SlideShare une entreprise Scribd logo
1  sur  60
Power divider, combiner and
coupler
By
Professor Syed Idris Syed Hassan
Sch of Elect. & Electron Eng
Engineering Campus USM
Nibong Tebal 14300
SPS Penang
Power divider and combiner/coupler
divider combiner
P1
P2= nP1
P3=(1-n)P1
P1
P2
P3=P1+P2
Divide into 4 output
Basic
S-parameter for power divider/coupler
 











33
32
31
23
22
21
13
12
11
S
S
S
S
S
S
S
S
S
S
Generally
For reciprocal and lossless network
j
i
for
S
S
N
k
kj
ki 



0
1
*
1
1
*



N
k
ki ki
S
S
1
13
12
11 

 S
S
S
1
23
22
21 

 S
S
S
1
33
32
31 

 S
S
S
0
*
23
13
*
22
12
*
21
11 

 S
S
S
S
S
S
0
*
33
23
*
32
22
*
31
21 

 S
S
S
S
S
S
0
*
33
13
*
32
12
*
31
11 

 S
S
S
S
S
S
Row 1x row 2
Row 2x row 3
Row 1x row 3
Continue
If all ports are matched properly , then Sii= 0
 











0
0
0
23
13
23
12
13
12
S
S
S
S
S
S
S
For Reciprocal
network
For lossless network, must satisfy unitary
condition
1
2
13
2
12 
 S
S
1
2
23
2
12 
 S
S
1
2
23
2
13 
 S
S
0
12
*
23

S
S
0
23
*
13 
S
S
0
13
*
12 
S
S
Two of (S12, S13, S23) must be zero but it is not consistent. If S12=S13= 0, then
S23 should equal to 1 and the first equation will not equal to 1. This is invalid.
Another alternative for reciprocal network
 











33
23
13
23
12
13
12
0
0
S
S
S
S
S
S
S
S
Only two ports are matched , then for reciprocal network
For lossless network, must satisfy unitary
condition
1
2
13
2
12 
 S
S
1
2
23
2
12 
 S
S
1
2
33
2
23
2
13 

 S
S
S 0
13
*
33
12
*
23 
 S
S
S
S
0
23
*
13 
S
S
0
33
*
23
13
*
12 
 S
S
S
S
The two equations show
that |S13|=|S23|
thus S13=S23=0
and |S12|=|S33|=1
These have satisfied all
Reciprocal lossless network of two matched
S21
=ej 
S12=ej 
S33
=ej 
1
3
2
 
















j
j
j
e
e
e
S
0
0
0
0
0
0
For lossless network, must satisfy unitary
condition
1
2
13
2
12 
 S
S
1
2
23
2
21 
 S
S
1
2
32
2
31 
 S
S
0
32
*
31

S
S
0
23
*
21 
S
S
0
13
*
12

S
S
Nonreciprocal network (apply for circulator)
 











0
0
0
32
31
23
21
13
12
S
S
S
S
S
S
S
0
31
23
12 

 S
S
S
0
13
32
21 

 S
S
S
1
13
32
21 

 S
S
S
1
31
23
12 

 S
S
S
The above equations must satisfy the following either
or
Circulator (nonreciprocal network)
 











0
1
0
0
0
1
1
0
0
S
 











0
0
1
1
0
0
0
1
0
S
1
2
3
1
2
3
Four port network
 















44
43
42
41
34
24
14
33
32
31
23
22
21
13
12
11
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
Generally
For reciprocal and lossless network
j
i
for
S
S
N
k
kj
ki 



0
1
*
1
1
*



N
k
ki ki
S
S
1
14
13
12
11 


 S
S
S
S
1
24
23
22
21 


 S
S
S
S
1
34
33
32
31 


 S
S
S
S
0
*
24
14
*
23
13
*
22
12
*
21
11 


 S
S
S
S
S
S
S
S
0
*
44
24
*
43
23
*
42
22
*
41
21 


 S
S
S
S
S
S
S
S
0
*
34
14
*
33
13
*
32
12
*
31
11 


 S
S
S
S
S
S
S
S
R 1x R 2
R 2x R3
R1x R4
1
44
43
42
41 


 S
S
S
S
0
*
44
14
*
43
13
*
42
12
*
41
11 


 S
S
S
S
S
S
S
S
0
*
34
24
*
33
23
*
32
22
*
31
21 


 S
S
S
S
S
S
S
S
0
*
44
34
*
43
33
*
42
32
*
41
31 


 S
S
S
S
S
S
S
S
R1x R3
R2x R4
R3x R4
Matched Four port network
 















0
0
0
0
34
24
14
34
24
14
23
13
23
12
13
12
S
S
S
S
S
S
S
S
S
S
S
S
S
The unitarity condition become
1
14
13
12 

 S
S
S
1
24
23
12 

 S
S
S
1
34
23
13 

 S
S
S
0
*
24
14
*
23
13 
 S
S
S
S
0
*
34
23
*
14
12 
 S
S
S
S
0
*
34
14
*
23
12 
 S
S
S
S
1
34
24
14 

 S
S
S
0
*
34
13
*
24
12 
 S
S
S
S
0
*
34
24
*
13
12 
 S
S
S
S
0
*
24
23
*
14
13 
 S
S
S
S
Say all ports are matched and symmetrical network, then
*
**
@
@@
#
##
To check validity
Multiply eq. * by S24
* and eq. ## by S13
* , and substract to obtain
0
2
14
2
13
*
14 





  S
S
S
Multiply eq. # by S34 and eq. @@ by S13 , and substract to obtain
0
2
34
2
12
23 





  S
S
S
%
$
Both equations % and $ will be satisfy if S14 = S23 = 0 . This means
that no coupling between port 1 and 4 , and between port 2 and 3 as
happening in most directional couplers.
Directional coupler
 















0
0
0
0
0
0
0
0
34
24
34
24
13
12
13
12
S
S
S
S
S
S
S
S
S
If all ports matched , symmetry and S14=S23=0 to be satisfied
The equations reduce to 6 equations
1
13
12 
 S
S
1
24
12 
 S
S
1
34
13 
 S
S
1
34
24 
 S
S
0
*
34
13
*
24
12 
 S
S
S
S
0
*
34
24
*
13
12 
 S
S
S
S
24
13 S
S 
By comparing these equations yield
*
*
**
**
By comparing equations * and ** yield 34
12 S
S 
Continue
 













0
0
0
0
0
0
0
0








j
j
j
j
S
Simplified by choosing S12= S34= ; S13=e j  and S24=  e j

Where  +  = p + 2np
 















0
0
0
0
0
0
0
0








S
1. Symmetry Coupler  =  = p/2
2. Antisymmetry Coupler  =0 , =p
2 cases
Both satisfy 2 +2 =1
Physical interpretation
|S13 | 2 = coupling factor = 2
|S12 | 2 = power deliver to port 2= 2 =1- 2
Characterization of coupler
Directivity= D= 10 log
dB
P
P

log
20
3
1 

Coupling= C= 10 log
dB
S
P
P
14
4
3 log
20



Isolation = I= 10 log dB
S
P
P
14
4
1 log
20


I = D + C dB
1
4 3
2
Input Through
Coupled
Isolated
For ideal case
|S14|=0
Practical coupler
Hybrid 3 dB couplers
Magic -T and Rat-race couplers
 =  = p/2
 













0
1
0
1
0
0
0
0
0
1
1
0
2
1
j
j
j
j
S
 















0
1
1
0
1
1
0
0
0
1
0
0
1
1
1
0
2
1
S
 =0 , =p
=  = 1 / 2
=  = 1 / 2
T-junction power divider
E-plane T
H-plane T
Microstrip T
T-model
jB
Z1
Z2
Vo
Yin
2
1
1
1
Z
Z
jB
Yin 


2
1
1
1
Z
Z
Yin 

Lossy line
Lossless line
If Zo = 50,then for equally
divided power, Z1 = Z2=100
Example
• If source impedance equal to 50 ohm and the
power to be divided into 2:1 ratio. Determine Z1
and Z2
in
o P
Z
V
P
3
1
2
1
1
2
1 

in
o P
Z
V
P
3
2
2
1
2
2
2 
 

 75
2
3
2
o
Z
Z


 150
3
1 o
Z
Z
o
o
in
Z
V
P
2
2
1
 

 50
// 2
1 Z
Z
Zo
Resistive divider
V2
V3
V1
Zo
Zo
P1
P2
P3
Zo V
o
o Z
Z
Z 

3
Zo/3
Zo/3
Zo/3
o
o
o
in Z
Z
Z
Z 


3
2
3
V
V
Z
Z
Z
V
o
o
o
3
2
3
/
2
3
/
3
/
2
1 


V
V
V
Z
Z
Z
V
V
o
o
o
2
1
4
3
3
/
3
2 




o
in
Z
V
P
2
1
2
1

 
in
o
P
Z
V
P
P
4
1
2
/
1
2
1
2
1
3
2 


Wilkinson Power Divider
50
50
50
100
70.7 
70.7 
/4
Zo
/2 Zo
/2 Zo
2Zo
Zo
Zo
/4
2
2
T
e Z
Zin

o
T Z
Z 2

For even mode
Therefore
For Zin =Zo=50 


 7
.
70
50
2
T
Z
And shunt resistor R =2 Zo = 100
Analysis (even and odd mode)
2
2
1
1
Port 1
Port 2
Port 3
Vg2
Vg3
Z
Z
4
+V2
+V3
r/2
r/2
4
For even mode Vg2 = Vg3 and
for odd mode Vg2 = -Vg3. Since
the circuit is symmetrical , we
can treat separately two
bisection circuit for even and
odd modes as shown in the next
slide. By superposition of these
two modes , we can find S -
parameter of the circuit. The
excitation is effectively Vg2=4V
and Vg3= 0V.
For simplicity all values are
normalized to line characteristic
impedance , I.e Zo = 50 .
Even mode
Vg2=Vg3= 2V
Looking at port 2
Zin
e= Z2/2
Therefore for matching
2

Z
then V2
e= V since Zin
e=1 (the circuit acting like voltage divider)
2
1
Port 1
Port 2
2V
Z
4
+V2
e
r/2
+V1
e
O.C
O.C out
inZ
Z
Z 
2
Note:
2

Z
If
To determine V2
e , using transmission line equation V(x) = V+ (e-jx + Ge+jx) , thus
V
jV
V
V e 
G


  )
1
(
)
4
(
2

1
1
)
1
(
)
0
(
1 
G

G

G


  jV
jV
V
V e
Reflection at port 1, refer to is
2
2
2
2



G
2

Z
Then 2
1 jV
V e 

Odd mode
Vg2= - Vg3= 2V
2
1
Port 1
Port 2
2V
Z
4
+V2
o
r/2
+V1
o
At port 2, V1
o =0 (short) ,
/4 transformer will be
looking as open circuit ,
thus Zin
o = r/2 . We choose
r =2 for matching. Hence
V2
o= 1V (looking as a
voltage divider)
S-parameters
S11= 0 (matched Zin=1 at port 1)
S22 = S33 = 0 (matched at ports 2 and 3 both even and odd modes)
S12 = S21 = 2
/
2
2
1
1 j
V
V
V
V
o
e
o
e




S13 = S31 = 2
/
j

S23 = S32 = 0 ( short or open at bisection , I.e no
coupling)
Example
Design an equal-split Wilkinson power divider for a 50 W system
impedance at frequency fo
The quarterwave-transformer characteristic is


 7
.
70
2 o
Z
Z


 100
2 o
Z
R
r
o


4


The quarterwave-transformer length is
Wilkinson splitter/combiner
application
/4
100
70.7
50
matching
networks
/4
100 50
70.7
70.7
70.7
Splitter
combiner
Power Amplifier
Unequal power Wilkinson
Divider
3
2
03
1
K
K
Z
Z o


)
1
( 2
03
2
02 K
K
Z
Z
K
Z o 










K
K
Z
R o
1
R2
=Zo
/K
R
R3=Zo/K
Z02
Z03
Zo
2
3
2
3
2




port
at
Power
port
at
Power
P
P
K
1
2
3
Parad and Moynihan power divider
4
/
1
2
01
1








K
K
Z
Z o
2
3
2
3
2




port
at
Power
port
at
Power
P
P
K








K
K
Z
R o
1
  4
/
1
2
4
/
3
02 1 K
K
Z
Z o 

 
4
/
5
4
/
1
2
03
1
K
K
Z
Z o


K
Z
Z o

04 K
Z
Z o

05
Zo
Zo
Zo
Z05
Zo4
Zo2
Zo3
Zo1
R
1
2
3
Cohn power divider

 



 



VSWR at port 1 = 1.106
VSWR at port 2 and port 3 = 1.021
Isolation between port 2 and 3 = 27.3 dB
Center frequency fo = (f1 + f2)/2
Frequency range (f2/f1) = 2
1
2
3
Couplers
/4
/4
Yo Yo
Yo
Yo
Yse
Ysh Ysh
Branch line coupler 2
sh
2
se Y
1
Y 

2
se
2
sh
sh
2
3
Y
Y
1
2Y
E
E



 
20
1
3 10
E
E x


x dB coupling
2
3
2
2
2
1 E
E
E 

2
1
3
2
1
2
E
E
E
E
1


















or
E1
E2
E3
Couplers
input
isolate
Output
3dB
Output
3dB 90o out of phase
3 dB Branch line coupler
/4
/4
Zo
Zo
Zo
Zo
2
/
Zo
2
/
Zo
Zo Zo
3
2 E
E 
1
Ysh 
2
Y
1
Y 2
2
se 

 sh
1.414
Yse 

 50
o
Z

 50
sh
Z

 5
.
35
se
Z
Couplers
9 dB Branch line coupler
  355
.
0
10 20
9
1
3 
 
E
E
 2
2
1
2 355
.
0
1 









E
E
  935
.
0
355
.
0
1 2
1
2 










E
E
38
.
0
935
.
0
355
.
0
2
3 









E
E
8
.
0

sh
Y
Let say we choose
38
.
0
8
.
0
1
8
.
0
2
1
2
2
2
2
2






 se
se
sh
sh
Y
Y
Y
Y
962
.
1
36
.
0
38
.
0
6
.
1



se
Y

 50
0
Z



 5
.
62
8
.
0
/
50
sh
Z



 5
.
25
962
.
1
/
50
se
Z
Note: Practically upto 9dB coupling
Couplers
/4
/4
/4
/4
Input
Output in-phase
Output in-phase
isolated
1
2
3
4
•Can be used as splitter , 1 as input and 2 and 3
as two output. Port is match with 50 ohm.
•Can be used as combiner , 2 and 3 as input
and 1 as output.Port 4 is matched with 50 ohm.
Hybrid-ring coupler
OC
1
2
1
2
OC
1/2
1/2
2
2
2
2
2
2
/8
/8
/4
/4
/8
/8
Te
To
Ge
Go
Analysis
The amplitude of scattered wave
o
e
B G

G

2
1
2
1
1
o
e T
T
B
2
1
2
1
4 

o
e T
T
B
2
1
2
1
2 

o
e
B G

G

2
1
2
1
3
Couple lines analysis
Planar Stacked
Coupled microstrip
b
w w
s
w
s
w w
s
b
d
r
r
r
The coupled lines are usually assumed to operate in TEM mode.
The electrical characteristics can be determined from effective
capacitances between lines and velocity of propagation.
Equivalent circuits
+V +V
H-wall
+V -V
E-wall
C11
C22
C11
C22
2C12
2C12
Even mode Odd mode
C11 and C22 are the capacitances between conductors and the ground
respectively. For symmetrical coupled line C11=C22 . C12 is the
capacitance between two strip of conductors in the absence of ground. In
even mode , there is no current flows between two strip conductors , thus
C12 is effectively open-circuited.
Continue
Even mode
The resulting capacitance Ce = C11 = C22
e
e
e
e
oe
C
C
LC
C
L
Z

1



Therefore, the line characteristic impedance
Odd mode
The resulting capacitance Co = C11 + 2 C12 = C22 + 2 C12
Therefore, the line characteristic impedance
o
oo
C
Z

1

Planar coupled stripline
Refer to Fig 7.29 in Pozar , Microwave Engineering
Stacked coupled stripline
   
m
F
s
b
b
s
b
s
b
C oW
r
oW
r
oW
r /
4
2
/
2
/ 2
2
11












w >> s and w >> b
m
F
s
C oW
r /
12



m
F
s
b
b
C
C oW
r
e /
4
2
2
11





m
F
s
s
b
b
w
C
C
C o
r
o /
1
2
2
2
2
2
12
11 











 

o
o
r 


 1

r
o
e
oe
bw
s
b
Z
C
Z

 4
1 2
2 


 
 
s
s
b
b
w
Z
C
Z
r
o
o
oo
/
1
/
2
2
1
1
2
2 





Coupled microstripline
Refer to Fig 7.30 in Pozar , Microwave Engineering
Design of Coupled line Couplers
input
output
Isolated
(can be matched)
Coupling
w
w
s
2
3 4
1
wc
/4
3 4
1 2
Zo
Zo Zo
Zo
Zoo
Zoe
2V
+V3
+V2
+V4
+V1

I1
I4
I3
I2
Schematic circuit
Layout
Even and odd modes analysis
3 4
1 2
Zo
Zo Zo
Zo
Zoo
V
+V3
o
+V2
o
+V4
o
+V1
o
I1
o
I4
o
I3
o
I2
o
V
_
+
+
_
3 4
1 2
Zo
Zo Zo
Zo
Zoe
V
+V3
e
+V2
e
+V4
e
+V1
e
I1
e
I4
e
I3
e
I2
e
V
_
+
+
_
I1
e = I3
e
I4
e = I2
e
Same
excitation
voltage
V1
e = V3
e
V4
e = V2
e
Even
I1
o = -I3
o
I4
o =- I2
o
V1
o = -V3
o
V4
o = -V2
o
Odd
Reverse
excitation
voltage
(100)
(99)
Analysis
o
o
in
o
in
o
Z
Z
Z
V
V


1


tan
tan
o
oe
oe
o
oe
e
in
jZ
Z
jZ
Z
Z
Z



o
e
o
e
in
I
I
V
V
I
V
Z
1
1
1
1
1
1




Zo = load for transmission line
 = electrical length of the line
Zoe or Zoo = characteristic impedance of
the line


tan
tan
o
oo
oo
o
oo
o
in
jZ
Z
jZ
Z
Z
Z



By voltage division
o
e
in
e
in
e
Z
Z
Z
V
V


1
o
o
in
o
Z
Z
V
I


1
o
e
in
e
Z
Z
V
I


1
From transmission line equation , we have
where
(101)
(102)
(103)
(104)
(105)
(106)
(107)
continue
Substituting eqs. (104) - (107) into eq. (101) yeilds
     
o
o
in
e
in
o
e
in
o
in
o
o
o
in
e
in
o
o
in
e
in
o
e
in
o
in
in
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
2
2
2
2











For matching we may consider the second term of eq. (108) will be zero , I.e
0
2 
 o
e
in
o
in Z
Z
Z or 2
o
oe
oo
e
in
o
in Z
Z
Z
Z
Z 

(108)
Let oe
oo
o Z
Z
Z 
Therefore eqs. (102) and (103) become


tan
tan
oo
oe
oe
oo
oe
e
in
Z
j
Z
Z
j
Z
Z
Z





tan
tan
oe
oo
oo
oe
oo
o
in
Z
j
Z
Z
j
Z
Z
Z



and (108) reduces to Zin=Zo
(110)
(109)
continue
Since Zin = Zo , then by voltage division V1 = V. The voltage at port 3, by
substitute (99), (100) , (104) and (105) is then
















o
o
in
o
in
o
e
in
e
in
o
e
o
e
Z
Z
Z
Z
Z
Z
V
V
V
V
V
V 1
1
3
3
3 (111)
Substitute (109) and (110) into (111)
  

tan
2
tan
oo
oe
o
oo
o
o
o
in
o
in
Z
Z
j
Z
jZ
Z
Z
Z
Z





  

tan
2
tan
oo
oe
o
oe
o
o
e
in
e
in
Z
Z
j
Z
jZ
Z
Z
Z
Z





Then (111) reduces to  
  

tan
2
tan
3
oo
oe
o
oo
oe
Z
Z
j
Z
Z
Z
j
V
V



 (112)
continue
We define coupling as
oo
oe
oo
oe
Z
Z
Z
Z
C



Then V3 / V , from ( 112) will become
oo
oe
o
Z
Z
Z
C



2
1 2
 
 
 
 
 




tan
1
tan
tan
2
tan
2
3
j
C
jC
V
Z
Z
Z
Z
j
Z
Z
Z
Z
Z
Z
Z
j
V
V
oo
oe
oo
oe
oo
oe
o
oo
oe
oo
oe










and

 sin
cos
1
1
2
2
2
2
2
j
C
C
V
V
V
V o
e






0
2
2
4
4
4 



 o
e
o
e V
V
V
V
V
Similarly
V1=V
Practical couple line coupler
V3 is maximum when  = p/2 , 3p/2, ...
Thus for quarterwave length coupler  = p/2 , the eqs V2 and V3 reduce to
V1=V
0
4 
V
VC
j
C
jC
V
j
C
jC
V
j
C
jC
V
V 












2
2
2
3
1
1
)
(
2
/
tan
1
2
/
tan
p
p
2
2
2
2
2 1
1
2
/
sin
2
/
cos
1
1
C
jV
j
C
V
j
C
C
V
V 








p
p C
C
Z
Z o
oe



1
1
C
C
Z
Z o
oo



1
1
Example
Design a 20 dB single-section coupled line coupler in stripline with a 0.158 cm
ground plane spacing , dielectric constant of 2. 56, a characteristic impedance
of 50  , and a center frequency of 3 GHz.
Coupling factor is C = 10-20/20 = 0.1
Characteristic impedance of even
and odd mode are




 28
.
55
1
.
0
1
1
.
0
1
50
oe
Z
23
.
45
1
.
0
1
1
.
0
1
50 



oo
Z
4
.
88

oe
r Z

4
.
72

oo
r Z

From fig 7.29 , we have
w/b=0.72 , s/b =0.34. These
give us
w=0.72b=0.114cm
s= 0.34b = 0.054cm
Then multiplied by r

Multisection Coupled line coupler (broadband)
V1
V3 V4
V2
input Through
Isolated
Coupled



  

C1
CN-2
C3
C2 CN
CN-1
....





 j
e
jC
j
jC
j
C
jC
V
V 





 sin
tan
1
tan
tan
1
tan
2
1
3



j
e
j
C
C
V
V 





sin
cos
1
1
2
2
1
2
For single section , whence C<<1 , then
V4=0
and For = p/ 2 then V3/V1= C
and V2/V1 = -j
Analysis
Result for cascading the couplers to form a multi section coupler is
   
  







)
1
(
2
1
2
1
2
1
1
3
sin
...
sin
sin









N
j
j
N
j
j
j
e
V
e
jC
e
V
e
jC
V
e
jC
V
 
  







)
1
(
)
2
(
2
2
2
)
1
(
2
1
1
3
...
1
sin













N
j
M
N
j
j
N
j
j
e
C
e
e
C
e
C
e
jV
V
 
  

M
jN
C
N
C
N
C
e
jV
2
1
...
3
cos
1
cos
sin
2 2
1
1




  

 
Where M= (N+1)/2
For symmetry C1=CN , C2= CN-1 ,
etc
At center frequency
2
/
1
3
p
 

V
V
Co
(200)
Example
Design a three-section 20 dB coupler with binomial response (maximally
flat), a system impedance 50  , and a center frequency of 3 GHz .
Solution
For maximally flat response for three section (N=3) coupler, we require
2
,
1
0
)
(
2
/



n
for
C
d
d
n
n
p



From eq (200) and M= (N+1)/2 =( 3+1)/2=2 , we have








 2
1
1
3
2
1
2
cos
sin
2 C
C
V
V
C 

  



 sin
)
(
3
sin
sin
sin
3
sin 1
2
1
2
1 C
C
C
C
C 





(201)
(202)
Continue
Apply (201)
  0
cos
)
(
3
cos
3
2
/
1
2
1 



p



C
C
C
d
dC
  0
10
sin
)
(
3
sin
9 2
1
2
/
1
2
1
2
2








C
C
C
C
C
d
C
d
p



Midband Co= 20 dB at  =p/2. Thus C= 10-20/20=0.1
From (202), we C= C2 - 2C1= 0.1 © ©
©
Solving © and © © gives us C1= C3 = 0.0125 (symmetry) and C2 = 0.125
continue
Using even and odd mode analysis, we have








 63
.
50
0125
.
0
1
0125
.
0
1
50
1
1
3
1
C
C
Z
Z
Z o
oe
oe





 38
.
49
0125
.
0
1
0125
.
0
1
3
1 o
oo
oo Z
Z
Z







 69
.
56
125
.
0
1
125
.
0
1
50
1
1
2
C
C
Z
Z o
oe




 1
.
44
125
.
0
1
125
.
0
1
2 o
oo Z
Z
continue
Let say , r = 10 and d =0.7878mm


 63
.
50
3
1 oe
oe Z
Z 

 38
.
49
3
1 oo
oo Z
Z

 69
.
56
2
oe
Z 
 1
.
44
2
oo
Z
Plot points on graph Fig. 7.30
We have , w/d = 1.0 and s/d = 2.5 , thus
w = d = 0.7878mm and s = 2.5d = 1.9695mm
Similarly we plot points
We have , w/d = 0.95 and s/d = 1.1 , thus
w = 0.95d = 0.748mm and s =1.1d = 0.8666mm
For section 1 and 3
For section 2
Couplers
Lange Coupler
Evolution of Lange
coupler
1= input
2=output
3=coupling
4=isolated
w
w
w
w
w
s
s
s
s
1
4 3
2
1
3
4
2
1
2
3
4
2
4
1
3
Analysis
1
4 3
2
1
3
4
2
C
C
90o
Ze4
Zo4
Zo4
Ze4
1
4
3
2
1
2
Cm
Cex
Cex
C
Cex Cex
Cin
Cin
Cm
Cm
Cm
Simplified circuit Equivalent circuit
m
ex
m
ex
ex
in
C
C
C
C
C
C



where
Continue/ 4 wire coupler
Even mode
All Cm capacitance will be at same potential, thus the total capacitance is
in
ex
e C
C
C 

4
m
in
ex
o C
C
C
C 6
4 


Odd mode
All Cm capacitance will be considered, thus the total capacitance is
Even and Odd mode characteristic impedance
4
4
1
e
e
C
Z


4
4
1
o
o
C
Z

 line
on
transmissi
in
velocity


(300)
(301)
(302)
continue
Now consider isolated pairs. It’s equivalent circuit is same as two wire line ,
thus it’s even and odd mode capacitance is
ex
e C
C 
m
ex
o C
C
C 2


Substitute these into (300) and (301) ,
we have
 
o
e
o
e
e
e
C
C
C
C
C
C



3
4
m
ex
m
ex
ex
in
C
C
C
C
C
C



 
o
e
e
o
o
o
C
C
C
C
C
C



3
4
And in terms of impedance refer
to (302)
oe
oe
oo
oe
oo
e Z
Z
Z
Z
Z
Z



3
4
oo
oo
oe
oe
oo
o Z
Z
Z
Z
Z
Z



3
4
continue
 
  
oo
oe
oe
oo
oe
oo
oo
oe
o
e
o
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z





3
3
2
4
4
Characteristic impedance of the line is
 
  oo
oe
oo
oe
oo
oe
o
e
o
e
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
C
2
3
3
2
2
2
2
4
4
4
4







Coupling
The desired characteristic impedance in terms of coupling is
    o
oe Z
C
C
C
C
C
Z






1
/
1
2
8
9
3
4 2
    o
oo Z
C
C
C
C
C
Z






1
/
1
2
8
9
3
4 2
VHF/UHF Hybrid power splitter
50
input
50
output
50
output
100
C
T1
T2
1
5
6
7
8
2
3
4
Guanella power divider
(VHF/UHF)
RL
V2
I2
I1
V1
Rg
Vg I1
V2
I2

Contenu connexe

Tendances

Tendances (20)

Ssb generation method
Ssb generation methodSsb generation method
Ssb generation method
 
Equal Split Wilkinson Power Divider - Project Report
Equal Split Wilkinson Power Divider - Project ReportEqual Split Wilkinson Power Divider - Project Report
Equal Split Wilkinson Power Divider - Project Report
 
Decimation in time and frequency
Decimation in time and frequencyDecimation in time and frequency
Decimation in time and frequency
 
Microwave waveguides 1st 1
Microwave waveguides 1st 1Microwave waveguides 1st 1
Microwave waveguides 1st 1
 
Microwave Engineering Lecture Notes
Microwave Engineering Lecture NotesMicrowave Engineering Lecture Notes
Microwave Engineering Lecture Notes
 
Single diode circuits
Single diode circuitsSingle diode circuits
Single diode circuits
 
SigmaDeltaADC
SigmaDeltaADCSigmaDeltaADC
SigmaDeltaADC
 
Nonlinearity
NonlinearityNonlinearity
Nonlinearity
 
Antennas and Wave Propagation
Antennas and Wave Propagation Antennas and Wave Propagation
Antennas and Wave Propagation
 
Different types of interconnection of two port networks
Different types of interconnection  of  two  port  networksDifferent types of interconnection  of  two  port  networks
Different types of interconnection of two port networks
 
Microwave Filter
Microwave FilterMicrowave Filter
Microwave Filter
 
Beta gamma functions
Beta gamma functionsBeta gamma functions
Beta gamma functions
 
Wave guide tees
Wave guide teesWave guide tees
Wave guide tees
 
Smith chart basics
Smith chart basicsSmith chart basics
Smith chart basics
 
Antenna basic
Antenna basicAntenna basic
Antenna basic
 
Microwave
MicrowaveMicrowave
Microwave
 
Apperture and Horn Antenna
Apperture and Horn AntennaApperture and Horn Antenna
Apperture and Horn Antenna
 
Z transform ROC eng.Math
Z transform ROC eng.MathZ transform ROC eng.Math
Z transform ROC eng.Math
 
Low noise amplifier
Low noise amplifierLow noise amplifier
Low noise amplifier
 
Antenna synthesis
Antenna synthesisAntenna synthesis
Antenna synthesis
 

Similaire à Power divider, combiner and coupler.ppt

tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
kiran93845
 

Similaire à Power divider, combiner and coupler.ppt (20)

S_parameters.pdf
S_parameters.pdfS_parameters.pdf
S_parameters.pdf
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
 
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
 
Lecture 5
Lecture 5Lecture 5
Lecture 5
 
Lecture 4 b signalconditioning_ac bridge
Lecture 4 b signalconditioning_ac bridgeLecture 4 b signalconditioning_ac bridge
Lecture 4 b signalconditioning_ac bridge
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave Network
 
Ee8402 inductance calculation
Ee8402 inductance calculationEe8402 inductance calculation
Ee8402 inductance calculation
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Distance Protection.ppt
Distance Protection.pptDistance Protection.ppt
Distance Protection.ppt
 
Presentation1current electricity
Presentation1current electricityPresentation1current electricity
Presentation1current electricity
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
 
Bridge ppt 1
Bridge ppt 1Bridge ppt 1
Bridge ppt 1
 
Network synthesis
Network synthesisNetwork synthesis
Network synthesis
 
Unit 1
Unit 1Unit 1
Unit 1
 
Scattering matrix
Scattering matrixScattering matrix
Scattering matrix
 
Eet3082 binod kumar sahu lecturer_16
Eet3082 binod kumar sahu lecturer_16Eet3082 binod kumar sahu lecturer_16
Eet3082 binod kumar sahu lecturer_16
 
Alternator Basics.pdf
Alternator Basics.pdfAlternator Basics.pdf
Alternator Basics.pdf
 
Introduction to microwaves
Introduction to microwavesIntroduction to microwaves
Introduction to microwaves
 
Magic tee
Magic tee  Magic tee
Magic tee
 

Dernier

Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 

Dernier (20)

ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 

Power divider, combiner and coupler.ppt

  • 1. Power divider, combiner and coupler By Professor Syed Idris Syed Hassan Sch of Elect. & Electron Eng Engineering Campus USM Nibong Tebal 14300 SPS Penang
  • 2. Power divider and combiner/coupler divider combiner P1 P2= nP1 P3=(1-n)P1 P1 P2 P3=P1+P2 Divide into 4 output Basic
  • 3. S-parameter for power divider/coupler              33 32 31 23 22 21 13 12 11 S S S S S S S S S S Generally For reciprocal and lossless network j i for S S N k kj ki     0 1 * 1 1 *    N k ki ki S S 1 13 12 11    S S S 1 23 22 21    S S S 1 33 32 31    S S S 0 * 23 13 * 22 12 * 21 11    S S S S S S 0 * 33 23 * 32 22 * 31 21    S S S S S S 0 * 33 13 * 32 12 * 31 11    S S S S S S Row 1x row 2 Row 2x row 3 Row 1x row 3
  • 4. Continue If all ports are matched properly , then Sii= 0              0 0 0 23 13 23 12 13 12 S S S S S S S For Reciprocal network For lossless network, must satisfy unitary condition 1 2 13 2 12   S S 1 2 23 2 12   S S 1 2 23 2 13   S S 0 12 * 23  S S 0 23 * 13  S S 0 13 * 12  S S Two of (S12, S13, S23) must be zero but it is not consistent. If S12=S13= 0, then S23 should equal to 1 and the first equation will not equal to 1. This is invalid.
  • 5. Another alternative for reciprocal network              33 23 13 23 12 13 12 0 0 S S S S S S S S Only two ports are matched , then for reciprocal network For lossless network, must satisfy unitary condition 1 2 13 2 12   S S 1 2 23 2 12   S S 1 2 33 2 23 2 13    S S S 0 13 * 33 12 * 23   S S S S 0 23 * 13  S S 0 33 * 23 13 * 12   S S S S The two equations show that |S13|=|S23| thus S13=S23=0 and |S12|=|S33|=1 These have satisfied all
  • 6. Reciprocal lossless network of two matched S21 =ej  S12=ej  S33 =ej  1 3 2                   j j j e e e S 0 0 0 0 0 0
  • 7. For lossless network, must satisfy unitary condition 1 2 13 2 12   S S 1 2 23 2 21   S S 1 2 32 2 31   S S 0 32 * 31  S S 0 23 * 21  S S 0 13 * 12  S S Nonreciprocal network (apply for circulator)              0 0 0 32 31 23 21 13 12 S S S S S S S 0 31 23 12    S S S 0 13 32 21    S S S 1 13 32 21    S S S 1 31 23 12    S S S The above equations must satisfy the following either or
  • 8. Circulator (nonreciprocal network)              0 1 0 0 0 1 1 0 0 S              0 0 1 1 0 0 0 1 0 S 1 2 3 1 2 3
  • 9. Four port network                  44 43 42 41 34 24 14 33 32 31 23 22 21 13 12 11 S S S S S S S S S S S S S S S S S Generally For reciprocal and lossless network j i for S S N k kj ki     0 1 * 1 1 *    N k ki ki S S 1 14 13 12 11     S S S S 1 24 23 22 21     S S S S 1 34 33 32 31     S S S S 0 * 24 14 * 23 13 * 22 12 * 21 11     S S S S S S S S 0 * 44 24 * 43 23 * 42 22 * 41 21     S S S S S S S S 0 * 34 14 * 33 13 * 32 12 * 31 11     S S S S S S S S R 1x R 2 R 2x R3 R1x R4 1 44 43 42 41     S S S S 0 * 44 14 * 43 13 * 42 12 * 41 11     S S S S S S S S 0 * 34 24 * 33 23 * 32 22 * 31 21     S S S S S S S S 0 * 44 34 * 43 33 * 42 32 * 41 31     S S S S S S S S R1x R3 R2x R4 R3x R4
  • 10. Matched Four port network                  0 0 0 0 34 24 14 34 24 14 23 13 23 12 13 12 S S S S S S S S S S S S S The unitarity condition become 1 14 13 12    S S S 1 24 23 12    S S S 1 34 23 13    S S S 0 * 24 14 * 23 13   S S S S 0 * 34 23 * 14 12   S S S S 0 * 34 14 * 23 12   S S S S 1 34 24 14    S S S 0 * 34 13 * 24 12   S S S S 0 * 34 24 * 13 12   S S S S 0 * 24 23 * 14 13   S S S S Say all ports are matched and symmetrical network, then * ** @ @@ # ##
  • 11. To check validity Multiply eq. * by S24 * and eq. ## by S13 * , and substract to obtain 0 2 14 2 13 * 14         S S S Multiply eq. # by S34 and eq. @@ by S13 , and substract to obtain 0 2 34 2 12 23         S S S % $ Both equations % and $ will be satisfy if S14 = S23 = 0 . This means that no coupling between port 1 and 4 , and between port 2 and 3 as happening in most directional couplers.
  • 12. Directional coupler                  0 0 0 0 0 0 0 0 34 24 34 24 13 12 13 12 S S S S S S S S S If all ports matched , symmetry and S14=S23=0 to be satisfied The equations reduce to 6 equations 1 13 12   S S 1 24 12   S S 1 34 13   S S 1 34 24   S S 0 * 34 13 * 24 12   S S S S 0 * 34 24 * 13 12   S S S S 24 13 S S  By comparing these equations yield * * ** ** By comparing equations * and ** yield 34 12 S S 
  • 13. Continue                0 0 0 0 0 0 0 0         j j j j S Simplified by choosing S12= S34= ; S13=e j  and S24=  e j  Where  +  = p + 2np                  0 0 0 0 0 0 0 0         S 1. Symmetry Coupler  =  = p/2 2. Antisymmetry Coupler  =0 , =p 2 cases Both satisfy 2 +2 =1
  • 14. Physical interpretation |S13 | 2 = coupling factor = 2 |S12 | 2 = power deliver to port 2= 2 =1- 2 Characterization of coupler Directivity= D= 10 log dB P P  log 20 3 1   Coupling= C= 10 log dB S P P 14 4 3 log 20    Isolation = I= 10 log dB S P P 14 4 1 log 20   I = D + C dB 1 4 3 2 Input Through Coupled Isolated For ideal case |S14|=0
  • 15. Practical coupler Hybrid 3 dB couplers Magic -T and Rat-race couplers  =  = p/2                0 1 0 1 0 0 0 0 0 1 1 0 2 1 j j j j S                  0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0 2 1 S  =0 , =p =  = 1 / 2 =  = 1 / 2
  • 16. T-junction power divider E-plane T H-plane T Microstrip T
  • 17. T-model jB Z1 Z2 Vo Yin 2 1 1 1 Z Z jB Yin    2 1 1 1 Z Z Yin   Lossy line Lossless line If Zo = 50,then for equally divided power, Z1 = Z2=100
  • 18. Example • If source impedance equal to 50 ohm and the power to be divided into 2:1 ratio. Determine Z1 and Z2 in o P Z V P 3 1 2 1 1 2 1   in o P Z V P 3 2 2 1 2 2 2      75 2 3 2 o Z Z    150 3 1 o Z Z o o in Z V P 2 2 1     50 // 2 1 Z Z Zo
  • 19. Resistive divider V2 V3 V1 Zo Zo P1 P2 P3 Zo V o o Z Z Z   3 Zo/3 Zo/3 Zo/3 o o o in Z Z Z Z    3 2 3 V V Z Z Z V o o o 3 2 3 / 2 3 / 3 / 2 1    V V V Z Z Z V V o o o 2 1 4 3 3 / 3 2      o in Z V P 2 1 2 1    in o P Z V P P 4 1 2 / 1 2 1 2 1 3 2   
  • 20. Wilkinson Power Divider 50 50 50 100 70.7  70.7  /4 Zo /2 Zo /2 Zo 2Zo Zo Zo /4 2 2 T e Z Zin  o T Z Z 2  For even mode Therefore For Zin =Zo=50     7 . 70 50 2 T Z And shunt resistor R =2 Zo = 100
  • 21. Analysis (even and odd mode) 2 2 1 1 Port 1 Port 2 Port 3 Vg2 Vg3 Z Z 4 +V2 +V3 r/2 r/2 4 For even mode Vg2 = Vg3 and for odd mode Vg2 = -Vg3. Since the circuit is symmetrical , we can treat separately two bisection circuit for even and odd modes as shown in the next slide. By superposition of these two modes , we can find S - parameter of the circuit. The excitation is effectively Vg2=4V and Vg3= 0V. For simplicity all values are normalized to line characteristic impedance , I.e Zo = 50 .
  • 22. Even mode Vg2=Vg3= 2V Looking at port 2 Zin e= Z2/2 Therefore for matching 2  Z then V2 e= V since Zin e=1 (the circuit acting like voltage divider) 2 1 Port 1 Port 2 2V Z 4 +V2 e r/2 +V1 e O.C O.C out inZ Z Z  2 Note: 2  Z If To determine V2 e , using transmission line equation V(x) = V+ (e-jx + Ge+jx) , thus V jV V V e  G     ) 1 ( ) 4 ( 2  1 1 ) 1 ( ) 0 ( 1  G  G  G     jV jV V V e Reflection at port 1, refer to is 2 2 2 2    G 2  Z Then 2 1 jV V e  
  • 23. Odd mode Vg2= - Vg3= 2V 2 1 Port 1 Port 2 2V Z 4 +V2 o r/2 +V1 o At port 2, V1 o =0 (short) , /4 transformer will be looking as open circuit , thus Zin o = r/2 . We choose r =2 for matching. Hence V2 o= 1V (looking as a voltage divider) S-parameters S11= 0 (matched Zin=1 at port 1) S22 = S33 = 0 (matched at ports 2 and 3 both even and odd modes) S12 = S21 = 2 / 2 2 1 1 j V V V V o e o e     S13 = S31 = 2 / j  S23 = S32 = 0 ( short or open at bisection , I.e no coupling)
  • 24. Example Design an equal-split Wilkinson power divider for a 50 W system impedance at frequency fo The quarterwave-transformer characteristic is    7 . 70 2 o Z Z    100 2 o Z R r o   4   The quarterwave-transformer length is
  • 26. Unequal power Wilkinson Divider 3 2 03 1 K K Z Z o   ) 1 ( 2 03 2 02 K K Z Z K Z o            K K Z R o 1 R2 =Zo /K R R3=Zo/K Z02 Z03 Zo 2 3 2 3 2     port at Power port at Power P P K 1 2 3
  • 27. Parad and Moynihan power divider 4 / 1 2 01 1         K K Z Z o 2 3 2 3 2     port at Power port at Power P P K         K K Z R o 1   4 / 1 2 4 / 3 02 1 K K Z Z o     4 / 5 4 / 1 2 03 1 K K Z Z o   K Z Z o  04 K Z Z o  05 Zo Zo Zo Z05 Zo4 Zo2 Zo3 Zo1 R 1 2 3
  • 28. Cohn power divider            VSWR at port 1 = 1.106 VSWR at port 2 and port 3 = 1.021 Isolation between port 2 and 3 = 27.3 dB Center frequency fo = (f1 + f2)/2 Frequency range (f2/f1) = 2 1 2 3
  • 29. Couplers /4 /4 Yo Yo Yo Yo Yse Ysh Ysh Branch line coupler 2 sh 2 se Y 1 Y   2 se 2 sh sh 2 3 Y Y 1 2Y E E      20 1 3 10 E E x   x dB coupling 2 3 2 2 2 1 E E E   2 1 3 2 1 2 E E E E 1                   or E1 E2 E3
  • 30. Couplers input isolate Output 3dB Output 3dB 90o out of phase 3 dB Branch line coupler /4 /4 Zo Zo Zo Zo 2 / Zo 2 / Zo Zo Zo 3 2 E E  1 Ysh  2 Y 1 Y 2 2 se    sh 1.414 Yse    50 o Z   50 sh Z   5 . 35 se Z
  • 31. Couplers 9 dB Branch line coupler   355 . 0 10 20 9 1 3    E E  2 2 1 2 355 . 0 1           E E   935 . 0 355 . 0 1 2 1 2            E E 38 . 0 935 . 0 355 . 0 2 3           E E 8 . 0  sh Y Let say we choose 38 . 0 8 . 0 1 8 . 0 2 1 2 2 2 2 2        se se sh sh Y Y Y Y 962 . 1 36 . 0 38 . 0 6 . 1    se Y   50 0 Z     5 . 62 8 . 0 / 50 sh Z     5 . 25 962 . 1 / 50 se Z Note: Practically upto 9dB coupling
  • 32. Couplers /4 /4 /4 /4 Input Output in-phase Output in-phase isolated 1 2 3 4 •Can be used as splitter , 1 as input and 2 and 3 as two output. Port is match with 50 ohm. •Can be used as combiner , 2 and 3 as input and 1 as output.Port 4 is matched with 50 ohm. Hybrid-ring coupler OC 1 2 1 2 OC 1/2 1/2 2 2 2 2 2 2 /8 /8 /4 /4 /8 /8 Te To Ge Go
  • 33. Analysis The amplitude of scattered wave o e B G  G  2 1 2 1 1 o e T T B 2 1 2 1 4   o e T T B 2 1 2 1 2   o e B G  G  2 1 2 1 3
  • 34. Couple lines analysis Planar Stacked Coupled microstrip b w w s w s w w s b d r r r The coupled lines are usually assumed to operate in TEM mode. The electrical characteristics can be determined from effective capacitances between lines and velocity of propagation.
  • 35. Equivalent circuits +V +V H-wall +V -V E-wall C11 C22 C11 C22 2C12 2C12 Even mode Odd mode C11 and C22 are the capacitances between conductors and the ground respectively. For symmetrical coupled line C11=C22 . C12 is the capacitance between two strip of conductors in the absence of ground. In even mode , there is no current flows between two strip conductors , thus C12 is effectively open-circuited.
  • 36. Continue Even mode The resulting capacitance Ce = C11 = C22 e e e e oe C C LC C L Z  1    Therefore, the line characteristic impedance Odd mode The resulting capacitance Co = C11 + 2 C12 = C22 + 2 C12 Therefore, the line characteristic impedance o oo C Z  1 
  • 37. Planar coupled stripline Refer to Fig 7.29 in Pozar , Microwave Engineering
  • 38. Stacked coupled stripline     m F s b b s b s b C oW r oW r oW r / 4 2 / 2 / 2 2 11             w >> s and w >> b m F s C oW r / 12    m F s b b C C oW r e / 4 2 2 11      m F s s b b w C C C o r o / 1 2 2 2 2 2 12 11                o o r     1  r o e oe bw s b Z C Z   4 1 2 2        s s b b w Z C Z r o o oo / 1 / 2 2 1 1 2 2      
  • 39. Coupled microstripline Refer to Fig 7.30 in Pozar , Microwave Engineering
  • 40. Design of Coupled line Couplers input output Isolated (can be matched) Coupling w w s 2 3 4 1 wc /4 3 4 1 2 Zo Zo Zo Zo Zoo Zoe 2V +V3 +V2 +V4 +V1  I1 I4 I3 I2 Schematic circuit Layout
  • 41. Even and odd modes analysis 3 4 1 2 Zo Zo Zo Zo Zoo V +V3 o +V2 o +V4 o +V1 o I1 o I4 o I3 o I2 o V _ + + _ 3 4 1 2 Zo Zo Zo Zo Zoe V +V3 e +V2 e +V4 e +V1 e I1 e I4 e I3 e I2 e V _ + + _ I1 e = I3 e I4 e = I2 e Same excitation voltage V1 e = V3 e V4 e = V2 e Even I1 o = -I3 o I4 o =- I2 o V1 o = -V3 o V4 o = -V2 o Odd Reverse excitation voltage (100) (99)
  • 42. Analysis o o in o in o Z Z Z V V   1   tan tan o oe oe o oe e in jZ Z jZ Z Z Z    o e o e in I I V V I V Z 1 1 1 1 1 1     Zo = load for transmission line  = electrical length of the line Zoe or Zoo = characteristic impedance of the line   tan tan o oo oo o oo o in jZ Z jZ Z Z Z    By voltage division o e in e in e Z Z Z V V   1 o o in o Z Z V I   1 o e in e Z Z V I   1 From transmission line equation , we have where (101) (102) (103) (104) (105) (106) (107)
  • 43. continue Substituting eqs. (104) - (107) into eq. (101) yeilds       o o in e in o e in o in o o o in e in o o in e in o e in o in in Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 2 2 2 2            For matching we may consider the second term of eq. (108) will be zero , I.e 0 2   o e in o in Z Z Z or 2 o oe oo e in o in Z Z Z Z Z   (108) Let oe oo o Z Z Z  Therefore eqs. (102) and (103) become   tan tan oo oe oe oo oe e in Z j Z Z j Z Z Z      tan tan oe oo oo oe oo o in Z j Z Z j Z Z Z    and (108) reduces to Zin=Zo (110) (109)
  • 44. continue Since Zin = Zo , then by voltage division V1 = V. The voltage at port 3, by substitute (99), (100) , (104) and (105) is then                 o o in o in o e in e in o e o e Z Z Z Z Z Z V V V V V V 1 1 3 3 3 (111) Substitute (109) and (110) into (111)     tan 2 tan oo oe o oo o o o in o in Z Z j Z jZ Z Z Z Z          tan 2 tan oo oe o oe o o e in e in Z Z j Z jZ Z Z Z Z      Then (111) reduces to       tan 2 tan 3 oo oe o oo oe Z Z j Z Z Z j V V     (112)
  • 45. continue We define coupling as oo oe oo oe Z Z Z Z C    Then V3 / V , from ( 112) will become oo oe o Z Z Z C    2 1 2               tan 1 tan tan 2 tan 2 3 j C jC V Z Z Z Z j Z Z Z Z Z Z Z j V V oo oe oo oe oo oe o oo oe oo oe           and   sin cos 1 1 2 2 2 2 2 j C C V V V V o e       0 2 2 4 4 4      o e o e V V V V V Similarly V1=V
  • 46. Practical couple line coupler V3 is maximum when  = p/2 , 3p/2, ... Thus for quarterwave length coupler  = p/2 , the eqs V2 and V3 reduce to V1=V 0 4  V VC j C jC V j C jC V j C jC V V              2 2 2 3 1 1 ) ( 2 / tan 1 2 / tan p p 2 2 2 2 2 1 1 2 / sin 2 / cos 1 1 C jV j C V j C C V V          p p C C Z Z o oe    1 1 C C Z Z o oo    1 1
  • 47. Example Design a 20 dB single-section coupled line coupler in stripline with a 0.158 cm ground plane spacing , dielectric constant of 2. 56, a characteristic impedance of 50  , and a center frequency of 3 GHz. Coupling factor is C = 10-20/20 = 0.1 Characteristic impedance of even and odd mode are      28 . 55 1 . 0 1 1 . 0 1 50 oe Z 23 . 45 1 . 0 1 1 . 0 1 50     oo Z 4 . 88  oe r Z  4 . 72  oo r Z  From fig 7.29 , we have w/b=0.72 , s/b =0.34. These give us w=0.72b=0.114cm s= 0.34b = 0.054cm Then multiplied by r 
  • 48. Multisection Coupled line coupler (broadband) V1 V3 V4 V2 input Through Isolated Coupled        C1 CN-2 C3 C2 CN CN-1 ....       j e jC j jC j C jC V V        sin tan 1 tan tan 1 tan 2 1 3    j e j C C V V       sin cos 1 1 2 2 1 2 For single section , whence C<<1 , then V4=0 and For = p/ 2 then V3/V1= C and V2/V1 = -j
  • 49. Analysis Result for cascading the couplers to form a multi section coupler is               ) 1 ( 2 1 2 1 2 1 1 3 sin ... sin sin          N j j N j j j e V e jC e V e jC V e jC V             ) 1 ( ) 2 ( 2 2 2 ) 1 ( 2 1 1 3 ... 1 sin              N j M N j j N j j e C e e C e C e jV V       M jN C N C N C e jV 2 1 ... 3 cos 1 cos sin 2 2 1 1           Where M= (N+1)/2 For symmetry C1=CN , C2= CN-1 , etc At center frequency 2 / 1 3 p    V V Co (200)
  • 50. Example Design a three-section 20 dB coupler with binomial response (maximally flat), a system impedance 50  , and a center frequency of 3 GHz . Solution For maximally flat response for three section (N=3) coupler, we require 2 , 1 0 ) ( 2 /    n for C d d n n p    From eq (200) and M= (N+1)/2 =( 3+1)/2=2 , we have          2 1 1 3 2 1 2 cos sin 2 C C V V C          sin ) ( 3 sin sin sin 3 sin 1 2 1 2 1 C C C C C       (201) (202)
  • 51. Continue Apply (201)   0 cos ) ( 3 cos 3 2 / 1 2 1     p    C C C d dC   0 10 sin ) ( 3 sin 9 2 1 2 / 1 2 1 2 2         C C C C C d C d p    Midband Co= 20 dB at  =p/2. Thus C= 10-20/20=0.1 From (202), we C= C2 - 2C1= 0.1 © © © Solving © and © © gives us C1= C3 = 0.0125 (symmetry) and C2 = 0.125
  • 52. continue Using even and odd mode analysis, we have          63 . 50 0125 . 0 1 0125 . 0 1 50 1 1 3 1 C C Z Z Z o oe oe       38 . 49 0125 . 0 1 0125 . 0 1 3 1 o oo oo Z Z Z         69 . 56 125 . 0 1 125 . 0 1 50 1 1 2 C C Z Z o oe      1 . 44 125 . 0 1 125 . 0 1 2 o oo Z Z
  • 53. continue Let say , r = 10 and d =0.7878mm    63 . 50 3 1 oe oe Z Z    38 . 49 3 1 oo oo Z Z   69 . 56 2 oe Z   1 . 44 2 oo Z Plot points on graph Fig. 7.30 We have , w/d = 1.0 and s/d = 2.5 , thus w = d = 0.7878mm and s = 2.5d = 1.9695mm Similarly we plot points We have , w/d = 0.95 and s/d = 1.1 , thus w = 0.95d = 0.748mm and s =1.1d = 0.8666mm For section 1 and 3 For section 2
  • 54. Couplers Lange Coupler Evolution of Lange coupler 1= input 2=output 3=coupling 4=isolated w w w w w s s s s 1 4 3 2 1 3 4 2 1 2 3 4 2 4 1 3
  • 55. Analysis 1 4 3 2 1 3 4 2 C C 90o Ze4 Zo4 Zo4 Ze4 1 4 3 2 1 2 Cm Cex Cex C Cex Cex Cin Cin Cm Cm Cm Simplified circuit Equivalent circuit m ex m ex ex in C C C C C C    where
  • 56. Continue/ 4 wire coupler Even mode All Cm capacitance will be at same potential, thus the total capacitance is in ex e C C C   4 m in ex o C C C C 6 4    Odd mode All Cm capacitance will be considered, thus the total capacitance is Even and Odd mode characteristic impedance 4 4 1 e e C Z   4 4 1 o o C Z   line on transmissi in velocity   (300) (301) (302)
  • 57. continue Now consider isolated pairs. It’s equivalent circuit is same as two wire line , thus it’s even and odd mode capacitance is ex e C C  m ex o C C C 2   Substitute these into (300) and (301) , we have   o e o e e e C C C C C C    3 4 m ex m ex ex in C C C C C C      o e e o o o C C C C C C    3 4 And in terms of impedance refer to (302) oe oe oo oe oo e Z Z Z Z Z Z    3 4 oo oo oe oe oo o Z Z Z Z Z Z    3 4
  • 58. continue      oo oe oe oo oe oo oo oe o e o Z Z Z Z Z Z Z Z Z Z Z      3 3 2 4 4 Characteristic impedance of the line is     oo oe oo oe oo oe o e o e Z Z Z Z Z Z Z Z Z Z C 2 3 3 2 2 2 2 4 4 4 4        Coupling The desired characteristic impedance in terms of coupling is     o oe Z C C C C C Z       1 / 1 2 8 9 3 4 2     o oo Z C C C C C Z       1 / 1 2 8 9 3 4 2
  • 59. VHF/UHF Hybrid power splitter 50 input 50 output 50 output 100 C T1 T2 1 5 6 7 8 2 3 4