SlideShare une entreprise Scribd logo
1  sur  11
Copyright Sautter 2003
Angular Motion
• Angular motion involves rotation or circular motion. Some
elements of circular motion have already been discussed
and we will review them here.
• Circular motion (rotation) can be measured using linear
units or angular units. Angular units refer to revolutions,
degrees or radians.
• The properties of circular motion include displacement,
velocity and acceleration. When applied to rotation the
values become angular displacement, angular velocity or
angular acceleration. Additionally, angular motion can be
measured using frequencies and periods or rotation.
• The Greek letters theta (), omega () and alpha () are
used to represent angular displacement, angular velocity
and angular acceleration



AVERAGE =  /  t = (2 + 1) / 2
 = o t + ½ t2
i = o + t
i = ½ (i
2 - o
2) / 
s =  r
Vlinear =  r
alinear =  r
f = 1/ T
T = 1 / f
1 revolution = 360 degrees = 2  radians
 = 2  f
 = 2  / T
Moment of Inertia
• All states of motion are subject to the laws of inertia, that is
tend to remain at the same rate and in the same directional
orientation.
• In the case of rotational motion, the angular velocity tends to
remain unchanged and the plane of rotation persists.
• As you will recall, outside forces can change inertial
conditions. In rotation, outside torques must be applied to
change an objects rotational inertia.
• Torque, as you remember, is a force applied perpendicularly
to the center of rotation.
• τ = F x r
Moment of Inertia
• The tendency of a body to resist changes in its linear
state of motion is measured by its mass.
• The tendency of a body to resist changes in its
rotational state of motion is measured by its moment of
inertia.
• Moment of inertia involves not just the mass of a
rotating object but also the distribution of the mass
within the object.
• τ = F x r, recall that F = ma, therefore:
• τ = ma x r, since a =  r, τ = m  r x r =(mr2 )
• I = mr2 and τ = I
Moment of Inertia
• τ = I
• Note the similarity to F = ma for linear motion.
Instead of a applied force (F) and applied torque (τ) is
necessary to provide acceleration.
• Instead of mass (m), the moment of inertia (I)
determines the resulting acceleration.
• Instead of linear acceleration (a), angular acceleration
() results from the application of a torque.
• Although, the moment of inertia in its simplest form is
given as mass times radius squared (mr2), in more
complex bodies the value of I must be found by
calculus methods (integration) or experimental
means.
The Laws of Motion for Rotating Bodies
(A summary)
• First Law – A body which is rotating tends to keep
rotating at the same rate and in the same plane unless
acted on by an outside torque.
• Second Law –
Torque = Moment of Inertia x angular acceleration
(τ = I)
• Third Law – for every torque there must be an equal
but opposite torque.
Moment of Inertia
• When the moment of inertia is found by experiment
a simplifying technique similar to the center of mass
concept is used.
• Remember, the center of mass of an object is a point
where all the mass of the body could be concentrated
to give the same inertial properties as the actual
mass distribution of the body.
• When describing rotational motion, radius of
gyration is used in place of the center of mass
concept.
• The radius of gyration of a body is the radius of a
thin ring of a mass equal to the mass of the body
which would give the same rotational characteristics
as the actual body.
Sphere
I = 2/5 mr2
Cylinder
I = 1/2 mr2
Thin Ring
I = mr2
Thin Rod
I = 1/12 mr2
Rotational
Axis
Rotational
Axis
Rotational
Axis
Rotational
Axis
I for any object of mass m and radius of gyration rg
I = mrg
2
11
Click Here

Contenu connexe

Plus de walt sautter

Plus de walt sautter (20)

Quantum Numbers
Quantum NumbersQuantum Numbers
Quantum Numbers
 
Statics
Statics Statics
Statics
 
Walt's books
Walt's booksWalt's books
Walt's books
 
Momentum
MomentumMomentum
Momentum
 
Gravitation
GravitationGravitation
Gravitation
 
Vectors
VectorsVectors
Vectors
 
Sound & Waves
Sound & WavesSound & Waves
Sound & Waves
 
Solving Accelerated Motion Problems
Solving Accelerated Motion ProblemsSolving Accelerated Motion Problems
Solving Accelerated Motion Problems
 
Projectiles
ProjectilesProjectiles
Projectiles
 
Math For Physics
Math For PhysicsMath For Physics
Math For Physics
 
Light, Lenses, and Mirrors
Light,  Lenses, and  MirrorsLight,  Lenses, and  Mirrors
Light, Lenses, and Mirrors
 
Kinematics - The Study of Motion
Kinematics - The Study of MotionKinematics - The Study of Motion
Kinematics - The Study of Motion
 
Forces
ForcesForces
Forces
 
Electrostatics
ElectrostaticsElectrostatics
Electrostatics
 
Current Electricity & Ohms Law
Current Electricity & Ohms LawCurrent Electricity & Ohms Law
Current Electricity & Ohms Law
 
Circular Motion
Circular MotionCircular Motion
Circular Motion
 
Centripetal Force
Centripetal ForceCentripetal Force
Centripetal Force
 
Work & Energy
Work & EnergyWork & Energy
Work & Energy
 
Periodic Trends of the Elements
Periodic Trends of the ElementsPeriodic Trends of the Elements
Periodic Trends of the Elements
 
C H E M T A B L E O F C O N T E N T S
C H E M T A B L E O F C O N T E N T SC H E M T A B L E O F C O N T E N T S
C H E M T A B L E O F C O N T E N T S
 

Dernier

SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jisc
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Association for Project Management
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxDr. Sarita Anand
 

Dernier (20)

SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 

Angular Motion & Rotation Dynamics

  • 2. Angular Motion • Angular motion involves rotation or circular motion. Some elements of circular motion have already been discussed and we will review them here. • Circular motion (rotation) can be measured using linear units or angular units. Angular units refer to revolutions, degrees or radians. • The properties of circular motion include displacement, velocity and acceleration. When applied to rotation the values become angular displacement, angular velocity or angular acceleration. Additionally, angular motion can be measured using frequencies and periods or rotation. • The Greek letters theta (), omega () and alpha () are used to represent angular displacement, angular velocity and angular acceleration
  • 4. AVERAGE =  /  t = (2 + 1) / 2  = o t + ½ t2 i = o + t i = ½ (i 2 - o 2) /  s =  r Vlinear =  r alinear =  r f = 1/ T T = 1 / f 1 revolution = 360 degrees = 2  radians  = 2  f  = 2  / T
  • 5. Moment of Inertia • All states of motion are subject to the laws of inertia, that is tend to remain at the same rate and in the same directional orientation. • In the case of rotational motion, the angular velocity tends to remain unchanged and the plane of rotation persists. • As you will recall, outside forces can change inertial conditions. In rotation, outside torques must be applied to change an objects rotational inertia. • Torque, as you remember, is a force applied perpendicularly to the center of rotation. • τ = F x r
  • 6. Moment of Inertia • The tendency of a body to resist changes in its linear state of motion is measured by its mass. • The tendency of a body to resist changes in its rotational state of motion is measured by its moment of inertia. • Moment of inertia involves not just the mass of a rotating object but also the distribution of the mass within the object. • τ = F x r, recall that F = ma, therefore: • τ = ma x r, since a =  r, τ = m  r x r =(mr2 ) • I = mr2 and τ = I
  • 7. Moment of Inertia • τ = I • Note the similarity to F = ma for linear motion. Instead of a applied force (F) and applied torque (τ) is necessary to provide acceleration. • Instead of mass (m), the moment of inertia (I) determines the resulting acceleration. • Instead of linear acceleration (a), angular acceleration () results from the application of a torque. • Although, the moment of inertia in its simplest form is given as mass times radius squared (mr2), in more complex bodies the value of I must be found by calculus methods (integration) or experimental means.
  • 8. The Laws of Motion for Rotating Bodies (A summary) • First Law – A body which is rotating tends to keep rotating at the same rate and in the same plane unless acted on by an outside torque. • Second Law – Torque = Moment of Inertia x angular acceleration (τ = I) • Third Law – for every torque there must be an equal but opposite torque.
  • 9. Moment of Inertia • When the moment of inertia is found by experiment a simplifying technique similar to the center of mass concept is used. • Remember, the center of mass of an object is a point where all the mass of the body could be concentrated to give the same inertial properties as the actual mass distribution of the body. • When describing rotational motion, radius of gyration is used in place of the center of mass concept. • The radius of gyration of a body is the radius of a thin ring of a mass equal to the mass of the body which would give the same rotational characteristics as the actual body.
  • 10. Sphere I = 2/5 mr2 Cylinder I = 1/2 mr2 Thin Ring I = mr2 Thin Rod I = 1/12 mr2 Rotational Axis Rotational Axis Rotational Axis Rotational Axis I for any object of mass m and radius of gyration rg I = mrg 2