SlideShare une entreprise Scribd logo
1  sur  19
Chemical
thermodynamics
From this chapter 12 marks will come and 5 marks numerical sure
General introduction:
The branch of science which deals with the study of different form of
energy and the quantitative relationship between them is known as
thermodynamics.
When we confine our study to chemical changes and chemical
substances only, then that branch of thermodynamics is known as
chemical thermodynamics.
Some basic terms and concepts:
1. System: A system means that part of Universe which is under study.
For example: a certain amount of solid, liquid or gas contain in a
system.
2. Surrounding: The rest of the universe or environment around the
system is called surrounding.
So, the surrounding means all other things which can interact
with the system.
3. Boundary: Anything that separates the system from the
surrounding is called boundary.
Thus, universe = system + surrounding
Depending upon how a system interacts with the surrounding it is classified
into 3 categories.
1. Closed system: A closed system is one which can’t exchange matter with
surrounding. For example, a close container in a closed system, because
no matter can enter or escape from it. However, the closed system can
exchange heat or work with surrounding.
Figure…………..
2. Open system: An open system is one which can exchange both matter
and energy( heat or work) with the surrounding.
Hot water contained in an open beaker is an example of open system.
Figure……………….
3.Isolated system: An isolated system is one which can exchange neither
matter nor energy with the surrounding. If the boundary is closed and
insulated, no interaction is possible with the surrounding. Hence hot or cold
water contained in a thermos is an isolated system.
4.State of a system and state variable: The state of a system means the
condition of the system which is described in terms of certain measurable
properties such as temperature (T), pressure(P), volume(V), etc. of the
system. If any of these properties of the system changes, the system is said
to be in different state i.e. the state of the system changes. That is why these
properties of the system are called state variable.
The properties is said to occur when the state of the system changes. The
first and last state of the system are initial sate and final state respectively.
5. State function: A physical quantity is said to be state function if its value
depends only upon the state of the system and doesn’t depend upon the
path by which this state has been attained.
For example: potential energy, internal energy, enthalpy, free energy etc.
Explanation:
let us consider two points at the peak and a base of a hill. The climbers can
move from base to the peak of the hill through different path. Work done
depend upon the distance travelled by the climber (may be longer and a
shorter route). So, it is not a state function. However a climbers standing on
the peak of hill has a fixed value of PE, irrespective of the fact that whether
he reached by stairs or lift. Thus PE of the person is a state function
6. Thermodynamic properties:
i. Intensive properties: The properties of the system which do not
depend upon the amount of the substance present is called
intensive properties. For example: temperature, pressure, viscosity,
density, surface tension, etc.
The boiling point of water is 100oc at one atmosphere whatever
its mass.
ii. Extensive properties: The properties of the system which depend
upon the amount of substance present is called extensive
properties. For example, mass, volume, energy, work, entropy, etc.
let us consider a glass of water, if we double the mass of water,
the volume, no. of moles, internal energy etc. also get doubled so
they are extensive properties.
Types of thermodynamic process:
Isothermal and Adiabatic process:
A process is said to be isothermal, if the temperature of the system
remains constant during each stage of the process. Such type of
process may be achieved by placing the system in thermostat.
Here, dT = 0, keeping temperature constant.
A process is said to be adiabatic, if no heat enters or leaves the system
during any step of the process i.e. the system is completely insulated
from the surrounding.
Here, dQ= 0, keeping heat constant.
Isochoric and isobaric process:
A process is said to be isochoric, if the volume of the system remains
constant during each step of the process.
Here, dv = 0.
A process is said to be isobaric if the pressure of the system remains
constant during each step of the process.
Here, dp = 0
Exchange of energy between system and
surrounding:
a. As work: If the system and the surrounding are at two different pressure, then
the energy is exchange between the system and surrounding in the form of
work.
Suppose there is a gaseous system enclosed in a cylinder fitted with a piston. If the
pressure of the gas is higher than that of the surrounding, the gas will expand, push
the piston and does a work against the surrounding. Here energy is transformed
from the system to surrounding in the form of work. If the surrounding is at higher
pressure, the gas contracts and work is done on the system by the surrounding. In
this case energy is transferred from the surrounding to the system in the form of
work. In both the case of expansion and contraction, the mechanical work is done
by/on the system is given by
W= P∆𝑉
Work done by the system, W= -P∆𝑉
Work done on the system, W= +P∆𝑉
b. As heat: If the system and the surrounding are at two different
temperature, energy is transformed or exchanged between the system
and surrounding in the form of heat.
For example: When ice is kept at room temperature, flow of heat
energy takes place from the surrounding to the system (ice) unless both
of them will have same temperature. Similarly if hot water in a vessel is
kept at room temperature, flow of heat energy takes place from hot
water( system) to surrounding unless both of them will have the same
temperature.
Internal energy (E) :
The energy of the thermodynamic system is called internal energy. It
includes all the possible forms of energy of the system. The sum of different
forms of energy associated with the molecule is called internal energy.
Internal energy = Translational energy + rotational energy + vibrational
energy + electrical energy + nuclear energy + bonding energy……..
The internal energy of the system depends upon the state of the system but
not upon the path on which the system attains another state. So, internal
energy is a state function. Therefore, the absolute value internal energy
cannot be determined. However, the change in internal energy can be
calculated as:
ΔE = E2 – E1
In a chemical reaction,
ΔE = Eproduct – Ereactant
If Eproduct > Ereactant, heat is absorbed by the system and hence reaction is
endothermic.
If Eproduct < Ereactant, heat is released by the system and hence reaction is
exothermic.
Sign convention:
1. ∆E = -ve, then energy is evolved.
2. ∆E = +ve, then energy is absorbed
First law of thermodynamics:
It states that, “ Energy can be neither be created nor destroyed
although it may be converted from one form to another”
OR
The total amount of energy in the Universe remains constant although
it may undergo transformation from one form to another.
Mathematical formulation of first law of
thermodynamics:( relation between internal
energy, work and heat)
The internal energy of the system can be increased in 2 ways.
1. By supplying heat to the system
2.By doing work on the system
in board…………….
Sign convention:
Heat absorbed by the system: q is +ve
Heat evolved by the system: q is –ve
Work done on the system: W = +ve
Work done by the system: W = -ve
chemicalthermodynamics.pptx

Contenu connexe

Similaire à chemicalthermodynamics.pptx

Basic thermodynamics
Basic thermodynamicsBasic thermodynamics
Basic thermodynamicsSACHINNikam39
 
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTESME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTESBIBIN CHIDAMBARANATHAN
 
Unit 1 thermodynamics by varun pratap singh (2020-21 Session)
Unit 1 thermodynamics by varun pratap singh (2020-21 Session)Unit 1 thermodynamics by varun pratap singh (2020-21 Session)
Unit 1 thermodynamics by varun pratap singh (2020-21 Session)Varun Pratap Singh
 
ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1prakash0712
 
Application of Thermodynamics
Application of ThermodynamicsApplication of Thermodynamics
Application of ThermodynamicsGOBINATHS18
 
Thermodynamics (basic terms).pdf for the learners
Thermodynamics (basic terms).pdf for the learnersThermodynamics (basic terms).pdf for the learners
Thermodynamics (basic terms).pdf for the learnersBharatKumarHumagai
 
Chapter 6 thermodynamics class 11 cbse
Chapter 6 thermodynamics class 11 cbseChapter 6 thermodynamics class 11 cbse
Chapter 6 thermodynamics class 11 cbseritik
 
Basic Mechanical Engineering Unit 4 Thermodynamics@by V.P.Singh
Basic Mechanical Engineering Unit 4 Thermodynamics@by V.P.SinghBasic Mechanical Engineering Unit 4 Thermodynamics@by V.P.Singh
Basic Mechanical Engineering Unit 4 Thermodynamics@by V.P.SinghVarun Pratap Singh
 
Thermodynamics Lecture
Thermodynamics LectureThermodynamics Lecture
Thermodynamics LectureBILAL ABDULLAH
 
Introduction to thermodynamics
Introduction to thermodynamicsIntroduction to thermodynamics
Introduction to thermodynamicsVeeramanikandanM1
 
MH-CET 2014 Thermodynamics and Thermochemistry
MH-CET 2014 Thermodynamics and Thermochemistry MH-CET 2014 Thermodynamics and Thermochemistry
MH-CET 2014 Thermodynamics and Thermochemistry Ednexa
 
Basic Definition of Thermodynamics and IC Engine
Basic Definition of Thermodynamics and IC Engine Basic Definition of Thermodynamics and IC Engine
Basic Definition of Thermodynamics and IC Engine Muhammad Ahsan Ghouri
 
Thermodynamics (chapter-1 introduction)
Thermodynamics (chapter-1 introduction) Thermodynamics (chapter-1 introduction)
Thermodynamics (chapter-1 introduction) Ashok giri
 
Basics of thermo
Basics of thermoBasics of thermo
Basics of thermoMehtab Rai
 
Thermodynamics notes
Thermodynamics notesThermodynamics notes
Thermodynamics notessuresh gdvm
 
Applied Thermodynamic (1).pptx
Applied Thermodynamic (1).pptxApplied Thermodynamic (1).pptx
Applied Thermodynamic (1).pptxAreej745332
 
Thermodynamics part 1 ppt |Sumati's biochemistry |
 Thermodynamics part 1 ppt   |Sumati's biochemistry | Thermodynamics part 1 ppt   |Sumati's biochemistry |
Thermodynamics part 1 ppt |Sumati's biochemistry |SumatiHajela
 
Thermal Engineering Basic Concepts.pptx
Thermal Engineering Basic Concepts.pptxThermal Engineering Basic Concepts.pptx
Thermal Engineering Basic Concepts.pptxAlexPatil2
 

Similaire à chemicalthermodynamics.pptx (20)

Basic thermodynamics
Basic thermodynamicsBasic thermodynamics
Basic thermodynamics
 
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTESME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
 
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISHME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
 
Unit 1 thermodynamics by varun pratap singh (2020-21 Session)
Unit 1 thermodynamics by varun pratap singh (2020-21 Session)Unit 1 thermodynamics by varun pratap singh (2020-21 Session)
Unit 1 thermodynamics by varun pratap singh (2020-21 Session)
 
ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1
 
Application of Thermodynamics
Application of ThermodynamicsApplication of Thermodynamics
Application of Thermodynamics
 
Thermodynamics (basic terms).pdf for the learners
Thermodynamics (basic terms).pdf for the learnersThermodynamics (basic terms).pdf for the learners
Thermodynamics (basic terms).pdf for the learners
 
Chapter 6 thermodynamics class 11 cbse
Chapter 6 thermodynamics class 11 cbseChapter 6 thermodynamics class 11 cbse
Chapter 6 thermodynamics class 11 cbse
 
Basic Mechanical Engineering Unit 4 Thermodynamics@by V.P.Singh
Basic Mechanical Engineering Unit 4 Thermodynamics@by V.P.SinghBasic Mechanical Engineering Unit 4 Thermodynamics@by V.P.Singh
Basic Mechanical Engineering Unit 4 Thermodynamics@by V.P.Singh
 
Thermodynamics Lecture
Thermodynamics LectureThermodynamics Lecture
Thermodynamics Lecture
 
Introduction to thermodynamics
Introduction to thermodynamicsIntroduction to thermodynamics
Introduction to thermodynamics
 
MH-CET 2014 Thermodynamics and Thermochemistry
MH-CET 2014 Thermodynamics and Thermochemistry MH-CET 2014 Thermodynamics and Thermochemistry
MH-CET 2014 Thermodynamics and Thermochemistry
 
Basic Definition of Thermodynamics and IC Engine
Basic Definition of Thermodynamics and IC Engine Basic Definition of Thermodynamics and IC Engine
Basic Definition of Thermodynamics and IC Engine
 
Thermodynamics (chapter-1 introduction)
Thermodynamics (chapter-1 introduction) Thermodynamics (chapter-1 introduction)
Thermodynamics (chapter-1 introduction)
 
Basics of thermo
Basics of thermoBasics of thermo
Basics of thermo
 
Thermodynamics notes
Thermodynamics notesThermodynamics notes
Thermodynamics notes
 
Applied Thermodynamic (1).pptx
Applied Thermodynamic (1).pptxApplied Thermodynamic (1).pptx
Applied Thermodynamic (1).pptx
 
Thermodynamics part 1 ppt |Sumati's biochemistry |
 Thermodynamics part 1 ppt   |Sumati's biochemistry | Thermodynamics part 1 ppt   |Sumati's biochemistry |
Thermodynamics part 1 ppt |Sumati's biochemistry |
 
Ees104 thermodynamics
Ees104 thermodynamicsEes104 thermodynamics
Ees104 thermodynamics
 
Thermal Engineering Basic Concepts.pptx
Thermal Engineering Basic Concepts.pptxThermal Engineering Basic Concepts.pptx
Thermal Engineering Basic Concepts.pptx
 

Plus de AliceRivera13

capacitors with dielectrics.pptxxxxxxxxxxxxxxxxx
capacitors with dielectrics.pptxxxxxxxxxxxxxxxxxcapacitors with dielectrics.pptxxxxxxxxxxxxxxxxx
capacitors with dielectrics.pptxxxxxxxxxxxxxxxxxAliceRivera13
 
thermochemistry.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
thermochemistry.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxthermochemistry.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
thermochemistry.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxAliceRivera13
 
PHYS_2326_012209.pptxxxxxxxxxxxxxxxxxxxx
PHYS_2326_012209.pptxxxxxxxxxxxxxxxxxxxxPHYS_2326_012209.pptxxxxxxxxxxxxxxxxxxxx
PHYS_2326_012209.pptxxxxxxxxxxxxxxxxxxxxAliceRivera13
 
capacitors with dielectrics.pptxxxxxxxxxx
capacitors with dielectrics.pptxxxxxxxxxxcapacitors with dielectrics.pptxxxxxxxxxx
capacitors with dielectrics.pptxxxxxxxxxxAliceRivera13
 
Estimation of parameters.pptxxxxxxxxxxxx
Estimation of parameters.pptxxxxxxxxxxxxEstimation of parameters.pptxxxxxxxxxxxx
Estimation of parameters.pptxxxxxxxxxxxxAliceRivera13
 
physical-properties-of-solution.pptxxxxx
physical-properties-of-solution.pptxxxxxphysical-properties-of-solution.pptxxxxx
physical-properties-of-solution.pptxxxxxAliceRivera13
 
8.PRINCIPLE-OF-FIRE-FIGHTING-10-phases-of-fire.ppt
8.PRINCIPLE-OF-FIRE-FIGHTING-10-phases-of-fire.ppt8.PRINCIPLE-OF-FIRE-FIGHTING-10-phases-of-fire.ppt
8.PRINCIPLE-OF-FIRE-FIGHTING-10-phases-of-fire.pptAliceRivera13
 
SHS MOCK EXAM GEN PHYS.pptxxxxxxxxxxxxxx
SHS MOCK EXAM GEN PHYS.pptxxxxxxxxxxxxxxSHS MOCK EXAM GEN PHYS.pptxxxxxxxxxxxxxx
SHS MOCK EXAM GEN PHYS.pptxxxxxxxxxxxxxxAliceRivera13
 
samplingandsamplingdistributions.pptxxxxxxxxx
samplingandsamplingdistributions.pptxxxxxxxxxsamplingandsamplingdistributions.pptxxxxxxxxx
samplingandsamplingdistributions.pptxxxxxxxxxAliceRivera13
 
physics121_lecture05.pptttttttttttttttttttttt
physics121_lecture05.ppttttttttttttttttttttttphysics121_lecture05.pptttttttttttttttttttttt
physics121_lecture05.ppttttttttttttttttttttttAliceRivera13
 
PHYS632_C2_23_Electric.pptttttttttttttttttt
PHYS632_C2_23_Electric.ppttttttttttttttttttPHYS632_C2_23_Electric.pptttttttttttttttttt
PHYS632_C2_23_Electric.ppttttttttttttttttttAliceRivera13
 
CHAPTER TEST ON INTERMOLECULAR FORCES LIQUIDS AND SOLIDS.pptx
CHAPTER TEST ON INTERMOLECULAR FORCES LIQUIDS AND SOLIDS.pptxCHAPTER TEST ON INTERMOLECULAR FORCES LIQUIDS AND SOLIDS.pptx
CHAPTER TEST ON INTERMOLECULAR FORCES LIQUIDS AND SOLIDS.pptxAliceRivera13
 
pe-4lesson1-recreationalactivities-230206052823-3853a29d.pptx
pe-4lesson1-recreationalactivities-230206052823-3853a29d.pptxpe-4lesson1-recreationalactivities-230206052823-3853a29d.pptx
pe-4lesson1-recreationalactivities-230206052823-3853a29d.pptxAliceRivera13
 
ELECTRIC FLUX.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
ELECTRIC FLUX.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxELECTRIC FLUX.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
ELECTRIC FLUX.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxAliceRivera13
 
ojtpresentation.pptxxxxxxxxxxxxxxxxxxxxx
ojtpresentation.pptxxxxxxxxxxxxxxxxxxxxxojtpresentation.pptxxxxxxxxxxxxxxxxxxxxx
ojtpresentation.pptxxxxxxxxxxxxxxxxxxxxxAliceRivera13
 
PHYS_2326_012209 (1).pptxxxxxxxxxxxxxxxxx
PHYS_2326_012209 (1).pptxxxxxxxxxxxxxxxxxPHYS_2326_012209 (1).pptxxxxxxxxxxxxxxxxx
PHYS_2326_012209 (1).pptxxxxxxxxxxxxxxxxxAliceRivera13
 
General Physics 1 Week 1 ppt.pptxxxxxxxx
General Physics 1 Week 1 ppt.pptxxxxxxxxGeneral Physics 1 Week 1 ppt.pptxxxxxxxx
General Physics 1 Week 1 ppt.pptxxxxxxxxAliceRivera13
 
normaldistribution.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
normaldistribution.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxnormaldistribution.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
normaldistribution.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxAliceRivera13
 
normaldistribution.pptxxxxxxxxxxxxxxxxxx
normaldistribution.pptxxxxxxxxxxxxxxxxxxnormaldistribution.pptxxxxxxxxxxxxxxxxxx
normaldistribution.pptxxxxxxxxxxxxxxxxxxAliceRivera13
 
vectorproblems.pptxxxxxxxxxxxxxxxxxxxxxx
vectorproblems.pptxxxxxxxxxxxxxxxxxxxxxxvectorproblems.pptxxxxxxxxxxxxxxxxxxxxxx
vectorproblems.pptxxxxxxxxxxxxxxxxxxxxxxAliceRivera13
 

Plus de AliceRivera13 (20)

capacitors with dielectrics.pptxxxxxxxxxxxxxxxxx
capacitors with dielectrics.pptxxxxxxxxxxxxxxxxxcapacitors with dielectrics.pptxxxxxxxxxxxxxxxxx
capacitors with dielectrics.pptxxxxxxxxxxxxxxxxx
 
thermochemistry.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
thermochemistry.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxthermochemistry.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
thermochemistry.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 
PHYS_2326_012209.pptxxxxxxxxxxxxxxxxxxxx
PHYS_2326_012209.pptxxxxxxxxxxxxxxxxxxxxPHYS_2326_012209.pptxxxxxxxxxxxxxxxxxxxx
PHYS_2326_012209.pptxxxxxxxxxxxxxxxxxxxx
 
capacitors with dielectrics.pptxxxxxxxxxx
capacitors with dielectrics.pptxxxxxxxxxxcapacitors with dielectrics.pptxxxxxxxxxx
capacitors with dielectrics.pptxxxxxxxxxx
 
Estimation of parameters.pptxxxxxxxxxxxx
Estimation of parameters.pptxxxxxxxxxxxxEstimation of parameters.pptxxxxxxxxxxxx
Estimation of parameters.pptxxxxxxxxxxxx
 
physical-properties-of-solution.pptxxxxx
physical-properties-of-solution.pptxxxxxphysical-properties-of-solution.pptxxxxx
physical-properties-of-solution.pptxxxxx
 
8.PRINCIPLE-OF-FIRE-FIGHTING-10-phases-of-fire.ppt
8.PRINCIPLE-OF-FIRE-FIGHTING-10-phases-of-fire.ppt8.PRINCIPLE-OF-FIRE-FIGHTING-10-phases-of-fire.ppt
8.PRINCIPLE-OF-FIRE-FIGHTING-10-phases-of-fire.ppt
 
SHS MOCK EXAM GEN PHYS.pptxxxxxxxxxxxxxx
SHS MOCK EXAM GEN PHYS.pptxxxxxxxxxxxxxxSHS MOCK EXAM GEN PHYS.pptxxxxxxxxxxxxxx
SHS MOCK EXAM GEN PHYS.pptxxxxxxxxxxxxxx
 
samplingandsamplingdistributions.pptxxxxxxxxx
samplingandsamplingdistributions.pptxxxxxxxxxsamplingandsamplingdistributions.pptxxxxxxxxx
samplingandsamplingdistributions.pptxxxxxxxxx
 
physics121_lecture05.pptttttttttttttttttttttt
physics121_lecture05.ppttttttttttttttttttttttphysics121_lecture05.pptttttttttttttttttttttt
physics121_lecture05.pptttttttttttttttttttttt
 
PHYS632_C2_23_Electric.pptttttttttttttttttt
PHYS632_C2_23_Electric.ppttttttttttttttttttPHYS632_C2_23_Electric.pptttttttttttttttttt
PHYS632_C2_23_Electric.pptttttttttttttttttt
 
CHAPTER TEST ON INTERMOLECULAR FORCES LIQUIDS AND SOLIDS.pptx
CHAPTER TEST ON INTERMOLECULAR FORCES LIQUIDS AND SOLIDS.pptxCHAPTER TEST ON INTERMOLECULAR FORCES LIQUIDS AND SOLIDS.pptx
CHAPTER TEST ON INTERMOLECULAR FORCES LIQUIDS AND SOLIDS.pptx
 
pe-4lesson1-recreationalactivities-230206052823-3853a29d.pptx
pe-4lesson1-recreationalactivities-230206052823-3853a29d.pptxpe-4lesson1-recreationalactivities-230206052823-3853a29d.pptx
pe-4lesson1-recreationalactivities-230206052823-3853a29d.pptx
 
ELECTRIC FLUX.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
ELECTRIC FLUX.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxELECTRIC FLUX.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
ELECTRIC FLUX.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 
ojtpresentation.pptxxxxxxxxxxxxxxxxxxxxx
ojtpresentation.pptxxxxxxxxxxxxxxxxxxxxxojtpresentation.pptxxxxxxxxxxxxxxxxxxxxx
ojtpresentation.pptxxxxxxxxxxxxxxxxxxxxx
 
PHYS_2326_012209 (1).pptxxxxxxxxxxxxxxxxx
PHYS_2326_012209 (1).pptxxxxxxxxxxxxxxxxxPHYS_2326_012209 (1).pptxxxxxxxxxxxxxxxxx
PHYS_2326_012209 (1).pptxxxxxxxxxxxxxxxxx
 
General Physics 1 Week 1 ppt.pptxxxxxxxx
General Physics 1 Week 1 ppt.pptxxxxxxxxGeneral Physics 1 Week 1 ppt.pptxxxxxxxx
General Physics 1 Week 1 ppt.pptxxxxxxxx
 
normaldistribution.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
normaldistribution.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxnormaldistribution.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
normaldistribution.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 
normaldistribution.pptxxxxxxxxxxxxxxxxxx
normaldistribution.pptxxxxxxxxxxxxxxxxxxnormaldistribution.pptxxxxxxxxxxxxxxxxxx
normaldistribution.pptxxxxxxxxxxxxxxxxxx
 
vectorproblems.pptxxxxxxxxxxxxxxxxxxxxxx
vectorproblems.pptxxxxxxxxxxxxxxxxxxxxxxvectorproblems.pptxxxxxxxxxxxxxxxxxxxxxx
vectorproblems.pptxxxxxxxxxxxxxxxxxxxxxx
 

Dernier

Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 

Dernier (20)

Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 

chemicalthermodynamics.pptx

  • 2. From this chapter 12 marks will come and 5 marks numerical sure
  • 3. General introduction: The branch of science which deals with the study of different form of energy and the quantitative relationship between them is known as thermodynamics. When we confine our study to chemical changes and chemical substances only, then that branch of thermodynamics is known as chemical thermodynamics.
  • 4. Some basic terms and concepts: 1. System: A system means that part of Universe which is under study. For example: a certain amount of solid, liquid or gas contain in a system. 2. Surrounding: The rest of the universe or environment around the system is called surrounding. So, the surrounding means all other things which can interact with the system. 3. Boundary: Anything that separates the system from the surrounding is called boundary. Thus, universe = system + surrounding
  • 5. Depending upon how a system interacts with the surrounding it is classified into 3 categories. 1. Closed system: A closed system is one which can’t exchange matter with surrounding. For example, a close container in a closed system, because no matter can enter or escape from it. However, the closed system can exchange heat or work with surrounding. Figure………….. 2. Open system: An open system is one which can exchange both matter and energy( heat or work) with the surrounding. Hot water contained in an open beaker is an example of open system. Figure……………….
  • 6. 3.Isolated system: An isolated system is one which can exchange neither matter nor energy with the surrounding. If the boundary is closed and insulated, no interaction is possible with the surrounding. Hence hot or cold water contained in a thermos is an isolated system. 4.State of a system and state variable: The state of a system means the condition of the system which is described in terms of certain measurable properties such as temperature (T), pressure(P), volume(V), etc. of the system. If any of these properties of the system changes, the system is said to be in different state i.e. the state of the system changes. That is why these properties of the system are called state variable. The properties is said to occur when the state of the system changes. The first and last state of the system are initial sate and final state respectively.
  • 7. 5. State function: A physical quantity is said to be state function if its value depends only upon the state of the system and doesn’t depend upon the path by which this state has been attained. For example: potential energy, internal energy, enthalpy, free energy etc. Explanation: let us consider two points at the peak and a base of a hill. The climbers can move from base to the peak of the hill through different path. Work done depend upon the distance travelled by the climber (may be longer and a shorter route). So, it is not a state function. However a climbers standing on the peak of hill has a fixed value of PE, irrespective of the fact that whether he reached by stairs or lift. Thus PE of the person is a state function
  • 8. 6. Thermodynamic properties: i. Intensive properties: The properties of the system which do not depend upon the amount of the substance present is called intensive properties. For example: temperature, pressure, viscosity, density, surface tension, etc. The boiling point of water is 100oc at one atmosphere whatever its mass. ii. Extensive properties: The properties of the system which depend upon the amount of substance present is called extensive properties. For example, mass, volume, energy, work, entropy, etc. let us consider a glass of water, if we double the mass of water, the volume, no. of moles, internal energy etc. also get doubled so they are extensive properties.
  • 9. Types of thermodynamic process: Isothermal and Adiabatic process: A process is said to be isothermal, if the temperature of the system remains constant during each stage of the process. Such type of process may be achieved by placing the system in thermostat. Here, dT = 0, keeping temperature constant. A process is said to be adiabatic, if no heat enters or leaves the system during any step of the process i.e. the system is completely insulated from the surrounding. Here, dQ= 0, keeping heat constant.
  • 10. Isochoric and isobaric process: A process is said to be isochoric, if the volume of the system remains constant during each step of the process. Here, dv = 0. A process is said to be isobaric if the pressure of the system remains constant during each step of the process. Here, dp = 0
  • 11. Exchange of energy between system and surrounding: a. As work: If the system and the surrounding are at two different pressure, then the energy is exchange between the system and surrounding in the form of work. Suppose there is a gaseous system enclosed in a cylinder fitted with a piston. If the pressure of the gas is higher than that of the surrounding, the gas will expand, push the piston and does a work against the surrounding. Here energy is transformed from the system to surrounding in the form of work. If the surrounding is at higher pressure, the gas contracts and work is done on the system by the surrounding. In this case energy is transferred from the surrounding to the system in the form of work. In both the case of expansion and contraction, the mechanical work is done by/on the system is given by W= P∆𝑉 Work done by the system, W= -P∆𝑉 Work done on the system, W= +P∆𝑉
  • 12. b. As heat: If the system and the surrounding are at two different temperature, energy is transformed or exchanged between the system and surrounding in the form of heat. For example: When ice is kept at room temperature, flow of heat energy takes place from the surrounding to the system (ice) unless both of them will have same temperature. Similarly if hot water in a vessel is kept at room temperature, flow of heat energy takes place from hot water( system) to surrounding unless both of them will have the same temperature.
  • 13. Internal energy (E) : The energy of the thermodynamic system is called internal energy. It includes all the possible forms of energy of the system. The sum of different forms of energy associated with the molecule is called internal energy. Internal energy = Translational energy + rotational energy + vibrational energy + electrical energy + nuclear energy + bonding energy…….. The internal energy of the system depends upon the state of the system but not upon the path on which the system attains another state. So, internal energy is a state function. Therefore, the absolute value internal energy cannot be determined. However, the change in internal energy can be calculated as: ΔE = E2 – E1
  • 14. In a chemical reaction, ΔE = Eproduct – Ereactant If Eproduct > Ereactant, heat is absorbed by the system and hence reaction is endothermic. If Eproduct < Ereactant, heat is released by the system and hence reaction is exothermic.
  • 15. Sign convention: 1. ∆E = -ve, then energy is evolved. 2. ∆E = +ve, then energy is absorbed
  • 16. First law of thermodynamics: It states that, “ Energy can be neither be created nor destroyed although it may be converted from one form to another” OR The total amount of energy in the Universe remains constant although it may undergo transformation from one form to another.
  • 17. Mathematical formulation of first law of thermodynamics:( relation between internal energy, work and heat) The internal energy of the system can be increased in 2 ways. 1. By supplying heat to the system 2.By doing work on the system in board…………….
  • 18. Sign convention: Heat absorbed by the system: q is +ve Heat evolved by the system: q is –ve Work done on the system: W = +ve Work done by the system: W = -ve