point numbersMOHAN MOHAN
 
Chapter 07 Digital Alrithmetic and Arithmetic Circuits
Chapter 07 Digital Alrithmetic and Arithmetic CircuitsChapter 07 Digital Alrithmetic and Arithmetic Circuits
Chapter 07 Digital Alrithmetic and Arithmetic CircuitsSSE_AndyLi
 

Tendances (19)

Integer represention
Integer representionInteger represention
Integer represention
 
Representation of Integers
Representation of IntegersRepresentation of Integers
Representation of Integers
 
Number system and codes
Number system and codesNumber system and codes
Number system and codes
 
Quick tutorial on IEEE 754 FLOATING POINT representation
Quick tutorial on IEEE 754 FLOATING POINT representationQuick tutorial on IEEE 754 FLOATING POINT representation
Quick tutorial on IEEE 754 FLOATING POINT representation
 
Representation of Real Numbers
Representation of Real NumbersRepresentation of Real Numbers
Representation of Real Numbers
 
Number systems and conversions
Number systems and conversionsNumber systems and conversions
Number systems and conversions
 
Arithmetic Operations
Arithmetic OperationsArithmetic Operations
Arithmetic Operations
 
Integer Representation
Integer RepresentationInteger Representation
Integer Representation
 
Floating point representation
Floating point representationFloating point representation
Floating point representation
 
Code conversion r006
Code conversion r006Code conversion r006
Code conversion r006
 
FYBSC IT Digital Electronics Unit I Chapter II Number System and Binary Arith...
FYBSC IT Digital Electronics Unit I Chapter II Number System and Binary Arith...FYBSC IT Digital Electronics Unit I Chapter II Number System and Binary Arith...
FYBSC IT Digital Electronics Unit I Chapter II Number System and Binary Arith...
 
Number systems r002
Number systems  r002Number systems  r002
Number systems r002
 
Digital fundamendals r001a
Digital fundamendals r001aDigital fundamendals r001a
Digital fundamendals r001a
 
BOOTH ALGO, DIVISION(RESTORING _ NON RESTORING) etc etc
BOOTH ALGO, DIVISION(RESTORING _ NON RESTORING) etc etcBOOTH ALGO, DIVISION(RESTORING _ NON RESTORING) etc etc
BOOTH ALGO, DIVISION(RESTORING _ NON RESTORING) etc etc
 
Arithmetic circuits
Arithmetic circuitsArithmetic circuits
Arithmetic circuits
 
05 multiply divide
05 multiply divide05 multiply divide
05 multiply divide
 
Fixed point and floating-point numbers
Fixed point and  floating-point numbersFixed point and  floating-point numbers
Fixed point and floating-point numbers
 
Chapter 07 Digital Alrithmetic and Arithmetic Circuits
Chapter 07 Digital Alrithmetic and Arithmetic CircuitsChapter 07 Digital Alrithmetic and Arithmetic Circuits
Chapter 07 Digital Alrithmetic and Arithmetic Circuits
 
Data representation
Data representationData representation
Data representation
 

En vedette

03 top level view of computer function and interconnection
03 top level view of computer function and interconnection03 top level view of computer function and interconnection
03 top level view of computer function and interconnectionSher Shah Merkhel
 
02 computer evolution and performance
02 computer evolution and performance02 computer evolution and performance
02 computer evolution and performanceSher Shah Merkhel
 
10 instruction sets characteristics
10 instruction sets characteristics10 instruction sets characteristics
10 instruction sets characteristicsSher Shah Merkhel
 
12 processor structure and function
12 processor structure and function12 processor structure and function
12 processor structure and functionSher Shah Merkhel
 
11 instruction sets addressing modes
11  instruction sets addressing modes 11  instruction sets addressing modes
11 instruction sets addressing modes Sher Shah Merkhel
 

En vedette (9)

13 risc
13 risc13 risc
13 risc
 
03 top level view of computer function and interconnection
03 top level view of computer function and interconnection03 top level view of computer function and interconnection
03 top level view of computer function and interconnection
 
02 computer evolution and performance
02 computer evolution and performance02 computer evolution and performance
02 computer evolution and performance
 
10 instruction sets characteristics
10 instruction sets characteristics10 instruction sets characteristics
10 instruction sets characteristics
 
01 introduction
01 introduction01 introduction
01 introduction
 
08 operating system support
08 operating system support08 operating system support
08 operating system support
 
04 cache memory
04 cache memory04 cache memory
04 cache memory
 
12 processor structure and function
12 processor structure and function12 processor structure and function
12 processor structure and function
 
11 instruction sets addressing modes
11  instruction sets addressing modes 11  instruction sets addressing modes
11 instruction sets addressing modes
 

Similaire à 09 arithmetic

Similaire à 09 arithmetic (20)

Arithmetic unit.ppt
Arithmetic unit.pptArithmetic unit.ppt
Arithmetic unit.ppt
 
Alu1
Alu1Alu1
Alu1
 
CA UNIT II.pptx
CA UNIT II.pptxCA UNIT II.pptx
CA UNIT II.pptx
 
Floating_point_representation.pdf
Floating_point_representation.pdfFloating_point_representation.pdf
Floating_point_representation.pdf
 
Digital Electronics – Unit I.pdf
Digital Electronics – Unit I.pdfDigital Electronics – Unit I.pdf
Digital Electronics – Unit I.pdf
 
UNIT - I.pptx
UNIT - I.pptxUNIT - I.pptx
UNIT - I.pptx
 
UNIT - I.pptx
UNIT - I.pptxUNIT - I.pptx
UNIT - I.pptx
 
digitalelectronics.ppt
digitalelectronics.pptdigitalelectronics.ppt
digitalelectronics.ppt
 
Chapter 2_Number system (EEEg4302).pdf
Chapter 2_Number system (EEEg4302).pdfChapter 2_Number system (EEEg4302).pdf
Chapter 2_Number system (EEEg4302).pdf
 
Arithmetic.ppt
Arithmetic.pptArithmetic.ppt
Arithmetic.ppt
 
Computer Architecture
Computer ArchitectureComputer Architecture
Computer Architecture
 
Computer Architecture
Computer ArchitectureComputer Architecture
Computer Architecture
 
L3 ARITHMETIC OPERATIONS.pptx
L3 ARITHMETIC OPERATIONS.pptxL3 ARITHMETIC OPERATIONS.pptx
L3 ARITHMETIC OPERATIONS.pptx
 
Number Systems.ppt
Number Systems.pptNumber Systems.ppt
Number Systems.ppt
 
Unit-1 Digital Design and Binary Numbers:
Unit-1 Digital Design and Binary Numbers:Unit-1 Digital Design and Binary Numbers:
Unit-1 Digital Design and Binary Numbers:
 
L 2.10
L 2.10L 2.10
L 2.10
 
09 binary number systems
09   binary number systems09   binary number systems
09 binary number systems
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
number system.ppt
number system.pptnumber system.ppt
number system.ppt
 
CA Unit ii
CA Unit iiCA Unit ii
CA Unit ii
 

Dernier

Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxAmita Gupta
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 

Dernier (20)

Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 

09 arithmetic

  • 1. William Stallings Computer Organization and Architecture 8th Edition Chapter 9 Computer Arithmetic
  • 2. Arithmetic & Logic Unit • Does the calculations • Everything else in the computer is there to service this unit • Handles integers • May handle floating point (real) numbers • May be separate FPU (maths co- processor) • May be on chip separate FPU (486DX +)
  • 3. ALU Inputs and Outputs
  • 4. Integer Representation • Only have 0 & 1 to represent everything • Positive numbers stored in binary —e.g. 41=00101001 • No minus sign • No period • Sign-Magnitude • Two’s compliment
  • 5. Sign-Magnitude • Left most bit is sign bit • 0 means positive • 1 means negative • +18 = 00010010 • -18 = 10010010 • Problems —Need to consider both sign and magnitude in arithmetic —Two representations of zero (+0 and -0)
  • 6. Two’s Compliment • +3 = 00000011 • +2 = 00000010 • +1 = 00000001 • +0 = 00000000 • -1 = 11111111 • -2 = 11111110 • -3 = 11111101
  • 7. Benefits • One representation of zero • Arithmetic works easily (see later) • Negating is fairly easy —3 = 00000011 —Boolean complement gives 11111100 —Add 1 to LSB 11111101
  • 8. Geometric Depiction of Twos Complement Integers
  • 9. Negation Special Case 1 • 0= 00000000 • Bitwise not 11111111 • Add 1 to LSB +1 • Result 1 00000000 • Overflow is ignored, so: • -0=0√
  • 10. Negation Special Case 2 • -128 = 10000000 • bitwise not 01111111 • Add 1 to LSB +1 • Result 10000000 • So: • -(-128) = -128 X • Monitor MSB (sign bit) • It should change during negation
  • 11. Range of Numbers • 8 bit 2s compliment —+127 = 01111111 = 27 -1 — -128 = 10000000 = -27 • 16 bit 2s compliment —+32767 = 011111111 11111111 = 215 - 1 — -32768 = 100000000 00000000 = -215
  • 12. Conversion Between Lengths • Positive number pack with leading zeros • +18 = 00010010 • +18 = 00000000 00010010 • Negative numbers pack with leading ones • -18 = 10010010 • -18 = 11111111 10010010 • i.e. pack with MSB (sign bit)
  • 13. Addition and Subtraction • Normal binary addition • Monitor sign bit for overflow • Take twos compliment of substahend and add to minuend —i.e. a - b = a + (-b) • So we only need addition and complement circuits
  • 14. Hardware for Addition and Subtraction
  • 15. Multiplication • Complex • Work out partial product for each digit • Take care with place value (column) • Add partial products
  • 16. Multiplication Example • 1011 Multiplicand (11 dec) • x 1101 Multiplier (13 dec) • 1011 Partial products • 0000 Note: if multiplier bit is 1 copy • 1011 multiplicand (place value) • 1011 otherwise zero • 10001111 Product (143 dec) • Note: need double length result
  • 19. Flowchart for Unsigned Binary Multiplication
  • 20. Multiplying Negative Numbers • This does not work! • Solution 1 —Convert to positive if required —Multiply as above —If signs were different, negate answer • Solution 2 —Booth’s algorithm
  • 22. Example of Booth’s Algorithm
  • 23. Division • More complex than multiplication • Negative numbers are really bad! • Based on long division
  • 24. Division of Unsigned Binary Integers 00001101 Quotient Divisor 1011 10010011 Dividend 1011 001110 Partial 1011 Remainders 001111 1011 Remainder 100
  • 25. Flowchart for Unsigned Binary Division
  • 26. Real Numbers • Numbers with fractions • Could be done in pure binary —1001.1010 = 24 + 20 +2-1 + 2-3 =9.625 • Where is the binary point? • Fixed? —Very limited • Moving? —How do you show where it is?
  • 27. Floating Point • +/- .significand x 2exponent • Misnomer • Point is actually fixed between sign bit and body of mantissa • Exponent indicates place value (point position)
  • 29. Signs for Floating Point • Mantissa is stored in 2s compliment • Exponent is in excess or biased notation —e.g. Excess (bias) 128 means —8 bit exponent field —Pure value range 0-255 —Subtract 128 to get correct value —Range -128 to +127
  • 30. Normalization • FP numbers are usually normalized • i.e. exponent is adjusted so that leading bit (MSB) of mantissa is 1 • Since it is always 1 there is no need to store it • (c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point • e.g. 3.123 x 103)
  • 31. FP Ranges • For a 32 bit number —8 bit exponent —+/- 2256 ≈ 1.5 x 1077 • Accuracy —The effect of changing lsb of mantissa —23 bit mantissa 2-23 ≈ 1.2 x 10-7 —About 6 decimal places
  • 33. Density of Floating Point Numbers
  • 34. IEEE 754 • Standard for floating point storage • 32 and 64 bit standards • 8 and 11 bit exponent respectively • Extended formats (both mantissa and exponent) for intermediate results
  • 36. FP Arithmetic +/- • Check for zeros • Align significands (adjusting exponents) • Add or subtract significands • Normalize result
  • 37. FP Addition & Subtraction Flowchart
  • 38. FP Arithmetic x/÷ • Check for zero • Add/subtract exponents • Multiply/divide significands (watch sign) • Normalize • Round • All intermediate results should be in double length storage
  • 41. Required Reading • Stallings Chapter 9 • IEEE 754 on IEEE Web site