SlideShare une entreprise Scribd logo
1  sur  14
OVERVIEW OF FLYWHEEL DESIGN FOR
LDV CALIBRATION
Jacob McCormick
Purdue Compressor Lab
Purdue University
West Lafayette, IN USA
Motivation
17 June 2016 GT2016-56683 2
• Calibration of LDV gives us a lower measurement uncertainty
– This calibration originates from a primary source
• In this case the primary standard is the measurement of the flywheel’s
diameter and RPM of the motor, which can be traced to national
standards of length and time
– Calibration is costly when outsourced
• NIST Calibration: $2693
• In house calibration would mean upfront cost, but negligible
running costs for calibration
– We would be able to calibrate the LDV with our own primary standard
• Flywheel
Past Research
17 June 2016 GT2016-56683 3
• NIST (National Institute of Standards and Technology)
– Calibration Method: Spinning Wire
– Combined Uncertainty: 0.48%
– Max. Calibration Speed: 40 m/s
• ORNL (Oak Ridge National Labs)
– Calibration Method: Spinning Wire & Surface Irregularities
– Combined Uncertainty: At 10 m/s differed by 0.11 ± 0.26 % from NIST
– Max. Calibration Speed: 45 m/s
• NSWC (Naval Surface Warfare Center)
– Calibration Method: Sandpaper
– Combined Uncertainty: 0.10%
– Max. Calibration Speed: 18 m/s
Method 1: Spinning Wire Flywheel
4
Method 1: Specifications
• Diameter: 3”
• Weight: 0.22 lbs
• 6 guide grooves equidistantly spaced on rounded face of disk
• Triangular groove; 3 mm (0.118”) wide, 6 mm (0.236”) deep
– Catches light to isolate reflections from wire
• More material around shaft for improved stability
– Tentative height: 0.1”
5
Method 1: Calibration
• 6 tungsten wires, 5 um in diameter
• 6 pulses per revolution
– Improvement on NIST twice per revolution
– Shorter calibration times
• Mounted using glue adhesive initially
– If not successful, we will use clamping screws
Method 1: Potential Machining Costs
• Material Costs: $100
• Machining Costs: ~$400
• CMM Inspection (Optional): < $100
• Total Costs: ~$600
Method 2: Spinning Disk
Method 2: Specifications
• 3 Different Diameter Values
– 0.5”, 3”, 6”
• Weight: 0.86 pounds
Method 2: Detection Surface
• Surface irregularities provide the “particles” for detection
by the LDV
• Allows for a higher count rate
– Shortens calibration times
Method 2: Potential Machining Costs
• Material Costs: $100
• Machining Costs: $400
• CMM Inspection (Optional) : < $100
• Total Cost: $600
Methods Comparison
Spinning Wire Surface Irregularities
Less precision machining (One
surface vs three)
Higher count rates per revolution
No negative effect on uncertainty
from shaft wobble (distinguishable
events)
More control over motor speed for
given airspeed
No need to switch out broken wires
RPM Ranges for Various Diameters
17 June 2016 13
Overall Potential Cost
Component Cost
Animatics Smart Motor (SM23165D ) $1100
Animatics Power Supply (PS42V6AG ) $1000
Flywheel: Spinning Wire $600
Flywheel: Surface Irregularities $600
Mounting $300
RPM Reader $300
Potential Total Cost $3900

Contenu connexe

En vedette

Metodología de la Investigación - Conferencia 3
Metodología de la Investigación - Conferencia 3Metodología de la Investigación - Conferencia 3
Metodología de la Investigación - Conferencia 3
ug-dipa
 

En vedette (10)

Metodología de la investigación. Sampieri
Metodología de la investigación. SampieriMetodología de la investigación. Sampieri
Metodología de la investigación. Sampieri
 
Smart people
Smart peopleSmart people
Smart people
 
Metodología de la Investigación - Conferencia 3
Metodología de la Investigación - Conferencia 3Metodología de la Investigación - Conferencia 3
Metodología de la Investigación - Conferencia 3
 
Sistemas operativos
Sistemas operativosSistemas operativos
Sistemas operativos
 
Obstacle Avoidance ROBOT using ARDUINO
Obstacle Avoidance ROBOT using ARDUINOObstacle Avoidance ROBOT using ARDUINO
Obstacle Avoidance ROBOT using ARDUINO
 
Gostar de mulher - Manuel Carlos
Gostar de mulher - Manuel CarlosGostar de mulher - Manuel Carlos
Gostar de mulher - Manuel Carlos
 
Marco de referencia, distancia recorrida y desplazamiento
Marco de referencia, distancia recorrida y desplazamientoMarco de referencia, distancia recorrida y desplazamiento
Marco de referencia, distancia recorrida y desplazamiento
 
Ejemplos de análisis y diseño de vigas a flexión
Ejemplos de análisis y diseño de vigas a flexiónEjemplos de análisis y diseño de vigas a flexión
Ejemplos de análisis y diseño de vigas a flexión
 
Admis23 pep princ-2017
Admis23 pep princ-2017Admis23 pep princ-2017
Admis23 pep princ-2017
 
Btdyy 2
Btdyy 2Btdyy 2
Btdyy 2
 

Similaire à ldv_calibration_flywheel

Optimization of wedm process parameters using taguchi method
Optimization of wedm  process parameters using taguchi methodOptimization of wedm  process parameters using taguchi method
Optimization of wedm process parameters using taguchi method
Dharam Deo Prasad
 
Final Project Presentation - COMPREHENSIVE ANALYSIS OF CORROSION ON THE INTER...
Final Project Presentation - COMPREHENSIVE ANALYSIS OF CORROSION ON THE INTER...Final Project Presentation - COMPREHENSIVE ANALYSIS OF CORROSION ON THE INTER...
Final Project Presentation - COMPREHENSIVE ANALYSIS OF CORROSION ON THE INTER...
dna1992
 
VETOMAC_presentation_template.pptx
VETOMAC_presentation_template.pptxVETOMAC_presentation_template.pptx
VETOMAC_presentation_template.pptx
KarimullaShaik81
 

Similaire à ldv_calibration_flywheel (20)

Presentation: Pacemaker investigation
Presentation: Pacemaker investigationPresentation: Pacemaker investigation
Presentation: Pacemaker investigation
 
SCT an Advanced Pipeline Integrity Solution
SCT an Advanced Pipeline Integrity SolutionSCT an Advanced Pipeline Integrity Solution
SCT an Advanced Pipeline Integrity Solution
 
Deterministic Polishing from Theory to Practice (Optifab 2015)
Deterministic Polishing from Theory to Practice (Optifab 2015)Deterministic Polishing from Theory to Practice (Optifab 2015)
Deterministic Polishing from Theory to Practice (Optifab 2015)
 
Design dk Overview
Design dk OverviewDesign dk Overview
Design dk Overview
 
rcwire.ppt
rcwire.pptrcwire.ppt
rcwire.ppt
 
Phased Array Scan Planning and Modeling for Weld inspection
Phased Array Scan Planning and Modeling for Weld inspectionPhased Array Scan Planning and Modeling for Weld inspection
Phased Array Scan Planning and Modeling for Weld inspection
 
Optimization of wedm process parameters using taguchi method
Optimization of wedm  process parameters using taguchi methodOptimization of wedm  process parameters using taguchi method
Optimization of wedm process parameters using taguchi method
 
DPM Presentation
DPM PresentationDPM Presentation
DPM Presentation
 
Final Project Presentation - COMPREHENSIVE ANALYSIS OF CORROSION ON THE INTER...
Final Project Presentation - COMPREHENSIVE ANALYSIS OF CORROSION ON THE INTER...Final Project Presentation - COMPREHENSIVE ANALYSIS OF CORROSION ON THE INTER...
Final Project Presentation - COMPREHENSIVE ANALYSIS OF CORROSION ON THE INTER...
 
Task group report 135 cyberknie
Task group report 135 cyberknie Task group report 135 cyberknie
Task group report 135 cyberknie
 
Item 15
Item 15Item 15
Item 15
 
VETOMAC_presentation_template.pptx
VETOMAC_presentation_template.pptxVETOMAC_presentation_template.pptx
VETOMAC_presentation_template.pptx
 
Evaluation of Precision Time Synchronisation Methods for Substation Applications
Evaluation of Precision Time Synchronisation Methods for Substation ApplicationsEvaluation of Precision Time Synchronisation Methods for Substation Applications
Evaluation of Precision Time Synchronisation Methods for Substation Applications
 
Sheet Metal Testing Challenges
Sheet Metal Testing ChallengesSheet Metal Testing Challenges
Sheet Metal Testing Challenges
 
Pipe wizard olympus
Pipe wizard olympusPipe wizard olympus
Pipe wizard olympus
 
625i spec-sheet
625i spec-sheet625i spec-sheet
625i spec-sheet
 
Laser Assisted Micro Machining (lamm)
Laser Assisted Micro Machining (lamm)Laser Assisted Micro Machining (lamm)
Laser Assisted Micro Machining (lamm)
 
TESCO Tuesday: Traditional Ratio, Burden, Admittance and Demag Testing – Part II
TESCO Tuesday: Traditional Ratio, Burden, Admittance and Demag Testing – Part IITESCO Tuesday: Traditional Ratio, Burden, Admittance and Demag Testing – Part II
TESCO Tuesday: Traditional Ratio, Burden, Admittance and Demag Testing – Part II
 
Internet of things - 3/4. Solving the problems
Internet of things - 3/4. Solving the problemsInternet of things - 3/4. Solving the problems
Internet of things - 3/4. Solving the problems
 
Electric Excursion Semester I
Electric Excursion Semester IElectric Excursion Semester I
Electric Excursion Semester I
 

ldv_calibration_flywheel

  • 1. OVERVIEW OF FLYWHEEL DESIGN FOR LDV CALIBRATION Jacob McCormick Purdue Compressor Lab Purdue University West Lafayette, IN USA
  • 2. Motivation 17 June 2016 GT2016-56683 2 • Calibration of LDV gives us a lower measurement uncertainty – This calibration originates from a primary source • In this case the primary standard is the measurement of the flywheel’s diameter and RPM of the motor, which can be traced to national standards of length and time – Calibration is costly when outsourced • NIST Calibration: $2693 • In house calibration would mean upfront cost, but negligible running costs for calibration – We would be able to calibrate the LDV with our own primary standard • Flywheel
  • 3. Past Research 17 June 2016 GT2016-56683 3 • NIST (National Institute of Standards and Technology) – Calibration Method: Spinning Wire – Combined Uncertainty: 0.48% – Max. Calibration Speed: 40 m/s • ORNL (Oak Ridge National Labs) – Calibration Method: Spinning Wire & Surface Irregularities – Combined Uncertainty: At 10 m/s differed by 0.11 ± 0.26 % from NIST – Max. Calibration Speed: 45 m/s • NSWC (Naval Surface Warfare Center) – Calibration Method: Sandpaper – Combined Uncertainty: 0.10% – Max. Calibration Speed: 18 m/s
  • 4. Method 1: Spinning Wire Flywheel 4
  • 5. Method 1: Specifications • Diameter: 3” • Weight: 0.22 lbs • 6 guide grooves equidistantly spaced on rounded face of disk • Triangular groove; 3 mm (0.118”) wide, 6 mm (0.236”) deep – Catches light to isolate reflections from wire • More material around shaft for improved stability – Tentative height: 0.1” 5
  • 6. Method 1: Calibration • 6 tungsten wires, 5 um in diameter • 6 pulses per revolution – Improvement on NIST twice per revolution – Shorter calibration times • Mounted using glue adhesive initially – If not successful, we will use clamping screws
  • 7. Method 1: Potential Machining Costs • Material Costs: $100 • Machining Costs: ~$400 • CMM Inspection (Optional): < $100 • Total Costs: ~$600
  • 9. Method 2: Specifications • 3 Different Diameter Values – 0.5”, 3”, 6” • Weight: 0.86 pounds
  • 10. Method 2: Detection Surface • Surface irregularities provide the “particles” for detection by the LDV • Allows for a higher count rate – Shortens calibration times
  • 11. Method 2: Potential Machining Costs • Material Costs: $100 • Machining Costs: $400 • CMM Inspection (Optional) : < $100 • Total Cost: $600
  • 12. Methods Comparison Spinning Wire Surface Irregularities Less precision machining (One surface vs three) Higher count rates per revolution No negative effect on uncertainty from shaft wobble (distinguishable events) More control over motor speed for given airspeed No need to switch out broken wires
  • 13. RPM Ranges for Various Diameters 17 June 2016 13
  • 14. Overall Potential Cost Component Cost Animatics Smart Motor (SM23165D ) $1100 Animatics Power Supply (PS42V6AG ) $1000 Flywheel: Spinning Wire $600 Flywheel: Surface Irregularities $600 Mounting $300 RPM Reader $300 Potential Total Cost $3900