SlideShare une entreprise Scribd logo
1  sur  28
A Carbon Calculator for Wind farms on
                Peatland


Nayak D1, Perks M3, Miller D2, Nolan A2, Gardiner B3 & Smith JU1




         1University of Aberedeen, Aberdeen, UK
            2Macaulay Institute, Aberdeen, UK
3Forest Management Division, Forest Research, Midlothian, UK
The Scottish




                                       Electricity generation by renewables
                                                                              100
                                                                               90
   Government has                                                              80

  ambitious targets                                                            70
                                                                               60
  for electricity


                                                        (%)
                                                                               50

    generation by                                                              40
                                                                               30
     renewables                                                                20                            50%
                                                                               10                           by 2020
                                                                                0     31%
                                                                                2010 by 2011 2015          2020       2025
                                                                                                    Year
Scottish Government (2008)
http://www.scotland.gov.uk/Topics/Business-Industry/Energy/19185/17612
Wind farms are
  likely to be
  developed on
  peats
  –   Less productive
      than arable mineral
      soils
      → no pressures
      on land use


  –   On exposed sites
      → high capacity
      factor
Will greenhouse gas emissions from
peatlands exceed carbon savings due to
the wind farm?

        Calculate carbon payback time


  If (carbon payback time) > (lifetime of wind farm),
      wind farm does not provide carbon benefit
Carbon Payback Time

                                 Total losses
                                 (t CO2 eq.)



                        Annual emission
                             savings
                          (t CO2 yr-1)
Carbon payback
  time (years)
Annual Emission Savings
                     …depend on counterfactual energy source

                              Counterfactual               Emission factor
                              Energy Source                (t CO2 MWh-1)
                                  Grid Mix                         0.43
                              Fossil Fuel Mix                     0.607
                                 Coal Fired                        0.78




Baggott, et al (2007).
    http://www.naei.org.uk/reports.php. Report AEAT/ENV/R/2429 13/04/2007

DUKES (2007).
   http://www.berr.gov.uk/energy/statistics/source/electricity/page18527.html
Carbon emission savings of wind farms


                                  pcap
            S fuel = 24 × 365 ×          × nturb × c turb × E fuel
                                  100                                 Emission
                                                                       factor
                                                                  (t CO2 MWh-1)
                      Capacity             Number of       Turbine
Annual emission
                       factor               turbines       capacity
     savings
                        (%)                                 (MW).
  (t CO2 yr-1)


                        Annual energy output (MW yr-1)
Total Losses
  Ltot = Llife + Lback + Lfix + Ldirec t + Lindirect + LDOC + Lforest + Limprovemen t

Total losses
(t CO2 eq.)             C fixing
                        potential                    Dissolved
                                                   organic carbon

                                    Removed
                                      peat                          Forestry
   Production,                                Loss of C             clearance
 transportation,                                due to
     erection,                                 drainage
    operation,                                                                Habitat
   dismantling                                                              improvement

                   Backup power
                    generation
Change in C dynamics of peatlands
1.   Loss of carbon fixing potential of bog plants
2.   Loss of carbon from removed peat
3.   Loss of carbon from drained peat
4.   Loss of Dissolved and Particulate organic carbon
5.   Gain of C due to habitat improvement
Loss of carbon (CO2) from drained peat
                               Site Specific Methodology
                  44 / 12
 R CO 2 (Bog) =           × ((6700 × exp(− 0.26 × exp(− 0.0515 × (( W × 100) − 50))) + ((72.54 × T) − 800)
                  1000


                                                               Water table
Rate of CO2 emissions                                          depth (m)                   Peat temperature
   (t CO2 eq. yr-1)




                    44 / 12
   R CO 2 (Fen) =           × ((16244 × exp(−0.175 × exp(−0.073 × (( W × 100) − 50))) + (153.23 × T )
                    1000
Loss of carbon (CH4) from drained peat
                           Site Specific Methodology
                    1
 R CH 4 (Bog) =        × ((500 × exp(− 0.1234) × ( W × 100)) + ((3.529 × T) − 36.67)
                  1000

Rate of CH4 emissions
     (t CH4 yr-1)                              Water table              Peat temperature
                                               depth (m)




                  1
 R CH 4 (Fen) =      × ((−10 + 563.62 × exp(−0.097) × ( W × 100)) + (0.662 × T )
                1000
Example site – Central Scotland
                      480ha felled &
                    improved plantation      67 x            30% capacity factor
                                          2MW turbines
   385ha improved
    degraded bog
                                          15m
                                15m
                                                40m         Access tracks:
                                      20m                24600m floating roads


2m deep
                                                         Extent of drainage:
                                                                100m


    Site fully restored
     on decomissioning
Emission Factors
                       Bog                                     Emission factor

      Rate of CO2 emission in drained soil (t CO2 ha-1 yr-1)        24.3

   Rate of CO2 emission in undrained soil (t CO2 ha-1 yr-1)         0.26

  Rate of CH4 emission in drained soil ((t CH4-C) ha-1 yr-1)       -0.005

Rate of CH4 emission in undrained soil ((t CH4-C) ha-1 yr-1)        0.50

                       Fen
      Rate of CO2 emission in drained soil (t CO2 ha-1 yr-1)       64.62

   Rate of CO2 emission in undrained soil (t CO2 ha-1 yr-1)         5.12

  Rate of CH4 emission in drained soil ((t CH4-C) ha-1 yr-1)       -0.004

Rate of CH4 emission in undrained soil ((t CH4-C) ha-1 yr-1)        0.56
Example site – Central Scotland
     400000




 Gre enhous e Gas Em iss ions (t CO2 e q.)
     300000



                                                                     Carbon emissions
     200000




     100000




           0

                                                                       Carbon savings


    -100000




    -200000


Total carbon payback time
         2.3 years
Example site – Central Scotland
               480ha felled plantation
                   Not improved!            67 x
                                         2MW turbines       30% capacity factor
  385ha improved
   degraded bog      480ha felled &
                   improved plantation   15m
                                15m
                                               40m         Access tracks:
                                     20m                24600m floating roads


2m deep
                                                        Extent of drainage:
                                                               100m




      Site fully restored
       on decomissioning
Example site – Central Scotland
                                         Greenhouse gas emissions
       4500000

Greenhouse Gas Emissions (t CO2 eq.)
       4000000



       3500000



       3000000



       2500000



       2000000



       1500000



       1000000



        500000



              0

   Total carbon payback time
            7.3 years
Example site – Central Scotland
                              67 x            30% capacity factor
                           2MW turbines



                           15m
                   15m
                                 40m
                         20m
                                           Floating roads sink
2m deep
                                          Extent of drainage:
                                                 100m
Example site – Central Scotland
                              67 x           30% capacity factor
                           2MW turbines



                           15m
                   15m
                                 40m
                         20m
                                          Floating roads sink
2m deep
                                          Extent of drainage:
                                                 100m
Example site – Central Scotland
                                                             actor
                                                  ap acity f
                                             30% c
                              67 x
                           2MW turbines



                            15m
                     15m           40m
                                                           sink
                           20m                     g roads
                                           Floatin
                                                            ge:
                                                   of draina
                                          Extent 00m
                                                    2

      ep
2m de                                                 Very High
Example site – Central Scotland
      4500000                               Greenhouse gas emissions

Gre enhous e Gas Em iss ions (t CO2 e q.)
      4000000


      3500000


      3000000


      2500000


      2000000


      1500000


      1000000


       500000


             0




Total carbon payback time
         23 years
New Developments in collaboration with Forestry Commision

  Forests-turbines-soils Calculator

  • Forest accumulated carbon calculated through
    simplified version of 3PGN model

  • Various felling options around turbine i.e. key
    holing, large clearing……..

  • Option to replant SRF

  • Impact upon turbine output calculated through
    simple windflow / turbulence model
Management option        Details

No felling               Trees remain right up to turbines
Key holing               100m radius (3.14 ha) around each turbine i.e.
                         195 ha
Large clearing           500 ha felling in a block around the turbines, 500
                         ha forestry remaining
Clearfell                All surrounding 1000 ha of forest cleared
Key hole SRF (Outwith)   Clearfell occurs, replanted with SRF on 25yr
                         rotation ~10m height leaving 3.14 ha bare for
                         each turbine. SRF used as biofuel
Key hole SRF (within)    100m radius (3.14 ha) around each turbine
                         felled, area keyholed replanted with SRF on 25yr
                         rotation ~10m height. SRF used as biofuel
Large clearing SRF       Clearfell occurs, replanted with SRF on 25yr
                         rotation ~10m height leaving 500 ha block bare
                         for turbines. SRF used as biofuel
Large clearing SRF       500 ha felling in a block around the turbines, 500
                         ha forestry remaining, area felled replanted with
                         SRF on 25yr rotation ~10m height. SRF used as
                         biofuel
Annual power output (MW)

   300000



   250000
Annual power output (MW)
   200000



   150000



   100000



    50000



        0
Life time carbon emissions

      6000000


Greenhouse Gas Emissions (t CO2 eq.)
      5000000



      4000000



      3000000



      2000000



      1000000



            0
Carbon payback time

     25



     20
Carbon payback time (years)


     15



     10



      5



      0




  Keyholing (Outwith): 3.5 yrs
Large clearing (Within): 7.2 yrs
Conclusion
  1. Highest C losses from decomposition of soil
     organic matter
  2.This can be reduced by developing wind farms
     on mineral soil.
  3.With good management practices, carbon
     benefits can be achieved even on peats
  4.Preliminary results shows keyholing with SRF
     can be a good forest management practice.
Acknowledgements
 –   Sally Baillie (Forestry Commission)
 –   Clifton Bain (Royal Society for Protection of Birds)
 –   Andrew Coupar (Scottish Natural Heritage)
 –   Helen Jones (Scottish Government)
 –   Sue Kearns (Scottish Government)
 –   Martin Mathers (Scottish Renewables Forum)
 –   James Pendlebury (Forestry Commission)
 –   Geeta Puri (project officer, Scottish Government).
 –   Peter Singleton (SEPA)
 –   Guy Winter (Scottish Government)
Thank you All

Contenu connexe

Tendances

Update on projects presentation
Update on projects presentationUpdate on projects presentation
Update on projects presentationMPX_RI
 
Philippe Joubert Alstom CCS presentation
Philippe Joubert Alstom CCS presentationPhilippe Joubert Alstom CCS presentation
Philippe Joubert Alstom CCS presentationGlobal CCS Institute
 
Thorkild Q Frandsen - Introduction to bioenergy in Denmark Status and trends
Thorkild Q Frandsen - Introduction to bioenergy in Denmark Status and trendsThorkild Q Frandsen - Introduction to bioenergy in Denmark Status and trends
Thorkild Q Frandsen - Introduction to bioenergy in Denmark Status and trendsPomcert
 
Carbon Intensity of Electricity: Towards More Realistic Numbers | Professor G...
Carbon Intensity of Electricity: Towards More Realistic Numbers | Professor G...Carbon Intensity of Electricity: Towards More Realistic Numbers | Professor G...
Carbon Intensity of Electricity: Towards More Realistic Numbers | Professor G...icarb
 
Trigeneration: Decentralized Energy Masterplan
Trigeneration: Decentralized Energy MasterplanTrigeneration: Decentralized Energy Masterplan
Trigeneration: Decentralized Energy Masterplannmaskill
 
Graham Brennan Sei
Graham Brennan   SeiGraham Brennan   Sei
Graham Brennan SeiNick Craig
 
Low-CapEx approach to synthetic transport fuels from biomass – From laborator...
Low-CapEx approach to synthetic transport fuels from biomass – From laborator...Low-CapEx approach to synthetic transport fuels from biomass – From laborator...
Low-CapEx approach to synthetic transport fuels from biomass – From laborator...Ilkka Hannula
 
Dagnija blumberga presentation
Dagnija blumberga presentationDagnija blumberga presentation
Dagnija blumberga presentationMartins
 
Towards an age of renewables
Towards an age of renewablesTowards an age of renewables
Towards an age of renewablesSuat Furkan ISIK
 
UBS Australian Utilities Conference
UBS Australian Utilities ConferenceUBS Australian Utilities Conference
UBS Australian Utilities ConferenceAGL Energy Limited
 
M.Sc thesis Presentation
M.Sc thesis PresentationM.Sc thesis Presentation
M.Sc thesis Presentationubongsimon
 
Solar PV success of Germany and chances for Vietnam
Solar PV success of Germany and chances for VietnamSolar PV success of Germany and chances for Vietnam
Solar PV success of Germany and chances for VietnamTuong Do
 
Mo Ti Presentation
Mo Ti PresentationMo Ti Presentation
Mo Ti Presentationxingjun78
 
Png 492 pec final-presentation
Png 492  pec final-presentationPng 492  pec final-presentation
Png 492 pec final-presentationnas-psu
 

Tendances (18)

Update on projects presentation
Update on projects presentationUpdate on projects presentation
Update on projects presentation
 
Philippe Joubert Alstom CCS presentation
Philippe Joubert Alstom CCS presentationPhilippe Joubert Alstom CCS presentation
Philippe Joubert Alstom CCS presentation
 
Thorkild Q Frandsen - Introduction to bioenergy in Denmark Status and trends
Thorkild Q Frandsen - Introduction to bioenergy in Denmark Status and trendsThorkild Q Frandsen - Introduction to bioenergy in Denmark Status and trends
Thorkild Q Frandsen - Introduction to bioenergy in Denmark Status and trends
 
New perspectives on reducing peatland emissions from oil palm
New perspectives on reducing peatland emissions from oil palmNew perspectives on reducing peatland emissions from oil palm
New perspectives on reducing peatland emissions from oil palm
 
Carbon Intensity of Electricity: Towards More Realistic Numbers | Professor G...
Carbon Intensity of Electricity: Towards More Realistic Numbers | Professor G...Carbon Intensity of Electricity: Towards More Realistic Numbers | Professor G...
Carbon Intensity of Electricity: Towards More Realistic Numbers | Professor G...
 
Trigeneration: Decentralized Energy Masterplan
Trigeneration: Decentralized Energy MasterplanTrigeneration: Decentralized Energy Masterplan
Trigeneration: Decentralized Energy Masterplan
 
BORUSAN EnBW Enerji
BORUSAN EnBW EnerjiBORUSAN EnBW Enerji
BORUSAN EnBW Enerji
 
Graham Brennan Sei
Graham Brennan   SeiGraham Brennan   Sei
Graham Brennan Sei
 
Session 23 ic2011 cheng
Session 23 ic2011 chengSession 23 ic2011 cheng
Session 23 ic2011 cheng
 
Low-CapEx approach to synthetic transport fuels from biomass – From laborator...
Low-CapEx approach to synthetic transport fuels from biomass – From laborator...Low-CapEx approach to synthetic transport fuels from biomass – From laborator...
Low-CapEx approach to synthetic transport fuels from biomass – From laborator...
 
Dagnija blumberga presentation
Dagnija blumberga presentationDagnija blumberga presentation
Dagnija blumberga presentation
 
Rt1 pinchon.p ifp sl
Rt1 pinchon.p ifp slRt1 pinchon.p ifp sl
Rt1 pinchon.p ifp sl
 
Towards an age of renewables
Towards an age of renewablesTowards an age of renewables
Towards an age of renewables
 
UBS Australian Utilities Conference
UBS Australian Utilities ConferenceUBS Australian Utilities Conference
UBS Australian Utilities Conference
 
M.Sc thesis Presentation
M.Sc thesis PresentationM.Sc thesis Presentation
M.Sc thesis Presentation
 
Solar PV success of Germany and chances for Vietnam
Solar PV success of Germany and chances for VietnamSolar PV success of Germany and chances for Vietnam
Solar PV success of Germany and chances for Vietnam
 
Mo Ti Presentation
Mo Ti PresentationMo Ti Presentation
Mo Ti Presentation
 
Png 492 pec final-presentation
Png 492  pec final-presentationPng 492  pec final-presentation
Png 492 pec final-presentation
 

En vedette

All doc is_not_the_same_abaker
All doc is_not_the_same_abakerAll doc is_not_the_same_abaker
All doc is_not_the_same_abakerCarbonLandscapes
 
Clad agm forest research_nadeem
Clad agm forest research_nadeemClad agm forest research_nadeem
Clad agm forest research_nadeemCarbonLandscapes
 
Clad oct09 igrieve (nx_power_lite)
Clad oct09 igrieve (nx_power_lite)Clad oct09 igrieve (nx_power_lite)
Clad oct09 igrieve (nx_power_lite)CarbonLandscapes
 
Clad oct09 pquinn (nx_power_lite)
Clad oct09 pquinn (nx_power_lite)Clad oct09 pquinn (nx_power_lite)
Clad oct09 pquinn (nx_power_lite)CarbonLandscapes
 
Clad oct09 jmacdonald (nx_power_lite)
Clad oct09 jmacdonald (nx_power_lite)Clad oct09 jmacdonald (nx_power_lite)
Clad oct09 jmacdonald (nx_power_lite)CarbonLandscapes
 
Clad oct09 aburrows (nx_power_lite)
Clad oct09 aburrows (nx_power_lite)Clad oct09 aburrows (nx_power_lite)
Clad oct09 aburrows (nx_power_lite)CarbonLandscapes
 
Clad oct09 jmoxleyandlaurarharris (nx_power_lite)
Clad oct09 jmoxleyandlaurarharris (nx_power_lite)Clad oct09 jmoxleyandlaurarharris (nx_power_lite)
Clad oct09 jmoxleyandlaurarharris (nx_power_lite)CarbonLandscapes
 
Clad agm spr_peter (nx_power_lite)
Clad agm spr_peter (nx_power_lite)Clad agm spr_peter (nx_power_lite)
Clad agm spr_peter (nx_power_lite)CarbonLandscapes
 
Clad oct09 mrebane (nx_power_lite)
Clad oct09 mrebane (nx_power_lite)Clad oct09 mrebane (nx_power_lite)
Clad oct09 mrebane (nx_power_lite)CarbonLandscapes
 
Clad agm intro_dave_gilvear
Clad agm intro_dave_gilvearClad agm intro_dave_gilvear
Clad agm intro_dave_gilvearCarbonLandscapes
 

En vedette (19)

All doc is_not_the_same_abaker
All doc is_not_the_same_abakerAll doc is_not_the_same_abaker
All doc is_not_the_same_abaker
 
Clad agm forest research_nadeem
Clad agm forest research_nadeemClad agm forest research_nadeem
Clad agm forest research_nadeem
 
Clad agm sepa_lorna
Clad agm sepa_lornaClad agm sepa_lorna
Clad agm sepa_lorna
 
Clad oct09 igrieve (nx_power_lite)
Clad oct09 igrieve (nx_power_lite)Clad oct09 igrieve (nx_power_lite)
Clad oct09 igrieve (nx_power_lite)
 
Clad oct09 jdawson
Clad oct09 jdawsonClad oct09 jdawson
Clad oct09 jdawson
 
Clad agm iucn_clifton
Clad agm iucn_cliftonClad agm iucn_clifton
Clad agm iucn_clifton
 
Clad oct09 pquinn (nx_power_lite)
Clad oct09 pquinn (nx_power_lite)Clad oct09 pquinn (nx_power_lite)
Clad oct09 pquinn (nx_power_lite)
 
Clad oct09 jmacdonald (nx_power_lite)
Clad oct09 jmacdonald (nx_power_lite)Clad oct09 jmacdonald (nx_power_lite)
Clad oct09 jmacdonald (nx_power_lite)
 
Clad oct09 aburrows (nx_power_lite)
Clad oct09 aburrows (nx_power_lite)Clad oct09 aburrows (nx_power_lite)
Clad oct09 aburrows (nx_power_lite)
 
Clad oct09 jmoxleyandlaurarharris (nx_power_lite)
Clad oct09 jmoxleyandlaurarharris (nx_power_lite)Clad oct09 jmoxleyandlaurarharris (nx_power_lite)
Clad oct09 jmoxleyandlaurarharris (nx_power_lite)
 
Clad oct09 pchapman
Clad oct09 pchapmanClad oct09 pchapman
Clad oct09 pchapman
 
Clad agm levyintor_susan
Clad agm levyintor_susanClad agm levyintor_susan
Clad agm levyintor_susan
 
Clad agm rspb_lorraine
Clad agm rspb_lorraineClad agm rspb_lorraine
Clad agm rspb_lorraine
 
Clad agm spr_peter (nx_power_lite)
Clad agm spr_peter (nx_power_lite)Clad agm spr_peter (nx_power_lite)
Clad agm spr_peter (nx_power_lite)
 
Clad oct09 dmonteith
Clad oct09 dmonteithClad oct09 dmonteith
Clad oct09 dmonteith
 
Clad agm bnm_catherine
Clad agm bnm_catherine Clad agm bnm_catherine
Clad agm bnm_catherine
 
Clad oct09 mrebane (nx_power_lite)
Clad oct09 mrebane (nx_power_lite)Clad oct09 mrebane (nx_power_lite)
Clad oct09 mrebane (nx_power_lite)
 
Clad agm ceh_mark_cooper
Clad agm ceh_mark_cooperClad agm ceh_mark_cooper
Clad agm ceh_mark_cooper
 
Clad agm intro_dave_gilvear
Clad agm intro_dave_gilvearClad agm intro_dave_gilvear
Clad agm intro_dave_gilvear
 

Similaire à Clad oct09 acoupar_dnayak (nx_power_lite)

Emerging carbon economies in northern Australia
Emerging carbon economies in northern AustraliaEmerging carbon economies in northern Australia
Emerging carbon economies in northern AustraliaCharles Darwin University
 
Session 2-1-fahmuddin-agus-reducing-ghg-emissions-from-land-use-change-for-oi...
Session 2-1-fahmuddin-agus-reducing-ghg-emissions-from-land-use-change-for-oi...Session 2-1-fahmuddin-agus-reducing-ghg-emissions-from-land-use-change-for-oi...
Session 2-1-fahmuddin-agus-reducing-ghg-emissions-from-land-use-change-for-oi...ZSL Biodiversity & Palm Oil Platform
 
100525 Scotlands Climate Change Challenge To Construction
100525 Scotlands Climate Change Challenge To Construction100525 Scotlands Climate Change Challenge To Construction
100525 Scotlands Climate Change Challenge To Constructiongerrybrannigan
 
Tnc Wind Presentation 01 07
Tnc Wind Presentation 01 07Tnc Wind Presentation 01 07
Tnc Wind Presentation 01 07Michael P Totten
 
Can the Global Aluminium Industry Achieve Carbon Neutrality
Can the Global Aluminium Industry Achieve Carbon NeutralityCan the Global Aluminium Industry Achieve Carbon Neutrality
Can the Global Aluminium Industry Achieve Carbon NeutralitySubodh Das
 
Forest Mitigation delivering carbon benefits | Mike Perks
Forest Mitigation delivering carbon benefits | Mike PerksForest Mitigation delivering carbon benefits | Mike Perks
Forest Mitigation delivering carbon benefits | Mike Perksicarb
 
Past, current and future developments of modern forest fuel systems
Past, current and future developments of modern forest fuel systemsPast, current and future developments of modern forest fuel systems
Past, current and future developments of modern forest fuel systemsnslans
 
Alan Pears - slides - price on carbon forum Aug 2011
Alan Pears - slides - price on carbon forum Aug 2011Alan Pears - slides - price on carbon forum Aug 2011
Alan Pears - slides - price on carbon forum Aug 2011simon5678
 
Workshop ghg mitigation bilbao (mohamed taher kahil)
Workshop ghg mitigation bilbao (mohamed taher kahil)Workshop ghg mitigation bilbao (mohamed taher kahil)
Workshop ghg mitigation bilbao (mohamed taher kahil)REMEDIAnetwork
 
Graham Brennan - SEI - Renewable Energy and Transport Developments in Ireland
Graham Brennan - SEI - Renewable Energy and Transport Developments in IrelandGraham Brennan - SEI - Renewable Energy and Transport Developments in Ireland
Graham Brennan - SEI - Renewable Energy and Transport Developments in IrelandElectric Vehicle Association of Ireland
 
Day 1 session 1: Energy Efficiency in the EU.. What's Next?
Day 1 session 1: Energy Efficiency in the EU.. What's Next?  Day 1 session 1: Energy Efficiency in the EU.. What's Next?
Day 1 session 1: Energy Efficiency in the EU.. What's Next? RCREEE
 
A CCS Roadmap for Romania, Bellona
A CCS Roadmap for Romania, BellonaA CCS Roadmap for Romania, Bellona
A CCS Roadmap for Romania, BellonaGlobal CCS Institute
 
Main findings Working Group 3: Mitigation of Climate Change
Main findings Working Group 3: Mitigation of Climate ChangeMain findings Working Group 3: Mitigation of Climate Change
Main findings Working Group 3: Mitigation of Climate ChangeAndy Dabydeen
 
Energy modeling approach to the global energy-mineral nexus: Exploring metal ...
Energy modeling approach to the global energy-mineral nexus: Exploring metal ...Energy modeling approach to the global energy-mineral nexus: Exploring metal ...
Energy modeling approach to the global energy-mineral nexus: Exploring metal ...IEA-ETSAP
 
Paul Ciniglio presentation for South Coast green breakfast - 22 May
Paul Ciniglio presentation for South Coast green breakfast - 22 MayPaul Ciniglio presentation for South Coast green breakfast - 22 May
Paul Ciniglio presentation for South Coast green breakfast - 22 MayBlake Morgan
 
2016.12.14 DryFining Coal Gen presentation FINAL
2016.12.14 DryFining Coal Gen presentation FINAL2016.12.14 DryFining Coal Gen presentation FINAL
2016.12.14 DryFining Coal Gen presentation FINALSandra Broekema
 

Similaire à Clad oct09 acoupar_dnayak (nx_power_lite) (20)

Emerging carbon economies in northern Australia
Emerging carbon economies in northern AustraliaEmerging carbon economies in northern Australia
Emerging carbon economies in northern Australia
 
Session 2-1-fahmuddin-agus-reducing-ghg-emissions-from-land-use-change-for-oi...
Session 2-1-fahmuddin-agus-reducing-ghg-emissions-from-land-use-change-for-oi...Session 2-1-fahmuddin-agus-reducing-ghg-emissions-from-land-use-change-for-oi...
Session 2-1-fahmuddin-agus-reducing-ghg-emissions-from-land-use-change-for-oi...
 
Cyflwyniad gan Gareth Wyn Jones yn ystod cyfarfod y Comisiwn Cymru ar y Newid...
Cyflwyniad gan Gareth Wyn Jones yn ystod cyfarfod y Comisiwn Cymru ar y Newid...Cyflwyniad gan Gareth Wyn Jones yn ystod cyfarfod y Comisiwn Cymru ar y Newid...
Cyflwyniad gan Gareth Wyn Jones yn ystod cyfarfod y Comisiwn Cymru ar y Newid...
 
100525 Scotlands Climate Change Challenge To Construction
100525 Scotlands Climate Change Challenge To Construction100525 Scotlands Climate Change Challenge To Construction
100525 Scotlands Climate Change Challenge To Construction
 
Tnc Wind Presentation 01 07
Tnc Wind Presentation 01 07Tnc Wind Presentation 01 07
Tnc Wind Presentation 01 07
 
Can the Global Aluminium Industry Achieve Carbon Neutrality
Can the Global Aluminium Industry Achieve Carbon NeutralityCan the Global Aluminium Industry Achieve Carbon Neutrality
Can the Global Aluminium Industry Achieve Carbon Neutrality
 
Forest Mitigation delivering carbon benefits | Mike Perks
Forest Mitigation delivering carbon benefits | Mike PerksForest Mitigation delivering carbon benefits | Mike Perks
Forest Mitigation delivering carbon benefits | Mike Perks
 
Past, current and future developments of modern forest fuel systems
Past, current and future developments of modern forest fuel systemsPast, current and future developments of modern forest fuel systems
Past, current and future developments of modern forest fuel systems
 
John Thwaites
John ThwaitesJohn Thwaites
John Thwaites
 
Alan Pears - slides - price on carbon forum Aug 2011
Alan Pears - slides - price on carbon forum Aug 2011Alan Pears - slides - price on carbon forum Aug 2011
Alan Pears - slides - price on carbon forum Aug 2011
 
Workshop ghg mitigation bilbao (mohamed taher kahil)
Workshop ghg mitigation bilbao (mohamed taher kahil)Workshop ghg mitigation bilbao (mohamed taher kahil)
Workshop ghg mitigation bilbao (mohamed taher kahil)
 
Graham Brennan - SEI - Renewable Energy and Transport Developments in Ireland
Graham Brennan - SEI - Renewable Energy and Transport Developments in IrelandGraham Brennan - SEI - Renewable Energy and Transport Developments in Ireland
Graham Brennan - SEI - Renewable Energy and Transport Developments in Ireland
 
Day 1 session 1: Energy Efficiency in the EU.. What's Next?
Day 1 session 1: Energy Efficiency in the EU.. What's Next?  Day 1 session 1: Energy Efficiency in the EU.. What's Next?
Day 1 session 1: Energy Efficiency in the EU.. What's Next?
 
A CCS Roadmap for Romania, Bellona
A CCS Roadmap for Romania, BellonaA CCS Roadmap for Romania, Bellona
A CCS Roadmap for Romania, Bellona
 
Main findings Working Group 3: Mitigation of Climate Change
Main findings Working Group 3: Mitigation of Climate ChangeMain findings Working Group 3: Mitigation of Climate Change
Main findings Working Group 3: Mitigation of Climate Change
 
Energy modeling approach to the global energy-mineral nexus: Exploring metal ...
Energy modeling approach to the global energy-mineral nexus: Exploring metal ...Energy modeling approach to the global energy-mineral nexus: Exploring metal ...
Energy modeling approach to the global energy-mineral nexus: Exploring metal ...
 
Paul Ciniglio presentation for South Coast green breakfast - 22 May
Paul Ciniglio presentation for South Coast green breakfast - 22 MayPaul Ciniglio presentation for South Coast green breakfast - 22 May
Paul Ciniglio presentation for South Coast green breakfast - 22 May
 
Emissions from Biomass Production - Gary Lanigan
Emissions from Biomass Production -  Gary LaniganEmissions from Biomass Production -  Gary Lanigan
Emissions from Biomass Production - Gary Lanigan
 
2016.12.14 DryFining Coal Gen presentation FINAL
2016.12.14 DryFining Coal Gen presentation FINAL2016.12.14 DryFining Coal Gen presentation FINAL
2016.12.14 DryFining Coal Gen presentation FINAL
 
CBI climate change forum seminar - Ric Parker
CBI climate change forum seminar - Ric ParkerCBI climate change forum seminar - Ric Parker
CBI climate change forum seminar - Ric Parker
 

Clad oct09 acoupar_dnayak (nx_power_lite)

  • 1. A Carbon Calculator for Wind farms on Peatland Nayak D1, Perks M3, Miller D2, Nolan A2, Gardiner B3 & Smith JU1 1University of Aberedeen, Aberdeen, UK 2Macaulay Institute, Aberdeen, UK 3Forest Management Division, Forest Research, Midlothian, UK
  • 2. The Scottish Electricity generation by renewables 100 90 Government has 80 ambitious targets 70 60 for electricity (%) 50 generation by 40 30 renewables 20 50% 10 by 2020 0 31% 2010 by 2011 2015 2020 2025 Year Scottish Government (2008) http://www.scotland.gov.uk/Topics/Business-Industry/Energy/19185/17612
  • 3. Wind farms are likely to be developed on peats – Less productive than arable mineral soils → no pressures on land use – On exposed sites → high capacity factor
  • 4. Will greenhouse gas emissions from peatlands exceed carbon savings due to the wind farm? Calculate carbon payback time If (carbon payback time) > (lifetime of wind farm), wind farm does not provide carbon benefit
  • 5. Carbon Payback Time Total losses (t CO2 eq.) Annual emission savings (t CO2 yr-1) Carbon payback time (years)
  • 6. Annual Emission Savings …depend on counterfactual energy source Counterfactual Emission factor Energy Source (t CO2 MWh-1) Grid Mix 0.43 Fossil Fuel Mix 0.607 Coal Fired 0.78 Baggott, et al (2007). http://www.naei.org.uk/reports.php. Report AEAT/ENV/R/2429 13/04/2007 DUKES (2007). http://www.berr.gov.uk/energy/statistics/source/electricity/page18527.html
  • 7. Carbon emission savings of wind farms pcap S fuel = 24 × 365 × × nturb × c turb × E fuel 100 Emission factor (t CO2 MWh-1) Capacity Number of Turbine Annual emission factor turbines capacity savings (%) (MW). (t CO2 yr-1) Annual energy output (MW yr-1)
  • 8. Total Losses Ltot = Llife + Lback + Lfix + Ldirec t + Lindirect + LDOC + Lforest + Limprovemen t Total losses (t CO2 eq.) C fixing potential Dissolved organic carbon Removed peat Forestry Production, Loss of C clearance transportation, due to erection, drainage operation, Habitat dismantling improvement Backup power generation
  • 9. Change in C dynamics of peatlands 1. Loss of carbon fixing potential of bog plants 2. Loss of carbon from removed peat 3. Loss of carbon from drained peat 4. Loss of Dissolved and Particulate organic carbon 5. Gain of C due to habitat improvement
  • 10. Loss of carbon (CO2) from drained peat Site Specific Methodology 44 / 12 R CO 2 (Bog) = × ((6700 × exp(− 0.26 × exp(− 0.0515 × (( W × 100) − 50))) + ((72.54 × T) − 800) 1000 Water table Rate of CO2 emissions depth (m) Peat temperature (t CO2 eq. yr-1) 44 / 12 R CO 2 (Fen) = × ((16244 × exp(−0.175 × exp(−0.073 × (( W × 100) − 50))) + (153.23 × T ) 1000
  • 11. Loss of carbon (CH4) from drained peat Site Specific Methodology 1 R CH 4 (Bog) = × ((500 × exp(− 0.1234) × ( W × 100)) + ((3.529 × T) − 36.67) 1000 Rate of CH4 emissions (t CH4 yr-1) Water table Peat temperature depth (m) 1 R CH 4 (Fen) = × ((−10 + 563.62 × exp(−0.097) × ( W × 100)) + (0.662 × T ) 1000
  • 12. Example site – Central Scotland 480ha felled & improved plantation 67 x 30% capacity factor 2MW turbines 385ha improved degraded bog 15m 15m 40m Access tracks: 20m 24600m floating roads 2m deep Extent of drainage: 100m Site fully restored on decomissioning
  • 13. Emission Factors Bog Emission factor Rate of CO2 emission in drained soil (t CO2 ha-1 yr-1) 24.3 Rate of CO2 emission in undrained soil (t CO2 ha-1 yr-1) 0.26 Rate of CH4 emission in drained soil ((t CH4-C) ha-1 yr-1) -0.005 Rate of CH4 emission in undrained soil ((t CH4-C) ha-1 yr-1) 0.50 Fen Rate of CO2 emission in drained soil (t CO2 ha-1 yr-1) 64.62 Rate of CO2 emission in undrained soil (t CO2 ha-1 yr-1) 5.12 Rate of CH4 emission in drained soil ((t CH4-C) ha-1 yr-1) -0.004 Rate of CH4 emission in undrained soil ((t CH4-C) ha-1 yr-1) 0.56
  • 14. Example site – Central Scotland 400000 Gre enhous e Gas Em iss ions (t CO2 e q.) 300000 Carbon emissions 200000 100000 0 Carbon savings -100000 -200000 Total carbon payback time 2.3 years
  • 15. Example site – Central Scotland 480ha felled plantation Not improved! 67 x 2MW turbines 30% capacity factor 385ha improved degraded bog 480ha felled & improved plantation 15m 15m 40m Access tracks: 20m 24600m floating roads 2m deep Extent of drainage: 100m Site fully restored on decomissioning
  • 16. Example site – Central Scotland Greenhouse gas emissions 4500000 Greenhouse Gas Emissions (t CO2 eq.) 4000000 3500000 3000000 2500000 2000000 1500000 1000000 500000 0 Total carbon payback time 7.3 years
  • 17. Example site – Central Scotland 67 x 30% capacity factor 2MW turbines 15m 15m 40m 20m Floating roads sink 2m deep Extent of drainage: 100m
  • 18. Example site – Central Scotland 67 x 30% capacity factor 2MW turbines 15m 15m 40m 20m Floating roads sink 2m deep Extent of drainage: 100m
  • 19. Example site – Central Scotland actor ap acity f 30% c 67 x 2MW turbines 15m 15m 40m sink 20m g roads Floatin ge: of draina Extent 00m 2 ep 2m de Very High
  • 20. Example site – Central Scotland 4500000 Greenhouse gas emissions Gre enhous e Gas Em iss ions (t CO2 e q.) 4000000 3500000 3000000 2500000 2000000 1500000 1000000 500000 0 Total carbon payback time 23 years
  • 21. New Developments in collaboration with Forestry Commision Forests-turbines-soils Calculator • Forest accumulated carbon calculated through simplified version of 3PGN model • Various felling options around turbine i.e. key holing, large clearing…….. • Option to replant SRF • Impact upon turbine output calculated through simple windflow / turbulence model
  • 22. Management option Details No felling Trees remain right up to turbines Key holing 100m radius (3.14 ha) around each turbine i.e. 195 ha Large clearing 500 ha felling in a block around the turbines, 500 ha forestry remaining Clearfell All surrounding 1000 ha of forest cleared Key hole SRF (Outwith) Clearfell occurs, replanted with SRF on 25yr rotation ~10m height leaving 3.14 ha bare for each turbine. SRF used as biofuel Key hole SRF (within) 100m radius (3.14 ha) around each turbine felled, area keyholed replanted with SRF on 25yr rotation ~10m height. SRF used as biofuel Large clearing SRF Clearfell occurs, replanted with SRF on 25yr rotation ~10m height leaving 500 ha block bare for turbines. SRF used as biofuel Large clearing SRF 500 ha felling in a block around the turbines, 500 ha forestry remaining, area felled replanted with SRF on 25yr rotation ~10m height. SRF used as biofuel
  • 23. Annual power output (MW) 300000 250000 Annual power output (MW) 200000 150000 100000 50000 0
  • 24. Life time carbon emissions 6000000 Greenhouse Gas Emissions (t CO2 eq.) 5000000 4000000 3000000 2000000 1000000 0
  • 25. Carbon payback time 25 20 Carbon payback time (years) 15 10 5 0 Keyholing (Outwith): 3.5 yrs Large clearing (Within): 7.2 yrs
  • 26. Conclusion 1. Highest C losses from decomposition of soil organic matter 2.This can be reduced by developing wind farms on mineral soil. 3.With good management practices, carbon benefits can be achieved even on peats 4.Preliminary results shows keyholing with SRF can be a good forest management practice.
  • 27. Acknowledgements – Sally Baillie (Forestry Commission) – Clifton Bain (Royal Society for Protection of Birds) – Andrew Coupar (Scottish Natural Heritage) – Helen Jones (Scottish Government) – Sue Kearns (Scottish Government) – Martin Mathers (Scottish Renewables Forum) – James Pendlebury (Forestry Commission) – Geeta Puri (project officer, Scottish Government). – Peter Singleton (SEPA) – Guy Winter (Scottish Government)