SlideShare une entreprise Scribd logo
1  sur  47
Télécharger pour lire hors ligne
Resilience Engineering Research Center
Assessment of renewable energy in nation-wide power grid in Japan
by optimal power generation mix model
Ryoichi Komiyama, Yasumasa Fujii
The University of Tokyo
68TH SEMI-ANNUAL ETSAP MEETING, CMA, MINES ParisTech, Sophia Antipolis, France
October 22, 2015
Resilience Engineering Research Center 2
• Optimal Power Generation Mix Model
• Time Resolution
Outline
Resilience Engineering Research Center
FIT system has accelerated the installation of renewable, particularly solar PV.
Surcharge imposed on electricity rate has been increasing.
Surcharge [yen/kWh]: (2014) 0.75 yen/kWh, (2015) 1.58 yen/kWh
Total Surcharge [yen/year]: (2014) 0.65 tril.yen, (2015) 1.8 tril.yen
Installed PV capacity
(Source) METI(Ministry of Economy, Trade and Industry)
Renewable Energy in Japan
(1$=120 yen)
3
0.0
5.0
10.0
15.0
20.0
25.0
1995 2000 2005 2010 2015
[GW]
FIT implementation (July 2012)
PV: 25GW
Resilience Engineering Research Center
Nuclear Power Plants in Japan
【Permanent Shutdown】
Tokai:The Japan Atomic Power Company 1998.3.31
Hamaoka No1,No2:Chubu Electric Power Company 2009.1.30
Fukushima Daiichi No1,No2,No3,No4:Tokyo electric power company 2011.3.31
4321
(Source) FEPC(Federation of Electric Power
Companies Japan), IEEJ
Nuclear has been very important power source in Japan, and all nuclear plants
stranded for regulatory inspection after the Fukushima. At last, on August 11,
2015, Sendai nuclear power reactor in Kyushu Electric Power Company restarted
its operation, which is the first case of the restart since 2013.
4
Hamaoka, Chubu Electric Power Company
11
Kashiwazaki-Kariwa, Tokyo Electric Power Company
Shika, Hokuriku Electric Power Company
Tsuruga, The Japan Atomic Power Company
Mihama, Kansai Electric Power Company
Ohi, Kansai Electric Power Company
Genkai, Kyushu Electric Power Company
Sendai, Kyushu Electric Power Company
Output
100MW and more1000MW and less500MW and less
Under construction
In operation
68.15562Total
16.5529Planning
2.7563Under construction
48.84750In operation
Total output (GW)Units
68.15562Total
16.5529Planning
2.7563Under construction
48.84750In operation
Total output (GW)Units
11 22 11 22 33
33 44 55
22 33 4411
6655
3311 22
11 22
11
22 33 4411 55 66 77
2211
2211
3311 22
22 33 4411
Takamaha, Kansai Electric Power Company
33 4411 22
Shimane, Chugoku Electric Power Company
11 22 33
11 22 33 44
33
Higashidori, Tohoku Electric Power Company
Higashidori, Tokyo Electric Power Company
Tomari, Hokkaido Electric Power Company Ohma, Japan Power
Development Company
Onagawa, Tohoku Electric Power Company
Fukushima Daiichi, Tokyo Electric Power Company
TokaiDaini, The Japan Atomic Power Company
Ikata, Shikoku Electric Power Company
Fukushima Daini, Tokyo Electric Power Company
Resilience Engineering Research Center
Long-term energy outlook to 2030 of Japan was published in July 2015 by
Ministry of Economy, Trade and Industry (METI).
The most important agenda consists in the maximization of the fraction of
renewable energy (22~24%) after the Fukushima nuclear accident.
Outlook of Power Generation Mix
(Source) METI(Ministry of Economy, Trade and Industry)
Target of Optimal Power Generation Mix in 2030
5
0
10
20
30
40
50
60
70
80
90
100
10 year average before
Fukushima
2030
[%]
Oil 12%
Coal 24%
LNG27%
Nucear 27%
Renewable
11%
Oil 3%
Coal26%
LNG27%
Nuclear
20~22%
Renewable
22~24%
Hydro
8.8~9.2%
PV
7.0%
Wind 1.7%
Geothermal
1.0%
~1.1%Biomass
3.7~4.6%
Resilience Engineering Research Center
Modeling Overview
6
After the Fukushima, a lot of attention has been concentrated on renewable
energy as alternative power source in Japan.
This presentation discusses optimal power generation mix (OPGM) for
Japan with large-scale integration of renewable energy sources,
and evaluate following item to provide policy maker with relevant insights
• Optimal power dispatch
• Additionally installed generators or batteries
• Additionally installed capacity of transmission lines
• Temporal resolution (2 hour ? 1 hour ? 30 min ? 10 min ?)
Method
An energy model is developed to understand possible massive RES integration.
⇒ OPGM Model (Computer-based numerical simulation tool)
Resilience Engineering Research Center
Power System in Japan
(As of March 31, 2009)
• The ten privately-owned regional electric power companies in Japan are responsible for providing local operations from
power generation to distribution and supplying electricity to their respective service areas.
• In addition, the ten electric power companies cooperate with each other to ensure a stable supply to customers
nationwide.
• For example, the electric power companies work together to exchange or provide electricity in order to cope with
emergency situations resulting from accidents, breakdowns, or summer peak demand.
• However, in April 2016 , the whole retail power market will be completely deregulated, and power sale competition will be
encouraged.
Total: 230GW
System peak load : 178,995MW
Electricity sales: 888,935GWh
FCF: Frequency Converter Facilities
:Total cap. 1.1GW
Resilience Engineering Research Center
Overview:
Optimal Power Generation Mix (OPGM) Model in Japan
Geographical Resolution:
• whole region of Japan
• 135 nodes, 166 transmission lines
Power Line Network of OPGM model in Japan
Eastern Japan (50Hz)Western Japan (60Hz)
南早来
西当別
道北1道北2道北3
北新得
西双葉
函館/大野
G
G
東通
上北
秋田 岩手
宮城
G
女川
G
三
陸
海
岸
新庄
西仙台
仙台
宮城中央
G
相馬共同
新潟
G
南相馬
福島第一
GG
福島第二
広野
南いわき
新いわき
風力接続線1
広
野
火
力
線
富
岡
線
川
内
線
相
馬
双
葉
幹
線
常
磐
幹
線
仙
台
幹
線
青
葉
幹
線
北
上
幹
線
十
和
田
幹
線
む
つ
幹
線
相
福
幹
線
朝
日
幹
線
山
形
幹
線
陸
羽
幹
線
松
島
幹
線
牡
鹿
幹
線
奥
羽
幹
線
岩手幹線
北青幹線/北奥幹線
大潟幹線
道
南
幹
線
道
央
西
幹
線
道
央
北
幹
線
道
央
東
幹
線
北
本
連
系
線
風力接続線5
襟裳岬
風
力
接
続
線
4
狩
勝
幹
線
飯
豊
幹
線
五
頭
幹
線
鳴
瀬
幹
線
秋盛幹線G
津軽半島
G G
道
央
南
幹
線
G
西野
G風力接続線2風力接続線3
柏崎刈羽
新新潟幹線鉄塔
新榛名/西群馬
G
G
G
東群馬
G
G
G
G
G G
G
新茂木
新栃木/新今市
新新田
新所沢
新古河/新筑波
G
那珂
ひたちなか
G
G
新野田
新京葉
新豊洲
新佐原
岩槻
品川火力
G G
G
新富士
東山梨
横須賀
新秦野
新多摩
横浜火力
新秩父新信濃
今市 下郷
G
塩原
房総
新木更津
袖ヶ浦 富津
房
総
線
新袖ヶ浦線
新袖ヶ浦線
福
島
幹
線
福島幹線新
古
河
線
新
佐
原
線
福
島
東
幹
線
新
茂
木
線
新
秩
父
線
新
栃
木
線新岡部線
新新田線
新
多
摩
線
新
新
潟
幹
線
新
榛
名
線 下郷線156鉄塔
下
郷
線
今
市
線
新
秦
野
線
新
い
わ
き
線
新
京
葉
線
新
京
葉
線
印旛線
西
群
馬
幹
線
西
群
馬
幹
線
塩
原
線
南
新
潟
幹
線
新
坂
戸
線
東群馬幹線
南いわき幹線
新
赤
城
線
那
珂
線
阿
武
隈
線
新
豊
洲
線
東
京
西
線
品
川
火
力
系
品
川
火
力
系
東
京
南
線
君津線
北
千
葉
線
千葉
北
千
葉
線
富津火力線
接
続
線
下
郷
線
佐久間FC
新信濃FC
柏崎刈羽(原)
奥清津(揚)
奥清津第二(揚)
新高瀬川(揚)
水殿(揚) 安雲(揚)
玉原(水)
葛野川(揚)
神流川(揚)
横浜(火) 川崎(火)
南横浜(火) 磯子(火)
横須賀(火)
今市(揚)
塩原(揚)
下郷(揚)
沼原(揚)
千葉(火)
鹿島(火)
鹿島共同(火)
G五井(火)
姉崎(火)
富津(火)袖ヶ浦(火)
君津共同(火)
品川(火) 大井(火)
東扇島(火)
勿来(火)
常陸那珂(火)
東海第二(原)
広野(火) 福島第二(原)
福島第一(原)
新地(火)
新潟(火)
東新潟(火)
仙台(火)
新仙台(火)
酒田共同(火)
女川(原)
秋田(火)
能代(火)
東通(原)
八戸(火)
知内(火)
泊(原)
伊達(火)
苫小牧(火) 音別(火)
苫東厚真(火)
苫小牧共同(火)砂川(火)
奈井江(火)
G
双
葉
線
G
原町(火)
G
東清水FC
MINAMIHAYAKITA
NISHITOBETSU
NORTH
HOKKAIDO1
NORTH
HOKKAIDO3
KITASHINTOKU
NISHI
FUTABA
HAKODATE
/ONO G
G
HIGASHIDORI
KITAKAMI
AKITA IWATE
MIYAGI
G
ONAGAWA
G
SHINJYO
NISHISENDAI
SENDAI
MIYAGI
CHUO
G
SOMA
KYODO
NIGATA
G
MINAMISOMA
FUKUSHIMA
DAIICHI
GG
FUKUSHIMA
DAINI
HIRONO
MINAMIIWAKI
SHINIWAKI
Wind connection 1
Iwate
main line
Wind connection 5
ERIMOMISAKI
G
TSUGARU
Peninsula
G G
G
NISHINO
GWind connection 2Wind connection 3
KASHIWASAKI
KARIWA
SHIN
NIGATA
Tower
SHINHARUNA
/NISHIGUNMA
G
G
G
HIGASHI
GUNMAN
G
G
G
G
G G
G
SHINMOGI
SHINTOCHIGI/SHINIMAICHI
SHIN
SHINDEN
SHIN
TOKOROZAWA
SHINFURUKAWA
/SHINTSUKUBA
G
NAKA
HITACHINAKA
G
G
SHINNODA
SHINKEIYO
SHINTOYOSU
SHIN
SAHARA
IWASTUKI
SHINAGAWA
Thermal
G G
GSHINFUJI
HIGASHI
YAMANASHI
YOKOSUKA
SHIN
HADANO
SHINTAMA
YOKOHAMA
Thermal
SHIN
CHICHIBU
SHINSHINANO
IMAICHI SHIMOGO
G
SHIOBARA
BOSO
SHIN
KISARAZU
SODEGAURA FUTTSU
Shinsodegaura line
Shinsodegaura line
Fukushima main line
shinokabe line
shinshinden line
SHIMOGO Line
156 Tower
Higashigunma
main line
Minamiiwaki
CHIBA
Futtsu thermal
lineSakuma FC
Shinshinano FC
kasiwasakikariwa(N)
okukiyotsu(P)
okukiyotsudaini(P)
shintakasegawa(P)
midono(P)
akumo(P)
tanbara (H)
kazunogawa(P)
kannagawa(P)
yokohama(T) kawasaki(T)
minamiyokohama(T) isogo(T)
yokosuka(T)
imaichi(P) siobara(P)
simogo(P)
numappara(P)
chiba(T)
kashima(T)
kashimakyodo(T)
Ggoi(T)
anesaki(T)
futtsu(T)sodegaura(T)
kimitsukyodo(T)
shinagawa(T) Oi(T)
higashiogishima(T)
nakoso(T)
hitachinaka(T)
tokaidaini(N)
hirono(T) Fukushimadaini(N)
fukushimadaiichi(N)
shinchi(T)
nigata(T)
higashinigata(T)
sendai(T)
shinsendai
(T)
sakatakyodo(T)
onagawa(N)
akita(T)
noshiro(T)
higashidori(N)
hachinohe(T)
shiriuchi(T)
tomari(N)
date(T)
tomakomai(T)
onbetsu(T)
tomatoatsuma(T)
tomakomaikyodo(T)
sunagawa(T)
naie(T)
G
G
haramachi(T)
G
Higashishimizu FC
NORTH
HOKKAIDO2
SANRIKU Coast
Minaminiigatamainline
Shinniigatamainline
NishigunmamainlineNishigunmamainline
ShinharunalineShitamalineShinhadanoline
Tokyonishiline
Shinchichibuline
Tokyominami
line
Shinagawathermal
system
Shinagawathermal
system
Shintoyosuline
ShinkeiyolineShinkeiyoline
Shinfurukawa
line
Shintochigi
line
Shimogo
line
Shimogo
line
Imaichi
line
Shiobara
line
Abunaka
line
Naka
line
Shinmogi
line
Shinsaharaline
Fukushimamainline
Shiniwakiline
Fukushimahigashimainline
Bosoline
KitachibalineKitachibaline
Yamagata
mainline
Oumainline
Hirono
thermalline
Tomiokaline
Asahimainline
Jobanmainline
Aoba
mainline
Sendaimainline
Matsushima
mainline
Shinsakadoline
Shinakagiline
Inba line
Kimitsu line
Karikachi
mainline
Wind
connection4
Mutsu
mainline
NorthCentral
Hokkaido
mainline
WestCentral
Hokkaido
mainline
EastCentral
Hokkaido
mainline
SouthCentral
Hokkaido
mainline
South
Hokkaido
mainline
Kitahoninterconnectionline
Riku
mainline
Kitakami
mainline
Oshika
mainline
Naruse
mainline
Hokusei/hokuo/Ogata
main line
Hokusei/hokuo/Ogata
main line
Akimori
main line
Towada
mainline
SomaFutabamainline
Futaba
line
Kawauchi
line
Gozumainline
Idemainline
Sofuku
mainline
G
G
G
G
G
G G
G
GGG
G
G
G
G
G
G
G
G
G
G
G
G
MINAMI
KYUSYU
OMARUGAWA
TAKANO
CHUO OITA
TOYOMAE
NISHI
KYUSYU
KITA
KYUSYU
SHIN
YAMAGUCHI
HIGASHI
YAMAGUCHI
SHINNISHI
HIROSHIMA
SHIN
HIROSHIMA
SHIN
OKAYAMA
HIGASHI
OKAYAMA
HIROSHIMA
SHINKURASIKI
SANUKI
KAWAUCHI ANAN
OSAKA
Bay
NOSEYAMASAKINISHIHARI
HINO
NISHI
SHIMANE
MISUMI
KITAMATSUE
SHIN
TOTTORI CHIZU
HIGASHIOMI
MINAMIKYOTO
SEKI
KUROBE
RYONANKEIHOKUINAGAWAHOKUSETSU
OKUTATARAGI
MAIDURU OOI
MIHAMA
SHINFUKUI ECHIZENKITASYO
KAGA JOHANA TOYAMA
MINAMI
FUKUMITSU SHINNOTO SHIGA
GIFU
MIE
HIGASHI
YAMATO
SEIBU GIHOKU
KAWAGOE
HOKUBU
NAGANO
AICHI
JOETSU
SHINANO
TOYONE
TOBU
CHITA
HEKINAN
ATSUMI
SHIZUOKA
TOEI
HAMAOKA
G
UBE
G
TOKUYAMA
himejidaiichi(T)
himejidaini(T)
tanagawadaini(T)
aioi(T) akou(T)
nanko(T)
sakaiminato(T)
kainan(T) gobo(T)
shinonoda(T)
simonoseki(T)
G
misumi(T)
shimane(N)
matanogawa(P)
kisenyama(P)
okuyoshino (P)
ikehara(P)
ooi(N)
fukui(T)
tsuruga(T)
nanaota(T)
shiga(N)
other
hydro(H)
Gtoyama(T)
toyamashinko(T)
maiduru(T)
miyadu(T)
takahama(N)
okutataragi(P)
mihama(N)
tsuruga(N)
saijo(T)
ikata(N)
omorigawa(P)
hongawa(P)
ananaigawa(P) anan(T) tachibanawan(T)
sakaide(T) kagehira(P)
G
G
omarugawa(P)
sendai(T) sendai(N)
reihoku (T) taihei(P)
genkai(N)
matsuura(T)
karatsu(T)
ainoura(T)
matsushima(T)
tenzan(P)
shinkokura
(T)
karita(T)
simomatsu(T)
yanai(T)
iwakuni(T)
kaminoseki(N)
shinoita(T)
osaki(T) nabara(P)
mizushima(T)
shinnariwagawa(P)
yokkaichi(T)
kawagoe(T)
shinnagoya(T)
nishinagoya(T)
owasemita(T)
chita(T)
taketoyo(T)
chitadaini(T)
hekinan(T)
atsumi(T)
hamaoka(N)
Gbuzen(T)
G
takehara(T)
joetsu(T)
kurobe etc(P)
Gokawachi(P)
G
okumino(P)
nagano(P)
G
takanedaiichi(P)
mazegawadaiichi(P)
G
okuyahagidaiichi(P)
okuyahagidaini(P)
G
Echizen lineKitanosho line Chuo main line
Shinko/Shintoyama
main line
KagaFukumitsu line
Noetsu main line Noetsu main line
Shinshinano FC
Sakuma FC
Higashishimizu FC
Minamifukumitsu
interconnection
Aigi main line Toyone main line
Wakasa main line
Wakasa main lineTanba main lineToban lineShintottoriChizu
Chugokuhigashi
main line
Hino
main line
HinoShintottorichugokuchu
main lineChugokunishi main line
Shinyamaguchi
main line
Shinyamaguchi
main line
Shinnishihiroshima
main line
Shinhiroshima
main line
Shinokayama
main line
NishihariOkayama
line
Harimanishi
line
Harimachuo
line
Nose
line
Minamiomi
line
MieHigashiomi
line
Mie
connection line
Seibu
main line
Seibu
main line
Tobu
main line
Toei
main line
Sangi main line
Yamashirohigashiline
AnanKihoku DC main line
SeibuNagoyaline
Kitayamatoline
Chitathermalline
HigashiNagoyatobuline
Gifuconnectionline
Shizuokamainline
Toyoneconncetion
line
Minamishinano
mainline
Shizuoka
connectionline
Hamaokamainline
Kitakyusyu
mainline
Shinhiroshima
connectionline
Shinnishihiroshima
connectionline
Shinokayama
connectionline
Higashiokayama
connectionline
Higashiyamaguchi
connectionline
Nishishimane
mainline
Joetsuthermalline
Shinano
mainline
Omarugawa
mainline
YamasakiChizuline
Harimaline
Shinyamaguchi
connectionline
YamaguchiUbeline
Kanmon
Interconnectionline
Shikokutyuohigashi
mainline
Awamainline
Honshi
Interconnectionline
Misumi
thermalline
Shimanenuclearpower
mainline
Kitamatsue
mainline
Okutataragi
mainline
Tanba
mainline
Dainioi
mainline
Mihama
line
EchizenRyonanline
Kagamainline
TakaradukalineHimejiline
Nishikyotoline
Miborokita
mainline
Miborominami
mainline
HokubuchunolineNagano
mainline
Sunto
mainline
Shinmikawa
mainline
Mikawaline
NukatatobulineNukataKoutaline
8
Resilience Engineering Research Center
Network Topology:
Node Distribution in Japanese Map
Resilience Engineering Research Center
Network Topology:
Modelling of Power System in Eastern Japan (50 Hz)
10
MINAMIHAYAKITA
NISHITOBETSU
NORTH
HOKKAIDO1
NORTH
HOKKAIDO3
KITASHINTOKU
NISHI
FUTABA
HAKODATE
/ONO G
G
HIGASHIDORI
KITAKAMI
AKITA IWATE
MIYAGI
G
ONAGAWA
G
SHINJYO
NISHISENDAI
SENDAI
MIYAGI
CHUO
G
SOMA
KYODO
NIGATA
G
MINAMISOMA
FUKUSHIMA
DAIICHI
GG
FUKUSHIMA
DAINI
HIRONO
MINAMIIWAKI
SHINIWAKI
Wind connection 1
Iwate
main line
Wind connection 5
ERIMOMISAKI
G
TSUGARU
Peninsula
G G
G
NISHINO
GWind connection 2Wind connection 3
KASHIWASAKI
KARIWA
SHIN
NIGATA
Tower
SHINHARUNA
/NISHIGUNMA
G
G
G
HIGASHI
GUNMAN
G
G
G
G
G G
G
SHINMOGI
SHINTOCHIGI/SHINIMAICHI
SHIN
SHINDEN
SHIN
TOKOROZAWA
SHINFURUKAWA
/SHINTSUKUBA
G
NAKA
HITACHINAKA
G
G
SHINNODA
SHINKEIYO
SHINTOYOSU
SHIN
SAHARA
IWASTUKI
SHINAGAWA
Thermal
G G
GSHINFUJI
HIGASHI
YAMANASHI
YOKOSUKA
SHIN
HADANO
SHINTAMA
YOKOHAMA
Thermal
SHIN
CHICHIBU
SHINSHINANO
IMAICHI SHIMOGO
G
SHIOBARA
BOSO
SHIN
KISARAZU
SODEGAURA FUTTSU
Shinsodegaura line
Shinsodegaura line
Fukushima main line
shinokabe line
shinshinden line
SHIMOGO Line
156 Tower
Higashigunma
main line
Minamiiwaki
CHIBA
Futtsu thermal
lineSakuma FC
Shinshinano FC
kasiwasakikariwa(N)
okukiyotsu(P)
okukiyotsudaini(P)
shintakasegawa(P)
midono(P)
akumo(P)
tanbara (H)
kazunogawa(P)
kannagawa(P)
yokohama(T) kawasaki(T)
minamiyokohama(T) isogo(T)
yokosuka(T)
imaichi(P) siobara(P)
simogo(P)
numappara(P)
chiba(T)
kashima(T)
kashimakyodo(T)
Ggoi(T)
anesaki(T)
futtsu(T)sodegaura(T)
kimitsukyodo(T)
shinagawa(T) Oi(T)
higashiogishima(T)
nakoso(T)
hitachinaka(T)
tokaidaini(N)
hirono(T) Fukushimadaini(N)
fukushimadaiichi(N)
shinchi(T)
nigata(T)
higashinigata(T)
sendai(T)
shinsendai
(T)
sakatakyodo(T)
onagawa(N)
akita(T)
noshiro(T)
higashidori(N)
hachinohe(T)
shiriuchi(T)
tomari(N)
date(T)
tomakomai(T)
onbetsu(T)
tomatoatsuma(T)
tomakomaikyodo(T)
sunagawa(T)
naie(T)
G
G
haramachi(T)
G
Higashishimizu FC
NORTH
HOKKAIDO2
SANRIKU Coast
Minaminiigatamainline
Shinniigatamainline
NishigunmamainlineNishigunmamainline
ShinharunalineShitamalineShinhadanoline
Tokyonishiline
Shinchichibuline
Tokyominami
line
Shinagawathermal
system
Shinagawathermal
system
Shintoyosuline
ShinkeiyolineShinkeiyoline
Shinfurukawa
line
Shintochigi
line
Shimogo
line
Shimogo
line
Imaichi
line
Shiobara
line
Abunaka
line
Naka
line
Shinmogi
line
Shinsaharaline
Fukushimamainline
Shiniwakiline
Fukushimahigashimainline
Bosoline
KitachibalineKitachibaline
Yamagata
mainline
Oumainline
Hirono
thermalline
Tomiokaline
Asahimainline
Jobanmainline
Aoba
mainline
Sendaimainline
Matsushima
mainline
Shinsakadoline
Shinakagiline
Inba line
Kimitsu line
Karikachi
mainline
Wind
connection4
Mutsu
mainline
NorthCentral
Hokkaido
mainline
WestCentral
Hokkaido
mainline
EastCentral
Hokkaido
mainline
SouthCentral
Hokkaido
mainline
South
Hokkaido
mainline
Kitahoninterconnectionline
Riku
mainline
Kitakami
mainline
Oshika
mainline
Naruse
mainline
Hokusei/hokuo/Ogata
main line
Hokusei/hokuo/Ogata
main line
Akimori
main line
Towada
mainline
SomaFutabamainline
Futaba
line
Kawauchi
line
Gozumainline
Idemainline
Sofuku
mainline
Resilience Engineering Research Center
Network Topology:
Modelling of Power System in Western Japan (60 Hz)
11
G
G
G
G
G
G G
G
GGG
G
G
G
G
G
G
G
G
G
G
G
G
MINAMI
KYUSYU
OMARUGAWA
TAKANO
CHUO OITA
TOYOMAE
NISHI
KYUSYU
KITA
KYUSYU
SHIN
YAMAGUCHI
HIGASHI
YAMAGUCHI
SHINNISHI
HIROSHIMA
SHIN
HIROSHIMA
SHIN
OKAYAMA
HIGASHI
OKAYAMA
HIROSHIMA
SHINKURASIKI
SANUKI
KAWAUCHI ANAN
OSAKA
Bay
NOSEYAMASAKINISHIHARI
HINO
NISHI
SHIMANE
MISUMI
KITAMATSUE
SHIN
TOTTORI CHIZU
HIGASHIOMI
MINAMIKYOTO
SEKI
KUROBE
RYONANKEIHOKUINAGAWAHOKUSETSU
OKUTATARAGI
MAIDURU OOI
MIHAMA
SHINFUKUI ECHIZENKITASYO
KAGA JOHANA TOYAMA
MINAMI
FUKUMITSU SHINNOTO SHIGA
GIFU
MIE
HIGASHI
YAMATO
SEIBU GIHOKU
KAWAGOE
HOKUBU
NAGANO
AICHI
JOETSU
SHINANO
TOYONE
TOBU
CHITA
HEKINAN
ATSUMI
SHIZUOKA
TOEI
HAMAOKA
G
UBE
G
TOKUYAMA
himejidaiichi(T)
himejidaini(T)
tanagawadaini(T)
aioi(T) akou(T)
nanko(T)
sakaiminato(T)
kainan(T) gobo(T)
shinonoda(T)
simonoseki(T)
G
misumi(T)
shimane(N)
matanogawa(P)
kisenyama(P)
okuyoshino (P)
ikehara(P)
ooi(N)
fukui(T)
tsuruga(T)
nanaota(T)
shiga(N)
other
hydro(H)
Gtoyama(T)
toyamashinko(T)
maiduru(T)
miyadu(T)
takahama(N)
okutataragi(P)
mihama(N)
tsuruga(N)
saijo(T)
ikata(N)
omorigawa(P)
hongawa(P)
ananaigawa(P) anan(T) tachibanawan(T)
sakaide(T) kagehira(P)
G
G
omarugawa(P)
sendai(T) sendai(N)
reihoku (T) taihei(P)
genkai(N)
matsuura(T)
karatsu(T)
ainoura(T)
matsushima(T)
tenzan(P)
shinkokura
(T)
karita(T)
simomatsu(T)
yanai(T)
iwakuni(T)
kaminoseki(N)
shinoita(T)
osaki(T) nabara(P)
mizushima(T)
shinnariwagawa(P)
yokkaichi(T)
kawagoe(T)
shinnagoya(T)
nishinagoya(T)
owasemita(T)
chita(T)
taketoyo(T)
chitadaini(T)
hekinan(T)
atsumi(T)
hamaoka(N)
Gbuzen(T)
G
takehara(T)
joetsu(T)
kurobe etc(P)
Gokawachi(P)
G
okumino(P)
nagano(P)
G
takanedaiichi(P)
mazegawadaiichi(P)
G
okuyahagidaiichi(P)
okuyahagidaini(P)
G
Echizen lineKitanosho line Chuo main line
Shinko/Shintoyama
main line
KagaFukumitsu line
Noetsu main line Noetsu main line
Shinshinano FC
Sakuma FC
Higashishimizu FC
Minamifukumitsu
interconnection
Aigi main line Toyone main line
Wakasa main line
Wakasa main lineTanba main lineToban lineShintottoriChizu
Chugokuhigashi
main line
Hino
main line
HinoShintottorichugokuchu
main lineChugokunishi main line
Shinyamaguchi
main line
Shinyamaguchi
main line
Shinnishihiroshima
main line
Shinhiroshima
main line
Shinokayama
main line
NishihariOkayama
line
Harimanishi
line
Harimachuo
line
Nose
line
Minamiomi
line
MieHigashiomi
line
Mie
connection line
Seibu
main line
Seibu
main line
Tobu
main line
Toei
main line
Sangi main line
Yamashirohigashiline
AnanKihoku DC main line
SeibuNagoyaline
Kitayamatoline
Chitathermalline
HigashiNagoyatobuline
Gifuconnectionline
Shizuokamainline
Toyoneconncetion
line
Minamishinano
mainline
Shizuoka
connectionline
Hamaokamainline
Kitakyusyu
mainline
Shinhiroshima
connectionline
Shinnishihiroshima
connectionline
Shinokayama
connectionline
Higashiokayama
connectionline
Higashiyamaguchi
connectionline
Nishishimane
mainline
Joetsuthermalline
Shinano
mainline
Omarugawa
mainline
YamasakiChizuline
Harimaline
Shinyamaguchi
connectionline
YamaguchiUbeline
Kanmon
Interconnectionline
Shikokutyuohigashi
mainline
Awamainline
Honshi
Interconnectionline
Misumi
thermalline
Shimanenuclearpower
mainline
Kitamatsue
mainline
Okutataragi
mainline
Tanba
mainline
Dainioi
mainline
Mihama
line
EchizenRyonanline
Kagamainline
TakaradukalineHimejiline
Nishikyotoline
Miborokita
mainline
Miborominami
mainline
HokubuchunolineNagano
mainline
Sunto
mainline
Shinmikawa
mainline
Mikawaline
NukatatobulineNukataKoutaline
Resilience Engineering Research Center
Overview:
Optimal Power Generation Mix (OPGM) Model in Japan
Power Generation Facilities:
• 500 power generation facilities
(Coal, LNG-GCC, LNG-ST, Oil, Nuclear, Hydro, Geothermal, Biomass, Marine, PV, Wind)
• 245 storage facilities
(Pumped Storage, Sodium-sulfur Battery (Lower C-rate), Li-ion Battery (Higher C-rate))
Time Resolution:
• 10-min interval for 1 year
= 6 intervals/hour×24 hours/day×365 days = 52,560 time steps / year
Methodology:
• Linear programming (200 million constraints)
• Single-period optimization (cost minimization)
• It takes three days to obtain an optimal solution with CPLEX.
12
Resilience Engineering Research Center
Modeling (LP Formulation)
13
Optimizes the set of endogenous variables which minimizes
the objective function under the given constraints
Objective Function
= Fixed Cost (power sources, storages, transmission lines)
+ Fuel Cost (thermal, nuclear) + Power Storage Cost*
Constraints
supply-demand balances, capacity constraints, power supply reserve constraints,
load following capability constraints, CO2 emission constraint, power transmission
capacity constraints, charge and discharge balance of power storage, C-rate
constraints, ……………….
* Power Storage Cost = Capacity Cost + Energy Cost + Cost of consumable parts
Resilience Engineering Research Center
Wind Resource Map in Japan
Wind Resource
Wind Speed Wind Resource
Wind Speed
Onshore Offshore
Total Potential: 282.9 GW
Hokkaido : 139.6 GW (49%)
Tohoku : 72.6 GW (26%)
Kyushu : 20.9 GW (7.4%)
Total Potential: 1572.6 GW
Hokkaido : 403.0 GW (26%)
Tohoku : 224.8 GW (14%)
Kyushu : 454.6 GW (29%)
(Source) Ministry of Environment
14
Resilience Engineering Research Center
Solar Radiation Map
15
Resilience Engineering Research Center
Locations of AMeDAS
16
Automated Meteorological Data Acquisition System
The system extends to about 1,300 places in Japanese various places, and measures
precipitation, wind direction, velocity of the wind, air temperature, durations of sunshine,
and depth of snow cover degree, by automatic operation in every 10 minutes.
Sunshine Wind
Resilience Engineering Research Center
Modeling of PV and Wind Outputs
17
Example of PV output Example of wind output
PV and wind outputs are estimated from actual meteorological data in year-
2012, and are given at 10-min intervals for 1 year in each node
In the model, PV and wind outputs can be curtailed, if necessary.
(The model determines the optimal operation of PV & wind outputs among
direct grid integration, storage and curtailment)
Resilience Engineering Research Center
Measured and Estimated Wind Power
18
0
500
1000
1500
2000
2500
0 10 20 30
[KW]
[m/s]
Performance curve
Performance curve
Vc=5, Vr=12.5, and Vf=25(m/s) in mega-watt class pinwheel (1
~3MW) in recent years.
Example (Lower right figure)
Ratings output 2000kW
Performance curve of pinwheel of Vc=3, Vr=12.5, and
Vf=25(m/s)
Resilience Engineering Research Center
Parameter Setting (Example)
19
Type Nuclear Coal LNG GCC LNG ST Oil Biomass Hydro Geothermal PV Wind
Unit Construction Cost [$/kW] 2,790 2,720 1,640 1,640 2,690 3,500 7,320 5,100 4,000 1,900
Life Time [year] 40 40 40 40 40 40 60 20 17 17
Annual O&M Cost Rate 0.04 0.048 0.036 0.036 0.039 0.048 0.0178 0.01 0.01 0.02
Maximum Capacity [GW] ∞ ∞ ∞ ∞ 5.5 GW 10 GW
Minimum Capacity [GW] 0 0 0 0 0 2.2 GW
MaximumIncrease Rate of Output [1/hour] 0 0.31 0.82 0.82 1 0.31 0.05 0.05
MaximumDecrease Rate of Output [1/hour] 0 0.58 0.75 0.75 1 0.58 0.05 0.05
Efficiency 1 0.418 0.484 0.396 0.394 0.2
Own Consumption Rate 0.035 0.061 0.02 0.04 0.045 0.13
Fuel Cost [cent/specific unit] 1.67 8.367 51.985 51.985 70.197 12.25
Heat Content[kcal/specific unit] 860 6139 13043 13043 9126 3585
Carbon Content[kg-C/specific unit] 0 0.61752 0.7462 0.7462 0.78792 0
Seasonal Peak Availability 0.85 0.85 0.9 0.9 0.9 0.85
Annual Average Availability 0.85 0.783 0.833 0.8 0.8 0.783
Share of Daily Start and Stop 0 0 0.5 0.3 0.7 0
Minimum Output Level 0.3 0.3 0.2 0.2 0.3 0.3
Specific Unit kWh kg kg kg l kg
32GW 23 GW 1.2 GW
6.7GW to
1,270 GW
Type Pumped Battery(NAS)
Unit kW Construction Cost [$/kW] 2,400 1,200
Life Time [year] 60 15
Annual O&M Cost Rate 0.01 0.01
Maximum Capacity [GW] ∞
Minimum Capacity [GW] 0
Unit kWh Construction Cost [$/kWh] 10 40
Life Time [year] 60 15
Unit Non durable Material Cost [$/kWh] 0 160
Life Cycle [times] ∞ 4,500
Cycle Efficiency 0.7 0.9
Self Discharge Loss [1/hour] 0.0001 0.001
Maximum kWh ratio to kW 6 ∞
Usage Rate 0.9 0.9
28 GW
Resilience Engineering Research Center 20
(Third Strategic Energy Plan by METI, 2014)
RES Fraction: 21%
(Energy and environmental option, 2012)
RES Fraction: 30%
PV
Rooftop 33.5 GW
Utility-scale 19.5 GW
Rooftop 40.0 GW
Utility-scale 23.28 GW
Wind 10 GW 34.89 GW
Hydro
Conventional 11.78 GW
Small, medium 12.0 GW
Conventional 11.78 GW
Small, medium 12.0 GW
Geothermal 1.65 GW 3.12 GW
Biomass 3.61 GW 5.52 GW
Marine No 1.0 GW
Total 92.04 GW 131.60 GW
* Above capacity is allocated to each node, based on capacity certified by FIT and resource
potential estimated by Ministry of Environment Japan.
Assumptions of Renewable Power Generation (2030)
Resilience Engineering Research Center
Assumption: RES Capacity in 2030
21
57%
11%
26%
2%4%
Case: RES 21%
PV Wind Hydro Geothermal Biomass
Generating Capacity
92.04GW
48%
27%
18%
2%
4%1%
Case: RES 30%
PV Wind Hydro
Geothermal Biomass Marine
Generating Capacity
131.6GW
Resilience Engineering Research Center
Power Generation Mix in Japan (2030)
22
In the case of RES 30%, 15% of total wind output is observed to be curtailed.
110.7 110.3
11.6
21.6
31.7 32.2
158.5 154.1
219.9 209.9
36.1 26.3
302.5
256.0
22.3
70.1
51.0 63.0
-15.7
-15.0
10.7
10.3
12.6
0.9
-19.3 -21.2
-100
0
100
200
300
400
500
600
700
800
900
1000
[5-1] [5-2]
TWh Electricity Balances in the Period Loss
Suppressed PV
Suppressed Wind
Battery2(out)
Battery1(out)
Pumped(out)
Battery2(in)
Battery1(in)
Pumped(in)
PV
Wind
Oil
LNG GCC
LNG ST
Coal
Nuclear
Marine
Biomass
Geothermal
Hydro
RES21% RES30%
Resilience Engineering Research Center
Results|Installed Capacity
23
0
20
40
60
80
100
120
[5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2]
Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu
GW Generating Capacity
Battery2 Battery1 Pumped
PV Wind Oil
LNG GCC LNG ST Coal
Nuclear Marine Biomass
Geothermal Hydro
21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30%
Resilience Engineering Research Center
24
-50
0
50
100
150
200
250
300
350
[5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2]
Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu
TWh Electricity Balances in the Period
Loss Inter Change Suppressed PV
Suppressed Wind Battery2(out) Battery1(out)
Pumped(out) Battery2(in) Battery1(in)
Pumped(in) PV Wind
Oil LNG GCC LNG ST
Coal Nuclear Marine
Biomass Geothermal Hydro
21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30%
Results|Power Generation
Resilience Engineering Research Center
25
0.2 0.3
2.6
0.6
1.3
0.0 0.0
2.5
0.0
1.1
0.0
1.0
2.0
3.0
西野 新京葉 大阪湾 阿南 新倉敷
Newly Constructed LNG GCC
[5-1] [5-2]RES21% RES30%
Results|Capacity Expansion
Nishino Shinkeiyo Osaka bay Anan Shinkurashiki
Resilience Engineering Research Center
Results|Capacity Factor of Wind and PV
26
36.5
24.2
20.1
22.1 21.7
28.3
29.7
20.1
29.3
25.4
23.6
20.2 20.1
22.1 22.1
28.5
29.9
23.4
28.7
22.8
0.0
10.0
20.0
30.0
40.0
Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu All Japan
% Wind Capacity Factor
[5-1]
[5-2]
9.6
10.0
11.7 12.0
10.3 10.6
11.0
10.4 10.6
11.1
8.5
9.8
11.8 12.1
10.3 10.6
11.0
10.4 10.0
10.9
0.0
5.0
10.0
15.0
Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu All Japan
% PV Capacity Factor
[5-1]
[5-2]
RES21% RES30%
RES21% RES30%
Resilience Engineering Research Center
Wind & PV Suppression
27
For large-scale integration of wind & PV in Japan, those output curtailments are
required particularly in Hokkaido, Tohoku and Kyushu service area
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
40.3
15.9
0.0 0.0 0.0 0.0 0.0 0.0
2.7
15.3
0.0
15.0
30.0
45.0
Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu All Japan
% Wind Suppression Rate
[5-1]
[5-2]RES21%
RES30%
Wind Suppression Rate40.3%
15.9%
2.7%
Hokkaido
Tohoku
Kyushu
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.7
0.0
11.1
1.3
0.0 0.0 0.0 0.0 0.0 0.0
6.0
1.5
0.0
2.0
4.0
6.0
8.0
10.0
12.0
Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu All Japan
%
PV Suppression Rate
[5-1]
[5-2]
PV Suppression Rate11.1%
1.3%
6.0%
Hokkaido
Tohoku
Kyushu
Resilience Engineering Research Center
Capacity Factor of Power Plants in Each Region
28
Capacity factor of ramp generator is observed to be decreased.
Large-scale RES integration affects capacity factor of base-load generators such as nuclear and coal
in Hokkaido and Tohoku regions.
0
10
20
30
40
50
60
70
80
90
100
[5-1] [5-2]
%
Capacity Factor (Tohoku)
Nuclear
Coal
LNG GCC
Hydro
Oil
0
10
20
30
40
50
60
70
80
90
100
[5-1] [5-2]
%
Capacity Factor (Kanto)
Nuclear
Coal
LNG GCC
Hydro
Oil
LNG ST
0
10
20
30
40
50
60
70
80
90
100
[5-1] [5-2]
%
Capacity Factor (Hokkaido)
Nuclear
Coal
LNG GCC
Hydro
Oil
RES21%
0
10
20
30
40
50
60
70
80
90
100
[5-1] [5-2]
%
Capacity Factor (Kyushu)
Nuclear
Coal
LNG GCC
Hydro
Oil
RES30% RES21% RES30%
RES21% RES30% RES21% RES30%
Hokkaido Tohoku
Kanto Kyushu
Nuclear
Coal
Coal
LNG GCC
LNG ST
LNG GCC
Resilience Engineering Research Center
Power Grid Operation at RES 21% in July
29
Hokkaido
Tohoku
Kanto (Tokyo)
Ramp operation
by coal-fired
PV output is
controlled by
pumped-hydro
Transport of
surplus RES
outputs to Kanto
(Tokyo) region
-5
0
5
10
15
20
25
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Kyushu
PV output is
controlled by
pumped-hydro
Resilience Engineering Research Center
Power Grid Operation at RES 30% in July
30
Massive RES
curtailment
RES integration
influences base-
load generator
Ramp operation
by coal-fired
Transport of
surplus RES
outputs to Kanto
(Tokyo) region
↓
Nationwide grid
operation is
necessary in RES
integration
Hokkaido
Tohoku
Kanto (Tokyo)
-5
0
5
10
15
20
25
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Transport of
surplus RES
outputs to
Chugoku region
Kyushu
Resilience Engineering Research Center
-4
-2
0
2
4
6
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
-10
-5
0
5
10
15
20
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
-20
-10
0
10
20
30
40
50
60
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
-10
-5
0
5
10
15
20
25
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
Power Grid Operation at RES 21% in Dec.
Hokkaido
Tohoku
Kanto (Tokyo)
Kyushu
Wind output is
controlled by
pumped-hydro
Transport of
surplus RES
outputs to Kanto
(Tokyo) region
↓
Nationwide grid
operation is
necessary in RES
integration
Resilience Engineering Research Center
-6
-3
0
3
6
9
12
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
-15
-10
-5
0
5
10
15
20
25
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
-20
-10
0
10
20
30
40
50
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
-10
-5
0
5
10
15
20
25
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
Power Grid Operation at RES 30% in Dec.
Hokkaido
Tohoku
Kanto (Tokyo)
Kyushu
Massive RES
curtailment
RES integration
influences base-
load generator
Transport of surplus
RES outputs to Kanto
(Tokyo) region
↓
Nationwide grid
operation is
necessary in RES
integration
PV output is controlled
by pumped-hydro and
power transport to
Chugoku
Resilience Engineering Research Center
-10
-5
0
5
10
15
20
25
30
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
-4
-2
0
2
4
6
8
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
-5
0
5
10
15
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
-10
-5
0
5
10
15
20
25
30
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
-4
-2
0
2
4
6
8
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
Chubu
Hokuriku
Kansai
Shikoku
Chugoku
Power Grid Operation at RES 21% in July
PV output is controlled
by pumped-hydro and
power transport to
Chugoku
Resilience Engineering Research Center
-10
-5
0
5
10
15
20
25
30
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
GW
-4
-2
0
2
4
6
8
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
-10
-5
0
5
10
15
20
25
30
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
-6
-3
0
3
6
9
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
-6
-3
0
3
6
9
12
GW
Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in)
Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal
Nuclear Marine Biomass Geothermal Hydro Load
Power Grid Operation at RES 30% in July
Chubu
Hokuriku
Kansai
Shikoku
Chugoku
PV output is controlled
by pumped-hydro and
power transport to
Chugoku
Resilience Engineering Research Center
Total System Cost & CO2 emissions
35
RES 30% causes the increase in total system cost derived from large scale RES
integration, although a certain amount of CO2 emissions is mitigated.
11671
11294
12244
136
89
80
0
40
80
120
160
11000
12000
13000
[4-1] [5-1] [5-2]
CarbonEmission[Mt-C]
SystemCost[G-Yen]
RES21% RES30%(Base Case)
System Cost
Carbon Emission
Resilience Engineering Research Center
Results|Regional System Costs and CO2 emissions
36
348
1172
4006
1870
352
1731
440
658
1096
395
1127
3483
1715
370
1633
444
775
1352
555
1259
3732
1815
396
1660
457
838
1533
0
1500
3000
4500
Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu
G-Yen System Cost
[4-1] [5-1] [5-2]
5.7
17.6
34.9
20.8
6.1
16.5
8.3
10.4
15.4
1.3
11.4
21.4
15.6
4.7
11.5
3.2
9.1
10.8
0.2
9.2
19.5
14.4
4.4
10.8
2.6
8.6 10.3
0.0
10.0
20.0
30.0
40.0
Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu
Mt-C Carbon Emission
[4-1] [5-1] [5-2]
Base Case RES21% RES30%
Base Case RES21% RES30%
Resilience Engineering Research Center
Expansion of Power Transmission Line in
Eastern Japan (50Hz Grid)
37
南早来
西当別
道北1道北2道北3
北新得
西双葉
函館/大野
G
G
東通
上北
秋田 岩手
宮城
G
女川
G
三
陸
海
岸
新庄
西仙台
仙台
宮城中央
G
相馬共同
新潟
G
南相馬
南いわき
風力接続線1
川
相
馬
双
葉
幹
線
常
磐
幹
線
仙
台
幹
線
青
葉
幹
線
北
上
幹
線
十
和
田
幹
線
む
つ
幹
線
相
福
幹
線
朝
日
幹
線
山
形
幹
線
陸
羽
幹
線
松
島
幹
線
牡
鹿
幹
線
奥
羽
幹
線
岩手幹線
北青幹線/北奥幹線
大潟幹線
道
南
幹
線
道
央
西
幹
線
道
央
北
幹
線
道
央
東
幹
線
北
本
連
系
線
風力接続線5
襟裳岬
風
力
接
続
線
4
狩
勝
幹
線
飯
豊
幹
線
五
頭
幹
線
鳴
瀬
幹
線
秋盛幹線G
津軽半島
G G
道
央
南
幹
線
G
西野
G風力接続線2風力接続線3
新茂木
G
那珂
ひたちなか
G
新佐原
塩原
福
島
幹
線
福島幹線
新
佐
原
線
福
島
東
幹
線
新
茂
木
線
新
い
わ
き
線
那
珂
線
阿
武
隈
線
塩原(揚)
大井(火)
勿来(火)
常陸那珂(火)
東海第二(原)
新地(火)
新潟(火)
東新潟(火)
仙台(火)
新仙台(火)
酒田共同(火)
女川(原)
秋田(火)
能代(火)
東通(原)
八戸(火)
知内(火)
泊(原)
伊達(火)
苫小牧(火) 音別(火)
苫東厚真(火)
苫小牧共同(火)砂川(火)
奈井江(火)
双
G
原町(火)
G
北本連系線
従来 :60万kW
強化後:90万kWまたは240万kW
東北基幹系統:日本海ルートを新設
従来 :上北⇔秋田200万kW
強化後:上北⇔秋田800万kW
秋田⇔南相馬230万kW
相馬双葉幹線:第二連系線を新設
従来 :東北→東京500万kW
東京→東北150万kW
強化後:東北→東京1,000万kW
東京→東北300万kW
Pattern A Pattern B Pattern C Pattern D
Hokkaido-Tohoku +0.3 GW +0.3 GW +1.8 GW +1.8 GW
Tohoku-Kanto - Expansion (2 routes) - Expansion (2 routes)
Tohoku - New construction - New construction
(Source) compiled from “Research committee about master-plan for reinforcement of tie line”, METI
Hokkaido-Tohoku Line
Now: 0.6 GW
After Expansion: 0.9 GW or 2.4 GW
Tohoku Line (New Construction of Nihonkai Route)
Now: 2.0 GW (Kamikita⇔Akita)
After Expansion: 8.0 GW (Kamikita⇔Akita)
2.3 GW (Akita⇔Minami-Soma)
Tohoku-Kanto Line (Soma-Futaba Line)
Now: 5.0 GW (Tohoku → Tokyo)
1.5 GW (Tokyo → Tohoku)
After Expansion: 10.0 GW (Tohoku → Tokyo)
3.0 GW (Tokyo → Tohoku)
Resilience Engineering Research Center
RES Suppression & Capacity Factor
38
Grid expansion provides the decline of RES suppression and the increase in
capacity factor of ramp generator
40.3
35.1 34.5
30.5
29.2
15.9
16.6
4.7
17.4
5.3
2.7 2.7 2.7 2.7 2.7
15.3 14.1
10.5 13.1 9.3
0.0
15.0
30.0
45.0
[5-2] Pattern A Pattern B Pattern C Pattern D
% Wind Suppression Rate
Hokkaido
Tohoku
Total
Kyushu
11.1
10.9
12.1
9.3
10.4
1.3
1.4
0.1
1.6
0.2
6.0 6.0 6.0 6.0 6.0
1.5
1.4 1.4 1.4 1.4
0.0
5.0
10.0
15.0
[5-2] Pattern A Pattern B Pattern C Pattern D
% PV Suppression Rate
Hokkaido
Tohoku
Total
Kyushu
No Exp. No Exp.
Hokkaido
Tohoku
Wind Suppression Rate PV Suppression Rate
0
10
20
30
40
50
60
70
80
90
[5-2] Pattern A Pattern B Pattern C Pattern D
%
Capacity Factor (Hokkaido)
Geothermal
Biomass
Nuclear
Hydro
Marine
Coal
0
10
20
30
40
50
60
70
80
90
[5-2] Pattern A Pattern B Pattern C Pattern D
%
Capacity Factor (Tohoku)
Geothermal
Biomass
Nuclear
Hydro
Marine
Coal
LNG GCC
0
10
20
30
40
50
60
70
80
90
[5-2] Pattern A Pattern B Pattern C Pattern D
%
Capacity Factor (Kanto)
Geothermal
Biomass
Nuclear
Hydro
Marine
Coal
LNG ST
LNG GCC
No Exp. No Exp. No Exp.
Cap. Factor (Hokkaido) (Tohoku) (Kanto)
Resilience Engineering Research Center
Cost-Benefit of Grid Expansion
39
Total Cost Reduction &
Payback Period of Expanded Grid
Pattern B shows the largest cost benefit for massive RES integration.
Partial grid expansion such as Pattern A and C provides the less cost benefit.
8.2
53.8
15.4
64.5
0
5
10
15
20
25
30
35
0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
Pattern A Pattern B Pattern C Pattern D
PayoutPeriod[years]
ReducedCost[G-Yen]
Payout Period
Reduced System Cost
+0.3 GW
Expansion &
New construction
Pattern B
Resilience Engineering Research Center
Temporal Resolution and RES Output
Capacity Factor: Wind Capacity Factor: PV
Lower resolution tends to levelize the RES output
Resilience Engineering Research Center
Results|Power Dispatch in Hokkaido
(10 min)
(120 min)
Resilience Engineering Research Center
Long-term Storage
(Battery1)
Shor-term Storage
(Battery2)
Sodium-Sulfur Battery Li-ion Battery
Unit Facility Cost 170$/kWh 600$/kWh
Lifetime (in calendar) 15 years 8 years
Max. Recharge Cycle 4500 cycles 6000 cycles
C-rate 0.14C 2C
Battery Installation
• In rougher resolution more than
30-min, battery installation sharply
decreases
• This trend is more significant in
short-term storage (Li-ion battery)
Results|Batteries in RES 30%
Resilience Engineering Research Center
Modelling of Renewable, Hydrogen and Battery
Wind and PV outputs are into grid, electrolyzer and suppression control (curtailment).
Electrolyzer system converts electricity from wind and PV into hydrogen, which is stored in
compressed hydrogen tank for later combustion in fuel cell or hydrogen gas turbine.
Modelling analysis is conducted in Hokkaido and Tohoku regions (7 GW, 17 GW).
PVWT
Grid
Electrolyzer Hydrogen Storage Tank
• Fuel Cell
• Hydrogen Gas Turbine
Electricity
Hydrogen
Suppression Control (Curtailment)
Hydrogen
Electricity
Electricity
Electricity
Nuclear, Thermal (coal,gas,oil), Hydro, Geothermal, Pumped-hydro
Electricity
Rechargeable Battery
- NaS (Low C-rate)
- Li-ion (High C-rate)
Electricity
(Source) Komiyama,R., Otsuki, T., Fujii,Y., Energy, Volume 81, 1 March 2015, Pages 537–555 (2015)
43
Resilience Engineering Research Center
Power Gen. Dispatch (in January, Tohoku)
With VR Suppression
Without VR Suppression
-40
-30
-20
-10
0
10
20
30
40
50
60
PowerGeneration[GW]
Suppressed Wind
Suppressed PV
Hydrogen(Grid)
Hydrogen(Wind)
Hydrogen(PV)
Hydrogen(in)
Li-ion(in)
NaS(in)
Pumped(in)
Li-ion(out)
NaS(out)
Pumped(out)
Hydrogen Gas Turbine
Fuel Cell
Wind
PV
Oil
LNG
LNG GCC
Coal
Nuclear
Geothermal
Hydro
Demand
Wind(Suppression)
Wind(H2)
Wind(Grid)
H2(Charge)
H2 Gas Turbine
NaS(Charge)
NaS(Discharge)
-40
-30
-20
-10
0
10
20
30
40
50
60
PowerGeneration[GW]
Suppressed Wind
Suppressed PV
Hydrogen(Grid)
Hydrogen(Wind)
Hydrogen(PV)
Hydrogen(in)
Li-ion(in)
NaS(in)
Pumped(in)
Li-ion(out)
NaS(out)
Pumped(out)
Hydrogen Gas Turbine
Fuel Cell
Wind
PV
Oil
LNG
LNG GCC
Coal
Nuclear
Geothermal
Hydro
Demand
Wind(H2)
Wind(Grid)
H2(Charge)
H2 Gas Turbine
NaS(Charge)
NaS(Discharge)
(Note) Cost of Electrolyzer and Hydrogen Storage System: -90%, CO2: -90%
Jan.1 Jan.31
Jan.1 Jan.31
(Source) Komiyama,R., Otsuki, T., Fujii,Y., Energy, Volume 81, 1 March 2015, Pages 537–555 (2015)
44
Resilience Engineering Research Center
Annual SOC (State of Charge) in Energy Storage Facility
45
From January to May when wind output intensity is higher and those sufficient outputs are available, a lot of
hydrogen is produced by those surplus outputs and a large amount of hydrogen energy is stored in a hydrogen
storage tank in a monthly or seasonal cycle.
Since a storage loss of hydrogen in the compressed tank is very low, the developed energy model selects a long-
term hydrogen storage of surplus VR output as an optimal solution under strict CO2 regulation.
0
1000
2000
3000
4000
5000
1-Jan
1-Feb
1-Mar
1-Apr
1-May
1-Jun
1-Jul
1-Aug
1-Sep
1-Oct
1-Nov
1-Dec
31-Dec
StoredElectricity[GWh]
Pumped
NaS
Li-ion
Hydrogen
Hydrogen storage is a suitable option for
storing VR energy for a long period of time.
0
2
4
6
8
10
12
1-Jan
1-Feb
1-Mar
1-Apr
1-May
1-Jun
1-Jul
1-Aug
1-Sep
1-Oct
1-Nov
1-Dec
31-Dec
H2fromWind[TWh]
H2 produced from wind
(Note) Cost of Electrolyzer and Hydrogen Storage System: -90%, CO2: -90%, Without VR Suppression Control
SOC (State of Charge) of H2 storage tank and battery
(Source) Komiyama,R., Otsuki, T., Fujii,Y., Energy, Volume 81, 1 March 2015, Pages 537–555 (2015)
(Tohoku region)
Resilience Engineering Research Center
Wrap-up
46
Results suggests following challenges for massive RES integration
Unconventional operation such as daylight power charging in pumped-hydro
Decreased capacity factor of ramp generator
Base-load generator such as coal-fired needs to serves as ramp generator
Large-scale RES output curtailment is necessary.
Nationwide grid operation is important.
Regional grid expansion is an effective technical option.
In rougher resolution more than 30-min, battery installation sharply decreases.
The trend is more significant in short-term storage.
Hydrogen storage is a suitable option for storing RES energy for a long period of
time such as a monthly or seasonal scale.
Resilience Engineering Research Center 47
Thank you for your kind attention.
Relevant Papers:
• Komiyama,R. and Fujii,Y., Energy, Vol.81, pp.537–555, 2015
• Komiyama,R. and Fujii,Y., Energy Policy, Vol.83, pp.169-184, 2015
• Komiyama,R.,Fujii,Y., Energy Policy, Vol.66, pp.73-89, 2014
……….
Ryoichi Komiyama
The University of Tokyo

Contenu connexe

Tendances

Hydrogen and power system
Hydrogen and power systemHydrogen and power system
Hydrogen and power systemIEA-ETSAP
 
Planning a reliable power system with a high share of renewables in France by...
Planning a reliable power system with a high share of renewables in France by...Planning a reliable power system with a high share of renewables in France by...
Planning a reliable power system with a high share of renewables in France by...IEA-ETSAP
 
Update on Australian TIMES Model Development
Update on Australian TIMES Model DevelopmentUpdate on Australian TIMES Model Development
Update on Australian TIMES Model DevelopmentIEA-ETSAP
 
Linkage of TIMES with Power Dispatch Models and Network Optimization
Linkage of TIMES with Power Dispatch Models and Network OptimizationLinkage of TIMES with Power Dispatch Models and Network Optimization
Linkage of TIMES with Power Dispatch Models and Network OptimizationIEA-ETSAP
 
Factors influencing the demand on Renewable Energy with a focus on Solar Ther...
Factors influencing the demand on Renewable Energy with a focus on Solar Ther...Factors influencing the demand on Renewable Energy with a focus on Solar Ther...
Factors influencing the demand on Renewable Energy with a focus on Solar Ther...Sekem Energy
 
Energy Research at the IER
Energy Research at the IEREnergy Research at the IER
Energy Research at the IERIEA-ETSAP
 
Energy Research at the Paul Scherrer Institut
Energy Research at the Paul Scherrer InstitutEnergy Research at the Paul Scherrer Institut
Energy Research at the Paul Scherrer InstitutIEA-ETSAP
 
Solar Applications Heating & Cooling in Egypt - focus on industry - Giovanna ...
Solar Applications Heating & Cooling in Egypt - focus on industry - Giovanna ...Solar Applications Heating & Cooling in Egypt - focus on industry - Giovanna ...
Solar Applications Heating & Cooling in Egypt - focus on industry - Giovanna ...Sekem Energy
 
Grid Features in the TIMES-based Japan Model
Grid Features in the TIMES-based Japan ModelGrid Features in the TIMES-based Japan Model
Grid Features in the TIMES-based Japan ModelIEA-ETSAP
 
Evaluation of the role of energy storages in Europe with TIMES PanEU
Evaluation of the role of energy storages in Europe with TIMES PanEUEvaluation of the role of energy storages in Europe with TIMES PanEU
Evaluation of the role of energy storages in Europe with TIMES PanEUIEA-ETSAP
 
V2G: Measuring Electric Vehicle Drivers’ Willingness to Co-create Flexibility...
V2G: Measuring Electric Vehicle Drivers’ Willingness to Co-create Flexibility...V2G: Measuring Electric Vehicle Drivers’ Willingness to Co-create Flexibility...
V2G: Measuring Electric Vehicle Drivers’ Willingness to Co-create Flexibility...IEA-ETSAP
 
Overview of Bioenergy Scenarios in TIMES modelling
Overview of Bioenergy Scenarios in TIMES modellingOverview of Bioenergy Scenarios in TIMES modelling
Overview of Bioenergy Scenarios in TIMES modellingIEA-ETSAP
 
Economic Assessment of Low-Emission Development Scenarios for Ukraine
Economic Assessment of Low-Emission Development Scenarios for UkraineEconomic Assessment of Low-Emission Development Scenarios for Ukraine
Economic Assessment of Low-Emission Development Scenarios for UkraineIEA-ETSAP
 
Increased need for flexibility in the European energy transition
Increased need for flexibility in the European energy transitionIncreased need for flexibility in the European energy transition
Increased need for flexibility in the European energy transitionIlkka Hannula
 
Hydrogen modelling in TIMES – a summary of the inputs, outputs, and best prac...
Hydrogen modelling in TIMES – a summary of the inputs, outputs, and best prac...Hydrogen modelling in TIMES – a summary of the inputs, outputs, and best prac...
Hydrogen modelling in TIMES – a summary of the inputs, outputs, and best prac...IEA-ETSAP
 
Eskom's Renewables Strategy
Eskom's Renewables StrategyEskom's Renewables Strategy
Eskom's Renewables Strategysimguybar
 
A low energy demand pathway for Ireland
A low energy demand pathway for IrelandA low energy demand pathway for Ireland
A low energy demand pathway for IrelandIEA-ETSAP
 
Session3 renewable energy and energy efficiency and present and future strate...
Session3 renewable energy and energy efficiency and present and future strate...Session3 renewable energy and energy efficiency and present and future strate...
Session3 renewable energy and energy efficiency and present and future strate...RCREEE
 

Tendances (20)

Hydrogen and power system
Hydrogen and power systemHydrogen and power system
Hydrogen and power system
 
Planning a reliable power system with a high share of renewables in France by...
Planning a reliable power system with a high share of renewables in France by...Planning a reliable power system with a high share of renewables in France by...
Planning a reliable power system with a high share of renewables in France by...
 
Update on Australian TIMES Model Development
Update on Australian TIMES Model DevelopmentUpdate on Australian TIMES Model Development
Update on Australian TIMES Model Development
 
Linkage of TIMES with Power Dispatch Models and Network Optimization
Linkage of TIMES with Power Dispatch Models and Network OptimizationLinkage of TIMES with Power Dispatch Models and Network Optimization
Linkage of TIMES with Power Dispatch Models and Network Optimization
 
Towards a decarbonised heating and cooling sector in Europe – Unlocking the ...
 Towards a decarbonised heating and cooling sector in Europe – Unlocking the ... Towards a decarbonised heating and cooling sector in Europe – Unlocking the ...
Towards a decarbonised heating and cooling sector in Europe – Unlocking the ...
 
Factors influencing the demand on Renewable Energy with a focus on Solar Ther...
Factors influencing the demand on Renewable Energy with a focus on Solar Ther...Factors influencing the demand on Renewable Energy with a focus on Solar Ther...
Factors influencing the demand on Renewable Energy with a focus on Solar Ther...
 
Energy Research at the IER
Energy Research at the IEREnergy Research at the IER
Energy Research at the IER
 
Energy Research at the Paul Scherrer Institut
Energy Research at the Paul Scherrer InstitutEnergy Research at the Paul Scherrer Institut
Energy Research at the Paul Scherrer Institut
 
Solar Applications Heating & Cooling in Egypt - focus on industry - Giovanna ...
Solar Applications Heating & Cooling in Egypt - focus on industry - Giovanna ...Solar Applications Heating & Cooling in Egypt - focus on industry - Giovanna ...
Solar Applications Heating & Cooling in Egypt - focus on industry - Giovanna ...
 
Grid Features in the TIMES-based Japan Model
Grid Features in the TIMES-based Japan ModelGrid Features in the TIMES-based Japan Model
Grid Features in the TIMES-based Japan Model
 
Evaluation of the role of energy storages in Europe with TIMES PanEU
Evaluation of the role of energy storages in Europe with TIMES PanEUEvaluation of the role of energy storages in Europe with TIMES PanEU
Evaluation of the role of energy storages in Europe with TIMES PanEU
 
V2G: Measuring Electric Vehicle Drivers’ Willingness to Co-create Flexibility...
V2G: Measuring Electric Vehicle Drivers’ Willingness to Co-create Flexibility...V2G: Measuring Electric Vehicle Drivers’ Willingness to Co-create Flexibility...
V2G: Measuring Electric Vehicle Drivers’ Willingness to Co-create Flexibility...
 
Overview of Bioenergy Scenarios in TIMES modelling
Overview of Bioenergy Scenarios in TIMES modellingOverview of Bioenergy Scenarios in TIMES modelling
Overview of Bioenergy Scenarios in TIMES modelling
 
Economic Assessment of Low-Emission Development Scenarios for Ukraine
Economic Assessment of Low-Emission Development Scenarios for UkraineEconomic Assessment of Low-Emission Development Scenarios for Ukraine
Economic Assessment of Low-Emission Development Scenarios for Ukraine
 
The feasibility of direct hydrogen use in renewable energy systems
The feasibility of direct hydrogen use in renewable energy systemsThe feasibility of direct hydrogen use in renewable energy systems
The feasibility of direct hydrogen use in renewable energy systems
 
Increased need for flexibility in the European energy transition
Increased need for flexibility in the European energy transitionIncreased need for flexibility in the European energy transition
Increased need for flexibility in the European energy transition
 
Hydrogen modelling in TIMES – a summary of the inputs, outputs, and best prac...
Hydrogen modelling in TIMES – a summary of the inputs, outputs, and best prac...Hydrogen modelling in TIMES – a summary of the inputs, outputs, and best prac...
Hydrogen modelling in TIMES – a summary of the inputs, outputs, and best prac...
 
Eskom's Renewables Strategy
Eskom's Renewables StrategyEskom's Renewables Strategy
Eskom's Renewables Strategy
 
A low energy demand pathway for Ireland
A low energy demand pathway for IrelandA low energy demand pathway for Ireland
A low energy demand pathway for Ireland
 
Session3 renewable energy and energy efficiency and present and future strate...
Session3 renewable energy and energy efficiency and present and future strate...Session3 renewable energy and energy efficiency and present and future strate...
Session3 renewable energy and energy efficiency and present and future strate...
 

En vedette

Who pays for climate change mitigation? Integrated Assessment of equitable em...
Who pays for climate change mitigation? Integrated Assessment of equitable em...Who pays for climate change mitigation? Integrated Assessment of equitable em...
Who pays for climate change mitigation? Integrated Assessment of equitable em...IEA-ETSAP
 
Impact of technology uncertainty on future low-carbon pathways in the UK
Impact of technology uncertainty on future low-carbon pathways in the UKImpact of technology uncertainty on future low-carbon pathways in the UK
Impact of technology uncertainty on future low-carbon pathways in the UKIEA-ETSAP
 
Modelling investment decision making in the power sector under imperfect fore...
Modelling investment decision making in the power sector under imperfect fore...Modelling investment decision making in the power sector under imperfect fore...
Modelling investment decision making in the power sector under imperfect fore...IEA-ETSAP
 
ETSAP-TIAM update and re-calibration
ETSAP-TIAM update and re-calibrationETSAP-TIAM update and re-calibration
ETSAP-TIAM update and re-calibrationIEA-ETSAP
 
Emissions reduction potential in regions of Kazakhstan using TIMES-16RKZ model
Emissions reduction potential in regions of Kazakhstan using TIMES-16RKZ modelEmissions reduction potential in regions of Kazakhstan using TIMES-16RKZ model
Emissions reduction potential in regions of Kazakhstan using TIMES-16RKZ modelIEA-ETSAP
 
Impacts of Czech brown coal mines enlargement: assessment by energy model TIM...
Impacts of Czech brown coal mines enlargement: assessment by energy model TIM...Impacts of Czech brown coal mines enlargement: assessment by energy model TIM...
Impacts of Czech brown coal mines enlargement: assessment by energy model TIM...IEA-ETSAP
 
Accounting for changes in investment flows in a soft-linked hybrid model
Accounting for changes in investment flows in a soft-linked hybrid modelAccounting for changes in investment flows in a soft-linked hybrid model
Accounting for changes in investment flows in a soft-linked hybrid modelIEA-ETSAP
 
Integration of VEDA-FE with GIT version control
Integration of VEDA-FE with GIT version controlIntegration of VEDA-FE with GIT version control
Integration of VEDA-FE with GIT version controlIEA-ETSAP
 
Demonstrating RES visualisation software
Demonstrating RES visualisation softwareDemonstrating RES visualisation software
Demonstrating RES visualisation softwareIEA-ETSAP
 
Myopic windows: Temporal trade-offs in decarbonisation pathways
Myopic windows: Temporal trade-offs in decarbonisation pathwaysMyopic windows: Temporal trade-offs in decarbonisation pathways
Myopic windows: Temporal trade-offs in decarbonisation pathwaysIEA-ETSAP
 
TIMES-GTAP soft-link methodology and interface
TIMES-GTAP soft-link methodology and interfaceTIMES-GTAP soft-link methodology and interface
TIMES-GTAP soft-link methodology and interfaceIEA-ETSAP
 
ETSAP R&D Proposals
ETSAP R&D ProposalsETSAP R&D Proposals
ETSAP R&D ProposalsIEA-ETSAP
 
How costs affect deployment of low carbon technologies - analysis with JRC-EU...
How costs affect deployment of low carbon technologies - analysis with JRC-EU...How costs affect deployment of low carbon technologies - analysis with JRC-EU...
How costs affect deployment of low carbon technologies - analysis with JRC-EU...IEA-ETSAP
 
VEDAViz for ETSAP partners
VEDAViz for ETSAP partnersVEDAViz for ETSAP partners
VEDAViz for ETSAP partnersIEA-ETSAP
 
Modelling Economically optimal heat supply to low energy building areas – The...
Modelling Economically optimal heat supply to low energy building areas – The...Modelling Economically optimal heat supply to low energy building areas – The...
Modelling Economically optimal heat supply to low energy building areas – The...IEA-ETSAP
 
Introducing Electricity Dispatchability Features in TIMES modelling Framework
Introducing Electricity Dispatchability Features in TIMES modelling FrameworkIntroducing Electricity Dispatchability Features in TIMES modelling Framework
Introducing Electricity Dispatchability Features in TIMES modelling FrameworkIEA-ETSAP
 
Comparing hard-linking (TIMES-MSA) and soft-linking (TIMES-HERMES) methodolog...
Comparing hard-linking (TIMES-MSA) and soft-linking (TIMES-HERMES) methodolog...Comparing hard-linking (TIMES-MSA) and soft-linking (TIMES-HERMES) methodolog...
Comparing hard-linking (TIMES-MSA) and soft-linking (TIMES-HERMES) methodolog...IEA-ETSAP
 
Sustainability performance of the energy systems
Sustainability performance of the energy systemsSustainability performance of the energy systems
Sustainability performance of the energy systemsIEA-ETSAP
 
A Generalized Equilibrium Approach to Balance the Residual Abatements Resulti...
A Generalized Equilibrium Approach to Balance the Residual Abatements Resulti...A Generalized Equilibrium Approach to Balance the Residual Abatements Resulti...
A Generalized Equilibrium Approach to Balance the Residual Abatements Resulti...IEA-ETSAP
 
Power systems reliability assessment in prospective analyses
Power systems reliability assessment in prospective analysesPower systems reliability assessment in prospective analyses
Power systems reliability assessment in prospective analysesIEA-ETSAP
 

En vedette (20)

Who pays for climate change mitigation? Integrated Assessment of equitable em...
Who pays for climate change mitigation? Integrated Assessment of equitable em...Who pays for climate change mitigation? Integrated Assessment of equitable em...
Who pays for climate change mitigation? Integrated Assessment of equitable em...
 
Impact of technology uncertainty on future low-carbon pathways in the UK
Impact of technology uncertainty on future low-carbon pathways in the UKImpact of technology uncertainty on future low-carbon pathways in the UK
Impact of technology uncertainty on future low-carbon pathways in the UK
 
Modelling investment decision making in the power sector under imperfect fore...
Modelling investment decision making in the power sector under imperfect fore...Modelling investment decision making in the power sector under imperfect fore...
Modelling investment decision making in the power sector under imperfect fore...
 
ETSAP-TIAM update and re-calibration
ETSAP-TIAM update and re-calibrationETSAP-TIAM update and re-calibration
ETSAP-TIAM update and re-calibration
 
Emissions reduction potential in regions of Kazakhstan using TIMES-16RKZ model
Emissions reduction potential in regions of Kazakhstan using TIMES-16RKZ modelEmissions reduction potential in regions of Kazakhstan using TIMES-16RKZ model
Emissions reduction potential in regions of Kazakhstan using TIMES-16RKZ model
 
Impacts of Czech brown coal mines enlargement: assessment by energy model TIM...
Impacts of Czech brown coal mines enlargement: assessment by energy model TIM...Impacts of Czech brown coal mines enlargement: assessment by energy model TIM...
Impacts of Czech brown coal mines enlargement: assessment by energy model TIM...
 
Accounting for changes in investment flows in a soft-linked hybrid model
Accounting for changes in investment flows in a soft-linked hybrid modelAccounting for changes in investment flows in a soft-linked hybrid model
Accounting for changes in investment flows in a soft-linked hybrid model
 
Integration of VEDA-FE with GIT version control
Integration of VEDA-FE with GIT version controlIntegration of VEDA-FE with GIT version control
Integration of VEDA-FE with GIT version control
 
Demonstrating RES visualisation software
Demonstrating RES visualisation softwareDemonstrating RES visualisation software
Demonstrating RES visualisation software
 
Myopic windows: Temporal trade-offs in decarbonisation pathways
Myopic windows: Temporal trade-offs in decarbonisation pathwaysMyopic windows: Temporal trade-offs in decarbonisation pathways
Myopic windows: Temporal trade-offs in decarbonisation pathways
 
TIMES-GTAP soft-link methodology and interface
TIMES-GTAP soft-link methodology and interfaceTIMES-GTAP soft-link methodology and interface
TIMES-GTAP soft-link methodology and interface
 
ETSAP R&D Proposals
ETSAP R&D ProposalsETSAP R&D Proposals
ETSAP R&D Proposals
 
How costs affect deployment of low carbon technologies - analysis with JRC-EU...
How costs affect deployment of low carbon technologies - analysis with JRC-EU...How costs affect deployment of low carbon technologies - analysis with JRC-EU...
How costs affect deployment of low carbon technologies - analysis with JRC-EU...
 
VEDAViz for ETSAP partners
VEDAViz for ETSAP partnersVEDAViz for ETSAP partners
VEDAViz for ETSAP partners
 
Modelling Economically optimal heat supply to low energy building areas – The...
Modelling Economically optimal heat supply to low energy building areas – The...Modelling Economically optimal heat supply to low energy building areas – The...
Modelling Economically optimal heat supply to low energy building areas – The...
 
Introducing Electricity Dispatchability Features in TIMES modelling Framework
Introducing Electricity Dispatchability Features in TIMES modelling FrameworkIntroducing Electricity Dispatchability Features in TIMES modelling Framework
Introducing Electricity Dispatchability Features in TIMES modelling Framework
 
Comparing hard-linking (TIMES-MSA) and soft-linking (TIMES-HERMES) methodolog...
Comparing hard-linking (TIMES-MSA) and soft-linking (TIMES-HERMES) methodolog...Comparing hard-linking (TIMES-MSA) and soft-linking (TIMES-HERMES) methodolog...
Comparing hard-linking (TIMES-MSA) and soft-linking (TIMES-HERMES) methodolog...
 
Sustainability performance of the energy systems
Sustainability performance of the energy systemsSustainability performance of the energy systems
Sustainability performance of the energy systems
 
A Generalized Equilibrium Approach to Balance the Residual Abatements Resulti...
A Generalized Equilibrium Approach to Balance the Residual Abatements Resulti...A Generalized Equilibrium Approach to Balance the Residual Abatements Resulti...
A Generalized Equilibrium Approach to Balance the Residual Abatements Resulti...
 
Power systems reliability assessment in prospective analyses
Power systems reliability assessment in prospective analysesPower systems reliability assessment in prospective analyses
Power systems reliability assessment in prospective analyses
 

Similaire à Assessment of renewable energy in nation-wide power grid in Japan by optimal power generation mix model

Japan power sector liberalization
Japan power sector liberalization Japan power sector liberalization
Japan power sector liberalization Rohit vijay
 
Estimation & Analysis of a 5KWP Solar Photovoltaic Power Plant at JIS College...
Estimation & Analysis of a 5KWP Solar Photovoltaic Power Plant at JIS College...Estimation & Analysis of a 5KWP Solar Photovoltaic Power Plant at JIS College...
Estimation & Analysis of a 5KWP Solar Photovoltaic Power Plant at JIS College...IRJET Journal
 
Japan's energy landscape
Japan's energy landscapeJapan's energy landscape
Japan's energy landscapeGerhard Fasol
 
seminar neww.pptx
seminar neww.pptxseminar neww.pptx
seminar neww.pptxhrbp
 
Solar power generation JICA Trainer Hussain Naik
Solar power generation JICA Trainer Hussain NaikSolar power generation JICA Trainer Hussain Naik
Solar power generation JICA Trainer Hussain Naikhussainmaloth
 
Evaluation of Electrical Services using Energy Efficient Load
Evaluation of Electrical Services using Energy Efficient LoadEvaluation of Electrical Services using Energy Efficient Load
Evaluation of Electrical Services using Energy Efficient LoadNajeem Olawale Adelakun
 
IRJET-Cost Benefit Analysis of a Roof Top Solar PV System at a Domestic Apart...
IRJET-Cost Benefit Analysis of a Roof Top Solar PV System at a Domestic Apart...IRJET-Cost Benefit Analysis of a Roof Top Solar PV System at a Domestic Apart...
IRJET-Cost Benefit Analysis of a Roof Top Solar PV System at a Domestic Apart...IRJET Journal
 
eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...
eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...
eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...Gianmarco Rossi
 
Techno-Economic Analysis of Biomass Integrated Electricity Generation System
Techno-Economic Analysis of Biomass Integrated Electricity Generation SystemTechno-Economic Analysis of Biomass Integrated Electricity Generation System
Techno-Economic Analysis of Biomass Integrated Electricity Generation Systemtheijes
 
A Markov model of generator performance at the Kainji hydro-power station in...
A Markov model of generator performance at the Kainji  hydro-power station in...A Markov model of generator performance at the Kainji  hydro-power station in...
A Markov model of generator performance at the Kainji hydro-power station in...IJECEIAES
 
Comparing the thermal power plant performance at variou 2
Comparing the thermal power plant performance at variou 2Comparing the thermal power plant performance at variou 2
Comparing the thermal power plant performance at variou 2IAEME Publication
 
Comparing the thermal power plant performance at variou 2
Comparing the thermal power plant performance at variou 2Comparing the thermal power plant performance at variou 2
Comparing the thermal power plant performance at variou 2IAEME Publication
 
Energy systems & power systems modelling, Comparing Experiences in Ireland an...
Energy systems & power systems modelling, Comparing Experiences in Ireland an...Energy systems & power systems modelling, Comparing Experiences in Ireland an...
Energy systems & power systems modelling, Comparing Experiences in Ireland an...IEA-ETSAP
 
IRJET- Energy Statistics in India
IRJET- Energy Statistics in IndiaIRJET- Energy Statistics in India
IRJET- Energy Statistics in IndiaIRJET Journal
 
Geothermal development activities in Japan after the big earthquake in 2011
Geothermal development activities in Japan after the big earthquake in 2011Geothermal development activities in Japan after the big earthquake in 2011
Geothermal development activities in Japan after the big earthquake in 2011Iceland Geothermal
 
Energy Conservation By Mehfooz Qazi
Energy Conservation By Mehfooz QaziEnergy Conservation By Mehfooz Qazi
Energy Conservation By Mehfooz QaziIEEEP Karachi
 
19346954 Photovoltaics
19346954  Photovoltaics19346954  Photovoltaics
19346954 PhotovoltaicsNida Amber
 

Similaire à Assessment of renewable energy in nation-wide power grid in Japan by optimal power generation mix model (20)

YOKO NEDO: Smart Community Projects
YOKO NEDO: Smart Community ProjectsYOKO NEDO: Smart Community Projects
YOKO NEDO: Smart Community Projects
 
Japan power sector liberalization
Japan power sector liberalization Japan power sector liberalization
Japan power sector liberalization
 
Estimation & Analysis of a 5KWP Solar Photovoltaic Power Plant at JIS College...
Estimation & Analysis of a 5KWP Solar Photovoltaic Power Plant at JIS College...Estimation & Analysis of a 5KWP Solar Photovoltaic Power Plant at JIS College...
Estimation & Analysis of a 5KWP Solar Photovoltaic Power Plant at JIS College...
 
Japan's energy landscape
Japan's energy landscapeJapan's energy landscape
Japan's energy landscape
 
seminar neww.pptx
seminar neww.pptxseminar neww.pptx
seminar neww.pptx
 
Solar power generation JICA Trainer Hussain Naik
Solar power generation JICA Trainer Hussain NaikSolar power generation JICA Trainer Hussain Naik
Solar power generation JICA Trainer Hussain Naik
 
Evaluation of Electrical Services using Energy Efficient Load
Evaluation of Electrical Services using Energy Efficient LoadEvaluation of Electrical Services using Energy Efficient Load
Evaluation of Electrical Services using Energy Efficient Load
 
IRJET-Cost Benefit Analysis of a Roof Top Solar PV System at a Domestic Apart...
IRJET-Cost Benefit Analysis of a Roof Top Solar PV System at a Domestic Apart...IRJET-Cost Benefit Analysis of a Roof Top Solar PV System at a Domestic Apart...
IRJET-Cost Benefit Analysis of a Roof Top Solar PV System at a Domestic Apart...
 
Measures and equipment
Measures and equipmentMeasures and equipment
Measures and equipment
 
eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...
eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...
eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...
 
Techno-Economic Analysis of Biomass Integrated Electricity Generation System
Techno-Economic Analysis of Biomass Integrated Electricity Generation SystemTechno-Economic Analysis of Biomass Integrated Electricity Generation System
Techno-Economic Analysis of Biomass Integrated Electricity Generation System
 
A Markov model of generator performance at the Kainji hydro-power station in...
A Markov model of generator performance at the Kainji  hydro-power station in...A Markov model of generator performance at the Kainji  hydro-power station in...
A Markov model of generator performance at the Kainji hydro-power station in...
 
Comparing the thermal power plant performance at variou 2
Comparing the thermal power plant performance at variou 2Comparing the thermal power plant performance at variou 2
Comparing the thermal power plant performance at variou 2
 
Comparing the thermal power plant performance at variou 2
Comparing the thermal power plant performance at variou 2Comparing the thermal power plant performance at variou 2
Comparing the thermal power plant performance at variou 2
 
Capacity Building on Modeling the Ethiopian Energy System: Final Workshop
Capacity Building on Modeling the Ethiopian Energy System: Final WorkshopCapacity Building on Modeling the Ethiopian Energy System: Final Workshop
Capacity Building on Modeling the Ethiopian Energy System: Final Workshop
 
Energy systems & power systems modelling, Comparing Experiences in Ireland an...
Energy systems & power systems modelling, Comparing Experiences in Ireland an...Energy systems & power systems modelling, Comparing Experiences in Ireland an...
Energy systems & power systems modelling, Comparing Experiences in Ireland an...
 
IRJET- Energy Statistics in India
IRJET- Energy Statistics in IndiaIRJET- Energy Statistics in India
IRJET- Energy Statistics in India
 
Geothermal development activities in Japan after the big earthquake in 2011
Geothermal development activities in Japan after the big earthquake in 2011Geothermal development activities in Japan after the big earthquake in 2011
Geothermal development activities in Japan after the big earthquake in 2011
 
Energy Conservation By Mehfooz Qazi
Energy Conservation By Mehfooz QaziEnergy Conservation By Mehfooz Qazi
Energy Conservation By Mehfooz Qazi
 
19346954 Photovoltaics
19346954  Photovoltaics19346954  Photovoltaics
19346954 Photovoltaics
 

Plus de IEA-ETSAP

Variable Renewable Energy in China's Transition
Variable Renewable Energy in China's TransitionVariable Renewable Energy in China's Transition
Variable Renewable Energy in China's TransitionIEA-ETSAP
 
The Nordics as a hub for green electricity and fuels
The Nordics as a hub for green electricity and fuelsThe Nordics as a hub for green electricity and fuels
The Nordics as a hub for green electricity and fuelsIEA-ETSAP
 
The role of Norwegian offshore wind in the energy system transition
The role of Norwegian offshore wind in the energy system transitionThe role of Norwegian offshore wind in the energy system transition
The role of Norwegian offshore wind in the energy system transitionIEA-ETSAP
 
Detail representation of molecule flows and chemical sector in TIMES-BE: prog...
Detail representation of molecule flows and chemical sector in TIMES-BE: prog...Detail representation of molecule flows and chemical sector in TIMES-BE: prog...
Detail representation of molecule flows and chemical sector in TIMES-BE: prog...IEA-ETSAP
 
Green hydrogen trade from North Africa to Europe: optional long-term scenario...
Green hydrogen trade from North Africa to Europe: optional long-term scenario...Green hydrogen trade from North Africa to Europe: optional long-term scenario...
Green hydrogen trade from North Africa to Europe: optional long-term scenario...IEA-ETSAP
 
Optimal development of the Canadian forest sector for both climate change mit...
Optimal development of the Canadian forest sector for both climate change mit...Optimal development of the Canadian forest sector for both climate change mit...
Optimal development of the Canadian forest sector for both climate change mit...IEA-ETSAP
 
Presentation on IEA Net Zero Pathways/Roadmap
Presentation on IEA Net Zero Pathways/RoadmapPresentation on IEA Net Zero Pathways/Roadmap
Presentation on IEA Net Zero Pathways/RoadmapIEA-ETSAP
 
Flexibility with renewable(low-carbon) hydrogen
Flexibility with renewable(low-carbon) hydrogenFlexibility with renewable(low-carbon) hydrogen
Flexibility with renewable(low-carbon) hydrogenIEA-ETSAP
 
Bioenergy in energy system models with flexibility
Bioenergy in energy system models with flexibilityBioenergy in energy system models with flexibility
Bioenergy in energy system models with flexibilityIEA-ETSAP
 
Reframing flexibility beyond power - IEA Bioenergy TCP
Reframing flexibility beyond power - IEA Bioenergy TCPReframing flexibility beyond power - IEA Bioenergy TCP
Reframing flexibility beyond power - IEA Bioenergy TCPIEA-ETSAP
 
Decarbonization of heating in the buildings sector: efficiency first vs low-c...
Decarbonization of heating in the buildings sector: efficiency first vs low-c...Decarbonization of heating in the buildings sector: efficiency first vs low-c...
Decarbonization of heating in the buildings sector: efficiency first vs low-c...IEA-ETSAP
 
The Regionalization Tool: spatial representation of TIMES-BE output data in i...
The Regionalization Tool: spatial representation of TIMES-BE output data in i...The Regionalization Tool: spatial representation of TIMES-BE output data in i...
The Regionalization Tool: spatial representation of TIMES-BE output data in i...IEA-ETSAP
 
Synthetic methane production prospective modelling up to 2050 in the European...
Synthetic methane production prospective modelling up to 2050 in the European...Synthetic methane production prospective modelling up to 2050 in the European...
Synthetic methane production prospective modelling up to 2050 in the European...IEA-ETSAP
 
Energy Transition in global Aviation - ETSAP Workshop Turin
Energy Transition in global Aviation - ETSAP Workshop TurinEnergy Transition in global Aviation - ETSAP Workshop Turin
Energy Transition in global Aviation - ETSAP Workshop TurinIEA-ETSAP
 
Integrated Energy and Climate plans: approaches, practices and experiences
Integrated Energy and Climate plans: approaches, practices and experiencesIntegrated Energy and Climate plans: approaches, practices and experiences
Integrated Energy and Climate plans: approaches, practices and experiencesIEA-ETSAP
 
Updates on Veda provided by Amit Kanudia from KanORS-EMR
Updates on Veda provided by Amit Kanudia from KanORS-EMRUpdates on Veda provided by Amit Kanudia from KanORS-EMR
Updates on Veda provided by Amit Kanudia from KanORS-EMRIEA-ETSAP
 
Energy system modeling activities in the MAHTEP Group
Energy system modeling activities in the MAHTEP GroupEnergy system modeling activities in the MAHTEP Group
Energy system modeling activities in the MAHTEP GroupIEA-ETSAP
 
Applying science fiction to approach the future
Applying science fiction to approach the futureApplying science fiction to approach the future
Applying science fiction to approach the futureIEA-ETSAP
 
Will it leak?: Discussions of leakage risk from subsurface storage of carbon ...
Will it leak?: Discussions of leakage risk from subsurface storage of carbon ...Will it leak?: Discussions of leakage risk from subsurface storage of carbon ...
Will it leak?: Discussions of leakage risk from subsurface storage of carbon ...IEA-ETSAP
 
Long-Term Decarbonization Pathways In Emerging Economies: Insights From 12 Mo...
Long-Term Decarbonization Pathways In Emerging Economies: Insights From 12 Mo...Long-Term Decarbonization Pathways In Emerging Economies: Insights From 12 Mo...
Long-Term Decarbonization Pathways In Emerging Economies: Insights From 12 Mo...IEA-ETSAP
 

Plus de IEA-ETSAP (20)

Variable Renewable Energy in China's Transition
Variable Renewable Energy in China's TransitionVariable Renewable Energy in China's Transition
Variable Renewable Energy in China's Transition
 
The Nordics as a hub for green electricity and fuels
The Nordics as a hub for green electricity and fuelsThe Nordics as a hub for green electricity and fuels
The Nordics as a hub for green electricity and fuels
 
The role of Norwegian offshore wind in the energy system transition
The role of Norwegian offshore wind in the energy system transitionThe role of Norwegian offshore wind in the energy system transition
The role of Norwegian offshore wind in the energy system transition
 
Detail representation of molecule flows and chemical sector in TIMES-BE: prog...
Detail representation of molecule flows and chemical sector in TIMES-BE: prog...Detail representation of molecule flows and chemical sector in TIMES-BE: prog...
Detail representation of molecule flows and chemical sector in TIMES-BE: prog...
 
Green hydrogen trade from North Africa to Europe: optional long-term scenario...
Green hydrogen trade from North Africa to Europe: optional long-term scenario...Green hydrogen trade from North Africa to Europe: optional long-term scenario...
Green hydrogen trade from North Africa to Europe: optional long-term scenario...
 
Optimal development of the Canadian forest sector for both climate change mit...
Optimal development of the Canadian forest sector for both climate change mit...Optimal development of the Canadian forest sector for both climate change mit...
Optimal development of the Canadian forest sector for both climate change mit...
 
Presentation on IEA Net Zero Pathways/Roadmap
Presentation on IEA Net Zero Pathways/RoadmapPresentation on IEA Net Zero Pathways/Roadmap
Presentation on IEA Net Zero Pathways/Roadmap
 
Flexibility with renewable(low-carbon) hydrogen
Flexibility with renewable(low-carbon) hydrogenFlexibility with renewable(low-carbon) hydrogen
Flexibility with renewable(low-carbon) hydrogen
 
Bioenergy in energy system models with flexibility
Bioenergy in energy system models with flexibilityBioenergy in energy system models with flexibility
Bioenergy in energy system models with flexibility
 
Reframing flexibility beyond power - IEA Bioenergy TCP
Reframing flexibility beyond power - IEA Bioenergy TCPReframing flexibility beyond power - IEA Bioenergy TCP
Reframing flexibility beyond power - IEA Bioenergy TCP
 
Decarbonization of heating in the buildings sector: efficiency first vs low-c...
Decarbonization of heating in the buildings sector: efficiency first vs low-c...Decarbonization of heating in the buildings sector: efficiency first vs low-c...
Decarbonization of heating in the buildings sector: efficiency first vs low-c...
 
The Regionalization Tool: spatial representation of TIMES-BE output data in i...
The Regionalization Tool: spatial representation of TIMES-BE output data in i...The Regionalization Tool: spatial representation of TIMES-BE output data in i...
The Regionalization Tool: spatial representation of TIMES-BE output data in i...
 
Synthetic methane production prospective modelling up to 2050 in the European...
Synthetic methane production prospective modelling up to 2050 in the European...Synthetic methane production prospective modelling up to 2050 in the European...
Synthetic methane production prospective modelling up to 2050 in the European...
 
Energy Transition in global Aviation - ETSAP Workshop Turin
Energy Transition in global Aviation - ETSAP Workshop TurinEnergy Transition in global Aviation - ETSAP Workshop Turin
Energy Transition in global Aviation - ETSAP Workshop Turin
 
Integrated Energy and Climate plans: approaches, practices and experiences
Integrated Energy and Climate plans: approaches, practices and experiencesIntegrated Energy and Climate plans: approaches, practices and experiences
Integrated Energy and Climate plans: approaches, practices and experiences
 
Updates on Veda provided by Amit Kanudia from KanORS-EMR
Updates on Veda provided by Amit Kanudia from KanORS-EMRUpdates on Veda provided by Amit Kanudia from KanORS-EMR
Updates on Veda provided by Amit Kanudia from KanORS-EMR
 
Energy system modeling activities in the MAHTEP Group
Energy system modeling activities in the MAHTEP GroupEnergy system modeling activities in the MAHTEP Group
Energy system modeling activities in the MAHTEP Group
 
Applying science fiction to approach the future
Applying science fiction to approach the futureApplying science fiction to approach the future
Applying science fiction to approach the future
 
Will it leak?: Discussions of leakage risk from subsurface storage of carbon ...
Will it leak?: Discussions of leakage risk from subsurface storage of carbon ...Will it leak?: Discussions of leakage risk from subsurface storage of carbon ...
Will it leak?: Discussions of leakage risk from subsurface storage of carbon ...
 
Long-Term Decarbonization Pathways In Emerging Economies: Insights From 12 Mo...
Long-Term Decarbonization Pathways In Emerging Economies: Insights From 12 Mo...Long-Term Decarbonization Pathways In Emerging Economies: Insights From 12 Mo...
Long-Term Decarbonization Pathways In Emerging Economies: Insights From 12 Mo...
 

Dernier

Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Valters Lauzums
 
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...amitlee9823
 
Call Girls In Doddaballapur Road ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Doddaballapur Road ☎ 7737669865 🥵 Book Your One night StandCall Girls In Doddaballapur Road ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Doddaballapur Road ☎ 7737669865 🥵 Book Your One night Standamitlee9823
 
➥🔝 7737669865 🔝▻ Ongole Call-girls in Women Seeking Men 🔝Ongole🔝 Escorts S...
➥🔝 7737669865 🔝▻ Ongole Call-girls in Women Seeking Men  🔝Ongole🔝   Escorts S...➥🔝 7737669865 🔝▻ Ongole Call-girls in Women Seeking Men  🔝Ongole🔝   Escorts S...
➥🔝 7737669865 🔝▻ Ongole Call-girls in Women Seeking Men 🔝Ongole🔝 Escorts S...amitlee9823
 
👉 Amritsar Call Girl 👉📞 6367187148 👉📞 Just📲 Call Ruhi Call Girl Phone No Amri...
👉 Amritsar Call Girl 👉📞 6367187148 👉📞 Just📲 Call Ruhi Call Girl Phone No Amri...👉 Amritsar Call Girl 👉📞 6367187148 👉📞 Just📲 Call Ruhi Call Girl Phone No Amri...
👉 Amritsar Call Girl 👉📞 6367187148 👉📞 Just📲 Call Ruhi Call Girl Phone No Amri...karishmasinghjnh
 
Just Call Vip call girls Mysore Escorts ☎️9352988975 Two shot with one girl (...
Just Call Vip call girls Mysore Escorts ☎️9352988975 Two shot with one girl (...Just Call Vip call girls Mysore Escorts ☎️9352988975 Two shot with one girl (...
Just Call Vip call girls Mysore Escorts ☎️9352988975 Two shot with one girl (...gajnagarg
 
Thane Call Girls 7091864438 Call Girls in Thane Escort service book now -
Thane Call Girls 7091864438 Call Girls in Thane Escort service book now -Thane Call Girls 7091864438 Call Girls in Thane Escort service book now -
Thane Call Girls 7091864438 Call Girls in Thane Escort service book now -Pooja Nehwal
 
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteedamy56318795
 
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...amitlee9823
 
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night StandCall Girls In Attibele ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night Standamitlee9823
 
Discover Why Less is More in B2B Research
Discover Why Less is More in B2B ResearchDiscover Why Less is More in B2B Research
Discover Why Less is More in B2B Researchmichael115558
 
➥🔝 7737669865 🔝▻ mahisagar Call-girls in Women Seeking Men 🔝mahisagar🔝 Esc...
➥🔝 7737669865 🔝▻ mahisagar Call-girls in Women Seeking Men  🔝mahisagar🔝   Esc...➥🔝 7737669865 🔝▻ mahisagar Call-girls in Women Seeking Men  🔝mahisagar🔝   Esc...
➥🔝 7737669865 🔝▻ mahisagar Call-girls in Women Seeking Men 🔝mahisagar🔝 Esc...amitlee9823
 
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...SUHANI PANDEY
 
➥🔝 7737669865 🔝▻ Sambalpur Call-girls in Women Seeking Men 🔝Sambalpur🔝 Esc...
➥🔝 7737669865 🔝▻ Sambalpur Call-girls in Women Seeking Men  🔝Sambalpur🔝   Esc...➥🔝 7737669865 🔝▻ Sambalpur Call-girls in Women Seeking Men  🔝Sambalpur🔝   Esc...
➥🔝 7737669865 🔝▻ Sambalpur Call-girls in Women Seeking Men 🔝Sambalpur🔝 Esc...amitlee9823
 
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...amitlee9823
 
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...amitlee9823
 

Dernier (20)

Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
 
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
 
Call Girls In Doddaballapur Road ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Doddaballapur Road ☎ 7737669865 🥵 Book Your One night StandCall Girls In Doddaballapur Road ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Doddaballapur Road ☎ 7737669865 🥵 Book Your One night Stand
 
➥🔝 7737669865 🔝▻ Ongole Call-girls in Women Seeking Men 🔝Ongole🔝 Escorts S...
➥🔝 7737669865 🔝▻ Ongole Call-girls in Women Seeking Men  🔝Ongole🔝   Escorts S...➥🔝 7737669865 🔝▻ Ongole Call-girls in Women Seeking Men  🔝Ongole🔝   Escorts S...
➥🔝 7737669865 🔝▻ Ongole Call-girls in Women Seeking Men 🔝Ongole🔝 Escorts S...
 
👉 Amritsar Call Girl 👉📞 6367187148 👉📞 Just📲 Call Ruhi Call Girl Phone No Amri...
👉 Amritsar Call Girl 👉📞 6367187148 👉📞 Just📲 Call Ruhi Call Girl Phone No Amri...👉 Amritsar Call Girl 👉📞 6367187148 👉📞 Just📲 Call Ruhi Call Girl Phone No Amri...
👉 Amritsar Call Girl 👉📞 6367187148 👉📞 Just📲 Call Ruhi Call Girl Phone No Amri...
 
Just Call Vip call girls Mysore Escorts ☎️9352988975 Two shot with one girl (...
Just Call Vip call girls Mysore Escorts ☎️9352988975 Two shot with one girl (...Just Call Vip call girls Mysore Escorts ☎️9352988975 Two shot with one girl (...
Just Call Vip call girls Mysore Escorts ☎️9352988975 Two shot with one girl (...
 
Thane Call Girls 7091864438 Call Girls in Thane Escort service book now -
Thane Call Girls 7091864438 Call Girls in Thane Escort service book now -Thane Call Girls 7091864438 Call Girls in Thane Escort service book now -
Thane Call Girls 7091864438 Call Girls in Thane Escort service book now -
 
Anomaly detection and data imputation within time series
Anomaly detection and data imputation within time seriesAnomaly detection and data imputation within time series
Anomaly detection and data imputation within time series
 
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
 
Predicting Loan Approval: A Data Science Project
Predicting Loan Approval: A Data Science ProjectPredicting Loan Approval: A Data Science Project
Predicting Loan Approval: A Data Science Project
 
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
 
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night StandCall Girls In Attibele ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night Stand
 
Discover Why Less is More in B2B Research
Discover Why Less is More in B2B ResearchDiscover Why Less is More in B2B Research
Discover Why Less is More in B2B Research
 
➥🔝 7737669865 🔝▻ mahisagar Call-girls in Women Seeking Men 🔝mahisagar🔝 Esc...
➥🔝 7737669865 🔝▻ mahisagar Call-girls in Women Seeking Men  🔝mahisagar🔝   Esc...➥🔝 7737669865 🔝▻ mahisagar Call-girls in Women Seeking Men  🔝mahisagar🔝   Esc...
➥🔝 7737669865 🔝▻ mahisagar Call-girls in Women Seeking Men 🔝mahisagar🔝 Esc...
 
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
 
➥🔝 7737669865 🔝▻ Sambalpur Call-girls in Women Seeking Men 🔝Sambalpur🔝 Esc...
➥🔝 7737669865 🔝▻ Sambalpur Call-girls in Women Seeking Men  🔝Sambalpur🔝   Esc...➥🔝 7737669865 🔝▻ Sambalpur Call-girls in Women Seeking Men  🔝Sambalpur🔝   Esc...
➥🔝 7737669865 🔝▻ Sambalpur Call-girls in Women Seeking Men 🔝Sambalpur🔝 Esc...
 
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
 
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
 
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
 

Assessment of renewable energy in nation-wide power grid in Japan by optimal power generation mix model

  • 1. Resilience Engineering Research Center Assessment of renewable energy in nation-wide power grid in Japan by optimal power generation mix model Ryoichi Komiyama, Yasumasa Fujii The University of Tokyo 68TH SEMI-ANNUAL ETSAP MEETING, CMA, MINES ParisTech, Sophia Antipolis, France October 22, 2015
  • 2. Resilience Engineering Research Center 2 • Optimal Power Generation Mix Model • Time Resolution Outline
  • 3. Resilience Engineering Research Center FIT system has accelerated the installation of renewable, particularly solar PV. Surcharge imposed on electricity rate has been increasing. Surcharge [yen/kWh]: (2014) 0.75 yen/kWh, (2015) 1.58 yen/kWh Total Surcharge [yen/year]: (2014) 0.65 tril.yen, (2015) 1.8 tril.yen Installed PV capacity (Source) METI(Ministry of Economy, Trade and Industry) Renewable Energy in Japan (1$=120 yen) 3 0.0 5.0 10.0 15.0 20.0 25.0 1995 2000 2005 2010 2015 [GW] FIT implementation (July 2012) PV: 25GW
  • 4. Resilience Engineering Research Center Nuclear Power Plants in Japan 【Permanent Shutdown】 Tokai:The Japan Atomic Power Company 1998.3.31 Hamaoka No1,No2:Chubu Electric Power Company 2009.1.30 Fukushima Daiichi No1,No2,No3,No4:Tokyo electric power company 2011.3.31 4321 (Source) FEPC(Federation of Electric Power Companies Japan), IEEJ Nuclear has been very important power source in Japan, and all nuclear plants stranded for regulatory inspection after the Fukushima. At last, on August 11, 2015, Sendai nuclear power reactor in Kyushu Electric Power Company restarted its operation, which is the first case of the restart since 2013. 4 Hamaoka, Chubu Electric Power Company 11 Kashiwazaki-Kariwa, Tokyo Electric Power Company Shika, Hokuriku Electric Power Company Tsuruga, The Japan Atomic Power Company Mihama, Kansai Electric Power Company Ohi, Kansai Electric Power Company Genkai, Kyushu Electric Power Company Sendai, Kyushu Electric Power Company Output 100MW and more1000MW and less500MW and less Under construction In operation 68.15562Total 16.5529Planning 2.7563Under construction 48.84750In operation Total output (GW)Units 68.15562Total 16.5529Planning 2.7563Under construction 48.84750In operation Total output (GW)Units 11 22 11 22 33 33 44 55 22 33 4411 6655 3311 22 11 22 11 22 33 4411 55 66 77 2211 2211 3311 22 22 33 4411 Takamaha, Kansai Electric Power Company 33 4411 22 Shimane, Chugoku Electric Power Company 11 22 33 11 22 33 44 33 Higashidori, Tohoku Electric Power Company Higashidori, Tokyo Electric Power Company Tomari, Hokkaido Electric Power Company Ohma, Japan Power Development Company Onagawa, Tohoku Electric Power Company Fukushima Daiichi, Tokyo Electric Power Company TokaiDaini, The Japan Atomic Power Company Ikata, Shikoku Electric Power Company Fukushima Daini, Tokyo Electric Power Company
  • 5. Resilience Engineering Research Center Long-term energy outlook to 2030 of Japan was published in July 2015 by Ministry of Economy, Trade and Industry (METI). The most important agenda consists in the maximization of the fraction of renewable energy (22~24%) after the Fukushima nuclear accident. Outlook of Power Generation Mix (Source) METI(Ministry of Economy, Trade and Industry) Target of Optimal Power Generation Mix in 2030 5 0 10 20 30 40 50 60 70 80 90 100 10 year average before Fukushima 2030 [%] Oil 12% Coal 24% LNG27% Nucear 27% Renewable 11% Oil 3% Coal26% LNG27% Nuclear 20~22% Renewable 22~24% Hydro 8.8~9.2% PV 7.0% Wind 1.7% Geothermal 1.0% ~1.1%Biomass 3.7~4.6%
  • 6. Resilience Engineering Research Center Modeling Overview 6 After the Fukushima, a lot of attention has been concentrated on renewable energy as alternative power source in Japan. This presentation discusses optimal power generation mix (OPGM) for Japan with large-scale integration of renewable energy sources, and evaluate following item to provide policy maker with relevant insights • Optimal power dispatch • Additionally installed generators or batteries • Additionally installed capacity of transmission lines • Temporal resolution (2 hour ? 1 hour ? 30 min ? 10 min ?) Method An energy model is developed to understand possible massive RES integration. ⇒ OPGM Model (Computer-based numerical simulation tool)
  • 7. Resilience Engineering Research Center Power System in Japan (As of March 31, 2009) • The ten privately-owned regional electric power companies in Japan are responsible for providing local operations from power generation to distribution and supplying electricity to their respective service areas. • In addition, the ten electric power companies cooperate with each other to ensure a stable supply to customers nationwide. • For example, the electric power companies work together to exchange or provide electricity in order to cope with emergency situations resulting from accidents, breakdowns, or summer peak demand. • However, in April 2016 , the whole retail power market will be completely deregulated, and power sale competition will be encouraged. Total: 230GW System peak load : 178,995MW Electricity sales: 888,935GWh FCF: Frequency Converter Facilities :Total cap. 1.1GW
  • 8. Resilience Engineering Research Center Overview: Optimal Power Generation Mix (OPGM) Model in Japan Geographical Resolution: • whole region of Japan • 135 nodes, 166 transmission lines Power Line Network of OPGM model in Japan Eastern Japan (50Hz)Western Japan (60Hz) 南早来 西当別 道北1道北2道北3 北新得 西双葉 函館/大野 G G 東通 上北 秋田 岩手 宮城 G 女川 G 三 陸 海 岸 新庄 西仙台 仙台 宮城中央 G 相馬共同 新潟 G 南相馬 福島第一 GG 福島第二 広野 南いわき 新いわき 風力接続線1 広 野 火 力 線 富 岡 線 川 内 線 相 馬 双 葉 幹 線 常 磐 幹 線 仙 台 幹 線 青 葉 幹 線 北 上 幹 線 十 和 田 幹 線 む つ 幹 線 相 福 幹 線 朝 日 幹 線 山 形 幹 線 陸 羽 幹 線 松 島 幹 線 牡 鹿 幹 線 奥 羽 幹 線 岩手幹線 北青幹線/北奥幹線 大潟幹線 道 南 幹 線 道 央 西 幹 線 道 央 北 幹 線 道 央 東 幹 線 北 本 連 系 線 風力接続線5 襟裳岬 風 力 接 続 線 4 狩 勝 幹 線 飯 豊 幹 線 五 頭 幹 線 鳴 瀬 幹 線 秋盛幹線G 津軽半島 G G 道 央 南 幹 線 G 西野 G風力接続線2風力接続線3 柏崎刈羽 新新潟幹線鉄塔 新榛名/西群馬 G G G 東群馬 G G G G G G G 新茂木 新栃木/新今市 新新田 新所沢 新古河/新筑波 G 那珂 ひたちなか G G 新野田 新京葉 新豊洲 新佐原 岩槻 品川火力 G G G 新富士 東山梨 横須賀 新秦野 新多摩 横浜火力 新秩父新信濃 今市 下郷 G 塩原 房総 新木更津 袖ヶ浦 富津 房 総 線 新袖ヶ浦線 新袖ヶ浦線 福 島 幹 線 福島幹線新 古 河 線 新 佐 原 線 福 島 東 幹 線 新 茂 木 線 新 秩 父 線 新 栃 木 線新岡部線 新新田線 新 多 摩 線 新 新 潟 幹 線 新 榛 名 線 下郷線156鉄塔 下 郷 線 今 市 線 新 秦 野 線 新 い わ き 線 新 京 葉 線 新 京 葉 線 印旛線 西 群 馬 幹 線 西 群 馬 幹 線 塩 原 線 南 新 潟 幹 線 新 坂 戸 線 東群馬幹線 南いわき幹線 新 赤 城 線 那 珂 線 阿 武 隈 線 新 豊 洲 線 東 京 西 線 品 川 火 力 系 品 川 火 力 系 東 京 南 線 君津線 北 千 葉 線 千葉 北 千 葉 線 富津火力線 接 続 線 下 郷 線 佐久間FC 新信濃FC 柏崎刈羽(原) 奥清津(揚) 奥清津第二(揚) 新高瀬川(揚) 水殿(揚) 安雲(揚) 玉原(水) 葛野川(揚) 神流川(揚) 横浜(火) 川崎(火) 南横浜(火) 磯子(火) 横須賀(火) 今市(揚) 塩原(揚) 下郷(揚) 沼原(揚) 千葉(火) 鹿島(火) 鹿島共同(火) G五井(火) 姉崎(火) 富津(火)袖ヶ浦(火) 君津共同(火) 品川(火) 大井(火) 東扇島(火) 勿来(火) 常陸那珂(火) 東海第二(原) 広野(火) 福島第二(原) 福島第一(原) 新地(火) 新潟(火) 東新潟(火) 仙台(火) 新仙台(火) 酒田共同(火) 女川(原) 秋田(火) 能代(火) 東通(原) 八戸(火) 知内(火) 泊(原) 伊達(火) 苫小牧(火) 音別(火) 苫東厚真(火) 苫小牧共同(火)砂川(火) 奈井江(火) G 双 葉 線 G 原町(火) G 東清水FC MINAMIHAYAKITA NISHITOBETSU NORTH HOKKAIDO1 NORTH HOKKAIDO3 KITASHINTOKU NISHI FUTABA HAKODATE /ONO G G HIGASHIDORI KITAKAMI AKITA IWATE MIYAGI G ONAGAWA G SHINJYO NISHISENDAI SENDAI MIYAGI CHUO G SOMA KYODO NIGATA G MINAMISOMA FUKUSHIMA DAIICHI GG FUKUSHIMA DAINI HIRONO MINAMIIWAKI SHINIWAKI Wind connection 1 Iwate main line Wind connection 5 ERIMOMISAKI G TSUGARU Peninsula G G G NISHINO GWind connection 2Wind connection 3 KASHIWASAKI KARIWA SHIN NIGATA Tower SHINHARUNA /NISHIGUNMA G G G HIGASHI GUNMAN G G G G G G G SHINMOGI SHINTOCHIGI/SHINIMAICHI SHIN SHINDEN SHIN TOKOROZAWA SHINFURUKAWA /SHINTSUKUBA G NAKA HITACHINAKA G G SHINNODA SHINKEIYO SHINTOYOSU SHIN SAHARA IWASTUKI SHINAGAWA Thermal G G GSHINFUJI HIGASHI YAMANASHI YOKOSUKA SHIN HADANO SHINTAMA YOKOHAMA Thermal SHIN CHICHIBU SHINSHINANO IMAICHI SHIMOGO G SHIOBARA BOSO SHIN KISARAZU SODEGAURA FUTTSU Shinsodegaura line Shinsodegaura line Fukushima main line shinokabe line shinshinden line SHIMOGO Line 156 Tower Higashigunma main line Minamiiwaki CHIBA Futtsu thermal lineSakuma FC Shinshinano FC kasiwasakikariwa(N) okukiyotsu(P) okukiyotsudaini(P) shintakasegawa(P) midono(P) akumo(P) tanbara (H) kazunogawa(P) kannagawa(P) yokohama(T) kawasaki(T) minamiyokohama(T) isogo(T) yokosuka(T) imaichi(P) siobara(P) simogo(P) numappara(P) chiba(T) kashima(T) kashimakyodo(T) Ggoi(T) anesaki(T) futtsu(T)sodegaura(T) kimitsukyodo(T) shinagawa(T) Oi(T) higashiogishima(T) nakoso(T) hitachinaka(T) tokaidaini(N) hirono(T) Fukushimadaini(N) fukushimadaiichi(N) shinchi(T) nigata(T) higashinigata(T) sendai(T) shinsendai (T) sakatakyodo(T) onagawa(N) akita(T) noshiro(T) higashidori(N) hachinohe(T) shiriuchi(T) tomari(N) date(T) tomakomai(T) onbetsu(T) tomatoatsuma(T) tomakomaikyodo(T) sunagawa(T) naie(T) G G haramachi(T) G Higashishimizu FC NORTH HOKKAIDO2 SANRIKU Coast Minaminiigatamainline Shinniigatamainline NishigunmamainlineNishigunmamainline ShinharunalineShitamalineShinhadanoline Tokyonishiline Shinchichibuline Tokyominami line Shinagawathermal system Shinagawathermal system Shintoyosuline ShinkeiyolineShinkeiyoline Shinfurukawa line Shintochigi line Shimogo line Shimogo line Imaichi line Shiobara line Abunaka line Naka line Shinmogi line Shinsaharaline Fukushimamainline Shiniwakiline Fukushimahigashimainline Bosoline KitachibalineKitachibaline Yamagata mainline Oumainline Hirono thermalline Tomiokaline Asahimainline Jobanmainline Aoba mainline Sendaimainline Matsushima mainline Shinsakadoline Shinakagiline Inba line Kimitsu line Karikachi mainline Wind connection4 Mutsu mainline NorthCentral Hokkaido mainline WestCentral Hokkaido mainline EastCentral Hokkaido mainline SouthCentral Hokkaido mainline South Hokkaido mainline Kitahoninterconnectionline Riku mainline Kitakami mainline Oshika mainline Naruse mainline Hokusei/hokuo/Ogata main line Hokusei/hokuo/Ogata main line Akimori main line Towada mainline SomaFutabamainline Futaba line Kawauchi line Gozumainline Idemainline Sofuku mainline G G G G G G G G GGG G G G G G G G G G G G G MINAMI KYUSYU OMARUGAWA TAKANO CHUO OITA TOYOMAE NISHI KYUSYU KITA KYUSYU SHIN YAMAGUCHI HIGASHI YAMAGUCHI SHINNISHI HIROSHIMA SHIN HIROSHIMA SHIN OKAYAMA HIGASHI OKAYAMA HIROSHIMA SHINKURASIKI SANUKI KAWAUCHI ANAN OSAKA Bay NOSEYAMASAKINISHIHARI HINO NISHI SHIMANE MISUMI KITAMATSUE SHIN TOTTORI CHIZU HIGASHIOMI MINAMIKYOTO SEKI KUROBE RYONANKEIHOKUINAGAWAHOKUSETSU OKUTATARAGI MAIDURU OOI MIHAMA SHINFUKUI ECHIZENKITASYO KAGA JOHANA TOYAMA MINAMI FUKUMITSU SHINNOTO SHIGA GIFU MIE HIGASHI YAMATO SEIBU GIHOKU KAWAGOE HOKUBU NAGANO AICHI JOETSU SHINANO TOYONE TOBU CHITA HEKINAN ATSUMI SHIZUOKA TOEI HAMAOKA G UBE G TOKUYAMA himejidaiichi(T) himejidaini(T) tanagawadaini(T) aioi(T) akou(T) nanko(T) sakaiminato(T) kainan(T) gobo(T) shinonoda(T) simonoseki(T) G misumi(T) shimane(N) matanogawa(P) kisenyama(P) okuyoshino (P) ikehara(P) ooi(N) fukui(T) tsuruga(T) nanaota(T) shiga(N) other hydro(H) Gtoyama(T) toyamashinko(T) maiduru(T) miyadu(T) takahama(N) okutataragi(P) mihama(N) tsuruga(N) saijo(T) ikata(N) omorigawa(P) hongawa(P) ananaigawa(P) anan(T) tachibanawan(T) sakaide(T) kagehira(P) G G omarugawa(P) sendai(T) sendai(N) reihoku (T) taihei(P) genkai(N) matsuura(T) karatsu(T) ainoura(T) matsushima(T) tenzan(P) shinkokura (T) karita(T) simomatsu(T) yanai(T) iwakuni(T) kaminoseki(N) shinoita(T) osaki(T) nabara(P) mizushima(T) shinnariwagawa(P) yokkaichi(T) kawagoe(T) shinnagoya(T) nishinagoya(T) owasemita(T) chita(T) taketoyo(T) chitadaini(T) hekinan(T) atsumi(T) hamaoka(N) Gbuzen(T) G takehara(T) joetsu(T) kurobe etc(P) Gokawachi(P) G okumino(P) nagano(P) G takanedaiichi(P) mazegawadaiichi(P) G okuyahagidaiichi(P) okuyahagidaini(P) G Echizen lineKitanosho line Chuo main line Shinko/Shintoyama main line KagaFukumitsu line Noetsu main line Noetsu main line Shinshinano FC Sakuma FC Higashishimizu FC Minamifukumitsu interconnection Aigi main line Toyone main line Wakasa main line Wakasa main lineTanba main lineToban lineShintottoriChizu Chugokuhigashi main line Hino main line HinoShintottorichugokuchu main lineChugokunishi main line Shinyamaguchi main line Shinyamaguchi main line Shinnishihiroshima main line Shinhiroshima main line Shinokayama main line NishihariOkayama line Harimanishi line Harimachuo line Nose line Minamiomi line MieHigashiomi line Mie connection line Seibu main line Seibu main line Tobu main line Toei main line Sangi main line Yamashirohigashiline AnanKihoku DC main line SeibuNagoyaline Kitayamatoline Chitathermalline HigashiNagoyatobuline Gifuconnectionline Shizuokamainline Toyoneconncetion line Minamishinano mainline Shizuoka connectionline Hamaokamainline Kitakyusyu mainline Shinhiroshima connectionline Shinnishihiroshima connectionline Shinokayama connectionline Higashiokayama connectionline Higashiyamaguchi connectionline Nishishimane mainline Joetsuthermalline Shinano mainline Omarugawa mainline YamasakiChizuline Harimaline Shinyamaguchi connectionline YamaguchiUbeline Kanmon Interconnectionline Shikokutyuohigashi mainline Awamainline Honshi Interconnectionline Misumi thermalline Shimanenuclearpower mainline Kitamatsue mainline Okutataragi mainline Tanba mainline Dainioi mainline Mihama line EchizenRyonanline Kagamainline TakaradukalineHimejiline Nishikyotoline Miborokita mainline Miborominami mainline HokubuchunolineNagano mainline Sunto mainline Shinmikawa mainline Mikawaline NukatatobulineNukataKoutaline 8
  • 9. Resilience Engineering Research Center Network Topology: Node Distribution in Japanese Map
  • 10. Resilience Engineering Research Center Network Topology: Modelling of Power System in Eastern Japan (50 Hz) 10 MINAMIHAYAKITA NISHITOBETSU NORTH HOKKAIDO1 NORTH HOKKAIDO3 KITASHINTOKU NISHI FUTABA HAKODATE /ONO G G HIGASHIDORI KITAKAMI AKITA IWATE MIYAGI G ONAGAWA G SHINJYO NISHISENDAI SENDAI MIYAGI CHUO G SOMA KYODO NIGATA G MINAMISOMA FUKUSHIMA DAIICHI GG FUKUSHIMA DAINI HIRONO MINAMIIWAKI SHINIWAKI Wind connection 1 Iwate main line Wind connection 5 ERIMOMISAKI G TSUGARU Peninsula G G G NISHINO GWind connection 2Wind connection 3 KASHIWASAKI KARIWA SHIN NIGATA Tower SHINHARUNA /NISHIGUNMA G G G HIGASHI GUNMAN G G G G G G G SHINMOGI SHINTOCHIGI/SHINIMAICHI SHIN SHINDEN SHIN TOKOROZAWA SHINFURUKAWA /SHINTSUKUBA G NAKA HITACHINAKA G G SHINNODA SHINKEIYO SHINTOYOSU SHIN SAHARA IWASTUKI SHINAGAWA Thermal G G GSHINFUJI HIGASHI YAMANASHI YOKOSUKA SHIN HADANO SHINTAMA YOKOHAMA Thermal SHIN CHICHIBU SHINSHINANO IMAICHI SHIMOGO G SHIOBARA BOSO SHIN KISARAZU SODEGAURA FUTTSU Shinsodegaura line Shinsodegaura line Fukushima main line shinokabe line shinshinden line SHIMOGO Line 156 Tower Higashigunma main line Minamiiwaki CHIBA Futtsu thermal lineSakuma FC Shinshinano FC kasiwasakikariwa(N) okukiyotsu(P) okukiyotsudaini(P) shintakasegawa(P) midono(P) akumo(P) tanbara (H) kazunogawa(P) kannagawa(P) yokohama(T) kawasaki(T) minamiyokohama(T) isogo(T) yokosuka(T) imaichi(P) siobara(P) simogo(P) numappara(P) chiba(T) kashima(T) kashimakyodo(T) Ggoi(T) anesaki(T) futtsu(T)sodegaura(T) kimitsukyodo(T) shinagawa(T) Oi(T) higashiogishima(T) nakoso(T) hitachinaka(T) tokaidaini(N) hirono(T) Fukushimadaini(N) fukushimadaiichi(N) shinchi(T) nigata(T) higashinigata(T) sendai(T) shinsendai (T) sakatakyodo(T) onagawa(N) akita(T) noshiro(T) higashidori(N) hachinohe(T) shiriuchi(T) tomari(N) date(T) tomakomai(T) onbetsu(T) tomatoatsuma(T) tomakomaikyodo(T) sunagawa(T) naie(T) G G haramachi(T) G Higashishimizu FC NORTH HOKKAIDO2 SANRIKU Coast Minaminiigatamainline Shinniigatamainline NishigunmamainlineNishigunmamainline ShinharunalineShitamalineShinhadanoline Tokyonishiline Shinchichibuline Tokyominami line Shinagawathermal system Shinagawathermal system Shintoyosuline ShinkeiyolineShinkeiyoline Shinfurukawa line Shintochigi line Shimogo line Shimogo line Imaichi line Shiobara line Abunaka line Naka line Shinmogi line Shinsaharaline Fukushimamainline Shiniwakiline Fukushimahigashimainline Bosoline KitachibalineKitachibaline Yamagata mainline Oumainline Hirono thermalline Tomiokaline Asahimainline Jobanmainline Aoba mainline Sendaimainline Matsushima mainline Shinsakadoline Shinakagiline Inba line Kimitsu line Karikachi mainline Wind connection4 Mutsu mainline NorthCentral Hokkaido mainline WestCentral Hokkaido mainline EastCentral Hokkaido mainline SouthCentral Hokkaido mainline South Hokkaido mainline Kitahoninterconnectionline Riku mainline Kitakami mainline Oshika mainline Naruse mainline Hokusei/hokuo/Ogata main line Hokusei/hokuo/Ogata main line Akimori main line Towada mainline SomaFutabamainline Futaba line Kawauchi line Gozumainline Idemainline Sofuku mainline
  • 11. Resilience Engineering Research Center Network Topology: Modelling of Power System in Western Japan (60 Hz) 11 G G G G G G G G GGG G G G G G G G G G G G G MINAMI KYUSYU OMARUGAWA TAKANO CHUO OITA TOYOMAE NISHI KYUSYU KITA KYUSYU SHIN YAMAGUCHI HIGASHI YAMAGUCHI SHINNISHI HIROSHIMA SHIN HIROSHIMA SHIN OKAYAMA HIGASHI OKAYAMA HIROSHIMA SHINKURASIKI SANUKI KAWAUCHI ANAN OSAKA Bay NOSEYAMASAKINISHIHARI HINO NISHI SHIMANE MISUMI KITAMATSUE SHIN TOTTORI CHIZU HIGASHIOMI MINAMIKYOTO SEKI KUROBE RYONANKEIHOKUINAGAWAHOKUSETSU OKUTATARAGI MAIDURU OOI MIHAMA SHINFUKUI ECHIZENKITASYO KAGA JOHANA TOYAMA MINAMI FUKUMITSU SHINNOTO SHIGA GIFU MIE HIGASHI YAMATO SEIBU GIHOKU KAWAGOE HOKUBU NAGANO AICHI JOETSU SHINANO TOYONE TOBU CHITA HEKINAN ATSUMI SHIZUOKA TOEI HAMAOKA G UBE G TOKUYAMA himejidaiichi(T) himejidaini(T) tanagawadaini(T) aioi(T) akou(T) nanko(T) sakaiminato(T) kainan(T) gobo(T) shinonoda(T) simonoseki(T) G misumi(T) shimane(N) matanogawa(P) kisenyama(P) okuyoshino (P) ikehara(P) ooi(N) fukui(T) tsuruga(T) nanaota(T) shiga(N) other hydro(H) Gtoyama(T) toyamashinko(T) maiduru(T) miyadu(T) takahama(N) okutataragi(P) mihama(N) tsuruga(N) saijo(T) ikata(N) omorigawa(P) hongawa(P) ananaigawa(P) anan(T) tachibanawan(T) sakaide(T) kagehira(P) G G omarugawa(P) sendai(T) sendai(N) reihoku (T) taihei(P) genkai(N) matsuura(T) karatsu(T) ainoura(T) matsushima(T) tenzan(P) shinkokura (T) karita(T) simomatsu(T) yanai(T) iwakuni(T) kaminoseki(N) shinoita(T) osaki(T) nabara(P) mizushima(T) shinnariwagawa(P) yokkaichi(T) kawagoe(T) shinnagoya(T) nishinagoya(T) owasemita(T) chita(T) taketoyo(T) chitadaini(T) hekinan(T) atsumi(T) hamaoka(N) Gbuzen(T) G takehara(T) joetsu(T) kurobe etc(P) Gokawachi(P) G okumino(P) nagano(P) G takanedaiichi(P) mazegawadaiichi(P) G okuyahagidaiichi(P) okuyahagidaini(P) G Echizen lineKitanosho line Chuo main line Shinko/Shintoyama main line KagaFukumitsu line Noetsu main line Noetsu main line Shinshinano FC Sakuma FC Higashishimizu FC Minamifukumitsu interconnection Aigi main line Toyone main line Wakasa main line Wakasa main lineTanba main lineToban lineShintottoriChizu Chugokuhigashi main line Hino main line HinoShintottorichugokuchu main lineChugokunishi main line Shinyamaguchi main line Shinyamaguchi main line Shinnishihiroshima main line Shinhiroshima main line Shinokayama main line NishihariOkayama line Harimanishi line Harimachuo line Nose line Minamiomi line MieHigashiomi line Mie connection line Seibu main line Seibu main line Tobu main line Toei main line Sangi main line Yamashirohigashiline AnanKihoku DC main line SeibuNagoyaline Kitayamatoline Chitathermalline HigashiNagoyatobuline Gifuconnectionline Shizuokamainline Toyoneconncetion line Minamishinano mainline Shizuoka connectionline Hamaokamainline Kitakyusyu mainline Shinhiroshima connectionline Shinnishihiroshima connectionline Shinokayama connectionline Higashiokayama connectionline Higashiyamaguchi connectionline Nishishimane mainline Joetsuthermalline Shinano mainline Omarugawa mainline YamasakiChizuline Harimaline Shinyamaguchi connectionline YamaguchiUbeline Kanmon Interconnectionline Shikokutyuohigashi mainline Awamainline Honshi Interconnectionline Misumi thermalline Shimanenuclearpower mainline Kitamatsue mainline Okutataragi mainline Tanba mainline Dainioi mainline Mihama line EchizenRyonanline Kagamainline TakaradukalineHimejiline Nishikyotoline Miborokita mainline Miborominami mainline HokubuchunolineNagano mainline Sunto mainline Shinmikawa mainline Mikawaline NukatatobulineNukataKoutaline
  • 12. Resilience Engineering Research Center Overview: Optimal Power Generation Mix (OPGM) Model in Japan Power Generation Facilities: • 500 power generation facilities (Coal, LNG-GCC, LNG-ST, Oil, Nuclear, Hydro, Geothermal, Biomass, Marine, PV, Wind) • 245 storage facilities (Pumped Storage, Sodium-sulfur Battery (Lower C-rate), Li-ion Battery (Higher C-rate)) Time Resolution: • 10-min interval for 1 year = 6 intervals/hour×24 hours/day×365 days = 52,560 time steps / year Methodology: • Linear programming (200 million constraints) • Single-period optimization (cost minimization) • It takes three days to obtain an optimal solution with CPLEX. 12
  • 13. Resilience Engineering Research Center Modeling (LP Formulation) 13 Optimizes the set of endogenous variables which minimizes the objective function under the given constraints Objective Function = Fixed Cost (power sources, storages, transmission lines) + Fuel Cost (thermal, nuclear) + Power Storage Cost* Constraints supply-demand balances, capacity constraints, power supply reserve constraints, load following capability constraints, CO2 emission constraint, power transmission capacity constraints, charge and discharge balance of power storage, C-rate constraints, ………………. * Power Storage Cost = Capacity Cost + Energy Cost + Cost of consumable parts
  • 14. Resilience Engineering Research Center Wind Resource Map in Japan Wind Resource Wind Speed Wind Resource Wind Speed Onshore Offshore Total Potential: 282.9 GW Hokkaido : 139.6 GW (49%) Tohoku : 72.6 GW (26%) Kyushu : 20.9 GW (7.4%) Total Potential: 1572.6 GW Hokkaido : 403.0 GW (26%) Tohoku : 224.8 GW (14%) Kyushu : 454.6 GW (29%) (Source) Ministry of Environment 14
  • 15. Resilience Engineering Research Center Solar Radiation Map 15
  • 16. Resilience Engineering Research Center Locations of AMeDAS 16 Automated Meteorological Data Acquisition System The system extends to about 1,300 places in Japanese various places, and measures precipitation, wind direction, velocity of the wind, air temperature, durations of sunshine, and depth of snow cover degree, by automatic operation in every 10 minutes. Sunshine Wind
  • 17. Resilience Engineering Research Center Modeling of PV and Wind Outputs 17 Example of PV output Example of wind output PV and wind outputs are estimated from actual meteorological data in year- 2012, and are given at 10-min intervals for 1 year in each node In the model, PV and wind outputs can be curtailed, if necessary. (The model determines the optimal operation of PV & wind outputs among direct grid integration, storage and curtailment)
  • 18. Resilience Engineering Research Center Measured and Estimated Wind Power 18 0 500 1000 1500 2000 2500 0 10 20 30 [KW] [m/s] Performance curve Performance curve Vc=5, Vr=12.5, and Vf=25(m/s) in mega-watt class pinwheel (1 ~3MW) in recent years. Example (Lower right figure) Ratings output 2000kW Performance curve of pinwheel of Vc=3, Vr=12.5, and Vf=25(m/s)
  • 19. Resilience Engineering Research Center Parameter Setting (Example) 19 Type Nuclear Coal LNG GCC LNG ST Oil Biomass Hydro Geothermal PV Wind Unit Construction Cost [$/kW] 2,790 2,720 1,640 1,640 2,690 3,500 7,320 5,100 4,000 1,900 Life Time [year] 40 40 40 40 40 40 60 20 17 17 Annual O&M Cost Rate 0.04 0.048 0.036 0.036 0.039 0.048 0.0178 0.01 0.01 0.02 Maximum Capacity [GW] ∞ ∞ ∞ ∞ 5.5 GW 10 GW Minimum Capacity [GW] 0 0 0 0 0 2.2 GW MaximumIncrease Rate of Output [1/hour] 0 0.31 0.82 0.82 1 0.31 0.05 0.05 MaximumDecrease Rate of Output [1/hour] 0 0.58 0.75 0.75 1 0.58 0.05 0.05 Efficiency 1 0.418 0.484 0.396 0.394 0.2 Own Consumption Rate 0.035 0.061 0.02 0.04 0.045 0.13 Fuel Cost [cent/specific unit] 1.67 8.367 51.985 51.985 70.197 12.25 Heat Content[kcal/specific unit] 860 6139 13043 13043 9126 3585 Carbon Content[kg-C/specific unit] 0 0.61752 0.7462 0.7462 0.78792 0 Seasonal Peak Availability 0.85 0.85 0.9 0.9 0.9 0.85 Annual Average Availability 0.85 0.783 0.833 0.8 0.8 0.783 Share of Daily Start and Stop 0 0 0.5 0.3 0.7 0 Minimum Output Level 0.3 0.3 0.2 0.2 0.3 0.3 Specific Unit kWh kg kg kg l kg 32GW 23 GW 1.2 GW 6.7GW to 1,270 GW Type Pumped Battery(NAS) Unit kW Construction Cost [$/kW] 2,400 1,200 Life Time [year] 60 15 Annual O&M Cost Rate 0.01 0.01 Maximum Capacity [GW] ∞ Minimum Capacity [GW] 0 Unit kWh Construction Cost [$/kWh] 10 40 Life Time [year] 60 15 Unit Non durable Material Cost [$/kWh] 0 160 Life Cycle [times] ∞ 4,500 Cycle Efficiency 0.7 0.9 Self Discharge Loss [1/hour] 0.0001 0.001 Maximum kWh ratio to kW 6 ∞ Usage Rate 0.9 0.9 28 GW
  • 20. Resilience Engineering Research Center 20 (Third Strategic Energy Plan by METI, 2014) RES Fraction: 21% (Energy and environmental option, 2012) RES Fraction: 30% PV Rooftop 33.5 GW Utility-scale 19.5 GW Rooftop 40.0 GW Utility-scale 23.28 GW Wind 10 GW 34.89 GW Hydro Conventional 11.78 GW Small, medium 12.0 GW Conventional 11.78 GW Small, medium 12.0 GW Geothermal 1.65 GW 3.12 GW Biomass 3.61 GW 5.52 GW Marine No 1.0 GW Total 92.04 GW 131.60 GW * Above capacity is allocated to each node, based on capacity certified by FIT and resource potential estimated by Ministry of Environment Japan. Assumptions of Renewable Power Generation (2030)
  • 21. Resilience Engineering Research Center Assumption: RES Capacity in 2030 21 57% 11% 26% 2%4% Case: RES 21% PV Wind Hydro Geothermal Biomass Generating Capacity 92.04GW 48% 27% 18% 2% 4%1% Case: RES 30% PV Wind Hydro Geothermal Biomass Marine Generating Capacity 131.6GW
  • 22. Resilience Engineering Research Center Power Generation Mix in Japan (2030) 22 In the case of RES 30%, 15% of total wind output is observed to be curtailed. 110.7 110.3 11.6 21.6 31.7 32.2 158.5 154.1 219.9 209.9 36.1 26.3 302.5 256.0 22.3 70.1 51.0 63.0 -15.7 -15.0 10.7 10.3 12.6 0.9 -19.3 -21.2 -100 0 100 200 300 400 500 600 700 800 900 1000 [5-1] [5-2] TWh Electricity Balances in the Period Loss Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(out) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro RES21% RES30%
  • 23. Resilience Engineering Research Center Results|Installed Capacity 23 0 20 40 60 80 100 120 [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu GW Generating Capacity Battery2 Battery1 Pumped PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30%
  • 24. Resilience Engineering Research Center 24 -50 0 50 100 150 200 250 300 350 [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] [5-1] [5-2] Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu TWh Electricity Balances in the Period Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(out) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% 21% 30% Results|Power Generation
  • 25. Resilience Engineering Research Center 25 0.2 0.3 2.6 0.6 1.3 0.0 0.0 2.5 0.0 1.1 0.0 1.0 2.0 3.0 西野 新京葉 大阪湾 阿南 新倉敷 Newly Constructed LNG GCC [5-1] [5-2]RES21% RES30% Results|Capacity Expansion Nishino Shinkeiyo Osaka bay Anan Shinkurashiki
  • 26. Resilience Engineering Research Center Results|Capacity Factor of Wind and PV 26 36.5 24.2 20.1 22.1 21.7 28.3 29.7 20.1 29.3 25.4 23.6 20.2 20.1 22.1 22.1 28.5 29.9 23.4 28.7 22.8 0.0 10.0 20.0 30.0 40.0 Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu All Japan % Wind Capacity Factor [5-1] [5-2] 9.6 10.0 11.7 12.0 10.3 10.6 11.0 10.4 10.6 11.1 8.5 9.8 11.8 12.1 10.3 10.6 11.0 10.4 10.0 10.9 0.0 5.0 10.0 15.0 Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu All Japan % PV Capacity Factor [5-1] [5-2] RES21% RES30% RES21% RES30%
  • 27. Resilience Engineering Research Center Wind & PV Suppression 27 For large-scale integration of wind & PV in Japan, those output curtailments are required particularly in Hokkaido, Tohoku and Kyushu service area 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 40.3 15.9 0.0 0.0 0.0 0.0 0.0 0.0 2.7 15.3 0.0 15.0 30.0 45.0 Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu All Japan % Wind Suppression Rate [5-1] [5-2]RES21% RES30% Wind Suppression Rate40.3% 15.9% 2.7% Hokkaido Tohoku Kyushu 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 11.1 1.3 0.0 0.0 0.0 0.0 0.0 0.0 6.0 1.5 0.0 2.0 4.0 6.0 8.0 10.0 12.0 Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu All Japan % PV Suppression Rate [5-1] [5-2] PV Suppression Rate11.1% 1.3% 6.0% Hokkaido Tohoku Kyushu
  • 28. Resilience Engineering Research Center Capacity Factor of Power Plants in Each Region 28 Capacity factor of ramp generator is observed to be decreased. Large-scale RES integration affects capacity factor of base-load generators such as nuclear and coal in Hokkaido and Tohoku regions. 0 10 20 30 40 50 60 70 80 90 100 [5-1] [5-2] % Capacity Factor (Tohoku) Nuclear Coal LNG GCC Hydro Oil 0 10 20 30 40 50 60 70 80 90 100 [5-1] [5-2] % Capacity Factor (Kanto) Nuclear Coal LNG GCC Hydro Oil LNG ST 0 10 20 30 40 50 60 70 80 90 100 [5-1] [5-2] % Capacity Factor (Hokkaido) Nuclear Coal LNG GCC Hydro Oil RES21% 0 10 20 30 40 50 60 70 80 90 100 [5-1] [5-2] % Capacity Factor (Kyushu) Nuclear Coal LNG GCC Hydro Oil RES30% RES21% RES30% RES21% RES30% RES21% RES30% Hokkaido Tohoku Kanto Kyushu Nuclear Coal Coal LNG GCC LNG ST LNG GCC
  • 29. Resilience Engineering Research Center Power Grid Operation at RES 21% in July 29 Hokkaido Tohoku Kanto (Tokyo) Ramp operation by coal-fired PV output is controlled by pumped-hydro Transport of surplus RES outputs to Kanto (Tokyo) region -5 0 5 10 15 20 25 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Kyushu PV output is controlled by pumped-hydro
  • 30. Resilience Engineering Research Center Power Grid Operation at RES 30% in July 30 Massive RES curtailment RES integration influences base- load generator Ramp operation by coal-fired Transport of surplus RES outputs to Kanto (Tokyo) region ↓ Nationwide grid operation is necessary in RES integration Hokkaido Tohoku Kanto (Tokyo) -5 0 5 10 15 20 25 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Transport of surplus RES outputs to Chugoku region Kyushu
  • 31. Resilience Engineering Research Center -4 -2 0 2 4 6 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -10 -5 0 5 10 15 20 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -20 -10 0 10 20 30 40 50 60 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -10 -5 0 5 10 15 20 25 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load Power Grid Operation at RES 21% in Dec. Hokkaido Tohoku Kanto (Tokyo) Kyushu Wind output is controlled by pumped-hydro Transport of surplus RES outputs to Kanto (Tokyo) region ↓ Nationwide grid operation is necessary in RES integration
  • 32. Resilience Engineering Research Center -6 -3 0 3 6 9 12 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -15 -10 -5 0 5 10 15 20 25 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -20 -10 0 10 20 30 40 50 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -10 -5 0 5 10 15 20 25 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load Power Grid Operation at RES 30% in Dec. Hokkaido Tohoku Kanto (Tokyo) Kyushu Massive RES curtailment RES integration influences base- load generator Transport of surplus RES outputs to Kanto (Tokyo) region ↓ Nationwide grid operation is necessary in RES integration PV output is controlled by pumped-hydro and power transport to Chugoku
  • 33. Resilience Engineering Research Center -10 -5 0 5 10 15 20 25 30 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -4 -2 0 2 4 6 8 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -5 0 5 10 15 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -10 -5 0 5 10 15 20 25 30 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -4 -2 0 2 4 6 8 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load Chubu Hokuriku Kansai Shikoku Chugoku Power Grid Operation at RES 21% in July PV output is controlled by pumped-hydro and power transport to Chugoku
  • 34. Resilience Engineering Research Center -10 -5 0 5 10 15 20 25 30 Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load GW -4 -2 0 2 4 6 8 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -10 -5 0 5 10 15 20 25 30 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -6 -3 0 3 6 9 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load -6 -3 0 3 6 9 12 GW Loss Inter Change Suppressed PV Suppressed Wind Battery2(out) Battery1(out) Pumped(ont) Battery2(in) Battery1(in) Pumped(in) PV Wind Oil LNG GCC LNG ST Coal Nuclear Marine Biomass Geothermal Hydro Load Power Grid Operation at RES 30% in July Chubu Hokuriku Kansai Shikoku Chugoku PV output is controlled by pumped-hydro and power transport to Chugoku
  • 35. Resilience Engineering Research Center Total System Cost & CO2 emissions 35 RES 30% causes the increase in total system cost derived from large scale RES integration, although a certain amount of CO2 emissions is mitigated. 11671 11294 12244 136 89 80 0 40 80 120 160 11000 12000 13000 [4-1] [5-1] [5-2] CarbonEmission[Mt-C] SystemCost[G-Yen] RES21% RES30%(Base Case) System Cost Carbon Emission
  • 36. Resilience Engineering Research Center Results|Regional System Costs and CO2 emissions 36 348 1172 4006 1870 352 1731 440 658 1096 395 1127 3483 1715 370 1633 444 775 1352 555 1259 3732 1815 396 1660 457 838 1533 0 1500 3000 4500 Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu G-Yen System Cost [4-1] [5-1] [5-2] 5.7 17.6 34.9 20.8 6.1 16.5 8.3 10.4 15.4 1.3 11.4 21.4 15.6 4.7 11.5 3.2 9.1 10.8 0.2 9.2 19.5 14.4 4.4 10.8 2.6 8.6 10.3 0.0 10.0 20.0 30.0 40.0 Hokkaido Tohoku Kanto Chubu Hokuriku Kansai Shikoku Chugoku Kyushu Mt-C Carbon Emission [4-1] [5-1] [5-2] Base Case RES21% RES30% Base Case RES21% RES30%
  • 37. Resilience Engineering Research Center Expansion of Power Transmission Line in Eastern Japan (50Hz Grid) 37 南早来 西当別 道北1道北2道北3 北新得 西双葉 函館/大野 G G 東通 上北 秋田 岩手 宮城 G 女川 G 三 陸 海 岸 新庄 西仙台 仙台 宮城中央 G 相馬共同 新潟 G 南相馬 南いわき 風力接続線1 川 相 馬 双 葉 幹 線 常 磐 幹 線 仙 台 幹 線 青 葉 幹 線 北 上 幹 線 十 和 田 幹 線 む つ 幹 線 相 福 幹 線 朝 日 幹 線 山 形 幹 線 陸 羽 幹 線 松 島 幹 線 牡 鹿 幹 線 奥 羽 幹 線 岩手幹線 北青幹線/北奥幹線 大潟幹線 道 南 幹 線 道 央 西 幹 線 道 央 北 幹 線 道 央 東 幹 線 北 本 連 系 線 風力接続線5 襟裳岬 風 力 接 続 線 4 狩 勝 幹 線 飯 豊 幹 線 五 頭 幹 線 鳴 瀬 幹 線 秋盛幹線G 津軽半島 G G 道 央 南 幹 線 G 西野 G風力接続線2風力接続線3 新茂木 G 那珂 ひたちなか G 新佐原 塩原 福 島 幹 線 福島幹線 新 佐 原 線 福 島 東 幹 線 新 茂 木 線 新 い わ き 線 那 珂 線 阿 武 隈 線 塩原(揚) 大井(火) 勿来(火) 常陸那珂(火) 東海第二(原) 新地(火) 新潟(火) 東新潟(火) 仙台(火) 新仙台(火) 酒田共同(火) 女川(原) 秋田(火) 能代(火) 東通(原) 八戸(火) 知内(火) 泊(原) 伊達(火) 苫小牧(火) 音別(火) 苫東厚真(火) 苫小牧共同(火)砂川(火) 奈井江(火) 双 G 原町(火) G 北本連系線 従来 :60万kW 強化後:90万kWまたは240万kW 東北基幹系統:日本海ルートを新設 従来 :上北⇔秋田200万kW 強化後:上北⇔秋田800万kW 秋田⇔南相馬230万kW 相馬双葉幹線:第二連系線を新設 従来 :東北→東京500万kW 東京→東北150万kW 強化後:東北→東京1,000万kW 東京→東北300万kW Pattern A Pattern B Pattern C Pattern D Hokkaido-Tohoku +0.3 GW +0.3 GW +1.8 GW +1.8 GW Tohoku-Kanto - Expansion (2 routes) - Expansion (2 routes) Tohoku - New construction - New construction (Source) compiled from “Research committee about master-plan for reinforcement of tie line”, METI Hokkaido-Tohoku Line Now: 0.6 GW After Expansion: 0.9 GW or 2.4 GW Tohoku Line (New Construction of Nihonkai Route) Now: 2.0 GW (Kamikita⇔Akita) After Expansion: 8.0 GW (Kamikita⇔Akita) 2.3 GW (Akita⇔Minami-Soma) Tohoku-Kanto Line (Soma-Futaba Line) Now: 5.0 GW (Tohoku → Tokyo) 1.5 GW (Tokyo → Tohoku) After Expansion: 10.0 GW (Tohoku → Tokyo) 3.0 GW (Tokyo → Tohoku)
  • 38. Resilience Engineering Research Center RES Suppression & Capacity Factor 38 Grid expansion provides the decline of RES suppression and the increase in capacity factor of ramp generator 40.3 35.1 34.5 30.5 29.2 15.9 16.6 4.7 17.4 5.3 2.7 2.7 2.7 2.7 2.7 15.3 14.1 10.5 13.1 9.3 0.0 15.0 30.0 45.0 [5-2] Pattern A Pattern B Pattern C Pattern D % Wind Suppression Rate Hokkaido Tohoku Total Kyushu 11.1 10.9 12.1 9.3 10.4 1.3 1.4 0.1 1.6 0.2 6.0 6.0 6.0 6.0 6.0 1.5 1.4 1.4 1.4 1.4 0.0 5.0 10.0 15.0 [5-2] Pattern A Pattern B Pattern C Pattern D % PV Suppression Rate Hokkaido Tohoku Total Kyushu No Exp. No Exp. Hokkaido Tohoku Wind Suppression Rate PV Suppression Rate 0 10 20 30 40 50 60 70 80 90 [5-2] Pattern A Pattern B Pattern C Pattern D % Capacity Factor (Hokkaido) Geothermal Biomass Nuclear Hydro Marine Coal 0 10 20 30 40 50 60 70 80 90 [5-2] Pattern A Pattern B Pattern C Pattern D % Capacity Factor (Tohoku) Geothermal Biomass Nuclear Hydro Marine Coal LNG GCC 0 10 20 30 40 50 60 70 80 90 [5-2] Pattern A Pattern B Pattern C Pattern D % Capacity Factor (Kanto) Geothermal Biomass Nuclear Hydro Marine Coal LNG ST LNG GCC No Exp. No Exp. No Exp. Cap. Factor (Hokkaido) (Tohoku) (Kanto)
  • 39. Resilience Engineering Research Center Cost-Benefit of Grid Expansion 39 Total Cost Reduction & Payback Period of Expanded Grid Pattern B shows the largest cost benefit for massive RES integration. Partial grid expansion such as Pattern A and C provides the less cost benefit. 8.2 53.8 15.4 64.5 0 5 10 15 20 25 30 35 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 Pattern A Pattern B Pattern C Pattern D PayoutPeriod[years] ReducedCost[G-Yen] Payout Period Reduced System Cost +0.3 GW Expansion & New construction Pattern B
  • 40. Resilience Engineering Research Center Temporal Resolution and RES Output Capacity Factor: Wind Capacity Factor: PV Lower resolution tends to levelize the RES output
  • 41. Resilience Engineering Research Center Results|Power Dispatch in Hokkaido (10 min) (120 min)
  • 42. Resilience Engineering Research Center Long-term Storage (Battery1) Shor-term Storage (Battery2) Sodium-Sulfur Battery Li-ion Battery Unit Facility Cost 170$/kWh 600$/kWh Lifetime (in calendar) 15 years 8 years Max. Recharge Cycle 4500 cycles 6000 cycles C-rate 0.14C 2C Battery Installation • In rougher resolution more than 30-min, battery installation sharply decreases • This trend is more significant in short-term storage (Li-ion battery) Results|Batteries in RES 30%
  • 43. Resilience Engineering Research Center Modelling of Renewable, Hydrogen and Battery Wind and PV outputs are into grid, electrolyzer and suppression control (curtailment). Electrolyzer system converts electricity from wind and PV into hydrogen, which is stored in compressed hydrogen tank for later combustion in fuel cell or hydrogen gas turbine. Modelling analysis is conducted in Hokkaido and Tohoku regions (7 GW, 17 GW). PVWT Grid Electrolyzer Hydrogen Storage Tank • Fuel Cell • Hydrogen Gas Turbine Electricity Hydrogen Suppression Control (Curtailment) Hydrogen Electricity Electricity Electricity Nuclear, Thermal (coal,gas,oil), Hydro, Geothermal, Pumped-hydro Electricity Rechargeable Battery - NaS (Low C-rate) - Li-ion (High C-rate) Electricity (Source) Komiyama,R., Otsuki, T., Fujii,Y., Energy, Volume 81, 1 March 2015, Pages 537–555 (2015) 43
  • 44. Resilience Engineering Research Center Power Gen. Dispatch (in January, Tohoku) With VR Suppression Without VR Suppression -40 -30 -20 -10 0 10 20 30 40 50 60 PowerGeneration[GW] Suppressed Wind Suppressed PV Hydrogen(Grid) Hydrogen(Wind) Hydrogen(PV) Hydrogen(in) Li-ion(in) NaS(in) Pumped(in) Li-ion(out) NaS(out) Pumped(out) Hydrogen Gas Turbine Fuel Cell Wind PV Oil LNG LNG GCC Coal Nuclear Geothermal Hydro Demand Wind(Suppression) Wind(H2) Wind(Grid) H2(Charge) H2 Gas Turbine NaS(Charge) NaS(Discharge) -40 -30 -20 -10 0 10 20 30 40 50 60 PowerGeneration[GW] Suppressed Wind Suppressed PV Hydrogen(Grid) Hydrogen(Wind) Hydrogen(PV) Hydrogen(in) Li-ion(in) NaS(in) Pumped(in) Li-ion(out) NaS(out) Pumped(out) Hydrogen Gas Turbine Fuel Cell Wind PV Oil LNG LNG GCC Coal Nuclear Geothermal Hydro Demand Wind(H2) Wind(Grid) H2(Charge) H2 Gas Turbine NaS(Charge) NaS(Discharge) (Note) Cost of Electrolyzer and Hydrogen Storage System: -90%, CO2: -90% Jan.1 Jan.31 Jan.1 Jan.31 (Source) Komiyama,R., Otsuki, T., Fujii,Y., Energy, Volume 81, 1 March 2015, Pages 537–555 (2015) 44
  • 45. Resilience Engineering Research Center Annual SOC (State of Charge) in Energy Storage Facility 45 From January to May when wind output intensity is higher and those sufficient outputs are available, a lot of hydrogen is produced by those surplus outputs and a large amount of hydrogen energy is stored in a hydrogen storage tank in a monthly or seasonal cycle. Since a storage loss of hydrogen in the compressed tank is very low, the developed energy model selects a long- term hydrogen storage of surplus VR output as an optimal solution under strict CO2 regulation. 0 1000 2000 3000 4000 5000 1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep 1-Oct 1-Nov 1-Dec 31-Dec StoredElectricity[GWh] Pumped NaS Li-ion Hydrogen Hydrogen storage is a suitable option for storing VR energy for a long period of time. 0 2 4 6 8 10 12 1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep 1-Oct 1-Nov 1-Dec 31-Dec H2fromWind[TWh] H2 produced from wind (Note) Cost of Electrolyzer and Hydrogen Storage System: -90%, CO2: -90%, Without VR Suppression Control SOC (State of Charge) of H2 storage tank and battery (Source) Komiyama,R., Otsuki, T., Fujii,Y., Energy, Volume 81, 1 March 2015, Pages 537–555 (2015) (Tohoku region)
  • 46. Resilience Engineering Research Center Wrap-up 46 Results suggests following challenges for massive RES integration Unconventional operation such as daylight power charging in pumped-hydro Decreased capacity factor of ramp generator Base-load generator such as coal-fired needs to serves as ramp generator Large-scale RES output curtailment is necessary. Nationwide grid operation is important. Regional grid expansion is an effective technical option. In rougher resolution more than 30-min, battery installation sharply decreases. The trend is more significant in short-term storage. Hydrogen storage is a suitable option for storing RES energy for a long period of time such as a monthly or seasonal scale.
  • 47. Resilience Engineering Research Center 47 Thank you for your kind attention. Relevant Papers: • Komiyama,R. and Fujii,Y., Energy, Vol.81, pp.537–555, 2015 • Komiyama,R. and Fujii,Y., Energy Policy, Vol.83, pp.169-184, 2015 • Komiyama,R.,Fujii,Y., Energy Policy, Vol.66, pp.73-89, 2014 ………. Ryoichi Komiyama The University of Tokyo