Ce diaporama a bien été signalé.
Le téléchargement de votre SlideShare est en cours. ×

Power divider, combiner and coupler.ppt

Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité

Consultez-les par la suite

1 sur 60 Publicité

Plus De Contenu Connexe

Similaire à Power divider, combiner and coupler.ppt (20)

Plus récents (20)

Publicité

Power divider, combiner and coupler.ppt

  1. 1. Power divider, combiner and coupler By Professor Syed Idris Syed Hassan Sch of Elect. & Electron Eng Engineering Campus USM Nibong Tebal 14300 SPS Penang
  2. 2. Power divider and combiner/coupler divider combiner P1 P2= nP1 P3=(1-n)P1 P1 P2 P3=P1+P2 Divide into 4 output Basic
  3. 3. S-parameter for power divider/coupler              33 32 31 23 22 21 13 12 11 S S S S S S S S S S Generally For reciprocal and lossless network j i for S S N k kj ki     0 1 * 1 1 *    N k ki ki S S 1 13 12 11    S S S 1 23 22 21    S S S 1 33 32 31    S S S 0 * 23 13 * 22 12 * 21 11    S S S S S S 0 * 33 23 * 32 22 * 31 21    S S S S S S 0 * 33 13 * 32 12 * 31 11    S S S S S S Row 1x row 2 Row 2x row 3 Row 1x row 3
  4. 4. Continue If all ports are matched properly , then Sii= 0              0 0 0 23 13 23 12 13 12 S S S S S S S For Reciprocal network For lossless network, must satisfy unitary condition 1 2 13 2 12   S S 1 2 23 2 12   S S 1 2 23 2 13   S S 0 12 * 23  S S 0 23 * 13  S S 0 13 * 12  S S Two of (S12, S13, S23) must be zero but it is not consistent. If S12=S13= 0, then S23 should equal to 1 and the first equation will not equal to 1. This is invalid.
  5. 5. Another alternative for reciprocal network              33 23 13 23 12 13 12 0 0 S S S S S S S S Only two ports are matched , then for reciprocal network For lossless network, must satisfy unitary condition 1 2 13 2 12   S S 1 2 23 2 12   S S 1 2 33 2 23 2 13    S S S 0 13 * 33 12 * 23   S S S S 0 23 * 13  S S 0 33 * 23 13 * 12   S S S S The two equations show that |S13|=|S23| thus S13=S23=0 and |S12|=|S33|=1 These have satisfied all
  6. 6. Reciprocal lossless network of two matched S21 =ej  S12=ej  S33 =ej  1 3 2                   j j j e e e S 0 0 0 0 0 0
  7. 7. For lossless network, must satisfy unitary condition 1 2 13 2 12   S S 1 2 23 2 21   S S 1 2 32 2 31   S S 0 32 * 31  S S 0 23 * 21  S S 0 13 * 12  S S Nonreciprocal network (apply for circulator)              0 0 0 32 31 23 21 13 12 S S S S S S S 0 31 23 12    S S S 0 13 32 21    S S S 1 13 32 21    S S S 1 31 23 12    S S S The above equations must satisfy the following either or
  8. 8. Circulator (nonreciprocal network)              0 1 0 0 0 1 1 0 0 S              0 0 1 1 0 0 0 1 0 S 1 2 3 1 2 3
  9. 9. Four port network                  44 43 42 41 34 24 14 33 32 31 23 22 21 13 12 11 S S S S S S S S S S S S S S S S S Generally For reciprocal and lossless network j i for S S N k kj ki     0 1 * 1 1 *    N k ki ki S S 1 14 13 12 11     S S S S 1 24 23 22 21     S S S S 1 34 33 32 31     S S S S 0 * 24 14 * 23 13 * 22 12 * 21 11     S S S S S S S S 0 * 44 24 * 43 23 * 42 22 * 41 21     S S S S S S S S 0 * 34 14 * 33 13 * 32 12 * 31 11     S S S S S S S S R 1x R 2 R 2x R3 R1x R4 1 44 43 42 41     S S S S 0 * 44 14 * 43 13 * 42 12 * 41 11     S S S S S S S S 0 * 34 24 * 33 23 * 32 22 * 31 21     S S S S S S S S 0 * 44 34 * 43 33 * 42 32 * 41 31     S S S S S S S S R1x R3 R2x R4 R3x R4
  10. 10. Matched Four port network                  0 0 0 0 34 24 14 34 24 14 23 13 23 12 13 12 S S S S S S S S S S S S S The unitarity condition become 1 14 13 12    S S S 1 24 23 12    S S S 1 34 23 13    S S S 0 * 24 14 * 23 13   S S S S 0 * 34 23 * 14 12   S S S S 0 * 34 14 * 23 12   S S S S 1 34 24 14    S S S 0 * 34 13 * 24 12   S S S S 0 * 34 24 * 13 12   S S S S 0 * 24 23 * 14 13   S S S S Say all ports are matched and symmetrical network, then * ** @ @@ # ##
  11. 11. To check validity Multiply eq. * by S24 * and eq. ## by S13 * , and substract to obtain 0 2 14 2 13 * 14         S S S Multiply eq. # by S34 and eq. @@ by S13 , and substract to obtain 0 2 34 2 12 23         S S S % $ Both equations % and $ will be satisfy if S14 = S23 = 0 . This means that no coupling between port 1 and 4 , and between port 2 and 3 as happening in most directional couplers.
  12. 12. Directional coupler                  0 0 0 0 0 0 0 0 34 24 34 24 13 12 13 12 S S S S S S S S S If all ports matched , symmetry and S14=S23=0 to be satisfied The equations reduce to 6 equations 1 13 12   S S 1 24 12   S S 1 34 13   S S 1 34 24   S S 0 * 34 13 * 24 12   S S S S 0 * 34 24 * 13 12   S S S S 24 13 S S  By comparing these equations yield * * ** ** By comparing equations * and ** yield 34 12 S S 
  13. 13. Continue                0 0 0 0 0 0 0 0         j j j j S Simplified by choosing S12= S34= ; S13=e j  and S24=  e j  Where  +  = p + 2np                  0 0 0 0 0 0 0 0         S 1. Symmetry Coupler  =  = p/2 2. Antisymmetry Coupler  =0 , =p 2 cases Both satisfy 2 +2 =1
  14. 14. Physical interpretation |S13 | 2 = coupling factor = 2 |S12 | 2 = power deliver to port 2= 2 =1- 2 Characterization of coupler Directivity= D= 10 log dB P P  log 20 3 1   Coupling= C= 10 log dB S P P 14 4 3 log 20    Isolation = I= 10 log dB S P P 14 4 1 log 20   I = D + C dB 1 4 3 2 Input Through Coupled Isolated For ideal case |S14|=0
  15. 15. Practical coupler Hybrid 3 dB couplers Magic -T and Rat-race couplers  =  = p/2                0 1 0 1 0 0 0 0 0 1 1 0 2 1 j j j j S                  0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0 2 1 S  =0 , =p =  = 1 / 2 =  = 1 / 2
  16. 16. T-junction power divider E-plane T H-plane T Microstrip T
  17. 17. T-model jB Z1 Z2 Vo Yin 2 1 1 1 Z Z jB Yin    2 1 1 1 Z Z Yin   Lossy line Lossless line If Zo = 50,then for equally divided power, Z1 = Z2=100
  18. 18. Example • If source impedance equal to 50 ohm and the power to be divided into 2:1 ratio. Determine Z1 and Z2 in o P Z V P 3 1 2 1 1 2 1   in o P Z V P 3 2 2 1 2 2 2      75 2 3 2 o Z Z    150 3 1 o Z Z o o in Z V P 2 2 1     50 // 2 1 Z Z Zo
  19. 19. Resistive divider V2 V3 V1 Zo Zo P1 P2 P3 Zo V o o Z Z Z   3 Zo/3 Zo/3 Zo/3 o o o in Z Z Z Z    3 2 3 V V Z Z Z V o o o 3 2 3 / 2 3 / 3 / 2 1    V V V Z Z Z V V o o o 2 1 4 3 3 / 3 2      o in Z V P 2 1 2 1    in o P Z V P P 4 1 2 / 1 2 1 2 1 3 2   
  20. 20. Wilkinson Power Divider 50 50 50 100 70.7  70.7  /4 Zo /2 Zo /2 Zo 2Zo Zo Zo /4 2 2 T e Z Zin  o T Z Z 2  For even mode Therefore For Zin =Zo=50     7 . 70 50 2 T Z And shunt resistor R =2 Zo = 100
  21. 21. Analysis (even and odd mode) 2 2 1 1 Port 1 Port 2 Port 3 Vg2 Vg3 Z Z 4 +V2 +V3 r/2 r/2 4 For even mode Vg2 = Vg3 and for odd mode Vg2 = -Vg3. Since the circuit is symmetrical , we can treat separately two bisection circuit for even and odd modes as shown in the next slide. By superposition of these two modes , we can find S - parameter of the circuit. The excitation is effectively Vg2=4V and Vg3= 0V. For simplicity all values are normalized to line characteristic impedance , I.e Zo = 50 .
  22. 22. Even mode Vg2=Vg3= 2V Looking at port 2 Zin e= Z2/2 Therefore for matching 2  Z then V2 e= V since Zin e=1 (the circuit acting like voltage divider) 2 1 Port 1 Port 2 2V Z 4 +V2 e r/2 +V1 e O.C O.C out inZ Z Z  2 Note: 2  Z If To determine V2 e , using transmission line equation V(x) = V+ (e-jx + Ge+jx) , thus V jV V V e  G     ) 1 ( ) 4 ( 2  1 1 ) 1 ( ) 0 ( 1  G  G  G     jV jV V V e Reflection at port 1, refer to is 2 2 2 2    G 2  Z Then 2 1 jV V e  
  23. 23. Odd mode Vg2= - Vg3= 2V 2 1 Port 1 Port 2 2V Z 4 +V2 o r/2 +V1 o At port 2, V1 o =0 (short) , /4 transformer will be looking as open circuit , thus Zin o = r/2 . We choose r =2 for matching. Hence V2 o= 1V (looking as a voltage divider) S-parameters S11= 0 (matched Zin=1 at port 1) S22 = S33 = 0 (matched at ports 2 and 3 both even and odd modes) S12 = S21 = 2 / 2 2 1 1 j V V V V o e o e     S13 = S31 = 2 / j  S23 = S32 = 0 ( short or open at bisection , I.e no coupling)
  24. 24. Example Design an equal-split Wilkinson power divider for a 50 W system impedance at frequency fo The quarterwave-transformer characteristic is    7 . 70 2 o Z Z    100 2 o Z R r o   4   The quarterwave-transformer length is
  25. 25. Wilkinson splitter/combiner application /4 100 70.7 50 matching networks /4 100 50 70.7 70.7 70.7 Splitter combiner Power Amplifier
  26. 26. Unequal power Wilkinson Divider 3 2 03 1 K K Z Z o   ) 1 ( 2 03 2 02 K K Z Z K Z o            K K Z R o 1 R2 =Zo /K R R3=Zo/K Z02 Z03 Zo 2 3 2 3 2     port at Power port at Power P P K 1 2 3
  27. 27. Parad and Moynihan power divider 4 / 1 2 01 1         K K Z Z o 2 3 2 3 2     port at Power port at Power P P K         K K Z R o 1   4 / 1 2 4 / 3 02 1 K K Z Z o     4 / 5 4 / 1 2 03 1 K K Z Z o   K Z Z o  04 K Z Z o  05 Zo Zo Zo Z05 Zo4 Zo2 Zo3 Zo1 R 1 2 3
  28. 28. Cohn power divider            VSWR at port 1 = 1.106 VSWR at port 2 and port 3 = 1.021 Isolation between port 2 and 3 = 27.3 dB Center frequency fo = (f1 + f2)/2 Frequency range (f2/f1) = 2 1 2 3
  29. 29. Couplers /4 /4 Yo Yo Yo Yo Yse Ysh Ysh Branch line coupler 2 sh 2 se Y 1 Y   2 se 2 sh sh 2 3 Y Y 1 2Y E E      20 1 3 10 E E x   x dB coupling 2 3 2 2 2 1 E E E   2 1 3 2 1 2 E E E E 1                   or E1 E2 E3
  30. 30. Couplers input isolate Output 3dB Output 3dB 90o out of phase 3 dB Branch line coupler /4 /4 Zo Zo Zo Zo 2 / Zo 2 / Zo Zo Zo 3 2 E E  1 Ysh  2 Y 1 Y 2 2 se    sh 1.414 Yse    50 o Z   50 sh Z   5 . 35 se Z
  31. 31. Couplers 9 dB Branch line coupler   355 . 0 10 20 9 1 3    E E  2 2 1 2 355 . 0 1           E E   935 . 0 355 . 0 1 2 1 2            E E 38 . 0 935 . 0 355 . 0 2 3           E E 8 . 0  sh Y Let say we choose 38 . 0 8 . 0 1 8 . 0 2 1 2 2 2 2 2        se se sh sh Y Y Y Y 962 . 1 36 . 0 38 . 0 6 . 1    se Y   50 0 Z     5 . 62 8 . 0 / 50 sh Z     5 . 25 962 . 1 / 50 se Z Note: Practically upto 9dB coupling
  32. 32. Couplers /4 /4 /4 /4 Input Output in-phase Output in-phase isolated 1 2 3 4 •Can be used as splitter , 1 as input and 2 and 3 as two output. Port is match with 50 ohm. •Can be used as combiner , 2 and 3 as input and 1 as output.Port 4 is matched with 50 ohm. Hybrid-ring coupler OC 1 2 1 2 OC 1/2 1/2 2 2 2 2 2 2 /8 /8 /4 /4 /8 /8 Te To Ge Go
  33. 33. Analysis The amplitude of scattered wave o e B G  G  2 1 2 1 1 o e T T B 2 1 2 1 4   o e T T B 2 1 2 1 2   o e B G  G  2 1 2 1 3
  34. 34. Couple lines analysis Planar Stacked Coupled microstrip b w w s w s w w s b d r r r The coupled lines are usually assumed to operate in TEM mode. The electrical characteristics can be determined from effective capacitances between lines and velocity of propagation.
  35. 35. Equivalent circuits +V +V H-wall +V -V E-wall C11 C22 C11 C22 2C12 2C12 Even mode Odd mode C11 and C22 are the capacitances between conductors and the ground respectively. For symmetrical coupled line C11=C22 . C12 is the capacitance between two strip of conductors in the absence of ground. In even mode , there is no current flows between two strip conductors , thus C12 is effectively open-circuited.
  36. 36. Continue Even mode The resulting capacitance Ce = C11 = C22 e e e e oe C C LC C L Z  1    Therefore, the line characteristic impedance Odd mode The resulting capacitance Co = C11 + 2 C12 = C22 + 2 C12 Therefore, the line characteristic impedance o oo C Z  1 
  37. 37. Planar coupled stripline Refer to Fig 7.29 in Pozar , Microwave Engineering
  38. 38. Stacked coupled stripline     m F s b b s b s b C oW r oW r oW r / 4 2 / 2 / 2 2 11             w >> s and w >> b m F s C oW r / 12    m F s b b C C oW r e / 4 2 2 11      m F s s b b w C C C o r o / 1 2 2 2 2 2 12 11                o o r     1  r o e oe bw s b Z C Z   4 1 2 2        s s b b w Z C Z r o o oo / 1 / 2 2 1 1 2 2      
  39. 39. Coupled microstripline Refer to Fig 7.30 in Pozar , Microwave Engineering
  40. 40. Design of Coupled line Couplers input output Isolated (can be matched) Coupling w w s 2 3 4 1 wc /4 3 4 1 2 Zo Zo Zo Zo Zoo Zoe 2V +V3 +V2 +V4 +V1  I1 I4 I3 I2 Schematic circuit Layout
  41. 41. Even and odd modes analysis 3 4 1 2 Zo Zo Zo Zo Zoo V +V3 o +V2 o +V4 o +V1 o I1 o I4 o I3 o I2 o V _ + + _ 3 4 1 2 Zo Zo Zo Zo Zoe V +V3 e +V2 e +V4 e +V1 e I1 e I4 e I3 e I2 e V _ + + _ I1 e = I3 e I4 e = I2 e Same excitation voltage V1 e = V3 e V4 e = V2 e Even I1 o = -I3 o I4 o =- I2 o V1 o = -V3 o V4 o = -V2 o Odd Reverse excitation voltage (100) (99)
  42. 42. Analysis o o in o in o Z Z Z V V   1   tan tan o oe oe o oe e in jZ Z jZ Z Z Z    o e o e in I I V V I V Z 1 1 1 1 1 1     Zo = load for transmission line  = electrical length of the line Zoe or Zoo = characteristic impedance of the line   tan tan o oo oo o oo o in jZ Z jZ Z Z Z    By voltage division o e in e in e Z Z Z V V   1 o o in o Z Z V I   1 o e in e Z Z V I   1 From transmission line equation , we have where (101) (102) (103) (104) (105) (106) (107)
  43. 43. continue Substituting eqs. (104) - (107) into eq. (101) yeilds       o o in e in o e in o in o o o in e in o o in e in o e in o in in Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 2 2 2 2            For matching we may consider the second term of eq. (108) will be zero , I.e 0 2   o e in o in Z Z Z or 2 o oe oo e in o in Z Z Z Z Z   (108) Let oe oo o Z Z Z  Therefore eqs. (102) and (103) become   tan tan oo oe oe oo oe e in Z j Z Z j Z Z Z      tan tan oe oo oo oe oo o in Z j Z Z j Z Z Z    and (108) reduces to Zin=Zo (110) (109)
  44. 44. continue Since Zin = Zo , then by voltage division V1 = V. The voltage at port 3, by substitute (99), (100) , (104) and (105) is then                 o o in o in o e in e in o e o e Z Z Z Z Z Z V V V V V V 1 1 3 3 3 (111) Substitute (109) and (110) into (111)     tan 2 tan oo oe o oo o o o in o in Z Z j Z jZ Z Z Z Z          tan 2 tan oo oe o oe o o e in e in Z Z j Z jZ Z Z Z Z      Then (111) reduces to       tan 2 tan 3 oo oe o oo oe Z Z j Z Z Z j V V     (112)
  45. 45. continue We define coupling as oo oe oo oe Z Z Z Z C    Then V3 / V , from ( 112) will become oo oe o Z Z Z C    2 1 2               tan 1 tan tan 2 tan 2 3 j C jC V Z Z Z Z j Z Z Z Z Z Z Z j V V oo oe oo oe oo oe o oo oe oo oe           and   sin cos 1 1 2 2 2 2 2 j C C V V V V o e       0 2 2 4 4 4      o e o e V V V V V Similarly V1=V
  46. 46. Practical couple line coupler V3 is maximum when  = p/2 , 3p/2, ... Thus for quarterwave length coupler  = p/2 , the eqs V2 and V3 reduce to V1=V 0 4  V VC j C jC V j C jC V j C jC V V              2 2 2 3 1 1 ) ( 2 / tan 1 2 / tan p p 2 2 2 2 2 1 1 2 / sin 2 / cos 1 1 C jV j C V j C C V V          p p C C Z Z o oe    1 1 C C Z Z o oo    1 1
  47. 47. Example Design a 20 dB single-section coupled line coupler in stripline with a 0.158 cm ground plane spacing , dielectric constant of 2. 56, a characteristic impedance of 50  , and a center frequency of 3 GHz. Coupling factor is C = 10-20/20 = 0.1 Characteristic impedance of even and odd mode are      28 . 55 1 . 0 1 1 . 0 1 50 oe Z 23 . 45 1 . 0 1 1 . 0 1 50     oo Z 4 . 88  oe r Z  4 . 72  oo r Z  From fig 7.29 , we have w/b=0.72 , s/b =0.34. These give us w=0.72b=0.114cm s= 0.34b = 0.054cm Then multiplied by r 
  48. 48. Multisection Coupled line coupler (broadband) V1 V3 V4 V2 input Through Isolated Coupled        C1 CN-2 C3 C2 CN CN-1 ....       j e jC j jC j C jC V V        sin tan 1 tan tan 1 tan 2 1 3    j e j C C V V       sin cos 1 1 2 2 1 2 For single section , whence C<<1 , then V4=0 and For = p/ 2 then V3/V1= C and V2/V1 = -j
  49. 49. Analysis Result for cascading the couplers to form a multi section coupler is               ) 1 ( 2 1 2 1 2 1 1 3 sin ... sin sin          N j j N j j j e V e jC e V e jC V e jC V             ) 1 ( ) 2 ( 2 2 2 ) 1 ( 2 1 1 3 ... 1 sin              N j M N j j N j j e C e e C e C e jV V       M jN C N C N C e jV 2 1 ... 3 cos 1 cos sin 2 2 1 1           Where M= (N+1)/2 For symmetry C1=CN , C2= CN-1 , etc At center frequency 2 / 1 3 p    V V Co (200)
  50. 50. Example Design a three-section 20 dB coupler with binomial response (maximally flat), a system impedance 50  , and a center frequency of 3 GHz . Solution For maximally flat response for three section (N=3) coupler, we require 2 , 1 0 ) ( 2 /    n for C d d n n p    From eq (200) and M= (N+1)/2 =( 3+1)/2=2 , we have          2 1 1 3 2 1 2 cos sin 2 C C V V C          sin ) ( 3 sin sin sin 3 sin 1 2 1 2 1 C C C C C       (201) (202)
  51. 51. Continue Apply (201)   0 cos ) ( 3 cos 3 2 / 1 2 1     p    C C C d dC   0 10 sin ) ( 3 sin 9 2 1 2 / 1 2 1 2 2         C C C C C d C d p    Midband Co= 20 dB at  =p/2. Thus C= 10-20/20=0.1 From (202), we C= C2 - 2C1= 0.1 © © © Solving © and © © gives us C1= C3 = 0.0125 (symmetry) and C2 = 0.125
  52. 52. continue Using even and odd mode analysis, we have          63 . 50 0125 . 0 1 0125 . 0 1 50 1 1 3 1 C C Z Z Z o oe oe       38 . 49 0125 . 0 1 0125 . 0 1 3 1 o oo oo Z Z Z         69 . 56 125 . 0 1 125 . 0 1 50 1 1 2 C C Z Z o oe      1 . 44 125 . 0 1 125 . 0 1 2 o oo Z Z
  53. 53. continue Let say , r = 10 and d =0.7878mm    63 . 50 3 1 oe oe Z Z    38 . 49 3 1 oo oo Z Z   69 . 56 2 oe Z   1 . 44 2 oo Z Plot points on graph Fig. 7.30 We have , w/d = 1.0 and s/d = 2.5 , thus w = d = 0.7878mm and s = 2.5d = 1.9695mm Similarly we plot points We have , w/d = 0.95 and s/d = 1.1 , thus w = 0.95d = 0.748mm and s =1.1d = 0.8666mm For section 1 and 3 For section 2
  54. 54. Couplers Lange Coupler Evolution of Lange coupler 1= input 2=output 3=coupling 4=isolated w w w w w s s s s 1 4 3 2 1 3 4 2 1 2 3 4 2 4 1 3
  55. 55. Analysis 1 4 3 2 1 3 4 2 C C 90o Ze4 Zo4 Zo4 Ze4 1 4 3 2 1 2 Cm Cex Cex C Cex Cex Cin Cin Cm Cm Cm Simplified circuit Equivalent circuit m ex m ex ex in C C C C C C    where
  56. 56. Continue/ 4 wire coupler Even mode All Cm capacitance will be at same potential, thus the total capacitance is in ex e C C C   4 m in ex o C C C C 6 4    Odd mode All Cm capacitance will be considered, thus the total capacitance is Even and Odd mode characteristic impedance 4 4 1 e e C Z   4 4 1 o o C Z   line on transmissi in velocity   (300) (301) (302)
  57. 57. continue Now consider isolated pairs. It’s equivalent circuit is same as two wire line , thus it’s even and odd mode capacitance is ex e C C  m ex o C C C 2   Substitute these into (300) and (301) , we have   o e o e e e C C C C C C    3 4 m ex m ex ex in C C C C C C      o e e o o o C C C C C C    3 4 And in terms of impedance refer to (302) oe oe oo oe oo e Z Z Z Z Z Z    3 4 oo oo oe oe oo o Z Z Z Z Z Z    3 4
  58. 58. continue      oo oe oe oo oe oo oo oe o e o Z Z Z Z Z Z Z Z Z Z Z      3 3 2 4 4 Characteristic impedance of the line is     oo oe oo oe oo oe o e o e Z Z Z Z Z Z Z Z Z Z C 2 3 3 2 2 2 2 4 4 4 4        Coupling The desired characteristic impedance in terms of coupling is     o oe Z C C C C C Z       1 / 1 2 8 9 3 4 2     o oo Z C C C C C Z       1 / 1 2 8 9 3 4 2
  59. 59. VHF/UHF Hybrid power splitter 50 input 50 output 50 output 100 C T1 T2 1 5 6 7 8 2 3 4
  60. 60. Guanella power divider (VHF/UHF) RL V2 I2 I1 V1 Rg Vg I1 V2 I2

×