In the patent domain, all types of issues, from very specific search requirements to the linguistic characteristics of the text domain, are accentuated. Consequently, to develop patent text mining tools for scientists and patent experts, we need to understand their daily work tasks, as well as the linguistic character of the text genre (i.e., patentese). Patent text is a mixture of legal and domain-specific terms. In processing technical English texts, a multi-word unit method is often deployed as a word-formation strategy to expand the working vocabulary, i.e., introducing a new concept without the invention of an entirely new word. This productive word formation is a well-known challenge for traditional natural language processing tools utilizing supervised machine learning algorithms due to limited domain-specific training data. Deep learning technologies have been introduced to overcome the reduction in performance of traditional NLP tools. In the Artificial Researcher technologies, we have integrated explicit and implicit linguistic knowledge into the deep learning algorithms, essential for domain-specific text mining tools. In this talk, we will present a step-by-step process of how we have developed the mentioned text mining tools. For the final outline, we will also demonstrate how these tools can be integrated in a cross-genre passage retrieval system, based on a technology from 2016 that still holds the state-of-the-art within the patent text mining research community in 2022.