SlideShare une entreprise Scribd logo
1  sur  16
Télécharger pour lire hors ligne
International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015
DOI : 10.5121/ijcnc.2015.7601 1
PLANNING AND MANAGING VIRTUALIZED
NEXT GENERATION NETWORKS
Sukant K. Mohapatra1
,Jay N. Bhuyan2
and Hira N. Narang2
1
Marlboro, NJ, USA
2
Dept. of Comp. Science, Tuskegee, AL, USA
ABSTRACT
Service convergence, content digitization, rapid and flexible service delivery, reduction of capital and
operating costs, economies of scale, changes in telecom policy and regulation, and ever increasing
competition have been key factors in the evolution of virtualized Next Generation Networks (vNGN). IP-
centric converged networks aim to provide a multitude of services over a single network infrastructure.
Tremendous success and benefit of server virtualization in data centers is driving the adaption of network
virtualization. Network virtualization is applicable to enterprise data center, and enterprise as well as wide
area networks. The focus of this paper is network virtualization aspects of service providers’ next
generation network. The key factors for moving to virtualized network is optimal use and sharing of
network infrastructure even among competitive service providers, programmability of network and rapid
introduction of new service and standard based on open platform rather than proprietary implementation.
Evolving Software Defined Network (SDN) and Network Function Virtualization (NFV) shall enable
common network infrastructure sharing, control, and management at a higher layer thus making network
devices more generic and less intelligent, thus enabling cost competitiveness and quick service delivery.
Network virtualization shall enable key benefits such as lower cost, flexibility, efficiency, and security,
However, the deployment of virtualized next generation networks has brought its unique challenges for
network managers and planners, as the network has to be planned in a comprehensive way with effective
management of virtual network elements, its correlation with physical infrastructure and monitoring of
control functions and server platforms. This paper discusses generic next generation network, its
virtualization, and addresses the challenges related to the planning and managing of virtualized next
generation networks. This paper proposes a reference OSS model enabling effective management of vNGN,
which is key contribution of this paper.
KEYWORDS
VLAN, VRF, NFV, SDN, vNGN, VNF, MANO, ONF, OpenFlow and OpenStack
1.INTRODUCTION
This paper discusses the service convergence and convergence of multiple segmented networks
leading to evolution of IP-based Next Generation Networks (NGN). The paper provides an
overview of NGN architecture as proposed by ITU-T [1]. The paper outlines a generic next
generation network physical architecture based on transport stratum per ITU-T reference model.
The architecture covers various network domains, including access, aggregation, and core
network with potential technology options in each domain.
Network virtualization enables creation of virtual logical network that is decoupled from
underlying physical network infrastructure and yet uses the same in supporting multiple logical
networks over physical network resources. With network virtualization, one can utilize multiple
physical networks into a single virtual network, or a single physical network can support multiple
virtual networks. Network virtualization can also be used to create virtual networks within a
International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015
2
virtualized network construct, thus enabling support of multi-tenancy environments. Network
virtualization provides tremendous benefits with respect to cost saving, rapid service introduction,
scalability, and flexibility of a programmable network. This paper discusses the concepts,
mechanisms, evolving standards, and architectural components based on Software Defined
Network (SDN) and Network Function Virtualization (NFV) in realizing vNGN. NFV enables
service providers to speed up deployment of new network services in order to foster revenue and
growth.
However, network virtualization has its own challenges for network planners and managers in
effective planning and managing virtualized network. Paper [7] discussed network virtualization
design goals and challenges. Paper [11] describes challenges while in implementing SDN in
carrier grade network. This paper discusses various challenges and issues that need to be duly
considered in planning a virtualized network. Key issues for virtualized network management
such as end-to-end visualization of virtual network, performance and fault monitoring of
controller, configuration of virtual switches/routers (vSwitch/vRouters), monitoring and
association of virtual and physical components, etc. are also addressed in this paper.
A generic Operation Support System (OSS) architectural solution is proposed in this paper. This
solution enables management of virtualized next generation network (vNGN). The paper also
discusses how the challenges and issues faced in managing vNGN are addressed in the proposed
solution.
The paper is organized as follows: in section II, we discuss service and network convergence and
describe the physical infrastructure of next generation network architecture covering various
domains. Section III discusses the concept behind network virtualization, different options and
evolving model based on SDN and NFV for implementing network virtualization. Section IV
outlines the challenges in planning and managing vNGN. Section V provides a detailed view of
solution architecture, its different components, and how it meets the challenges of managing
virtualized next generation networks. Finally, we conclude the paper in section VI.
2. SERVICE AND NETWORK CONVERGENCE – NEXT
GENERATION NETWORK PHYSICAL ARCHITECTURE
In this section, we discuss service and network convergence leading to unified Next Generation
Network (NGN). Physical NGN architecture with different domains, from access to core
supporting multiple services, is described in this paper. A reference to NGN architecture with
focus on integrated planning can be found in [4].
2.1. SERVICE AND NETWORK CONVERGENCE
Although broadly Voice, Video, Data, and Messaging have typically been the predominant
services used, there have been many applications under these broad categories of services that
require different quality of service (QoS) and user experience. For example, as part of video
service, broadcast video and video on demand need different QoS. In addition, there is service
convergence in the sense that these different services can be supported by a single end user device
(e.g., smart phone), rather than dedicated device to support specific service (e.g., TV for
broadcast video, telephone for voice call) as in the past. For example, messaging is no longer a
simple textual data, but it could be mixed of data and video. Thus, all different services are
converging into rich multi-media services in which the user can access those services any time
from any place using a single device, and service is no longer limited to a particular type (such as
voice, video, or data). Many new innovative service types are also likely to evolve over time, thus
necessitating a mixed/rich media communication service. The following Figure 1 depicts the
service convergence that has already happened and is also evolving.
International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015
3
Figure 1. Service Convergence
In the past, the network had evolved and grown in a segmented manner and overlay model was
standard. For example, the PSTN network was separate from the data network. SS7 network was
also designed as a separate network supporting signaling for PSTN network. As new services
grew and technology (e.g., ATM/FR, Optical Ethernet) evolved, new networks were deployed,
but mostly in a segmented and segregated manner. It has led to complexity with high OPEX
(Operational Expense) and CAPEX (Capital Expense) cost in building and managing
communication network.
Service convergence, evolution of technology, Opex and Capex cost savings have led to
evolution of a unified next generation architecture of packet based converged network. Different
existing and emerging service/applications can be supported over a single network, rather than
multiple segmented networks as in the past.
2.2. NEXT GENERATION NETWORK ARCHITECTURE
Figure 2 provides an overview of reference NGN architecture model based Y.2012
recommendation [1]. It is a two-layer model structured with service stratum and transport
stratum.
Figure 2. ITU-T Y.2012 NGN Architecture – Reference Model
International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015
4
The service stratum primarily covers application/service support and session control, whereas
transport stratum provides flexible transport technology covering access and core network, which
enable service delivery in a manner agnostic to service type and its characteristics.
Figure 3 provides an overview of a generic next generation networks architecture [4] with
emphasis and extension of transport stratum of ITU-T reference architecture model based on
typical deployment scenario by service providers. The Figure 3 architecture provides a physical
view of various network elements that cover different domains of NGN.
Figure 3. Next Generation Network Architecture
The next generation network is a converged network supporting various domains that span from
the home/premises to the core network. The various domains of the next generation network can
be organized into:
Home/Enterprise Network: This is the network used by end users such as residential homes,
multi-tenant dwelling units (MDU), or business entities/enterprise. Typically, enterprise/business
units use LAN internally and use Customer Premise Equipment (CPE) routers that connect to the
service provider’s network. The LAN could be Ethernet based, wireless based, or hybrid. The
residential homes are typically connected via Home Gateway (HGW) to the provider network.
Today HGW supports a variety of home networking technologies such as Home Phone Line,
Cable, Ethernet, and wireless. Typically, Home/Enterprise network is not within service
provider’s operational network domain.
Access Network: The access network domain is part of the next generation network that provides
the last mile access to home/enterprise network. The access network domain uses various
technologies ranging from xDSL (Digital Subscriber Loop), FTTx (including Fiber to the Home
(FTTH), Fiber to the Node (FTTN) etc.), and Hybrid Coax Fiber (HFC) to wireless technologies.
Access network is part of service provides’ network that interconnect private home or enterprise
network.
Aggregation Network: The aggregation network domain provides traffic aggregation from the
access network and routes the same to the core network of the service provider. ATM and Frame
Relay network, although still deployed in this domain, are rapidly declining. Carrier Ethernet has
made significant progress in this domain due to many factors such as its low cost and simplicity.
Core Network: There has been significant innovation and technological growth in IP in recent
years and MPLS based IP network is primarily deployed in core network domain. The scalability,
resiliency and ease of supporting new services on a single core infrastructure are very attractive.
It also provides a cost-effective alternative to multiple overlay networks. In addition, IP/MPLS
based core infrastructure provides easy interoperability with various existing layer 2 technologies
and protocols, such as Ethernet.
International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015
5
3. VIRTUALIZATION OF NEXT GENERATION NETWORK (VNGN)
Network virtualization enables creation of separates logical networks abstracted from the
underlying physical network infrastructure. By using network virtualization it is possible to create
a single virtual network out of multiple physical networks or multiple virtual networks out of
single physical network. This model is referred to as external network virtualization. External
network virtualization involves actual network devices that support physical network. Network
virtualization can be used within virtual servers creating networks between virtual machines. This
model is called internal virtualization, which is purely based on software that can be quite
complex. In this paper’s reference to network virtualization, we primarily focus on external
virtualization.
Network virtualization is not entirely a new concept. Traditionally, network virtualization has
been in use for years using virtual Layer 2 and Layer 3 networks over a common physical
network infrastructure. Virtual LAN (VLAN) is a Layer 2 construct of network virtualization in a
standard carrier Ethernet Network using 801.1q trunking [2] method. Virtual Routing and
Forwarding (VRF) is Layer 3 construct of network virtualization where a physical router can
support multiple virtual router instances, which maintains its own forwarding table. A Virtual
Private Network (VPN) [3] allows private network service over a public or shared infrastructure
such as service provider backbone network. There have been various approaches to network
virtualization using tunneling, encapsulation, and encryption techniques to create multiple overlay
logical networks over a common physical network infrastructure.
In this paper, we discuss evolving network virtualization model using Network Function
Virtualization (NFV) and Software Defined Network (SDN) with focus on typical service
providers’ next generation network (shown in Figure 3). It may be noted that NFV and SDN,
though independent, are functionally complementary in supporting network virtualization. NFV
and SDN can be deployed independently and also with or without each other. Virtualization is
typically performed at the edge of the network, whereas rest of the network remains unchanged.
3.1. NETWORK FUNCTION VIRTUALIZATION (NFV)
Figure 4 depicts reference architecture model of NFV [5]. NFV implements Virtual Network
Function (VNF) of Network Elements (e.g., Router, Switch, Mobile Network Nodes such as
MME, SGW, PGW, GGSN, SGSN, Home Gateway, AAA server, Firewalls etc.) in software that
run on industry standard server hardware and Virtual Machine (VM). A VNF can run over
multiple VMs or on a single VM. Physical resource such as computing, storage and connectivity
for VNF is supported through the virtualization layer (e.g. hypervisor), which primarily decouples
underlying hardware resources. Element Management System (EMS) in the following reference
architecture diagram provides typical element management functionality for multiple VNFs,
while OSS/BSS refers to service providers’ Operation and Business Management System. NFV
Management and Orchestration (MANO) function includes: Orchestrator enabling orchestration
and management including instantiation and service assurance of VNF. VNF Manager Support
lifecycle management of VNF instances, and Virtualized Infrastructure Manager primarily
manages and monitors compute, storage and network resources for VNF implementation.
International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015
6
Figure 4. ETSI VNF Reference Architecture
NFV enables flexible creation of network service using VNF instances and VNF Forwarding
Graph (VNF-FG) as discussed in section 3.3. NFV enables service providers, high flexibility and
faster service deployment including ease of adding new services, thereby reducing Capex/Opex
cost, while using industry standard off-the-shelf hardware and software.
3.2. SOFTWARE DEFINED NETWORK (SDN)
Software Defined Networking (SDN), is primarily about decoupling of control plane from the
data plane, dealing mostly with the lower layers (L2-L4) function, where network intelligence
and state are logically centralized and underlying network infrastructure is separated from
applications. Details of SDN architecture as defined by Open Networking Foundation (ONF) can
be found in [6].
Figure 5 provides an overview of SDN architecture based on ONF reference model [6]. In the
application layer, business applications support various business specific applications such as
service provider customer network management portal, content distribution network
management, etc. In application layer orchestration system broadly provides network resource
orchestration. Business applications run using northbound interface of SDN controller. In control
plane, the SDN controller is the key component of SDN architecture. It is logically centralized
with a global view and control of network resources as well as service demand. It enables
network configuration based on abstract view of specific behavior/functional requirement to
support services in vNGN. Network services module support applications like network planning,
network analytics, and load balancing, etc. OpenFlow is the standard southbound interface to the
data plane defined by Open Networking Foundation (ONF) [6]. The data plane is where
OpenFlow enabled network elements reside. The key function of NEs in data plane is traffic
forwarding based on rules executed by the SDN controller. Thus these NEs need not possess any
proprietary intelligence rather than supporting packet forwarding mechanism as a standard
hardware commodity.
International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015
7
Figure 5. SDN Reference Architecture
3.3. SDN AND VNF WORKING TOGETHER
Functionally SDN and NFV are complementary and synergetic even though each can be deployed
in an independent manner. SDN focuses on control and L2-L3 data forwarding, whereas
virtualization, intelligent edge device, service chaining is supported by NFV. SDN can be used to
interconnect many VNF end points (e.g. vCPE) in NFV platform. Figure 6 shows SDN and VNF
working together in an integrated way from architectural perspective. VNF equipment can be
dynamically reconfigured based on applications and traffic patterns, whereas SDN controller can
steer traffic in network elements. In the scenario where orchestration and the management can be
VNFs by itself, the OpenFlow protocol can be part of the Nf-Vi interface or Vn-Nf interface (as
shown in Figure 6).
Figure 6. SDN and VNF Architectural Model
One of the key advantages of NFV based platform is the implementation of service chaining
using multiple VNFs realizing network service. The Orchestration module can dynamically
define set of service using network intelligence of SDN. The concept of service chaining is
described in the next section.
International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015
8
3.4. PHYSICAL AND LOGICAL VIEW OF NETWORK & REALIZATION OF
NETWORK SERVICE
In a high level, vNGN architecture can be viewed and abstracted into three layers, as depicted in
Figure 7. The actual physical network infrastructure constituting network element and their inter-
connection (as in Figure 3) can be viewed as physical network resource. Physical network in
effect provides virtual network resources. Virtual resources can be isolated from each other unless
allowed by security policies. Virtual networks can be viewed as logical constructs of the virtual
resources implemented on top of physical network. Each customer of a provider network can
have one or more virtual networks.
Figure 7. Multi-layer View of vNGN
NFV enables effective management of end-to-end network services utilizing group of VNFs
bound together via VNF Forwarding Graph (FG), also known as service chain. Actual realization
of end-to-end network service is depicted in Figure 8, as per reference model described in [5].
Figure 8. Realization of end-to-end Network Service using VNF and VNF-FG
International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015
9
4. NETWORK VIRTUALIZATION PLANNING AND
MANAGEMENT CHALLENGES
There are enormous values and benefits in deploying or migrating to vNGN. Some of the key
benefits includes: common infrastructure sharing even among competitors, programmability thus
enabling rapid service introduction, high available infrastructure, non-proprietary NEs, and open
standard platform leading to significant Capex and Opex savings. However, it has its potential
issues and challenges in planning and managing vNGN. In this section we highlight some of the
work related to NFV and SDN and issues. We specifically focus on key issues and challenges in
planning and managing vNGN. Due considerations must be taken into account related to
implementation and deployment of NFV and SDN systems/components, standard compliance, co-
existence with existing network infrastructure and OSS/BSS systems, and security aspects.
4.1. RELATED WORKS
Given evolution of network virtualization and current state of ecosystems, paper [8] provides
insight to practical issues and guidelines in deploying Network Virtualization and SDN. Paper [7]
provides view of network virtualization challenges and describes architectural principles and
design goals. Paper [9] addresses resource allocation specific issue in network virtualization.
Paper [10] outlines challenges and solutions while implementing network virtualization using
OpenFlow. Specific challenges with respect to network performance, scalability, security and
interoperability with potential solution while deploying SDN in carrier grade network has been
described in paper [11].
4.2. PLANNING VNGN – CHALLENGES
As described above, two key components to achieve network virtualization are NFV and SDN. In
addition to standard activities in this area by ETSI, ONF, and IETF, many vendors provide
solutions and could have some proprietary aspects in their solution. Also transitioning to vNGN
will occur over a period of time along with existence of legacy network. Some key planning
challenges and consideration that need to be taken in deploying network virtualization and SDN
are enumerated below:
Network Function Virtualization (NFV): The orchestration and management of VNF must be
carried out along with legacy network ensuring proper configuration and security. Resiliency,
scalability, and performance of hardware and software components associated in implementing
NFV must be ensured. Automation is the key to high scalability of NFV. Interoperability with
different vendor’s virtual appliance and middleware (e.g., hypervisor) needs to be duly
considered.
SDN Controller: As SDN controller is the main intelligence behind programmable network, its
architecture with respect to scalability, availability, and performance are of key considerations. Its
compliance to standards such as ONF [6] shall ensure interoperability.
Network Elements: Service provider network is expected to support Network Elements/Switches
from multiple vendors. Protocol support between control plane and data plane is a key aspect.
Support of standard OpenFlow enabled Switch is another critical consideration. Hybrid
OpenFlow switch or even different version of OpenFlow software support could pose
interoperability challenges.
International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015
10
Co-existence with Existing Systems: It is expected that full migration to vNGN will be
accomplished over a period of time. So co-existence with existing network infrastructure and
OSS/BSS is a key aspect while planning the migration. Maximal reuse and enhancement as
applicable to existing network resource and systems has to be considered in order to reduce
Capex.
4.3. MANAGING VNGN – CHALLENGES
There are multiple challenges in managing vNGN from OSS/BSS point of view. We highlight
below some of the key challenges that network manager faces today in migrating and managing
vNGN.
Network Function Virtualization (NFV) Systems Management: NFV enables some core
networking function like switching, routing, load balancing, etc. supported by software decoupled
from proprietary hardware appliance. NFV is implemented using high capacity physical server,
network and storage on standard industry platform in a virtualized environment. The management
system needs to support lifecycle management of virtual network functions (VNFs) like
initialization, modification, deletion etc. The monitoring of virtual network and its relationship
with physical network is also a key management aspect. In addition, the normal service assurance
related to server management in a highly scalable and reliable environment needs to be supported
for server platform.
SDN System Management: SDN controller and network service functions are expected to be
supported on standard open platform such as Open DayLight and protocols such as OpenFlow.
As SDN is the main intelligence behind implementing vNGN, management system has to support
key operational aspect in monitoring such as fault, performance, capacity of the SDN system in
real-time ensuring high availability of the system. It is also expected that SDN shall perform
many of the actions specifically related to network configuration and routing that is typically
performed by management systems today. Traditional OSS is expected to support limited
functionality with deployment of SDN controller and OpenFlow enabled network appliances.
Visualization: Complete visualization of network resource including virtual and physical
components in the network is a very key requirement for network operation point of view.
Visualization component (GUI) of management system must provide end-to-end visualization of
virtual network, physical network resource, and drilldown to specific resource to visualize detail
state of the resource.
Security Management: One of the key aspects is that platform and system implementing NFV
and SDN to be fully secured for the detection and mitigation of DDoS attacks. In addition,
management system shall support security aspects related to access management, authentication,
data confidentiality, and secured communication at various interfaces. A good reference to
telecommunication security and security for network management application can be found in
[13].
Co-existence/Integration with Existing OSS/BSS System: Even though OpenFlow enabled
switches are expected to be deployed in the network to take full advantage of SDN controller, the
traditional network will be there for a foreseeable future. The management system must enable
management of both SDN and non-SDN components of the network in an integrated fashion,
simultaneously leveraging existing OSS/BSS assets in order to reduce Capex.
International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015
11
5. AN ARCHITECTURAL SOLUTION FOR MANAGING VNGN
Figure 9 below provides an overall architectural model with key building blocks in support of
effective management of vNGN. The proposed vNGN management solution architecture uses
component-based model. Various components can be added, updated and/or removed in a plug
and play mechanism within the overall solution frame work. Similarly sub-components within a
component can be easily added and/or removed in an independent manner without impacting
functional aspects of component itself. In this paper we provide a brief context of the solution
architecture, its components, and sub-components and mainly focus on details of management
aspects in meeting the challenges and issues, as outlined in previous sections. The specific
contribution of this paper is the solution model in managing evolving vNGN in a cost effective
and efficient manner while leveraging typical OSS/BSS assets that may exist in service providers’
operation center. The solution model also specifically addresses the key issue of network
management challenges.
.
Figure 9. High Level View of Management Solution Architecture for vNGN
5.1. BRIEF OVERVIEW OF SOLUTION ARCHITECTURE COMPONENTS
In Figure 9, the infrastructure layer constitutes physical network resource/Network Elements
(NE) termed as Physical Network Function (PNF), which primarily constitute data plane carrying
user service traffic. The network elements could be OpenFlow enabled or non-OpenFlow
enabled. The other infrastructure constitutes compute, storage and network resource along with
virtualizer (e.g., hypervisor) to support NFV capability. Same server platform can also be utilized
for SDN system. This paper does not focus on specific implementation aspects and inter-
component communication mechanism, as the same can be realized using many existing common
off-the-shelf (COTS) platform and protocols. However, we refer to standard open platform and
protocols for implementation of various components, as applicable. Also, the existing system in
OSS/BSS domain in service provider’s operation center must be leveraged in order to reduce
Capex and enable ease of use by existing personnel without significant training with new
products. Various building blocks for network management systems have been discussed below:
International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015
12
Element Management System (EMS): The EMS layer has typical EMS functionality in
supporting both legacy network elements as well as VNF. Typically, EMS supports one or more
NEs of same type and have functionality for configuration and retrieval/receipt of performance
metrics (e.g., trap, performance counters) of the NEs under its domain. The EMS supporting
VNFs are noted as V-EMS. The functionality of V-EMS is similar to EMS modules supporting
VNFs as defined in [5]. S-EMS in the architecture refers to server infrastructure management
system at EMS layer.
Data Adapter and Data Distribution Bus: Data Adapter enables the receipt of various
infrastructure layer configuration information and performance metrics from multiple EMS,
which could be using different north-bound API/interfaces. Also Data Adapter supports standard
south bound API (e.g. SNMP) for direct communication with NEs in infrastructure layer, which
may not have any EMS support. Data distribution bus enables the distribution of collected virtual
and physical network data to other modules in upper layer. Data distribution can be implemented
using pull-push and/or subscription based mechanism, as needed.
Orchestrator and Policy Manager: Orchestrator broadly provides functionality for network
resource orchestration as means for delivering business request. Orchestrator creates and tracks
the process for implementation of a business request such as creation a virtual network for a
tenant across the service provider network, and apply security policy to a group of VMs at the
edge of tenant’s virtual network. Orchestrator is typically deployed using open standard platform
OpenSatck and OpenCloud.
At infrastructure layer, Orchestrator provides resource reservation and allocation for virtualized
resource. It also provides virtual resource configuration information to VNF manager so that
VNF can be configured appropriately to function within VNF FG in support of network service.
Orchestrator supports VNF life cycle management in exchanging information related to VNF
inventory, state, data, capacity, usage and accounting information with OSS/BSS [5].
Orchestrator module works in with VNF analytic component module (as describe below) in this
architecture. Using event based service, virtual resource data can be synchronized between
Orchestrator and Central Inventory Management (CIM) system, as described below.
Policy Manager primarily manages business, service, and network policies and initiates control or
orchestration service as appropriate.
SDN System: SDN is implemented as logically centralized but on physically distributed platform
in open source cloud environment. SDN is typically supported on Open DayLight - a standard
open platform. The south bound interface is based on OpenFlow, which shall manage OpenFlow
enabled devices in network infrastructure layer. The north-bound interface could be based on
Representational State Transfer (REST) Application Programming Interface (API) [14] for
interworking with business applications and orchestration system. REST API can also be used for
interfacing traditional OSS/BSS components supporting integration. The physical server
management for SDN can be supported by COTS server management systems and tools such as
Chef and Solarwinds.
SDN controller is responsible for translating request at high level of abstraction into clear action
on physical and virtual network appliances such as setup of virtual services like virtual firewall in
a VM and also use underlying physical firewall service node.
Analytic sub-components of SDN system are responsible for collecting, analyzing, and presenting
network managers on SDN platform fault, performance, capacity and availability aspects in near
real-time. This enables management of SDN system, including testing and troubleshooting in case
of failure and performance degradation of SDN system.
International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015
13
NFV Analytics: NFV analytics is the component supporting management of NFV infrastructure
(server, storage, computing), virtualizer, VMs and VNFs resources dedicated to realization of
NFV. NFV analytics receive data from V-EMS via Data Distributor. It supports collection,
analysis and visualization of fault, performance, capacity, optimization and other data related to
operation, management and monitoring of NFV resources and function in the network. This
component also supports management of VNF life cycle such as initialization, update,
termination and scaling (up/down) of VNF instances. NFV Analytics is compliant with
functionality of Virtualized Infrastructure Manager and VNF Manager(s) as defined in [5].
Network Analytics: Network Analytics supports typical Network Management Systems (NMS)
layer functionality for traditional network elements. It supports network resource management,
configuration, and network wide path computation in support of service provisioning. It also
supports collection, analysis, and collation of network testing, performance, fault, alarm
correlation, capacity related data to enable effective network operation and troubleshooting. With
support of SDN enabled data fabric in the network, it is expected that majority of network
configuration and routing shall be managed by SDN controller.
Business Applications: Business applications support various business specific functions and
requirements in supporting applications such as customer network management portals in
compliant with application layer of SDN architecture as defined in [6].
Service Quality and Performance Management: Service Quality and Performance
Management component provides service level network analytics and service quality
management. It includes extensible sub-components, which can be used in plug and play model.
Some of the subcomponents includes:
 Cross Domain Analytics: Provides customer service issues and identification of problem
related to specific domain or part of the network including partner or 3rd
party hosted
network.
 Trouble Ticket Analytics: It correlates network level fault with services and identifies
specific customer service impact and resolution of same.
 SLA Management: This sub-component provides analysis related to contracted service
quality with a customer and actual service quality rendered and enforcement of Service
Level Agreement (SLA).
 Capacity Analytics: This sub-component provides capacity constraint specific issues in
support of existing customer service such as VPNs. It also supports cross-domain
network capacity analysis in support of various services.
Central Inventory Management: Central Inventory Management (CIM) is a very key
component in the vNGN management system architecture frame work. The CIM captures
inventory data in various layers/levels which is used by other components in realizing their
functions. In addition, data store in this component can be used as “Big Data” in support of
different analytics and service intelligence applications.
Inventory component in infrastructure layer include physical as well as logical/virtual resources.
The physical resources includes various NEs (Routers, Switches), Mobile Network Elements
(HLR/HSS, SGSN/GGSN, RNC, SGW/PGW, (e)NodeB ...), NGN signaling node (e.g., SBC),
and Server hardware platform. Similarly virtual network component could include VMs and
software defined virtual functions for physical components such as vCPE, vSwitch, and vRouters.
The CIM component at infrastructure layer contains information on all physical and virtual
resources, interconnectivity, properties and states.
International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015
14
In network layer, CIM shall store information related to various network path provisioned in the
network, network resources involved (e.g., NE/Port) and their interconnectivity. CIM also
contains information of service association with provisioned network path. At
business/application layer, CIM is the central repository for various product/portfolio that is
supported by service provider.
The information stored in CIM can be used by multiple components. For example, Network
Analytic component can use inventory information from CIM and associate a network failure
information received from EMS to identify root cause of network failure. Similarly, at service
layer using network path and service association, any network failure can be correlated to specific
customer service impact by trouble ticket analytic component. As CIM provides a network wide
view, resource, and service information; the repository could be used by various analytic
applications to gain various intelligence and information for effective use of network resource,
service and enabling revenue growth.
In addition, information on physical resource can be used by GIS framework component in
providing physical location of network resources. Similarly Web GUI component can utilize
information stored in CIM for network wide visualization functionality.
Customer Relationship and Business Management: The customer relationship and business
management component shall support customer facing and business management specific
functionality. Customers could include retail as well as business customers. The functionality
supported in this module shall include customer profile, customer service order, service order
realization and tracking, and customer billing etc.
User Management: The user management includes OAM and Security Management that
supports user administration, authentication, authorization, auditing, and secured communication
etc. [12, 13] for operation personnel. The Web GUI Server provides web-based access to
management system from client workstation.
Geographical Information System (GIS) Framework: This component enables various
modules to use geo-spatial information and provide network manager with GIS based
visualization of infrastructure layer covering NEs, their interconnectivity and Server platform
location.
5.2. MEETING THE KEY MANAGEMENT CHALLENGES
NFV Management: Orchestrator, NFV analytics, V-EMS components provides full support and
management of NFV capability. NFV analytics support real-time monitoring and management
associated with NFV resource and infrastructure. Orchestrator component along with CIM
support virtual network and its relationship with physical network. Correlation functionality in
Network Analytic component along with GUI provide appropriate monitoring and end-to-end
visualization capability in support of NFV management.
SDN System Management: SDN system along with other components provides effective
management and support of SDN functionality in overall architectural framework. The analytics
in SDN system shall support real-time monitoring and management of SDN resource. Open
platform and standard API supports integration of SDN system into existing OSS/BSS
infrastructure of service provider.
Visualization: Web server based GUI component provides end-to-end network visualization
including physical as well as virtual resources in concert with GIS framework, Central Inventory
Management (CIM) and various analytic modules. Leveraging the relationship information
between physical and virtual resources as stored in CIM will help GUI component in visualizing
detail network service realization along with associated physical and virtual resources.
International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015
15
Security: OA&M and Security Management component provides secured user access and system
management. The Open DayLight consortium’s SDN controller contains toolset that can be used
for the detection and mitigation of DDoS attacks as well.
Integration with existing OSS/BSS Systems: The architecture as proposed in section 5.1 above
enables migration/enhancement of existing OSS/BSS supporting SDN & NFV while using
existing assets. The Element Management, Network Layer & Service Layer model of
management principle fit well with existing OSS/BSS embedded base. Well defined standard
interfaces and model enables easy add-on of NFV and SDN capability into existing operation and
management model.
6. CONCLUSIONS
This paper provides an overview of next generation networks architecture reference model,
focused on transport stratum. Various domains of physical architecture of next generation
networks have been discussed. A detail view of network virtualization, software defined network
and associated key components are discussed. The evolution and deployment of vNGN poses
multiple challenges for network planners and mangers, and key issues must be taken into
consideration in effective planning and management of vNGN is also highlighted. This paper
focuses on managing vNGN with a reference network management solution architecture for
deployment of virtualized next generation networks. Future work expected to address some of
the other key challenges and issue in deployment of vNGN.
REFERENCES
[1] ITU-T Y.2012, “Recommendation ITU-T Y.2012”, Functional requirements and architecture of the
NGN, 2006.
[2] IEEE, 802.1Q – IEEE Standard for Local and Metropolitan Area Networks – Bridges and Bridged
Networks, 2014
[3] Madhulika Bhandure, Gaurang Desmukh, Saili Waichal, and Varshpriya JN, “Approach to build
MPLS VPN using QoS Capabilities”, International Journal of Engineering Research and
Development, Vol 7, Issue 8, PP. 22-32, June 2013.
[4] Sukant K. Mohapatra, “Integrated Planning for Next Generation Network”, IFIP/IEEE International
Symposium on Integrated Network Management, 2009.
[5] ETSI, Network Function Virtualization Architectural Frame Work, ETSI, GS NVF, 2013,
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
[6] ONF, “Open Network Foundation, SDN Architecture”, ONF TR 502, 2014,
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-
reports/TR_SDN_ARCH_1.0_06062014.pdf
[7] N.M Mosharaf, Kabir Choudhury and Raouf Boutaba, “Network Virtualization: State of the Art and
Research Challenges”, IEEE Communication Magazine, 2009
[8] Jim Metzler, Aston Metzler and Associated, “The 2013 Guide to Network Virtualization and SDN”,
2013, http://www.webtorials.com/content/2014/01/2013-guide-to-network-virtualization-sdn-3.html
[9] Aun Haider, Richard Potter, and Akihiro Nakao, “Challenges in Resource Allocation in Network
Virtualization”, 20th ITC Specialist Seminar, 2009.
[10] Martias J, Tornero B, Mendola A, Jacob E, Toledo N, “Implementing Layer 2 Network virtualization
using OpenFlow: Challenges and Solutions, 2012 European Workshop on Software Defined
Networking (EWSDN), 2012.
[11] Sakir Sezer, Sandra Scott-Hayward, Puspinder Kaur Chouhan, Barbara Fraser, David Lake, Jim
Finnegan, Neil Vijoen, Marc Miller, and Navneet Rao, “Are We Ready for SDN? Implementation
Challenges for Software-Defined Networks”, IEEE Communications Magazine, Vol 51, No. 7, July
2013.
[12] ITU-T, “Security in Telecommunication and Information Technology - An overview of issues and
deployment of existing ITU-T Recommendation for secure telecommunications”, 2003,
http://www.itu.int/itudoc/itu-t/85097.pdf
International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015
16
[13] Telcordia, “GR-815-CORE Generic requirements for Network Element/Network System (NE/NS)
Security,” Issue 2, March 2002.
[14] Richardson, Leonard; Mike Amundsen, “RESTful web API”, O'Reilly Media, ISBN 978-1-449-
35806-8 , 2013
AUTHORS
Sukant K. Mohapatra has a Ph.D in Computer Science with specialization in
Telecommunications from Stevens Institute of Technology, New Jersey. His research
interest includes: Next Generation Fixed and Mobile Network Architecture, Software
Defined Network, Cloud Computing, Network Planning, and Network Management. He
has worked over twenty five years in telecommunication industry in leadership capacity.
He is recipient of DMTS award in Bell Laboratories and a senior member of IEEE. He is
the founder chairman of National Institute of Science and Technology (NIST), India.
Jay N. Bhuyan is a professor in the Department of Computer Science at Tuskegee
University. His research and teaching interests include Telecom Software Architecture and
Development, Software and Network Security, Big Data Analytics, and Parallel &
Distributed Computing. He received a PhD in Computer Science from the University of
Louisiana at Lafayette. He has over 25 years of full-time and part-time teaching experience
as well as over 15 years of research and development experience in the Telecom industry.
He is a member of IEEE and IEEE Computer Societies.
Hira N. Narang is the department chair and a professor in the Department of Computer
Science at Tuskegee University. His research and teaching interests include High
Performance Computing, Information Systems Security, and Computer Networks. He
received a PhD in Applied Mathematics from the Delhi University, India, Master in
Computer Science from University of Kentucky, and a Master in Computer Engineering
from Auburn University. He has over 30 years of teaching experience as well as over five
years of research and development experience in the industry. He is a recipient of several
research & infrastructure grants from NSF, NASA, Xerox, HP, etc.

Contenu connexe

Tendances

NGN Next Generation Networks
NGN Next Generation NetworksNGN Next Generation Networks
NGN Next Generation Networksabdulquyyum
 
Lawful interception monitoring using distributed architecture for ngn 2
Lawful interception monitoring using distributed architecture for ngn 2Lawful interception monitoring using distributed architecture for ngn 2
Lawful interception monitoring using distributed architecture for ngn 2IAEME Publication
 
DSL for Nxt Gen Broadband
DSL for Nxt Gen BroadbandDSL for Nxt Gen Broadband
DSL for Nxt Gen BroadbandAnthony Thilak
 
DEVICE-TO-DEVICE (D2D) COMMUNICATION UNDER LTE-ADVANCED NETWORKS
DEVICE-TO-DEVICE (D2D) COMMUNICATION UNDER LTE-ADVANCED NETWORKSDEVICE-TO-DEVICE (D2D) COMMUNICATION UNDER LTE-ADVANCED NETWORKS
DEVICE-TO-DEVICE (D2D) COMMUNICATION UNDER LTE-ADVANCED NETWORKSijwmn
 
Towards automated service-oriented lifecycle management for 5G networks
Towards automated service-oriented lifecycle management for 5G networksTowards automated service-oriented lifecycle management for 5G networks
Towards automated service-oriented lifecycle management for 5G networksEricsson
 
A decentralized paradigm for resource-aware computing in wireless Ad hoc netw...
A decentralized paradigm for resource-aware computing in wireless Ad hoc netw...A decentralized paradigm for resource-aware computing in wireless Ad hoc netw...
A decentralized paradigm for resource-aware computing in wireless Ad hoc netw...TELKOMNIKA JOURNAL
 
NGN, Ngn present, Next generation Networks, AQBUTT, Abdul Quyyum Butt, Abdul ...
NGN, Ngn present, Next generation Networks, AQBUTT, Abdul Quyyum Butt, Abdul ...NGN, Ngn present, Next generation Networks, AQBUTT, Abdul Quyyum Butt, Abdul ...
NGN, Ngn present, Next generation Networks, AQBUTT, Abdul Quyyum Butt, Abdul ...abdulquyyum
 
Practical active network services within content-aware gateways
Practical active network services within content-aware gatewaysPractical active network services within content-aware gateways
Practical active network services within content-aware gatewaysTal Lavian Ph.D.
 
Ngn and application in bangladesh
Ngn and application in bangladeshNgn and application in bangladesh
Ngn and application in bangladeshshahriar19
 
Next Generation Network Architecture
Next Generation Network ArchitectureNext Generation Network Architecture
Next Generation Network ArchitectureAPNIC
 
Optimization of Quality of Service in 4G Wireless Networks
Optimization of Quality of Service in 4G Wireless NetworksOptimization of Quality of Service in 4G Wireless Networks
Optimization of Quality of Service in 4G Wireless NetworksIDES Editor
 
Ngn presentation
Ngn presentationNgn presentation
Ngn presentationFrikha Nour
 

Tendances (19)

NGN Next Generation Networks
NGN Next Generation NetworksNGN Next Generation Networks
NGN Next Generation Networks
 
Lawful interception monitoring using distributed architecture for ngn 2
Lawful interception monitoring using distributed architecture for ngn 2Lawful interception monitoring using distributed architecture for ngn 2
Lawful interception monitoring using distributed architecture for ngn 2
 
DSL for Nxt Gen Broadband
DSL for Nxt Gen BroadbandDSL for Nxt Gen Broadband
DSL for Nxt Gen Broadband
 
DEVICE-TO-DEVICE (D2D) COMMUNICATION UNDER LTE-ADVANCED NETWORKS
DEVICE-TO-DEVICE (D2D) COMMUNICATION UNDER LTE-ADVANCED NETWORKSDEVICE-TO-DEVICE (D2D) COMMUNICATION UNDER LTE-ADVANCED NETWORKS
DEVICE-TO-DEVICE (D2D) COMMUNICATION UNDER LTE-ADVANCED NETWORKS
 
Towards automated service-oriented lifecycle management for 5G networks
Towards automated service-oriented lifecycle management for 5G networksTowards automated service-oriented lifecycle management for 5G networks
Towards automated service-oriented lifecycle management for 5G networks
 
A decentralized paradigm for resource-aware computing in wireless Ad hoc netw...
A decentralized paradigm for resource-aware computing in wireless Ad hoc netw...A decentralized paradigm for resource-aware computing in wireless Ad hoc netw...
A decentralized paradigm for resource-aware computing in wireless Ad hoc netw...
 
NGN, Ngn present, Next generation Networks, AQBUTT, Abdul Quyyum Butt, Abdul ...
NGN, Ngn present, Next generation Networks, AQBUTT, Abdul Quyyum Butt, Abdul ...NGN, Ngn present, Next generation Networks, AQBUTT, Abdul Quyyum Butt, Abdul ...
NGN, Ngn present, Next generation Networks, AQBUTT, Abdul Quyyum Butt, Abdul ...
 
Ngn
NgnNgn
Ngn
 
Mm wcmc v12
Mm wcmc v12Mm wcmc v12
Mm wcmc v12
 
NGN Network (ETE 521 L10.2)
NGN Network (ETE 521 L10.2)NGN Network (ETE 521 L10.2)
NGN Network (ETE 521 L10.2)
 
27 32
27 3227 32
27 32
 
Practical active network services within content-aware gateways
Practical active network services within content-aware gatewaysPractical active network services within content-aware gateways
Practical active network services within content-aware gateways
 
Singapore's Next Generation Broadband Network
Singapore's Next Generation Broadband NetworkSingapore's Next Generation Broadband Network
Singapore's Next Generation Broadband Network
 
Ngn and application in bangladesh
Ngn and application in bangladeshNgn and application in bangladesh
Ngn and application in bangladesh
 
Next Generation Network Architecture
Next Generation Network ArchitectureNext Generation Network Architecture
Next Generation Network Architecture
 
The NTT Next Generation Network Deployment in Japan
The NTT Next Generation Network Deployment in JapanThe NTT Next Generation Network Deployment in Japan
The NTT Next Generation Network Deployment in Japan
 
Optimization of Quality of Service in 4G Wireless Networks
Optimization of Quality of Service in 4G Wireless NetworksOptimization of Quality of Service in 4G Wireless Networks
Optimization of Quality of Service in 4G Wireless Networks
 
Ngn and convegence
Ngn and convegenceNgn and convegence
Ngn and convegence
 
Ngn presentation
Ngn presentationNgn presentation
Ngn presentation
 

En vedette

Analyzing the performance of the dynamic
Analyzing the performance of the dynamicAnalyzing the performance of the dynamic
Analyzing the performance of the dynamicIJCNCJournal
 
A proposed architecture for network
A proposed architecture for networkA proposed architecture for network
A proposed architecture for networkIJCNCJournal
 
Multi user performance on mc cdma single relay cooperative system by distribu...
Multi user performance on mc cdma single relay cooperative system by distribu...Multi user performance on mc cdma single relay cooperative system by distribu...
Multi user performance on mc cdma single relay cooperative system by distribu...IJCNCJournal
 
Real time wireless health monitoring
Real time wireless health monitoringReal time wireless health monitoring
Real time wireless health monitoringIJCNCJournal
 
The influence of information security on
The influence of information security onThe influence of information security on
The influence of information security onIJCNCJournal
 
Broadcast wormhole routed 3-d mesh
Broadcast wormhole routed 3-d meshBroadcast wormhole routed 3-d mesh
Broadcast wormhole routed 3-d meshIJCNCJournal
 
Attack countermeasure tree (act) meets with
Attack countermeasure tree (act) meets withAttack countermeasure tree (act) meets with
Attack countermeasure tree (act) meets withIJCNCJournal
 
Video contents prior storing server for
Video contents prior storing server forVideo contents prior storing server for
Video contents prior storing server forIJCNCJournal
 
Section based hex cell routing algorithm (sbhcr)
Section based hex cell routing algorithm (sbhcr)Section based hex cell routing algorithm (sbhcr)
Section based hex cell routing algorithm (sbhcr)IJCNCJournal
 
Data gathering in wireless sensor networks using intermediate nodes
Data gathering in wireless sensor networks using intermediate nodesData gathering in wireless sensor networks using intermediate nodes
Data gathering in wireless sensor networks using intermediate nodesIJCNCJournal
 
Multi hop distributed coordination in
Multi hop distributed coordination inMulti hop distributed coordination in
Multi hop distributed coordination inIJCNCJournal
 
A new dna based approach of generating keydependentmixcolumns
A new dna based approach of generating keydependentmixcolumnsA new dna based approach of generating keydependentmixcolumns
A new dna based approach of generating keydependentmixcolumnsIJCNCJournal
 
CONTEXT-AWARE DECISION MAKING SYSTEM FOR MOBILE CLOUD OFFLOADING
CONTEXT-AWARE DECISION MAKING SYSTEM FOR MOBILE CLOUD OFFLOADINGCONTEXT-AWARE DECISION MAKING SYSTEM FOR MOBILE CLOUD OFFLOADING
CONTEXT-AWARE DECISION MAKING SYSTEM FOR MOBILE CLOUD OFFLOADINGIJCNCJournal
 
Distribution of maximal clique size of the
Distribution of maximal clique size of theDistribution of maximal clique size of the
Distribution of maximal clique size of theIJCNCJournal
 
Three dimension hamiltonian broadcast
Three dimension hamiltonian broadcastThree dimension hamiltonian broadcast
Three dimension hamiltonian broadcastIJCNCJournal
 
Performance evaluation of zigbee transceiver for wireless body sensor system
Performance evaluation of zigbee transceiver for wireless body sensor systemPerformance evaluation of zigbee transceiver for wireless body sensor system
Performance evaluation of zigbee transceiver for wireless body sensor systemIJCNCJournal
 
Server congestion control
Server congestion controlServer congestion control
Server congestion controlIJCNCJournal
 
Radio propagation models in wireless
Radio propagation models in wirelessRadio propagation models in wireless
Radio propagation models in wirelessIJCNCJournal
 
Fault tolerant routing scheme based on
Fault tolerant routing scheme based onFault tolerant routing scheme based on
Fault tolerant routing scheme based onIJCNCJournal
 

En vedette (19)

Analyzing the performance of the dynamic
Analyzing the performance of the dynamicAnalyzing the performance of the dynamic
Analyzing the performance of the dynamic
 
A proposed architecture for network
A proposed architecture for networkA proposed architecture for network
A proposed architecture for network
 
Multi user performance on mc cdma single relay cooperative system by distribu...
Multi user performance on mc cdma single relay cooperative system by distribu...Multi user performance on mc cdma single relay cooperative system by distribu...
Multi user performance on mc cdma single relay cooperative system by distribu...
 
Real time wireless health monitoring
Real time wireless health monitoringReal time wireless health monitoring
Real time wireless health monitoring
 
The influence of information security on
The influence of information security onThe influence of information security on
The influence of information security on
 
Broadcast wormhole routed 3-d mesh
Broadcast wormhole routed 3-d meshBroadcast wormhole routed 3-d mesh
Broadcast wormhole routed 3-d mesh
 
Attack countermeasure tree (act) meets with
Attack countermeasure tree (act) meets withAttack countermeasure tree (act) meets with
Attack countermeasure tree (act) meets with
 
Video contents prior storing server for
Video contents prior storing server forVideo contents prior storing server for
Video contents prior storing server for
 
Section based hex cell routing algorithm (sbhcr)
Section based hex cell routing algorithm (sbhcr)Section based hex cell routing algorithm (sbhcr)
Section based hex cell routing algorithm (sbhcr)
 
Data gathering in wireless sensor networks using intermediate nodes
Data gathering in wireless sensor networks using intermediate nodesData gathering in wireless sensor networks using intermediate nodes
Data gathering in wireless sensor networks using intermediate nodes
 
Multi hop distributed coordination in
Multi hop distributed coordination inMulti hop distributed coordination in
Multi hop distributed coordination in
 
A new dna based approach of generating keydependentmixcolumns
A new dna based approach of generating keydependentmixcolumnsA new dna based approach of generating keydependentmixcolumns
A new dna based approach of generating keydependentmixcolumns
 
CONTEXT-AWARE DECISION MAKING SYSTEM FOR MOBILE CLOUD OFFLOADING
CONTEXT-AWARE DECISION MAKING SYSTEM FOR MOBILE CLOUD OFFLOADINGCONTEXT-AWARE DECISION MAKING SYSTEM FOR MOBILE CLOUD OFFLOADING
CONTEXT-AWARE DECISION MAKING SYSTEM FOR MOBILE CLOUD OFFLOADING
 
Distribution of maximal clique size of the
Distribution of maximal clique size of theDistribution of maximal clique size of the
Distribution of maximal clique size of the
 
Three dimension hamiltonian broadcast
Three dimension hamiltonian broadcastThree dimension hamiltonian broadcast
Three dimension hamiltonian broadcast
 
Performance evaluation of zigbee transceiver for wireless body sensor system
Performance evaluation of zigbee transceiver for wireless body sensor systemPerformance evaluation of zigbee transceiver for wireless body sensor system
Performance evaluation of zigbee transceiver for wireless body sensor system
 
Server congestion control
Server congestion controlServer congestion control
Server congestion control
 
Radio propagation models in wireless
Radio propagation models in wirelessRadio propagation models in wireless
Radio propagation models in wireless
 
Fault tolerant routing scheme based on
Fault tolerant routing scheme based onFault tolerant routing scheme based on
Fault tolerant routing scheme based on
 

Similaire à PLANNING AND MANAGING VIRTUALIZED NEXT GENERATION NETWORKS

Network Function Virtualisation
Network Function VirtualisationNetwork Function Virtualisation
Network Function VirtualisationIJERA Editor
 
Performance and handoff evaluation of heterogeneous wireless networks 2
Performance and handoff evaluation of heterogeneous wireless networks 2Performance and handoff evaluation of heterogeneous wireless networks 2
Performance and handoff evaluation of heterogeneous wireless networks 2IAEME Publication
 
An extensible, programmable, commercial-grade platform for internet service a...
An extensible, programmable, commercial-grade platform for internet service a...An extensible, programmable, commercial-grade platform for internet service a...
An extensible, programmable, commercial-grade platform for internet service a...Tal Lavian Ph.D.
 
Network Service Description and Discovery for the Next Generation Internet
Network Service Description and Discovery for the Next Generation InternetNetwork Service Description and Discovery for the Next Generation Internet
Network Service Description and Discovery for the Next Generation InternetCSCJournals
 
Scheduling wireless virtual networks functions
Scheduling wireless virtual networks functionsScheduling wireless virtual networks functions
Scheduling wireless virtual networks functionsredpel dot com
 
ITS 2010 - Extended presentation slides
ITS 2010 - Extended presentation slidesITS 2010 - Extended presentation slides
ITS 2010 - Extended presentation slidesAntonio Marcos Alberti
 
Proposal of a Transparent Relay System with vNIC for Encrypted Overlay Networks
Proposal of a Transparent Relay System with vNIC for Encrypted Overlay NetworksProposal of a Transparent Relay System with vNIC for Encrypted Overlay Networks
Proposal of a Transparent Relay System with vNIC for Encrypted Overlay NetworksIJCSIS Research Publications
 
5g-a-network-transformation-imperative
5g-a-network-transformation-imperative5g-a-network-transformation-imperative
5g-a-network-transformation-imperativeAmar Ravi
 
A survey of models for computer networks management
A survey of models for computer networks managementA survey of models for computer networks management
A survey of models for computer networks managementIJCNCJournal
 
SDN and NFV Value in Business Services: Innovations in Network Monetization a...
SDN and NFV Value in Business Services: Innovations in Network Monetization a...SDN and NFV Value in Business Services: Innovations in Network Monetization a...
SDN and NFV Value in Business Services: Innovations in Network Monetization a...Alan Sardella
 
B530429_FinalDissertation
B530429_FinalDissertationB530429_FinalDissertation
B530429_FinalDissertationJasjoot Mudhar
 
5 g architecture
 5 g architecture 5 g architecture
5 g architectureShibinPS3
 
CONTAINERIZED SERVICES ORCHESTRATION FOR EDGE COMPUTING IN SOFTWARE-DEFINED W...
CONTAINERIZED SERVICES ORCHESTRATION FOR EDGE COMPUTING IN SOFTWARE-DEFINED W...CONTAINERIZED SERVICES ORCHESTRATION FOR EDGE COMPUTING IN SOFTWARE-DEFINED W...
CONTAINERIZED SERVICES ORCHESTRATION FOR EDGE COMPUTING IN SOFTWARE-DEFINED W...IJCNCJournal
 
A Survey On Software-Defined Wireless Sensor Networks Challenges And Design ...
A Survey On Software-Defined Wireless Sensor Networks  Challenges And Design ...A Survey On Software-Defined Wireless Sensor Networks  Challenges And Design ...
A Survey On Software-Defined Wireless Sensor Networks Challenges And Design ...Angela Tyger
 
A Quality of Service Strategy to Optimize Bandwidth Utilization in Mobile Net...
A Quality of Service Strategy to Optimize Bandwidth Utilization in Mobile Net...A Quality of Service Strategy to Optimize Bandwidth Utilization in Mobile Net...
A Quality of Service Strategy to Optimize Bandwidth Utilization in Mobile Net...IDES Editor
 
SDN and NFV Value in Business Services: Innovations in Network Monetization a...
SDN and NFV Value in Business Services: Innovations in Network Monetization a...SDN and NFV Value in Business Services: Innovations in Network Monetization a...
SDN and NFV Value in Business Services: Innovations in Network Monetization a...Cisco Service Provider
 
Performance Evaluation of Interactive Video Streaming over WiMAX Network
Performance Evaluation of Interactive Video Streaming over WiMAX Network Performance Evaluation of Interactive Video Streaming over WiMAX Network
Performance Evaluation of Interactive Video Streaming over WiMAX Network IJECEIAES
 
How can SDN and NFV Improve Your Business_ - Techwave.pdf
How can SDN and NFV Improve Your Business_ - Techwave.pdfHow can SDN and NFV Improve Your Business_ - Techwave.pdf
How can SDN and NFV Improve Your Business_ - Techwave.pdfAnil
 

Similaire à PLANNING AND MANAGING VIRTUALIZED NEXT GENERATION NETWORKS (20)

Network Function Virtualisation
Network Function VirtualisationNetwork Function Virtualisation
Network Function Virtualisation
 
Virtuora Catalog_lowres
Virtuora Catalog_lowresVirtuora Catalog_lowres
Virtuora Catalog_lowres
 
Performance and handoff evaluation of heterogeneous wireless networks 2
Performance and handoff evaluation of heterogeneous wireless networks 2Performance and handoff evaluation of heterogeneous wireless networks 2
Performance and handoff evaluation of heterogeneous wireless networks 2
 
An extensible, programmable, commercial-grade platform for internet service a...
An extensible, programmable, commercial-grade platform for internet service a...An extensible, programmable, commercial-grade platform for internet service a...
An extensible, programmable, commercial-grade platform for internet service a...
 
Network Service Description and Discovery for the Next Generation Internet
Network Service Description and Discovery for the Next Generation InternetNetwork Service Description and Discovery for the Next Generation Internet
Network Service Description and Discovery for the Next Generation Internet
 
Scheduling wireless virtual networks functions
Scheduling wireless virtual networks functionsScheduling wireless virtual networks functions
Scheduling wireless virtual networks functions
 
ITS 2010 - Extended presentation slides
ITS 2010 - Extended presentation slidesITS 2010 - Extended presentation slides
ITS 2010 - Extended presentation slides
 
Proposal of a Transparent Relay System with vNIC for Encrypted Overlay Networks
Proposal of a Transparent Relay System with vNIC for Encrypted Overlay NetworksProposal of a Transparent Relay System with vNIC for Encrypted Overlay Networks
Proposal of a Transparent Relay System with vNIC for Encrypted Overlay Networks
 
5g-a-network-transformation-imperative
5g-a-network-transformation-imperative5g-a-network-transformation-imperative
5g-a-network-transformation-imperative
 
A survey of models for computer networks management
A survey of models for computer networks managementA survey of models for computer networks management
A survey of models for computer networks management
 
SDN and NFV Value in Business Services: Innovations in Network Monetization a...
SDN and NFV Value in Business Services: Innovations in Network Monetization a...SDN and NFV Value in Business Services: Innovations in Network Monetization a...
SDN and NFV Value in Business Services: Innovations in Network Monetization a...
 
B530429_FinalDissertation
B530429_FinalDissertationB530429_FinalDissertation
B530429_FinalDissertation
 
5 g architecture
 5 g architecture 5 g architecture
5 g architecture
 
CONTAINERIZED SERVICES ORCHESTRATION FOR EDGE COMPUTING IN SOFTWARE-DEFINED W...
CONTAINERIZED SERVICES ORCHESTRATION FOR EDGE COMPUTING IN SOFTWARE-DEFINED W...CONTAINERIZED SERVICES ORCHESTRATION FOR EDGE COMPUTING IN SOFTWARE-DEFINED W...
CONTAINERIZED SERVICES ORCHESTRATION FOR EDGE COMPUTING IN SOFTWARE-DEFINED W...
 
A Survey On Software-Defined Wireless Sensor Networks Challenges And Design ...
A Survey On Software-Defined Wireless Sensor Networks  Challenges And Design ...A Survey On Software-Defined Wireless Sensor Networks  Challenges And Design ...
A Survey On Software-Defined Wireless Sensor Networks Challenges And Design ...
 
A Quality of Service Strategy to Optimize Bandwidth Utilization in Mobile Net...
A Quality of Service Strategy to Optimize Bandwidth Utilization in Mobile Net...A Quality of Service Strategy to Optimize Bandwidth Utilization in Mobile Net...
A Quality of Service Strategy to Optimize Bandwidth Utilization in Mobile Net...
 
N fv good
N fv goodN fv good
N fv good
 
SDN and NFV Value in Business Services: Innovations in Network Monetization a...
SDN and NFV Value in Business Services: Innovations in Network Monetization a...SDN and NFV Value in Business Services: Innovations in Network Monetization a...
SDN and NFV Value in Business Services: Innovations in Network Monetization a...
 
Performance Evaluation of Interactive Video Streaming over WiMAX Network
Performance Evaluation of Interactive Video Streaming over WiMAX Network Performance Evaluation of Interactive Video Streaming over WiMAX Network
Performance Evaluation of Interactive Video Streaming over WiMAX Network
 
How can SDN and NFV Improve Your Business_ - Techwave.pdf
How can SDN and NFV Improve Your Business_ - Techwave.pdfHow can SDN and NFV Improve Your Business_ - Techwave.pdf
How can SDN and NFV Improve Your Business_ - Techwave.pdf
 

Plus de IJCNCJournal

Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...IJCNCJournal
 
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation SystemsAdvanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation SystemsIJCNCJournal
 
April 2024 - Top 10 Read Articles in Computer Networks & Communications
April 2024 - Top 10 Read Articles in Computer Networks & CommunicationsApril 2024 - Top 10 Read Articles in Computer Networks & Communications
April 2024 - Top 10 Read Articles in Computer Networks & CommunicationsIJCNCJournal
 
DEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
DEF: Deep Ensemble Neural Network Classifier for Android Malware DetectionDEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
DEF: Deep Ensemble Neural Network Classifier for Android Malware DetectionIJCNCJournal
 
High Performance NMF Based Intrusion Detection System for Big Data IOT Traffic
High Performance NMF Based Intrusion Detection System for Big Data IOT TrafficHigh Performance NMF Based Intrusion Detection System for Big Data IOT Traffic
High Performance NMF Based Intrusion Detection System for Big Data IOT TrafficIJCNCJournal
 
A Novel Medium Access Control Strategy for Heterogeneous Traffic in Wireless ...
A Novel Medium Access Control Strategy for Heterogeneous Traffic in Wireless ...A Novel Medium Access Control Strategy for Heterogeneous Traffic in Wireless ...
A Novel Medium Access Control Strategy for Heterogeneous Traffic in Wireless ...IJCNCJournal
 
A Topology Control Algorithm Taking into Account Energy and Quality of Transm...
A Topology Control Algorithm Taking into Account Energy and Quality of Transm...A Topology Control Algorithm Taking into Account Energy and Quality of Transm...
A Topology Control Algorithm Taking into Account Energy and Quality of Transm...IJCNCJournal
 
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...IJCNCJournal
 
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation SystemsAdvanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation SystemsIJCNCJournal
 
DEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
DEF: Deep Ensemble Neural Network Classifier for Android Malware DetectionDEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
DEF: Deep Ensemble Neural Network Classifier for Android Malware DetectionIJCNCJournal
 
High Performance NMF based Intrusion Detection System for Big Data IoT Traffic
High Performance NMF based Intrusion Detection System for Big Data IoT TrafficHigh Performance NMF based Intrusion Detection System for Big Data IoT Traffic
High Performance NMF based Intrusion Detection System for Big Data IoT TrafficIJCNCJournal
 
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...IJCNCJournal
 
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...IJCNCJournal
 
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...IJCNCJournal
 
** Connect, Collaborate, And Innovate: IJCNC - Where Networking Futures Take ...
** Connect, Collaborate, And Innovate: IJCNC - Where Networking Futures Take ...** Connect, Collaborate, And Innovate: IJCNC - Where Networking Futures Take ...
** Connect, Collaborate, And Innovate: IJCNC - Where Networking Futures Take ...IJCNCJournal
 
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...IJCNCJournal
 
Multipoint Relay Path for Efficient Topology Maintenance Algorithm in Optimiz...
Multipoint Relay Path for Efficient Topology Maintenance Algorithm in Optimiz...Multipoint Relay Path for Efficient Topology Maintenance Algorithm in Optimiz...
Multipoint Relay Path for Efficient Topology Maintenance Algorithm in Optimiz...IJCNCJournal
 
March 2024 - Top 10 Read Articles in Computer Networks & Communications
March 2024 - Top 10 Read Articles in Computer Networks & CommunicationsMarch 2024 - Top 10 Read Articles in Computer Networks & Communications
March 2024 - Top 10 Read Articles in Computer Networks & CommunicationsIJCNCJournal
 
Adaptive Multi-Criteria-Based Load Balancing Technique for Resource Allocatio...
Adaptive Multi-Criteria-Based Load Balancing Technique for Resource Allocatio...Adaptive Multi-Criteria-Based Load Balancing Technique for Resource Allocatio...
Adaptive Multi-Criteria-Based Load Balancing Technique for Resource Allocatio...IJCNCJournal
 
Comparative Study of Orchestration using gRPC API and REST API in Server Crea...
Comparative Study of Orchestration using gRPC API and REST API in Server Crea...Comparative Study of Orchestration using gRPC API and REST API in Server Crea...
Comparative Study of Orchestration using gRPC API and REST API in Server Crea...IJCNCJournal
 

Plus de IJCNCJournal (20)

Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
 
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation SystemsAdvanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
 
April 2024 - Top 10 Read Articles in Computer Networks & Communications
April 2024 - Top 10 Read Articles in Computer Networks & CommunicationsApril 2024 - Top 10 Read Articles in Computer Networks & Communications
April 2024 - Top 10 Read Articles in Computer Networks & Communications
 
DEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
DEF: Deep Ensemble Neural Network Classifier for Android Malware DetectionDEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
DEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
 
High Performance NMF Based Intrusion Detection System for Big Data IOT Traffic
High Performance NMF Based Intrusion Detection System for Big Data IOT TrafficHigh Performance NMF Based Intrusion Detection System for Big Data IOT Traffic
High Performance NMF Based Intrusion Detection System for Big Data IOT Traffic
 
A Novel Medium Access Control Strategy for Heterogeneous Traffic in Wireless ...
A Novel Medium Access Control Strategy for Heterogeneous Traffic in Wireless ...A Novel Medium Access Control Strategy for Heterogeneous Traffic in Wireless ...
A Novel Medium Access Control Strategy for Heterogeneous Traffic in Wireless ...
 
A Topology Control Algorithm Taking into Account Energy and Quality of Transm...
A Topology Control Algorithm Taking into Account Energy and Quality of Transm...A Topology Control Algorithm Taking into Account Energy and Quality of Transm...
A Topology Control Algorithm Taking into Account Energy and Quality of Transm...
 
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
 
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation SystemsAdvanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
 
DEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
DEF: Deep Ensemble Neural Network Classifier for Android Malware DetectionDEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
DEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
 
High Performance NMF based Intrusion Detection System for Big Data IoT Traffic
High Performance NMF based Intrusion Detection System for Big Data IoT TrafficHigh Performance NMF based Intrusion Detection System for Big Data IoT Traffic
High Performance NMF based Intrusion Detection System for Big Data IoT Traffic
 
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
 
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
 
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
 
** Connect, Collaborate, And Innovate: IJCNC - Where Networking Futures Take ...
** Connect, Collaborate, And Innovate: IJCNC - Where Networking Futures Take ...** Connect, Collaborate, And Innovate: IJCNC - Where Networking Futures Take ...
** Connect, Collaborate, And Innovate: IJCNC - Where Networking Futures Take ...
 
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
 
Multipoint Relay Path for Efficient Topology Maintenance Algorithm in Optimiz...
Multipoint Relay Path for Efficient Topology Maintenance Algorithm in Optimiz...Multipoint Relay Path for Efficient Topology Maintenance Algorithm in Optimiz...
Multipoint Relay Path for Efficient Topology Maintenance Algorithm in Optimiz...
 
March 2024 - Top 10 Read Articles in Computer Networks & Communications
March 2024 - Top 10 Read Articles in Computer Networks & CommunicationsMarch 2024 - Top 10 Read Articles in Computer Networks & Communications
March 2024 - Top 10 Read Articles in Computer Networks & Communications
 
Adaptive Multi-Criteria-Based Load Balancing Technique for Resource Allocatio...
Adaptive Multi-Criteria-Based Load Balancing Technique for Resource Allocatio...Adaptive Multi-Criteria-Based Load Balancing Technique for Resource Allocatio...
Adaptive Multi-Criteria-Based Load Balancing Technique for Resource Allocatio...
 
Comparative Study of Orchestration using gRPC API and REST API in Server Crea...
Comparative Study of Orchestration using gRPC API and REST API in Server Crea...Comparative Study of Orchestration using gRPC API and REST API in Server Crea...
Comparative Study of Orchestration using gRPC API and REST API in Server Crea...
 

Dernier

ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfOrbitshub
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...Zilliz
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...apidays
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistandanishmna97
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontologyjohnbeverley2021
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxRemote DBA Services
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Zilliz
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 

Dernier (20)

ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 

PLANNING AND MANAGING VIRTUALIZED NEXT GENERATION NETWORKS

  • 1. International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015 DOI : 10.5121/ijcnc.2015.7601 1 PLANNING AND MANAGING VIRTUALIZED NEXT GENERATION NETWORKS Sukant K. Mohapatra1 ,Jay N. Bhuyan2 and Hira N. Narang2 1 Marlboro, NJ, USA 2 Dept. of Comp. Science, Tuskegee, AL, USA ABSTRACT Service convergence, content digitization, rapid and flexible service delivery, reduction of capital and operating costs, economies of scale, changes in telecom policy and regulation, and ever increasing competition have been key factors in the evolution of virtualized Next Generation Networks (vNGN). IP- centric converged networks aim to provide a multitude of services over a single network infrastructure. Tremendous success and benefit of server virtualization in data centers is driving the adaption of network virtualization. Network virtualization is applicable to enterprise data center, and enterprise as well as wide area networks. The focus of this paper is network virtualization aspects of service providers’ next generation network. The key factors for moving to virtualized network is optimal use and sharing of network infrastructure even among competitive service providers, programmability of network and rapid introduction of new service and standard based on open platform rather than proprietary implementation. Evolving Software Defined Network (SDN) and Network Function Virtualization (NFV) shall enable common network infrastructure sharing, control, and management at a higher layer thus making network devices more generic and less intelligent, thus enabling cost competitiveness and quick service delivery. Network virtualization shall enable key benefits such as lower cost, flexibility, efficiency, and security, However, the deployment of virtualized next generation networks has brought its unique challenges for network managers and planners, as the network has to be planned in a comprehensive way with effective management of virtual network elements, its correlation with physical infrastructure and monitoring of control functions and server platforms. This paper discusses generic next generation network, its virtualization, and addresses the challenges related to the planning and managing of virtualized next generation networks. This paper proposes a reference OSS model enabling effective management of vNGN, which is key contribution of this paper. KEYWORDS VLAN, VRF, NFV, SDN, vNGN, VNF, MANO, ONF, OpenFlow and OpenStack 1.INTRODUCTION This paper discusses the service convergence and convergence of multiple segmented networks leading to evolution of IP-based Next Generation Networks (NGN). The paper provides an overview of NGN architecture as proposed by ITU-T [1]. The paper outlines a generic next generation network physical architecture based on transport stratum per ITU-T reference model. The architecture covers various network domains, including access, aggregation, and core network with potential technology options in each domain. Network virtualization enables creation of virtual logical network that is decoupled from underlying physical network infrastructure and yet uses the same in supporting multiple logical networks over physical network resources. With network virtualization, one can utilize multiple physical networks into a single virtual network, or a single physical network can support multiple virtual networks. Network virtualization can also be used to create virtual networks within a
  • 2. International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015 2 virtualized network construct, thus enabling support of multi-tenancy environments. Network virtualization provides tremendous benefits with respect to cost saving, rapid service introduction, scalability, and flexibility of a programmable network. This paper discusses the concepts, mechanisms, evolving standards, and architectural components based on Software Defined Network (SDN) and Network Function Virtualization (NFV) in realizing vNGN. NFV enables service providers to speed up deployment of new network services in order to foster revenue and growth. However, network virtualization has its own challenges for network planners and managers in effective planning and managing virtualized network. Paper [7] discussed network virtualization design goals and challenges. Paper [11] describes challenges while in implementing SDN in carrier grade network. This paper discusses various challenges and issues that need to be duly considered in planning a virtualized network. Key issues for virtualized network management such as end-to-end visualization of virtual network, performance and fault monitoring of controller, configuration of virtual switches/routers (vSwitch/vRouters), monitoring and association of virtual and physical components, etc. are also addressed in this paper. A generic Operation Support System (OSS) architectural solution is proposed in this paper. This solution enables management of virtualized next generation network (vNGN). The paper also discusses how the challenges and issues faced in managing vNGN are addressed in the proposed solution. The paper is organized as follows: in section II, we discuss service and network convergence and describe the physical infrastructure of next generation network architecture covering various domains. Section III discusses the concept behind network virtualization, different options and evolving model based on SDN and NFV for implementing network virtualization. Section IV outlines the challenges in planning and managing vNGN. Section V provides a detailed view of solution architecture, its different components, and how it meets the challenges of managing virtualized next generation networks. Finally, we conclude the paper in section VI. 2. SERVICE AND NETWORK CONVERGENCE – NEXT GENERATION NETWORK PHYSICAL ARCHITECTURE In this section, we discuss service and network convergence leading to unified Next Generation Network (NGN). Physical NGN architecture with different domains, from access to core supporting multiple services, is described in this paper. A reference to NGN architecture with focus on integrated planning can be found in [4]. 2.1. SERVICE AND NETWORK CONVERGENCE Although broadly Voice, Video, Data, and Messaging have typically been the predominant services used, there have been many applications under these broad categories of services that require different quality of service (QoS) and user experience. For example, as part of video service, broadcast video and video on demand need different QoS. In addition, there is service convergence in the sense that these different services can be supported by a single end user device (e.g., smart phone), rather than dedicated device to support specific service (e.g., TV for broadcast video, telephone for voice call) as in the past. For example, messaging is no longer a simple textual data, but it could be mixed of data and video. Thus, all different services are converging into rich multi-media services in which the user can access those services any time from any place using a single device, and service is no longer limited to a particular type (such as voice, video, or data). Many new innovative service types are also likely to evolve over time, thus necessitating a mixed/rich media communication service. The following Figure 1 depicts the service convergence that has already happened and is also evolving.
  • 3. International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015 3 Figure 1. Service Convergence In the past, the network had evolved and grown in a segmented manner and overlay model was standard. For example, the PSTN network was separate from the data network. SS7 network was also designed as a separate network supporting signaling for PSTN network. As new services grew and technology (e.g., ATM/FR, Optical Ethernet) evolved, new networks were deployed, but mostly in a segmented and segregated manner. It has led to complexity with high OPEX (Operational Expense) and CAPEX (Capital Expense) cost in building and managing communication network. Service convergence, evolution of technology, Opex and Capex cost savings have led to evolution of a unified next generation architecture of packet based converged network. Different existing and emerging service/applications can be supported over a single network, rather than multiple segmented networks as in the past. 2.2. NEXT GENERATION NETWORK ARCHITECTURE Figure 2 provides an overview of reference NGN architecture model based Y.2012 recommendation [1]. It is a two-layer model structured with service stratum and transport stratum. Figure 2. ITU-T Y.2012 NGN Architecture – Reference Model
  • 4. International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015 4 The service stratum primarily covers application/service support and session control, whereas transport stratum provides flexible transport technology covering access and core network, which enable service delivery in a manner agnostic to service type and its characteristics. Figure 3 provides an overview of a generic next generation networks architecture [4] with emphasis and extension of transport stratum of ITU-T reference architecture model based on typical deployment scenario by service providers. The Figure 3 architecture provides a physical view of various network elements that cover different domains of NGN. Figure 3. Next Generation Network Architecture The next generation network is a converged network supporting various domains that span from the home/premises to the core network. The various domains of the next generation network can be organized into: Home/Enterprise Network: This is the network used by end users such as residential homes, multi-tenant dwelling units (MDU), or business entities/enterprise. Typically, enterprise/business units use LAN internally and use Customer Premise Equipment (CPE) routers that connect to the service provider’s network. The LAN could be Ethernet based, wireless based, or hybrid. The residential homes are typically connected via Home Gateway (HGW) to the provider network. Today HGW supports a variety of home networking technologies such as Home Phone Line, Cable, Ethernet, and wireless. Typically, Home/Enterprise network is not within service provider’s operational network domain. Access Network: The access network domain is part of the next generation network that provides the last mile access to home/enterprise network. The access network domain uses various technologies ranging from xDSL (Digital Subscriber Loop), FTTx (including Fiber to the Home (FTTH), Fiber to the Node (FTTN) etc.), and Hybrid Coax Fiber (HFC) to wireless technologies. Access network is part of service provides’ network that interconnect private home or enterprise network. Aggregation Network: The aggregation network domain provides traffic aggregation from the access network and routes the same to the core network of the service provider. ATM and Frame Relay network, although still deployed in this domain, are rapidly declining. Carrier Ethernet has made significant progress in this domain due to many factors such as its low cost and simplicity. Core Network: There has been significant innovation and technological growth in IP in recent years and MPLS based IP network is primarily deployed in core network domain. The scalability, resiliency and ease of supporting new services on a single core infrastructure are very attractive. It also provides a cost-effective alternative to multiple overlay networks. In addition, IP/MPLS based core infrastructure provides easy interoperability with various existing layer 2 technologies and protocols, such as Ethernet.
  • 5. International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015 5 3. VIRTUALIZATION OF NEXT GENERATION NETWORK (VNGN) Network virtualization enables creation of separates logical networks abstracted from the underlying physical network infrastructure. By using network virtualization it is possible to create a single virtual network out of multiple physical networks or multiple virtual networks out of single physical network. This model is referred to as external network virtualization. External network virtualization involves actual network devices that support physical network. Network virtualization can be used within virtual servers creating networks between virtual machines. This model is called internal virtualization, which is purely based on software that can be quite complex. In this paper’s reference to network virtualization, we primarily focus on external virtualization. Network virtualization is not entirely a new concept. Traditionally, network virtualization has been in use for years using virtual Layer 2 and Layer 3 networks over a common physical network infrastructure. Virtual LAN (VLAN) is a Layer 2 construct of network virtualization in a standard carrier Ethernet Network using 801.1q trunking [2] method. Virtual Routing and Forwarding (VRF) is Layer 3 construct of network virtualization where a physical router can support multiple virtual router instances, which maintains its own forwarding table. A Virtual Private Network (VPN) [3] allows private network service over a public or shared infrastructure such as service provider backbone network. There have been various approaches to network virtualization using tunneling, encapsulation, and encryption techniques to create multiple overlay logical networks over a common physical network infrastructure. In this paper, we discuss evolving network virtualization model using Network Function Virtualization (NFV) and Software Defined Network (SDN) with focus on typical service providers’ next generation network (shown in Figure 3). It may be noted that NFV and SDN, though independent, are functionally complementary in supporting network virtualization. NFV and SDN can be deployed independently and also with or without each other. Virtualization is typically performed at the edge of the network, whereas rest of the network remains unchanged. 3.1. NETWORK FUNCTION VIRTUALIZATION (NFV) Figure 4 depicts reference architecture model of NFV [5]. NFV implements Virtual Network Function (VNF) of Network Elements (e.g., Router, Switch, Mobile Network Nodes such as MME, SGW, PGW, GGSN, SGSN, Home Gateway, AAA server, Firewalls etc.) in software that run on industry standard server hardware and Virtual Machine (VM). A VNF can run over multiple VMs or on a single VM. Physical resource such as computing, storage and connectivity for VNF is supported through the virtualization layer (e.g. hypervisor), which primarily decouples underlying hardware resources. Element Management System (EMS) in the following reference architecture diagram provides typical element management functionality for multiple VNFs, while OSS/BSS refers to service providers’ Operation and Business Management System. NFV Management and Orchestration (MANO) function includes: Orchestrator enabling orchestration and management including instantiation and service assurance of VNF. VNF Manager Support lifecycle management of VNF instances, and Virtualized Infrastructure Manager primarily manages and monitors compute, storage and network resources for VNF implementation.
  • 6. International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015 6 Figure 4. ETSI VNF Reference Architecture NFV enables flexible creation of network service using VNF instances and VNF Forwarding Graph (VNF-FG) as discussed in section 3.3. NFV enables service providers, high flexibility and faster service deployment including ease of adding new services, thereby reducing Capex/Opex cost, while using industry standard off-the-shelf hardware and software. 3.2. SOFTWARE DEFINED NETWORK (SDN) Software Defined Networking (SDN), is primarily about decoupling of control plane from the data plane, dealing mostly with the lower layers (L2-L4) function, where network intelligence and state are logically centralized and underlying network infrastructure is separated from applications. Details of SDN architecture as defined by Open Networking Foundation (ONF) can be found in [6]. Figure 5 provides an overview of SDN architecture based on ONF reference model [6]. In the application layer, business applications support various business specific applications such as service provider customer network management portal, content distribution network management, etc. In application layer orchestration system broadly provides network resource orchestration. Business applications run using northbound interface of SDN controller. In control plane, the SDN controller is the key component of SDN architecture. It is logically centralized with a global view and control of network resources as well as service demand. It enables network configuration based on abstract view of specific behavior/functional requirement to support services in vNGN. Network services module support applications like network planning, network analytics, and load balancing, etc. OpenFlow is the standard southbound interface to the data plane defined by Open Networking Foundation (ONF) [6]. The data plane is where OpenFlow enabled network elements reside. The key function of NEs in data plane is traffic forwarding based on rules executed by the SDN controller. Thus these NEs need not possess any proprietary intelligence rather than supporting packet forwarding mechanism as a standard hardware commodity.
  • 7. International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015 7 Figure 5. SDN Reference Architecture 3.3. SDN AND VNF WORKING TOGETHER Functionally SDN and NFV are complementary and synergetic even though each can be deployed in an independent manner. SDN focuses on control and L2-L3 data forwarding, whereas virtualization, intelligent edge device, service chaining is supported by NFV. SDN can be used to interconnect many VNF end points (e.g. vCPE) in NFV platform. Figure 6 shows SDN and VNF working together in an integrated way from architectural perspective. VNF equipment can be dynamically reconfigured based on applications and traffic patterns, whereas SDN controller can steer traffic in network elements. In the scenario where orchestration and the management can be VNFs by itself, the OpenFlow protocol can be part of the Nf-Vi interface or Vn-Nf interface (as shown in Figure 6). Figure 6. SDN and VNF Architectural Model One of the key advantages of NFV based platform is the implementation of service chaining using multiple VNFs realizing network service. The Orchestration module can dynamically define set of service using network intelligence of SDN. The concept of service chaining is described in the next section.
  • 8. International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015 8 3.4. PHYSICAL AND LOGICAL VIEW OF NETWORK & REALIZATION OF NETWORK SERVICE In a high level, vNGN architecture can be viewed and abstracted into three layers, as depicted in Figure 7. The actual physical network infrastructure constituting network element and their inter- connection (as in Figure 3) can be viewed as physical network resource. Physical network in effect provides virtual network resources. Virtual resources can be isolated from each other unless allowed by security policies. Virtual networks can be viewed as logical constructs of the virtual resources implemented on top of physical network. Each customer of a provider network can have one or more virtual networks. Figure 7. Multi-layer View of vNGN NFV enables effective management of end-to-end network services utilizing group of VNFs bound together via VNF Forwarding Graph (FG), also known as service chain. Actual realization of end-to-end network service is depicted in Figure 8, as per reference model described in [5]. Figure 8. Realization of end-to-end Network Service using VNF and VNF-FG
  • 9. International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015 9 4. NETWORK VIRTUALIZATION PLANNING AND MANAGEMENT CHALLENGES There are enormous values and benefits in deploying or migrating to vNGN. Some of the key benefits includes: common infrastructure sharing even among competitors, programmability thus enabling rapid service introduction, high available infrastructure, non-proprietary NEs, and open standard platform leading to significant Capex and Opex savings. However, it has its potential issues and challenges in planning and managing vNGN. In this section we highlight some of the work related to NFV and SDN and issues. We specifically focus on key issues and challenges in planning and managing vNGN. Due considerations must be taken into account related to implementation and deployment of NFV and SDN systems/components, standard compliance, co- existence with existing network infrastructure and OSS/BSS systems, and security aspects. 4.1. RELATED WORKS Given evolution of network virtualization and current state of ecosystems, paper [8] provides insight to practical issues and guidelines in deploying Network Virtualization and SDN. Paper [7] provides view of network virtualization challenges and describes architectural principles and design goals. Paper [9] addresses resource allocation specific issue in network virtualization. Paper [10] outlines challenges and solutions while implementing network virtualization using OpenFlow. Specific challenges with respect to network performance, scalability, security and interoperability with potential solution while deploying SDN in carrier grade network has been described in paper [11]. 4.2. PLANNING VNGN – CHALLENGES As described above, two key components to achieve network virtualization are NFV and SDN. In addition to standard activities in this area by ETSI, ONF, and IETF, many vendors provide solutions and could have some proprietary aspects in their solution. Also transitioning to vNGN will occur over a period of time along with existence of legacy network. Some key planning challenges and consideration that need to be taken in deploying network virtualization and SDN are enumerated below: Network Function Virtualization (NFV): The orchestration and management of VNF must be carried out along with legacy network ensuring proper configuration and security. Resiliency, scalability, and performance of hardware and software components associated in implementing NFV must be ensured. Automation is the key to high scalability of NFV. Interoperability with different vendor’s virtual appliance and middleware (e.g., hypervisor) needs to be duly considered. SDN Controller: As SDN controller is the main intelligence behind programmable network, its architecture with respect to scalability, availability, and performance are of key considerations. Its compliance to standards such as ONF [6] shall ensure interoperability. Network Elements: Service provider network is expected to support Network Elements/Switches from multiple vendors. Protocol support between control plane and data plane is a key aspect. Support of standard OpenFlow enabled Switch is another critical consideration. Hybrid OpenFlow switch or even different version of OpenFlow software support could pose interoperability challenges.
  • 10. International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015 10 Co-existence with Existing Systems: It is expected that full migration to vNGN will be accomplished over a period of time. So co-existence with existing network infrastructure and OSS/BSS is a key aspect while planning the migration. Maximal reuse and enhancement as applicable to existing network resource and systems has to be considered in order to reduce Capex. 4.3. MANAGING VNGN – CHALLENGES There are multiple challenges in managing vNGN from OSS/BSS point of view. We highlight below some of the key challenges that network manager faces today in migrating and managing vNGN. Network Function Virtualization (NFV) Systems Management: NFV enables some core networking function like switching, routing, load balancing, etc. supported by software decoupled from proprietary hardware appliance. NFV is implemented using high capacity physical server, network and storage on standard industry platform in a virtualized environment. The management system needs to support lifecycle management of virtual network functions (VNFs) like initialization, modification, deletion etc. The monitoring of virtual network and its relationship with physical network is also a key management aspect. In addition, the normal service assurance related to server management in a highly scalable and reliable environment needs to be supported for server platform. SDN System Management: SDN controller and network service functions are expected to be supported on standard open platform such as Open DayLight and protocols such as OpenFlow. As SDN is the main intelligence behind implementing vNGN, management system has to support key operational aspect in monitoring such as fault, performance, capacity of the SDN system in real-time ensuring high availability of the system. It is also expected that SDN shall perform many of the actions specifically related to network configuration and routing that is typically performed by management systems today. Traditional OSS is expected to support limited functionality with deployment of SDN controller and OpenFlow enabled network appliances. Visualization: Complete visualization of network resource including virtual and physical components in the network is a very key requirement for network operation point of view. Visualization component (GUI) of management system must provide end-to-end visualization of virtual network, physical network resource, and drilldown to specific resource to visualize detail state of the resource. Security Management: One of the key aspects is that platform and system implementing NFV and SDN to be fully secured for the detection and mitigation of DDoS attacks. In addition, management system shall support security aspects related to access management, authentication, data confidentiality, and secured communication at various interfaces. A good reference to telecommunication security and security for network management application can be found in [13]. Co-existence/Integration with Existing OSS/BSS System: Even though OpenFlow enabled switches are expected to be deployed in the network to take full advantage of SDN controller, the traditional network will be there for a foreseeable future. The management system must enable management of both SDN and non-SDN components of the network in an integrated fashion, simultaneously leveraging existing OSS/BSS assets in order to reduce Capex.
  • 11. International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015 11 5. AN ARCHITECTURAL SOLUTION FOR MANAGING VNGN Figure 9 below provides an overall architectural model with key building blocks in support of effective management of vNGN. The proposed vNGN management solution architecture uses component-based model. Various components can be added, updated and/or removed in a plug and play mechanism within the overall solution frame work. Similarly sub-components within a component can be easily added and/or removed in an independent manner without impacting functional aspects of component itself. In this paper we provide a brief context of the solution architecture, its components, and sub-components and mainly focus on details of management aspects in meeting the challenges and issues, as outlined in previous sections. The specific contribution of this paper is the solution model in managing evolving vNGN in a cost effective and efficient manner while leveraging typical OSS/BSS assets that may exist in service providers’ operation center. The solution model also specifically addresses the key issue of network management challenges. . Figure 9. High Level View of Management Solution Architecture for vNGN 5.1. BRIEF OVERVIEW OF SOLUTION ARCHITECTURE COMPONENTS In Figure 9, the infrastructure layer constitutes physical network resource/Network Elements (NE) termed as Physical Network Function (PNF), which primarily constitute data plane carrying user service traffic. The network elements could be OpenFlow enabled or non-OpenFlow enabled. The other infrastructure constitutes compute, storage and network resource along with virtualizer (e.g., hypervisor) to support NFV capability. Same server platform can also be utilized for SDN system. This paper does not focus on specific implementation aspects and inter- component communication mechanism, as the same can be realized using many existing common off-the-shelf (COTS) platform and protocols. However, we refer to standard open platform and protocols for implementation of various components, as applicable. Also, the existing system in OSS/BSS domain in service provider’s operation center must be leveraged in order to reduce Capex and enable ease of use by existing personnel without significant training with new products. Various building blocks for network management systems have been discussed below:
  • 12. International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015 12 Element Management System (EMS): The EMS layer has typical EMS functionality in supporting both legacy network elements as well as VNF. Typically, EMS supports one or more NEs of same type and have functionality for configuration and retrieval/receipt of performance metrics (e.g., trap, performance counters) of the NEs under its domain. The EMS supporting VNFs are noted as V-EMS. The functionality of V-EMS is similar to EMS modules supporting VNFs as defined in [5]. S-EMS in the architecture refers to server infrastructure management system at EMS layer. Data Adapter and Data Distribution Bus: Data Adapter enables the receipt of various infrastructure layer configuration information and performance metrics from multiple EMS, which could be using different north-bound API/interfaces. Also Data Adapter supports standard south bound API (e.g. SNMP) for direct communication with NEs in infrastructure layer, which may not have any EMS support. Data distribution bus enables the distribution of collected virtual and physical network data to other modules in upper layer. Data distribution can be implemented using pull-push and/or subscription based mechanism, as needed. Orchestrator and Policy Manager: Orchestrator broadly provides functionality for network resource orchestration as means for delivering business request. Orchestrator creates and tracks the process for implementation of a business request such as creation a virtual network for a tenant across the service provider network, and apply security policy to a group of VMs at the edge of tenant’s virtual network. Orchestrator is typically deployed using open standard platform OpenSatck and OpenCloud. At infrastructure layer, Orchestrator provides resource reservation and allocation for virtualized resource. It also provides virtual resource configuration information to VNF manager so that VNF can be configured appropriately to function within VNF FG in support of network service. Orchestrator supports VNF life cycle management in exchanging information related to VNF inventory, state, data, capacity, usage and accounting information with OSS/BSS [5]. Orchestrator module works in with VNF analytic component module (as describe below) in this architecture. Using event based service, virtual resource data can be synchronized between Orchestrator and Central Inventory Management (CIM) system, as described below. Policy Manager primarily manages business, service, and network policies and initiates control or orchestration service as appropriate. SDN System: SDN is implemented as logically centralized but on physically distributed platform in open source cloud environment. SDN is typically supported on Open DayLight - a standard open platform. The south bound interface is based on OpenFlow, which shall manage OpenFlow enabled devices in network infrastructure layer. The north-bound interface could be based on Representational State Transfer (REST) Application Programming Interface (API) [14] for interworking with business applications and orchestration system. REST API can also be used for interfacing traditional OSS/BSS components supporting integration. The physical server management for SDN can be supported by COTS server management systems and tools such as Chef and Solarwinds. SDN controller is responsible for translating request at high level of abstraction into clear action on physical and virtual network appliances such as setup of virtual services like virtual firewall in a VM and also use underlying physical firewall service node. Analytic sub-components of SDN system are responsible for collecting, analyzing, and presenting network managers on SDN platform fault, performance, capacity and availability aspects in near real-time. This enables management of SDN system, including testing and troubleshooting in case of failure and performance degradation of SDN system.
  • 13. International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015 13 NFV Analytics: NFV analytics is the component supporting management of NFV infrastructure (server, storage, computing), virtualizer, VMs and VNFs resources dedicated to realization of NFV. NFV analytics receive data from V-EMS via Data Distributor. It supports collection, analysis and visualization of fault, performance, capacity, optimization and other data related to operation, management and monitoring of NFV resources and function in the network. This component also supports management of VNF life cycle such as initialization, update, termination and scaling (up/down) of VNF instances. NFV Analytics is compliant with functionality of Virtualized Infrastructure Manager and VNF Manager(s) as defined in [5]. Network Analytics: Network Analytics supports typical Network Management Systems (NMS) layer functionality for traditional network elements. It supports network resource management, configuration, and network wide path computation in support of service provisioning. It also supports collection, analysis, and collation of network testing, performance, fault, alarm correlation, capacity related data to enable effective network operation and troubleshooting. With support of SDN enabled data fabric in the network, it is expected that majority of network configuration and routing shall be managed by SDN controller. Business Applications: Business applications support various business specific functions and requirements in supporting applications such as customer network management portals in compliant with application layer of SDN architecture as defined in [6]. Service Quality and Performance Management: Service Quality and Performance Management component provides service level network analytics and service quality management. It includes extensible sub-components, which can be used in plug and play model. Some of the subcomponents includes:  Cross Domain Analytics: Provides customer service issues and identification of problem related to specific domain or part of the network including partner or 3rd party hosted network.  Trouble Ticket Analytics: It correlates network level fault with services and identifies specific customer service impact and resolution of same.  SLA Management: This sub-component provides analysis related to contracted service quality with a customer and actual service quality rendered and enforcement of Service Level Agreement (SLA).  Capacity Analytics: This sub-component provides capacity constraint specific issues in support of existing customer service such as VPNs. It also supports cross-domain network capacity analysis in support of various services. Central Inventory Management: Central Inventory Management (CIM) is a very key component in the vNGN management system architecture frame work. The CIM captures inventory data in various layers/levels which is used by other components in realizing their functions. In addition, data store in this component can be used as “Big Data” in support of different analytics and service intelligence applications. Inventory component in infrastructure layer include physical as well as logical/virtual resources. The physical resources includes various NEs (Routers, Switches), Mobile Network Elements (HLR/HSS, SGSN/GGSN, RNC, SGW/PGW, (e)NodeB ...), NGN signaling node (e.g., SBC), and Server hardware platform. Similarly virtual network component could include VMs and software defined virtual functions for physical components such as vCPE, vSwitch, and vRouters. The CIM component at infrastructure layer contains information on all physical and virtual resources, interconnectivity, properties and states.
  • 14. International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015 14 In network layer, CIM shall store information related to various network path provisioned in the network, network resources involved (e.g., NE/Port) and their interconnectivity. CIM also contains information of service association with provisioned network path. At business/application layer, CIM is the central repository for various product/portfolio that is supported by service provider. The information stored in CIM can be used by multiple components. For example, Network Analytic component can use inventory information from CIM and associate a network failure information received from EMS to identify root cause of network failure. Similarly, at service layer using network path and service association, any network failure can be correlated to specific customer service impact by trouble ticket analytic component. As CIM provides a network wide view, resource, and service information; the repository could be used by various analytic applications to gain various intelligence and information for effective use of network resource, service and enabling revenue growth. In addition, information on physical resource can be used by GIS framework component in providing physical location of network resources. Similarly Web GUI component can utilize information stored in CIM for network wide visualization functionality. Customer Relationship and Business Management: The customer relationship and business management component shall support customer facing and business management specific functionality. Customers could include retail as well as business customers. The functionality supported in this module shall include customer profile, customer service order, service order realization and tracking, and customer billing etc. User Management: The user management includes OAM and Security Management that supports user administration, authentication, authorization, auditing, and secured communication etc. [12, 13] for operation personnel. The Web GUI Server provides web-based access to management system from client workstation. Geographical Information System (GIS) Framework: This component enables various modules to use geo-spatial information and provide network manager with GIS based visualization of infrastructure layer covering NEs, their interconnectivity and Server platform location. 5.2. MEETING THE KEY MANAGEMENT CHALLENGES NFV Management: Orchestrator, NFV analytics, V-EMS components provides full support and management of NFV capability. NFV analytics support real-time monitoring and management associated with NFV resource and infrastructure. Orchestrator component along with CIM support virtual network and its relationship with physical network. Correlation functionality in Network Analytic component along with GUI provide appropriate monitoring and end-to-end visualization capability in support of NFV management. SDN System Management: SDN system along with other components provides effective management and support of SDN functionality in overall architectural framework. The analytics in SDN system shall support real-time monitoring and management of SDN resource. Open platform and standard API supports integration of SDN system into existing OSS/BSS infrastructure of service provider. Visualization: Web server based GUI component provides end-to-end network visualization including physical as well as virtual resources in concert with GIS framework, Central Inventory Management (CIM) and various analytic modules. Leveraging the relationship information between physical and virtual resources as stored in CIM will help GUI component in visualizing detail network service realization along with associated physical and virtual resources.
  • 15. International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015 15 Security: OA&M and Security Management component provides secured user access and system management. The Open DayLight consortium’s SDN controller contains toolset that can be used for the detection and mitigation of DDoS attacks as well. Integration with existing OSS/BSS Systems: The architecture as proposed in section 5.1 above enables migration/enhancement of existing OSS/BSS supporting SDN & NFV while using existing assets. The Element Management, Network Layer & Service Layer model of management principle fit well with existing OSS/BSS embedded base. Well defined standard interfaces and model enables easy add-on of NFV and SDN capability into existing operation and management model. 6. CONCLUSIONS This paper provides an overview of next generation networks architecture reference model, focused on transport stratum. Various domains of physical architecture of next generation networks have been discussed. A detail view of network virtualization, software defined network and associated key components are discussed. The evolution and deployment of vNGN poses multiple challenges for network planners and mangers, and key issues must be taken into consideration in effective planning and management of vNGN is also highlighted. This paper focuses on managing vNGN with a reference network management solution architecture for deployment of virtualized next generation networks. Future work expected to address some of the other key challenges and issue in deployment of vNGN. REFERENCES [1] ITU-T Y.2012, “Recommendation ITU-T Y.2012”, Functional requirements and architecture of the NGN, 2006. [2] IEEE, 802.1Q – IEEE Standard for Local and Metropolitan Area Networks – Bridges and Bridged Networks, 2014 [3] Madhulika Bhandure, Gaurang Desmukh, Saili Waichal, and Varshpriya JN, “Approach to build MPLS VPN using QoS Capabilities”, International Journal of Engineering Research and Development, Vol 7, Issue 8, PP. 22-32, June 2013. [4] Sukant K. Mohapatra, “Integrated Planning for Next Generation Network”, IFIP/IEEE International Symposium on Integrated Network Management, 2009. [5] ETSI, Network Function Virtualization Architectural Frame Work, ETSI, GS NVF, 2013, http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf [6] ONF, “Open Network Foundation, SDN Architecture”, ONF TR 502, 2014, https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical- reports/TR_SDN_ARCH_1.0_06062014.pdf [7] N.M Mosharaf, Kabir Choudhury and Raouf Boutaba, “Network Virtualization: State of the Art and Research Challenges”, IEEE Communication Magazine, 2009 [8] Jim Metzler, Aston Metzler and Associated, “The 2013 Guide to Network Virtualization and SDN”, 2013, http://www.webtorials.com/content/2014/01/2013-guide-to-network-virtualization-sdn-3.html [9] Aun Haider, Richard Potter, and Akihiro Nakao, “Challenges in Resource Allocation in Network Virtualization”, 20th ITC Specialist Seminar, 2009. [10] Martias J, Tornero B, Mendola A, Jacob E, Toledo N, “Implementing Layer 2 Network virtualization using OpenFlow: Challenges and Solutions, 2012 European Workshop on Software Defined Networking (EWSDN), 2012. [11] Sakir Sezer, Sandra Scott-Hayward, Puspinder Kaur Chouhan, Barbara Fraser, David Lake, Jim Finnegan, Neil Vijoen, Marc Miller, and Navneet Rao, “Are We Ready for SDN? Implementation Challenges for Software-Defined Networks”, IEEE Communications Magazine, Vol 51, No. 7, July 2013. [12] ITU-T, “Security in Telecommunication and Information Technology - An overview of issues and deployment of existing ITU-T Recommendation for secure telecommunications”, 2003, http://www.itu.int/itudoc/itu-t/85097.pdf
  • 16. International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.6, November 2015 16 [13] Telcordia, “GR-815-CORE Generic requirements for Network Element/Network System (NE/NS) Security,” Issue 2, March 2002. [14] Richardson, Leonard; Mike Amundsen, “RESTful web API”, O'Reilly Media, ISBN 978-1-449- 35806-8 , 2013 AUTHORS Sukant K. Mohapatra has a Ph.D in Computer Science with specialization in Telecommunications from Stevens Institute of Technology, New Jersey. His research interest includes: Next Generation Fixed and Mobile Network Architecture, Software Defined Network, Cloud Computing, Network Planning, and Network Management. He has worked over twenty five years in telecommunication industry in leadership capacity. He is recipient of DMTS award in Bell Laboratories and a senior member of IEEE. He is the founder chairman of National Institute of Science and Technology (NIST), India. Jay N. Bhuyan is a professor in the Department of Computer Science at Tuskegee University. His research and teaching interests include Telecom Software Architecture and Development, Software and Network Security, Big Data Analytics, and Parallel & Distributed Computing. He received a PhD in Computer Science from the University of Louisiana at Lafayette. He has over 25 years of full-time and part-time teaching experience as well as over 15 years of research and development experience in the Telecom industry. He is a member of IEEE and IEEE Computer Societies. Hira N. Narang is the department chair and a professor in the Department of Computer Science at Tuskegee University. His research and teaching interests include High Performance Computing, Information Systems Security, and Computer Networks. He received a PhD in Applied Mathematics from the Delhi University, India, Master in Computer Science from University of Kentucky, and a Master in Computer Engineering from Auburn University. He has over 30 years of teaching experience as well as over five years of research and development experience in the industry. He is a recipient of several research & infrastructure grants from NSF, NASA, Xerox, HP, etc.