SlideShare une entreprise Scribd logo
1  sur  71
Welcome
M A J O R C R E D I T S E M I N A R
P R E S E N T A T I O N
Crop Improvement in Fodder Maize
for Feed Security
Major Advisor
Dr. R. M. Patel
Assistant Research Scientist
Maize Research Station
Sardarkrushinagar Dantiwada Agricultural
University,
Bhiloda-383 245
Minor Advisor
Dr. P. C. Patel
Assistant Professor
Dept. Of GPB, CPCA
Sardarkrushinagar Dantiwada Agricultural
University,
Sardarkrushinagar-385 506
PRESENTED BY: DAMOR KALPESHKUMAR M.
Reg.No.-04-AGRMA-01983-2019
C O N T E N T
1 . I N T R O D U C T I O N
2 . C U R R E N T S C E N A R I O
3 . C L A S S I F I C AT I O N O F M A I Z E
4 . M A I Z E A S F O D D E R
5 . B R E E D I N G O B J E C T I V E A N D M E T H O D S
6 . VA R I E T I E S C U LT I VAT E D I N I N D I A
7 . C A S E S T U D Y
8 . C O N C L U S I O N
3
INTRODUCTION - MAIZE
Maize is one of the most important cereal crop in the world after rice and wheat.
Maize is a monoecious plant in that the reproductive organs are partitioned into
separate pistillate (ear female organ) and staminate (tassel male organ)
inflorescences.
Maize is generally protandrous plant.
Being a C4 plant, it is physiologically more efficient as well as resilient to changing
climatic conditions
Maize has immense potential therefore, it occupies the unique place as “queen of
cereals”.
4
Domestication Of Maize
Maize was domesticated from its wild grass ancestor more than 8,700
years ago in Central America.
Teosinte Modern corn
Teosinte branches, which allows for more ears per plant. No branches and all that extra energy goes into producing
larger ears of corn.
Teosinte has 2 rows of seeds. Corn has 8-12 rows of seeds.
Teosinte seeds (kernels) are covered by a
fruit case.
In corn, the fruit case is part of thecorn
cob, leaving the corn kernels accessible.5
SCIENTIFIC CLASSIFICATION
Kingdom plantea
Order Poales
Family Poaceae
Subfamily Panicoideae
Genus Zea
Species Zea mays L.
Chromosome no. 2n=20
Origin Central America
(Mexico)
Mode of pollination Cross pollination
6 DMR, India
MORPHOLOGY OF MAIZE PLANT
Male inflorescence
Female inflorescence
7 IIMR, India
Maize Area And Production Statistics
Area
(million ha )
Production
(million tones )
Productivity
(kg/ha)
Source
India
(2018-19)
9.2 27.8 2965 IIMR, Ludhiana
Gujarat
(2019-20) 0.43 0.79 1808.84 DOA, Gujarat
Gujarat
Kharif maize
(2019-20)
0.30 0.44 1497.34 DOA, Gujarat
Gujarat
Rabi Maize
(2019-20)
0.13 0.33 2494.83 DOA, Gujarat
Gujarat
Summer
Maize(2019-20)
0.005 0.012 2307.12 DOA, Gujarat
8
Area : 3 times
Prod : 16 times
Productivity: 5 times
(IIMR, Ludhiana)9
 India rank 4th in area and 7th in production.
 Representing around 4% of world maize area and 2% of total production.
Maize Producing states of India
(IIMR, Ludhiana)10
Fig-2 Usage Pattern of Maize in India (IIMR, Ludhiana)
Poultry feed
Livestock Feed
Food
Processed Food
Starch
Export & Others
47%
13%
13%
7%
14%
6%
11
• Maize has been classified into several groups or types based on the
endosperm of the kernels. These are described as under.
1. Dent corn (Zea mays indentata)
2. Flint corn (Zea mays indurata)
3. Pop corn (Zea mays everta)
4. Flour corn (Zea mays amylacea)
5. Sweet corn (Zea mays saccharata)
6. Waxy corn (Zea mays ceratina)
7. Baby corn
Classification of Maize
12
CIMMYT
Dent Corn (Zea mays indentata)
• Dent corn makes up the majority of commercially
raised corn in the United States. It is primarily used for
animal feed, processed foods, and ethanol.
• Dent corn was given its name because of the kernel’s
appearance as it dries. The kernels contain a hard form
of starch at the sides and a soft type in the center.
These center starches tend to shrink as the kernel dries,
creating a “dent” in the top of the kernel.
• There are two categories of dent corn hybrids.
• Yellow Dent Corn
• White Dent Corn
13
Flint Corn (Zea mays indurata)
• This is the type first developed by Europeans.
• It has an early maturity.
• Kernels of this type are rounded on the top. It is
grown in Europe, Asia, Central America and
South America.
• It is a principle type of grain corn grown in India.
14
Pop Corn (Zea mays everta)
• Popcorn is one of the oldest types of domesticated
corn.
• The characteristics of the popcorn kernels are very
similar to those in flint corn.
• The popcorn kernel has a hard yet brittle, slightly
translucent kernel that is glass-like. When popcorn is
heated, the moisture inside the kernel turns to steam
that builds up enough pressure for the kernel to
explode- creating the white, starchy, edible mass that
we all know and love.
• All popcorn pops a white color due to the color of the
endosperm (starch), but if it is a colored popcorn
kernel and you look close enough, you may see a little
bit of the color in the middle of the exploded kernel.
15
Flour Corn (Zea mays amylacea)
• Flour corn is composed mainly of soft starch,
which gives it the ability to be easily ground into
a finer cornmeal than any other type would be
able to provide.
• Flour corn can be eaten in its immature or “milk”
stage when steamed. While it is sweeter and more
tender than flint types in this stage, it is not as
sweet as sweet corn types.
• Most often flour corn is harvested when fully ripe
and dry and ground into cornmeal.
16
Sweet Corn (Zea mays saccharata)
• It can be eaten right off the cob in its early or
“milk” stage when it is still tender and juicy,
identified by the release of a milky substance
from the kernel when pressed.
• Standard sweet corn originated from genetic
mutations which prevent the conversion of sugars
into starch.
• Sweet corn kernels wrinkle when they are dry as
the sugars dehydrate when mature.
Madhuri
17
Waxy Corn (Zea mays caratina)
• The Kernels look to have waxy appearance with
gummy starch because of higher amylopectin
(upto 100%) whereas common maize starch is
about 70 per cent of amylopectin.
• Waxy corn was found in China in 1909.
• Increases of both milk production and butterfat
content for lactating dairy cattle,
• Increase in daily weight gains in fattening lambs.
18
Baby Corn
• Baby corn is the young ear of female
inflorescence of maize plant harvested before
fertilization when the silk has just emerged.
• After harvest the still young plants may be used
as fodder for cattle.
• The baby corn maize stalks are green, succulent,
nutritious and possess excellent digestibility.
• The protein content of baby corn stalks were
almost equivalent to the maize
HM 4
VL Baby Corn 1
19
WHY FEED SECURITY?
• Rapidly growing populations, along with increased urbanization and income, is
expected to rise the consumption of animal products by 70% in 2050. The increase
in animal production will require an additional amount of feed to be produced.
• Over the half of the people in the world are non-vegetarian so complete the food
security first feed security is necessary. Also for requirement of necessary amount
of milk and milk products in 2050 feed security is important.
20
Maize As Fodder
 Fodder refers to the crops which are harvested and used entire
plants for feeding purposed, including leaves, stalks, and grain.
African Tall Fodder Maize
21
Maize
as
Fodder
Wider
Adaptability
production
for Hay
Intercrop
with
Legumes
Free from
any anti-
quality
component
Highest
Productivity
Silage
Fodder
Bank
Speciality
corn QPM,
Baby corn,
Sweet corn
Increase
60% of milk
production
22
HCN
Oxalate
Year
Supply Demand Deficit as % of demand (as actual)
Green Dry Green Dry Green Dry
1995 379.3 421 947 526 568 (59.95) 105 (19.95)
2000 384.5 428 988 549 604 ( 61.10) 121 (21.93)
2005 389.9 443 1,025 569 635 ( 61.96) 126 (22.08)
2010 395.2 451 1,061 589 666 ( 62.76) 138 ( 23.46)
2015 400.6 466 1,097 609 696 ( 63.50) 143 ( 23.56)
2020 405.9 473 1,134 630 728 (64.21) 157 (24.81)
2025 411.3 488 1,170 650 759 (64.87) 162 (24.92)
23
Table-1: Supply and demand scenario of forage and roughages (1995 - 2025)
(in million tonnes)
Chaudhary et al. (2012)
Quality Parameter Of Maize Fodder
• Dry Matter (DM)
• Crude Protein (CP)
• Neutral Detergent Fiber (NDF)
• Acid Detergent Fiber (ADF)
• Ether Extract (EE)
• Acid Detergent Lignin (ADL)
24
Chaudhary et al. (2012)25
Nutrient Content (% dry basis)
Dry Matter 22.68
Organic Matter 94.17
Gross Energy 17.62
Crude protein 7.43
Ether Extract 2.35
Neutral Detergent Fiber 66.17
Acid Detergent Fiber 37.63
Ca 0.49
P 0.20
Nutrient content in fodder maize Plant
Breeding Methods
Breeding
Objective
Reduce
Internodal
Length
Increase
Height
Increase
Nutrient
content in
Leaves
Resistance
to Disease
Non
Logging
Fertilize
Responsive
Variety
Fodder
Quality
Fodder
Yield
26
Conventional
Method
Introduction
Mass Selection
Back cross breeding
Hybrid Varieties
Synthetic Variety
Composite Variety
Non
Conventional
Method
Transgenic Breeding
Marker Assisted selection
Breeding Methods
27
Breeding Methods
1. Mass Selection :
 In mass selection a number of plants are
selected on the basis of their phenotype
and open pollinated seed from them is
bulked together to raise the next
generation.
 It is highly efficient in improving
characters that are easily identified
visually and have high heritability, plant
height, size of ear, date of maturity.
28
Conventional Breeding Method
Plant Breeding- B. D. Singh
Fig. 3 Mass selection
2. Back Cross Breeding:
• A cross between hybrid and one of its
parents is known as backcross
breeding.
• It is mostly used to transfer disease
rasistance gene into crop species.
• Sometimes it cause linkage drag
while breeding.
29 Plant Breeding- B. D. Singh
Fig. 4 Backcross breeding
Hybrid Breeding :
• The Term hybrids used to designate F1 populations obtained by crossing genetically unlike parents.
• The tassels of the female plants are removed immediately as soon as it appears- Detasseling
• It is always done in the morning.
• Cob which emerging from the leaf sheath is bagged 1 to 2 days before pollination.
• The tassels of selected male parents is also covered with bag on following day in the morning between
9.00 to 10.00 a.m.
Types of Hybrids:
Inbred: Single Cross:
A nearly homozygous line obtained through A x B
continuous inbreeding of a cross-pollinated
Species with selection accompanying inbreeding. Double Cross:
(A x B) x (C x D)
Top Cross:
Cross between an inbred line and an Three way cross:
open-pollinated variety. (A x B) x C
Test Cross: Varietal cross:
Cross between F1 and homozygous recessive Cross between two varieties.
parent.30
31 Powell et al. 2015
32
4. Synthetic Variety:
• A Variety which is produced by crossing in all
combination number of inbred lines that combine
well with each other. Once synthesized, a
synthetic is maintained by open-pollination in
isolation is referred as synthetic variety.
• It is develop from inbreds, clones, and open
pollinated varieties.
• Development of synthetic variety consists of
three major steps.
1) Evaluation of lines for GCA.
2) Production of synthetic variety,
3) Multiplication of synthetic variety.
Image : Plant Breeding- B.D.Singh
33
5. Composite Variety:
• In cross pollinated crops, the mixture of genotype from several sources is maintained
bulk from one generation to the next is referred as composite variety.
• Mixing the seeds of various genotypes, which are similar in maturity height, seed size,
colour, etc. develops composite varieties.
• The yields of composite verities cannot be predicted in advance ,which is contrast to
synthetic .
• There is no restriction to the number of lines included in the development of composite ,
but the line possessing desirable characteristics should be selected like earliness, insect
resistance, drought and frost resistance can be included in the development.
Transgenic Breeding
34
Fig. 4 Transgenic breeding in
corn Naqvi et al., 2009
Non-Conventional Breeding Method
Marker Assisted Selection
• It is indirect selection for a gene/QTL based on molecular markers closely linked to the
gene/QTL.
35
• Step of MAS for crop improvement
1. Selection of parents
2. Development of breeding population
3. Isolation of DNA from each plant
4. Scoring RFLP
5. Correlation with morphological traits.
Case Study
36
Genetic variability and correlation analysis for various morpho-physiological traits
in maize (Zea mays L.) for green fodder yield
CASE STUDY 1
Ali et al.,2015Pakistan
• The experimental material - 80 accessions
• Ten check variety
• Accession grown in three replication in Completely Randomized Block Design.
37
Source of
variation
Chlorophyll
contents
(mg g-1 fr. wt.)
Leaf
temperature
(°C)
Photosynthetic
rate (µg CO2 s-1)
Stomata
conductance
(mmol m-2 s-1)
Transpiration
rate (mm/day )
Sub-stomata CO2
concentration
(µmol mol-1 CO2)
Water use
efficiency
(%)
M.S 79.655** 1.4669* 154.259** 0.0126* 13.197** 10724.94** 1583.85**
G.M 45.735 48.385 16.718 0.172 9.392 113.3 53.322
S.E 1.00 0.1204 0.2470 0.03873 0.1688 1.414 2.2439
G.V 39.291 0.719 77.069 0.00499 6.571 5361.861 789.405
GCV 13.71 1.75 52.51 41.08 27.29 64.63 52.692
PV 39.827 0.733 77.129 0.00629 6.599 5362.472 794.445
PCV 13.80 1.77 52.53 46.14 27.35 64.63 52.859
EV 0.537 0.0145 0.0607 0.0013 0.0283 0.611 5.04
ECV 1.60 0.25 1.47 20.99 1.79 0.69 4.21
h2bs% 98.65 98.00 99.90 79.30 96.60 99.98 99.37
S.E h2bs 0.017724 0.131 0.0127 1.538 0.0433 0.0015 0.0056
GA% 23.891 3.046 92.122 64.198 47.798 113.418 93.231
Table 3: Genetic components for various physiological traits of maize
38 Ali et al.,2015* = Significant at 1 % significance level, ** = Significant at 5 % significance level
Source of
variation
Number of
leaves per plant
Plant
height (cm)
Stem
diameter
(cm)
Leaves
weight (g)
Stem
weight (g)
Green fodder
yield (g)
Leaves /stem
weight ratio
Leaf
length (cm)
Leaf
width (cm)
Leaf
area (cm2)
M.S 2.661* 2980.196** 0.0491* 2570.358** 30780.7997** 46063.658** 0.0286* 132.062** 2.489* 27756.886**
G.M 11.333 151.915 0.856 110.856 339.61 450.466 0.354 72.713 8.984 654.86
S.E 0.1936 1.2561 0.0413 1.3241 0.8907 1.3421 0.0634 0.2413 0.1032 0.2018
G.V 1.293 1489.24 0.0244 1284.868 15389.99 23031.19 0.0143 65.842 1.236 13815.58
GCV 10.03 25.41 18.25 32.33 36.53 33.69 33.79 11.16 12.38 17.95
PV 1.330 1490.089 0.0245 1285.179 15390.4 23031.83 0.0143 66.031 1.244 13878.44
PCV 10.180 25.41 18.30 32.34 36.53 33.69 33.81 11.18 12.42 17.99
EV 0.038 0.474 0.000133 0.3116 0.408 0.642 0.00001 0.1889 0.0082 62.8621
ECV 1.71 0.45 1.35 0.50 0.19 0.18 1.01 0.60 1.01 1.21
h2bs % 97.20 99.94 99.50 99.97 99.99 99.99 99.90 99.71 99.30 99.50
S.E h2bs 0.0977 0.0029 0.711 0.031 0.000896 0.000732 0.9289 0.0137 0.0999 0.000945
GA% 17.362 44.569 31.960 56.741 64.108 59.124 59.285 19.557 21.648 31.429
Table 4: Genetic components for various morphological traits of maize
39 Ali et al.,2015* = Significant at 1 % significance level, ** = Significant at 5 % significance level
Traits NLP PH SD LW SW GFY LSWR LL LW LA LT A
Ch.C 0.0923* 0.3754* 0.1960* 0.1494* 0.2038* 0.2019* -0.1487 0.1247* 0.2432* 0.2444* 0.0008 0.0919*
NLP 0.3096* 0.4471* 0.4968* 0.3313* 0.3882* -0.1278 0.4139* 0.1274 0.3478* 0.0794 -0.0178
PH 0.2919* 0.2405* 0.6131* 0.5579* -0.6960* 0.2512* 0.2956* 0.3576* 0.0537* 0.1386*
SD 0.6744* 0.6392* 0.6818* -0.2415 0.5250* 0.1221 0.3896* -0.0199 -0.0438
LW 0.7147* 0.8204* -0.0652* 0.5482* 0.2710* 0.5136* 0.1339* 0.0732*
SW 0.9863* -0.6361* 0.4039* 0.3173* 0.4555* 0.0095 0.0556*
GFY -0.5354* 0.4596* 0.3234* 0.4937* 0.0394* 0.0627*
LSWR -0.1322 -0.0990 -0.1529 0.1425 -0.0078
LL 0.1782* 0.7238* 0.1315* 0.0060
LW 0.8027* 0.1371* -0.0863
LA 0.1725* -0.0541
LT -0.1368
Table 5: Genotypic correlations of various morphological and physiological traits of maize
40 Ali et al.,2015* = Significant at 1 % significance level, ** = Significant at 5 % significance level
Traits NLP PH SD LW SW GFY LSWR LL LW LA LT A
Ch.C 0.0926** 0.3731** 0.1956* 0.1483** 0.2024* 0.2005* -0.1478 0.1231 0.2416** 0.2424** -0.0013 0.0912
NLP 0.3026** 0.4347** 0.4895** 0.3266** 0.3826** -0.1260 0.4085** 0.1288 0.3453** 0.0761 -0.0160
PH 0.2911** 0.2404** 0.6130** 0.5579** -0.6995** 0.2509** 0.2947** 0.3569** 0.0565 0.1385*
SD 0.6726** 0.6376** 0.6801** -0.2407** 0.5234** 0.1213 0.3880** -0.0197 -0.0440
LW 0.7146** 0.8204** -0.0648 0.5474** 0.2701** 0.5124** 0.1326 0.1732*
SW 0.9863** -0.6359** 0.4033** 0.3162** 0.4545** 0.0094 0.1555*
GFY -0.5351** 0.4590** 0.3223** 0.4926** 0.0390 0.0627
LSWR -0.1318 -0.0987 -0.1525 0.1414 -0.0078
LL 0.1777* 0.7232** 0.1294 0.0061
LW 0.8029** 0.1351 -0.0853
LA 0.1698* -0.0534
LT -0.1346*
Table 6: Phenotypic correlations of various morphological and physiological traits of maize
41 Ali et al.,2015* = Significant at 1 % significance level, ** = Significant at 5 % significance level
Heterosis response for green fodder yield and its quality traits in forage maize
(Zea mays L.)
Case study 2
Nanavati et al., 2016(Gujarat), India
 Hybrid produced by Line x Testers in Rabi season.
 14 parents (5 lines + 9 testers) and 45 hybrids
 Randomized Block Design
42
Mean sum of square
Source of
variation
df
Green forage
yield per
plant
Dry matter
content
Dry matter
yield per
plant
Crude
protein
content
Crude
protein yield
per plant
Replications 2 416.90 1.41 1.42 0.00132 0.058 *
Genotypes 58 32563.08 ** 6.48** 987.77 ** 0.045 ** 2.11 **
Parents 13 25934.92 ** 6.23** 669.93 ** 0.082 ** 1.49 **
Males
(Testers)
4 23456.67 ** 11.77** 665.73 ** 0.060 ** 1.78 **
Females Vs
Males
8 10022.14 ** 3.87** 305.70 ** 0.10 ** 0.93 **
Hybrids 1 163150.20 ** 2.87 3600.59 ** 0.016 4.86 **
Parents Vs
Hybrids
44 33628.32 ** 6.41** 1034.79 ** 0.035 ** 2.21 **
Error 1 71852.00 ** 12.48** 3052.20 ** 0.000122 5.73 **
116 266.846 0.94 20.41 0.00898 0.107
Table 7: Analysis of variance for different characters
43 Nanavati et al., 2016* = Significant at 1 % significance level, ** = Significant at 5 % significance level
44 Nanavati et al., 2016* = Significant at 1 % significance level, ** = Significant at 5 % significance level
Crosses
Green forage yield per plant Dry matter content
Dry matter yield per
plant
Crude protein
content
Crude protein yield
per plant
B.P % B.P % B.P % B.P % B.P %
IC-130726 X GWC-0319 -42.68** -3.95 -47.04** -7.22** -53.10**
GM-6 X GWC-0321 -38.64 24.74** -15.79 -2.55 -25.96**
GM-6 X GWC-9603 -11.39** 22.71** 38.91** -2.82 33.68**
J-1006 X GWC-0319 -1.10. -13.52** -12.94** -11.27** -11.59
J-1006 X GEC-9603 -40.84** -16.61** -50.80** -2.99 -50.77**
African Tall X IC-130343 14.83** -26.33** -11.59 1.37 2.62
African Tall X GWC-0319 104.87** 7.06 122.79** 7.62** 42.30**
African Tall X GWC-0321 101.87** 7.06 116.97** 9.78** 128.78**
African Tall X GWC-9603 -18.22** 0.39 -14.83 -4.69** -6.31
Range
-42.68 -26.33 -50.80 -11.27 -53.10
104.87 24.74 122.79 9.78 128.78
SE (+_) 13.34 0.97 4.52 0.09 0.33
No. of significant crosses 41 20 35 19 28
Positive 13 6 13 6 11
Negative 28 14 22 13 17
Table 7: Magnitude of heterosis over better parent for different characters
Case study 3
Gene Action for Various Grain and Fodder Quality Traits in Zea
Mays L.
Ali et al.,2014Pakistan
 12 parents and 36 F1 cross in experiment
45
Table 9. Genetic components for various grain and fodder quality traits in maize
46
Ali et al.,2014
Source of
variation
Acid
detergent
fiber %
Nutrient
detergent
fiber %
Fodder
Cellulose
%
Fodder dry
matter
%
fodder
crude fiber
%
Fodder
crude
protein
%
Fodder
moisture
%
Ether
extractable
fat %
Nitrogen free
extract %
Fodder
ash %
M.S.S 5.532* 38.761* 36.316* 2.058* 5.500** 4.980* 0.083* 0.025** 10.760* 1.148**
G.M±S E
22.899±
0.2528
51.696±
0.3078
28.797±
0.2755
40.178±
0.2442
26.845
±
0.1080
10.353±
0.1072
9.0951±
0.0142
2.9055±
0.0262
41.861±
0.3720
8.9026±
0.100
G.V 1.780 12.826 11.996 0.627 1.822 1.649 0.028 0.008 5.183 0.559
GCV 5.826 6.928 12.027 1.970 5.028 12.402 1.830 3.049 5.439 6.282
PV 1.844 12.920 12.072 0.686 1.833 1.660 0.028 0.009 5.649 0.589
PCV 5.930 6.953 12.065 2.062 5.044 12.445 1.837 3.179 5.678 6.619
EV 0.064 0.095 0.076 0.060 0.012 0.011 0.0001 0.001 0.466 0.029
ECV 1.104 0.595 0.957 0.608 0.402 1.035 0.157 0.900 1.113 0.337
h2 bs 96.50 99.30 99.40 91.30 99.40 99.30 99.30 92.00 91.70 94.90
S.E h2 bs 0.087 0.033 0.034 0.144 0.086 0.091 0.700 1.289 1.453 0.789
GA % 8.01 9.66 16.79 2.64 7.02 17.30 2.55 9.09 9.143 14.362
Table 8. Genetic components for various fodder quality traits in maize
47 Ali et al.,2014* = Significant at 1 % significance level, ** = Significant at 5 % significance level
SOV/Traits
Acid
Detergent
fiber %
Nutrient
detergent
fiber %
Fodder
cellulose %
Fodder dry
matter %
Fodder crude
fiber %
Fodder crude
protein %
Fodder
moisture %
Fodder ether
extractable fat
%
Fodder
nitrogen
free extract
(Carbohydrate %)
Fodder
ash (%)
Replication 0.2973ns 0.111ns 0.022ns 0.4504ns 0.0306ns 0.0263ns 0.0002ns 0.0016ns 0.5738ns 0.0370ns
Males 4.1819* 35.281* 18.827* 0.8319* 1.8399* 2.0761** 0.0501** 0.0041** 4.1020* 1.5453*
Females 18.3353*
162.591
*
158.548* 4.6045* 16.4070* 9.2478* 0.0572** 0.0521* 12.4019* 1.7604*
M × F 3.2882* 25.672* 22.520** 1.0589** 2.4384* 4.2583* 0.0195** 0.0181* 9.4472* 1.2101*
Error 0.2369 0.239 0.255 0.0797 0.0403 0.0304 0.0002 0.0020 0.5298 0.0381
SOV/Traits
Acid
detergent
fiber %
Nutrient
Detergent
fiber %
Fodder
cellulose %
Fodder dry
matter %
Fodder crude
fiber %
Fodder crude
protein %
Fodder
moisture %
Fodder ether
extractable fat %
Fodder
Nitrogen
free extract
(Carbohydrate%)
Fodder
ash (%)
σ2m 0.049 0.534 -0.205 -0.013 -0.033 -0.121 0.002 -0.001 -0.297 0.019
σ2f 0.836 7.607 7.557 0.197 0.776 0.277 0.002 0.002 0.164 0.031
σ2m×f 1.017 8.478 7.422 0.326 0.799 1.409 0.006 0.005 2.973 0.391
σ2D 1.181 10.854 9.803 0.246 0.990 0.208 0.005 0.001 -0.177 0.066
σ2H 4.068 33.911 29.688 1.306 3.197 5.637 0.026 0.021 11.889 1.563
[σ2H/σ2D]1/2 1.856 1.768 1.740 2.305 1.797 5.206 2.251 3.786 -8.194 4.881
Table 9-a. Analysis of variance for fodder quality traits in maize (North Carolina matting design-II)
Table 9-b. various genetic components fodder quality traits in maize (North Carolina matting design-II)
* = Significant at 1 % significance level, ** = Significant at 5 % significance level48 Ali et al.,2014
Case study 4
Combining ability analysis for evaluation of maize hybrids under
drought stress
Malook et al.,2016Pakistan
49
Traits Plant
height
Leaves
per plant
Cobs per
plant
Leaf area
(cm2)
Grain
rows/
Cob
girth
Grain yield/
plant
100 grain
weight
Cob
length
Mean sum of squares 380.69** 3.63** 1.75** 7016.84** 8.06** 2.62** 2669.31** 179.64** 13.39**
Grand mean 161.66 12.77 1.75 452.52 14.69 4.33 136.54 37.99 16.32
Environmental
variance
2.44 1.59 1.29 1224.03 1.67 1.28 34.91 2.92 1.95
Genotypic variance 189.12 1.02 0.24 2896.41 3.19 0.67 1317.19 88.36 5.72
Phenotypic variance 191.57 2.61 1.52 4120.43 4.87 1.95 1352.11 91.28 7.67
Genotypic coefficient 116.99 7.95 13.36 640.06 21.75 15.55 964.69 232.58 35.04
of variance
Phenotypic coefficient 118.49 20.46 87.00 910.56 33.12 45.07 990.27 240.25 46.99
of variance
Heritability h2(bs) 98.72 38.84 15.36 70.29 65.65 34.49 97.42 96.81 74.57
Genetic advance % 14.84 8.63 19.02 17.49 17.29 19.54 46.04 42.72 22.21
Table 8: Genetic component for various agronomic traits of maize under normal irrigation
conditions
Malook et al.,201650
Traits Plant
height
Leaves/
plant
Cobs/
plant
Leaf
area
Grain
rows/ cob
Cob
girth
Grainyield/
plant
100-grain
weight
Cob
length
Mean sum of squares 536.66** 12.96** 16.58** 532.12** 42.56** 38.49** 4993.48** 613.8** 98.8**
Grand Mean 160.16 12.27 4.28 1.75 14.21 36.49 447.52 15.82 133.54
Environmental
variance
5.53 1.73 1.27 459.85 1.78 1.35 298.04 3.46 1.69
Genotypic variance 265.56 5.62 7.65 18.07 20.39 18.58 2347.72 305.17 48.56
Phenotypic variance 271.09 7.35 8.93 477.92 22.17 19.92 2645.76 308.63 50.25
Genotypic coefficient
of variance
165.81 45.75 178.92 1033.79 143.46 50.91 524.61 1928.65 36.36
Phenotypic coefficient
of variance
169.27 59.84 208.67 27345.51 155.98 54.59 591.21 1950.52 37.63
Heritability h2 (bs) 97.96 76.46 85.74 3.78 91.97 93.24 88.74 98.88 96.64
Genetic advance % 17.68 29.62 105.09 82.99 53.47 20.02 17.89 192.67 9
Table 9: Genetic component for various agronomic traits of maize under drought
conditions
Malook et al.,2016
51
Parents Plant
height
Leaves/
plant
Cobs/
plant
Leaf
area
Grain
rows/ cob
Cob
girth
Grain yield/
plant
100-grain
weight
Cob
length
A-495 0.87 -0.10 0.062 1.32 -0.99 -0.26 -11.36 3.91 -0.31
A-509 2.68 -0.17 -0.21 -11.51 1.14 0.15 28.15 1.57 0.77
W-64SP -4.68 0.51 -0.04 11.01 0.58 0.51 -4.19 -1.23 0.85
W-10 1.87 -0.51 0.06 -4.88 -0.35 -0.73 10.17 -7.33 -0.79
A-545 0.20 0.22 0.03 1.22 0.85 0.31 -17.80 -1.21 0.07
A427-2 1.91 0.31 0.08 7.41 -1.29 0.36 4.71 -1.03 -0.44
A50-2 0.33 -0.69 0.08 -13.19 -0.57 -0.28 16.76 0.59 0.45
A-239 -3.19 0.43 -0.06 8.62 0.63 -0.06 -26.43 4.73 -0.59
Table 10: General combining ability for various agronomic traits of maize under
normal conditions
Malook et al.,2016
52
Parents Plant
height
Leaves/
plant
Cobs/
plant
Leaf
area
Grain
rows/ cob
Cob
girth
Grain
yield/ plant
100-grain
weight
Cob
length
A-495 -0.22 0.04 0.051 11.49 0.92 -0.26 -11.36 2.88 -0.34
A-509 0.82 0.12 -0.13 -13.33 0.06 0.15 23.01 3.54 0.74
W-64SP 1.04 0.71 -0.03 10.19 0.50 0.41 -4.03 -1.16 0.14
W-10 -0.72 -0.32 0.07 -4.69 -0.42 -0.73 10.16 -7.37 -0.32
A-545 0.14 0.42 0.06 1.39 -0.82 0.31 -22.82 -2.24 0.04
A427-2 -0.96 -0.51 0.07 7.64 -0.56 0.47 4.71 -0.85 -1.07
A50-2 0.52 -0.50 0.07 -18.70 -0.11 -0.29 21.76 0.52 1.44
A-239 -0.62 0.03 -0.17 5.99 0.43 -0.06 -21.43 4.68 -0.63
Table 11: General combining ability for various agronomic traits of maize under drought conditions
Malook et al.,2016
53
Crosses Plant
height
Leaves/
plant
Cobs/
plant
Leaf
area
Grain
rows/cob
Cob
girth
Grain
yield/plant
100-grain
weight
Cob
length
A-495 × A427-2 -5.69 0.23 0.65 13.82 -0.84 -0.23 -31.93 -2.07 -1.00
A-495 × A50-2 1.54 0.54 -0.24 9.17 0.24 -0.46 -12.06 0.34 1.02
A-495 ×A-239 2.47 0.54 -0.11 -19.68 0.91 0.99 10.29 2.04 1.06
A-509 × A427-2 1.15 0.44 0.50 -16.06 2.30 0.28 -2.97 -6.07 1.25
A-509 ×A50-2 1.79 0.02 -0.17 2.49 -1.79 0.18 10.94 7.14 -1.09
A-509 ×A-239 -4.63 -0.85 -0.03 16.87 -0.58 -0.15 -7.64 -0.77 -0.85
W-64SP×A427-2 -4.15 0.23 -0.16 60.19 -1.03 0.08 36.18 9.42 1.45
W-64SP×A50-2 1.08 0.12 0.50 -0.31 1.02 -0.31 -13.28 0.74 1.24
W-64SP×A-239 3.38 -0.90 -0.08 -24.58 0.32 0.54 -22.39 -8.25 -2.39
W-10×A427-2 0.41 -0.28 -0.22 -53.19 -0.06 0.35 6.20 -1.25 -1.79
W-10×A50-2 -3.28 0.38 -0.54 71.07 1.19 0.12 2.82 -4.77 -0.62
W-10×A-239 3.17 -0.95 0.78 -14.57 -0.82 -1.17 -3.72 6.39 2.20
A-545×A427-2 1.31 0.34 -1.84 0.76 -0.23 0.04 0.24 1.50 1.32
A-545×A50-2 -0.62 0.05 0.64 -44.92 -0.15 -0.98 14.09 -2.91 -1.53
A-545×A-239 2.08 0.09 0.31 -1.07 -0.48 0.72 13.23 -1.49 -0.28
Table 12: Specific combining ability for various agronomic traits of maize under normal
conditions
Malook et al.,201654
Crosses
Plant
height
Leaves/
plant
Cobs/
plant
Leaf
area
Grain
rows/ cob
Cob
girth
Grain
yield/ plant
100-grain
weight
Cob
length
A-495 × A427-2 -1.07 -0.18 0.66 13.13 0.001 -0.23 -34.93 -1.07 -0.77
A-495 × A50-2 0.21 0.64 -0.31 7.34 0.24 -0.46 -12.06 1.34 0.02
A-495 ×A-239 0.56 0.92 0.21 -19.24 0.39 0.99 34.27 3.04 0.06
A-509 × A427-2 2.15 0.01 0.23 14.23 2.91 0.28 -2.98 -5.07 0.25
A-509 ×A50-2 -0.43 -0.18 -0.67 -15.23 -2.34 0.18 13.94 4.14 0.91
A-509 ×A-239 -0.46 -1.41 -0.19 25.06 -1.34 -0.15 -7.65 0.23 0.12
W-64SP×A427-2 1.56 0.13 0.35 35.45 -0.90 0.05 36.48 3.42 -4.49
W-64SP×A50-2 2.11 0.11 0.44 -23.23 0.012 -0.32 -13.28 1.24 2.24
W-64SP×A-239 -3.45 -1.01 -1.24 -20.24 0.42 0.54 -20.39 -7.85 -1.39
W-10×A427-2 -2.69 0.55 0.003 -36.34 -0.24 0.35 6.20 -0.29 -0.79
W-10×A50-2 -0.79 -0.32 0.001 34.56 2.19 0.12 2.82 -3.79 0.88
W-10×A-239 1.11 -0.11 -0.46 -15.37 -0.42 -1.17 -5.72 1.37 0.21
A-545×A427-2 2.04 1.20 0.45 -0.33 -0.33 0.04 0.24 2.52 2.31
A-545×A50-2 -1.43 -0.55 0.50 -48.23 0.23 0.49 14.09 -1.91 -0.53
A-545×A-239 0.58 0.21 0.04 48.43 -0.83 -0.72 -11.03 2.69 1.00
Table 13: Specific combining ability for various agronomic traits of maize under drought
conditions
Malook et al.,201655 • Inbred line W-64SP, A-495, A-509, A50-2 are grought tolerant
Case study 5
Genetic variability and association studies in fodder maize (Zea mays L.) hybrids
Kapoor et al.,2015India
• Twelve maize genotypes and two checks
• Randomized Block Design
56
Characters Range h2 (%) GA (%) PCV GCV GM
PH 143 - 203 98.37 28.82 14.22 14.11 173.02
LL 43 - 90 97.56 42.11 20.95 20.70 70.71
LW 6.1 - 10.8 94.90 25.91 13.25 12.91 8.96
SG 1.1 - 2.1 75.93 22.81 13.58 12.71 1.74
NOL 11 - 14 15.71 3.13 9.69 3.84 13.67
NOC 1.3 - 2.0 30.54 18.48 29.37 16.23 1.35
NOS 210 - 550 27.89 16.90 29.41 15.53 362.11
CP% 7.2 - 8.8 93.55 20.10 10.43 10.09 7.70
IVDMD 60.5 - 60.5 68.64 11.51 5.66 5.62 57.31
ADF% 29.9 - 39.6 99.62 23.75 11.57 11.55 34.17
NDF% 53.4 - 60.5 98.87 8.43 4.14 4.11 57.18
DMY 4.0 - 18.0 93.94 82.01 42.38 41.07 9.86
GFY 22.0 - 94.0 97.58 71.61 35.63 35.19 54.84
Table 10. Estimates of genetic parameters for different traits in maize genotypes
57
Kapoor et al., 2015
Characters PH LL LW SG NOL NOC NOS CP% IVDMD ADF% NDF% DMY
LL
G .8857**
P .8680**
LW
G .4941** .6523**
P 4787** .6316**
SG
G 7507** .8533** .4923**
P .6445** .7297** 3918**
NOL
G .5704** .5024** .4217** .6826**
P .5069** .4804** .1794* .4882**
NOC G .1054 .2849** .2962** .5562** .3447**
P .1035 .1617* .1756* .2746** .1587
NOS
G -
.3331** -.2895** -.4450** -.6188** -.4032** -.3317**
P -
.2021** -.1752* -.2499** -.3192** -.1671* -.1267
CP% G .0512** -.2660** -.5519** .1421 .4226** -.1481 -.2371**
P .0449** -.2606** -.4965** .0911 .0807 -.0829 -.1783*
IVDMD G .3134** .0926** -.2720** .5004** .8674** .1507 -.3518** .8925**
P 3019** .0897** -.2726** .4369** .3344** .0350 -.1426 .8444**
ADF%
G
-
.2209** -.0968** .2010* -.5816** -.6881** -.1894*
.6131** -.7588**
-.9197**
P
-
.2159** -.0957** .1952* -.5011** -.2591** -.0866 .3270** -.7386**
-.9124**
NDF% G .0181* .0431** .2324** -.3870** -.2068* -.3086**
.2579** -.6716**
-.7670** .8240**
P .0153 .0399** .2243** -.3468** -.0606 -.1978*
.1421 -.6428**
-.7562** .8171**
DMY G .8507** .7633** .5881** .6680** .7772** -.0750 -.2816** .1646*
.3510** -.2450** -.2026**
P .8210** .7241** .5567** .5654** .3287** -.0600 -.1275 .1311 .3436** -.2326** -.1895*
GFY
G .8720** .7905** .6362** .6726** .8920** -.0411 -.3544** .1195 .3233** -.2229** -.1474 .9908**
P .8553** .7660** .6125** .5973** .3750** -.0218 -.1818* .1030 .3190** -.2171** -.1426 .9824**
Table 11. Genotypic and phenotypic correlation coefficients among various traits of maize genotypes
58 Kapoor et al.,2015*=Critical value of ‘r’ at 5% = 0.16, **=Critical value of ‘r’ at 1% = 0.21;
Characters PH LL LW SG NOL NOC NOS CP% IVDMD ADF% NDF% DMY
Genotypic
correlation
with GFY
PH 0.3051 -.5571 0.0469 0.331 -.0314 0.0031 -.0584 -.0021 -.0721 0.0555 0.0034 0.8482 0.8721
LL 0.2702 -0.629 0.062 0.3762 -.0296 0.0084 -.0508 0.0109 -.0213 0.0243 0.008 0.7611 0.7904
LW 0.1507 -.4103 0.095 0.2171 -.0113 0.0087 -.0781 0.0226 0.0626 -.0505 0.0432 0.586 0.6357
SG 0.229 -.5368 0.0468 0.4409 -.0344 0.0163 -.1085 -.0058 -.1151 0.1461 -0.072 0.6661 0.6726
NOL 0.3571 -.6934 0.0401 0.5655 .0268 0.0278 -.0707 -.0173 -.1995 0.1728 -.0385 0.775 0.8921
NOC 0.0321 -.1792 0.0281 0.2453 -.0254 -0.0294 -.0582 0.0061 -.0347 0.0476 -.0574 -0.0748 -0.0411
NOS -.1016 0.1821 -.0423 -.2728 0.0108 -.0097 -0.1754 0.0097 0.0809 -0.154 0.048 -0.2808 -0.3543
CP% 0.0156 0.1673 -.0524 0.0627 -.0113 -.0044 -.0416 -.0409 -.2053 0.1906 -0.125 0.1641 0.1194
IVDMD 0.0956 -.0583 -.0258 0.2206 -.0233 0.0044 -.0617 -.0365 -0.23 0.231 -.1427 0.35 0.3233
ADF% -.0674 0.0609 0.0191 -.2564 0.0185 -.0056 0.1075 0.031 0.2115 -.2511 0.1533 -0.2443 -0.223
NDF% 0.0055 -.0271 0.0221 -.1706 0.0055 -.0091 0.0452 0.0275 0.1764 -.2069 0.1861 -0.202 0.1474
DMY 0.2595 -.4802 0.0559 .2945 -.0209 -.0022 -.0494 -.0067 -.0807 0.0615 -.0377 0.9971 0.9907
Table 12: Path coefficient analysis for direct and indirect effects on green fodder yield (kg/plot) in
maize genotypes
59 Kapoor et al.,2015
Estimation of Combining Ability and Gene Effects in Forage Maize (Zea mays L.) Using
Line × Tester Crosses
Abadi et al.,2011Pakistan
60
• A set of 20 S6 inbred lines as female were cross with three inbred lines as male
• Randomized Block Design
Case study 6
Line Number
of leaves
Number of
leaves
above ear
Number
of ear/
plant
Forage
yield
Days to
silking
Days to
anthesis
ASI
Stem
diameter
Plant
height
Ear
height
Days to
physiological
maturity
L1 0.70 0.36 0.04 6.36 -0.19 0.12 -0.32 0.60 0.45 -0.22 0.244
L2 0.13 -0.08 0.08 -5.25 0.03 0.01 0.02 0.55 -9.92 -10.86 -0.978
L3 -0.66 -0.31 -0.07 -1.43 -0.64 -0.77 0.13 0.24 -10.95 -11.09 -2.200
L4 -0.33 -0.61 0.07 0.09 -1.31 -1.54 0.24 0.89 -15.93 -1.17 -1.422
L5 0.26 0.04 0.02 10.04 0.92 1.46 -0.54 1.10 3.38 5.79 2.689
L6 -0.64 -0.32 -0.06 -9.45 -2.86 -3.10 0.24 -1.00 -22.36 -13.44 -1.867
L7 -0.24 0.15 -0.06 -2.55 -0.53 -0.77 0.24 -0.01 4.45 -7.67 1.578
L11 0.53 0.64 0.08 0.72 -0.75 -0.43 -0.32 0.12 1.95 -0.77 -3.867
L12 0.02 -0.01 -0.08 -5.08 -1.97 -1.88 -0.09 -0.61 -11.13 -5.08 -2.533
L13 -0.18 -0.15 -0.03 -2.53 -0.08 -0.10 0.02 -1.14 4.53 5.57 -1.644
L14 0.53 0.26 0.10 7.44 1.03 1.23 -0.21 1.72 19.06 12.69 3.022
L15 -0.08 0.01 0.06 0.21 1.03 1.12 -0.09 0.07 5.84 7.56 1.133
Tester
T1 -0.05 -0.10 -0.036 -4.44 0.50 0.51 -0.01 0.35 -8.31 -4.23 1.77
T2 -0.35 -0.01 -0.004 -1.24 2.05 1.97 0.08 1.01 11.92 6.88 2.27
T3 0.40 0.11 0.040 5.68 -2.55 -2.48 -0.07 -1.36 -3.69 -2.66 -4.03
SE(GCA) 0.073 0.032 0.015 1.084 0.223 0.229 0.098 0.155 1.095 0.970 0.60
SE(GCAj-0.103 0.045 0.022 1.533 0.315 0.325 0.139 0.220 1.549 1.371 0.85
Table 13. Estimates of general combining ability of maize inbred lines and testers
61 Abadi et al.,2011
Cross
Forage
yield
SCA
Cross
Forage
yield
SCA
Forage
yield
Days to
silking
Days to
anthesis
No. of
leaves
above ear
Forage
yield
Days to
silking
Days to
anthesis
No. of
leaves
above ear
L1×T1 51.952 -5.140 -0.722 -0.506 -0.154 L11×T1 50.445 -1.005 -1.500 -1.950 0.035
L1×T2 66.615 6.328 1.061 1.028 -0.046 L11×T2 55.897 1.252 0.617 1.250 0.076
L1×T3 66.019 -1.187 -0.339 -0.522 0.200 L11×T3 61.317 -0.247 0.883 0.700 -0.111
L2×T1 41.954 -3.531 0.389 0.605 0.046 L12×T1 43.154 -2.495 0.056 -0.172 0.113
L2×T2 43.060 -5.621 1.172 1.138 -0.013 L12×T2 55.813 6.968 -0.494 -0.306 0.020
L2×T3 64.752 9.152 -1.561 -1.745 -0.033 L12×T3 51.290 -4.473 0.439 0.478 -0.133
L3×T1 45.981 -3.319 -0.944 -0.283 0.146 L13×T1 53.730 5.530 0.500 1.050 -0.110
L4×T2 56.038 2.104 1.172 1.028 0.220 L14×T2 57.463 -3.906 -0.161 0.583 -0.180
L4×T3 61.908 1.055 0.439 0.811 0.000 L14×T3 68.348 0.060 0.106 -0.300 0.000
L5×T1 58.145 -2.625 -0.167 0.161 0.002 L15×T1 48.145 -2.790 1.722 2.161 -0.210
L5×T2 58.433 -5.532 1.283 1.028 -0.057 L15×T2 62.485 8.354 -1.161 -1.306 0.131
L5×T3 79.040 8.156 -1.117 -1.189 0.056 L15×T3 55.486 -5.564 -0.561 -0.856 0.078
L6×T1 40.723 -20.047 0.278 0.050 -0.343 L16×T1 50.876 1.167 0.056 -0.172 0.057
SE (mean)
SE (SCA)
4.848
4.848 0.997 1.026 0.143
4.848
4.848 0.997 1.026 0.143
SE (SCAij –
CAi'j')
6.856 1.409 1.451 0.202 6.856 1.409 1.451 0.202
Table 14. Forage yield and specific combining ability of several characters for line × tester combinations of maize under
study
62 Abadi et al.,2011
Genetic analysis for fodder yield and component traits in maize (Zea mays L.)
Dhasarathan et al., (2015)India
• Seven inbred lines of fodder maize were crossed in a diallel fashion excluding the
reciprocals
• 21 F1s and their parents were raised in a Randomized Block Design (RBD) with two
replications
Case study 7
Parents PHT NOL LLT LWD SGR GFY DMY
Mean gca Mean gca Mean gca Mean gca Mean gca Mean gca Mean Gca
FDM10 90.00
-
19.40**
11.34 -0.63** 45.50 -4.88** 7.12 0.07 5.00 -0.47 113.92
-
61.91**
17.07 0.06
FDM8 99.17
-
12.09**
11.84 -0.32 50.34 -4.88** 6.69 0.00 5.57 -0.23* 166.89 -28.49 26.48 0.10*
FDM7 11.84 -0.31 12.84 0.35 47.84 -6.64** 6.77 -0.05 6.72 0.047** 175.60 6.36 28.12 -1.07**
FDM12 69.84
-
14.62**
11.84 -0.21 49.67 -1.37 5.90 -0.11 4.69 -0.19 92.24
-
37.69**
16.89 0.92**
FDM37 127.50 9.81* 10.34 -0.48* 73.50** 5.89** 6.90 -0.19 4.97 -0.21 164.10 -11.45 30.61 0.66**
African
Tall
232.34*
*
43.74** 14.84** 1.16** 79.17** 9.28** 7082 0.038** 7.32** 0.51**
563.93*
*
141.79*
*
87.81** -0.66**
FDM36 94.00 -7.13 12.67 0.13 64.50 2.61** 7.45 -0.10 6.15 0.13 192.10 -8.60 34.93 -0.02
Mean 117.81 12.24 58.65 6.95 5.77 209.83 34.55
SEd 16.83 0.80 4.09 0.59 0.50 51.37 8.70
CD at
5%
34.50 1.65 8.39 1.22 1.03 105.31 17.87
SE(gi) 3.67 0.18 0.89 0.13 0.11 11.21 1.90
*P=0.05, **P=0.01, PHT = Plant height (cm); NOL = Number of leaves; LLT = Leaf length (cm), LWD = Leaf width (cm), ); SGR
= Stem girth (cm), GFY = Green fodder yield per plant (g); DMY = Dry matter yield (g)
Table 15. Estimates of mean and general combining ability effects(gca) of the parents for diff. fodder maize characters
Dhasarathan et al., (2015)64
Hybrids
PHT NOL LLT LWD GFY DMY
Mean sca Mean sca Mean sca Mean sca Mean sca Mean sca
FDM7 X
FDM12
177.83 25.00** 13.67 -0.08 63.00 5.74** 8.03 0.47* 264.32 35.25* 48.02 10.49**
FDM7 X
FDM37
195.67 18.39** 14.66 1.19** 65.67 1.15 7.73 0.24 293.27 37.96* 44.73 3.35
FDM7 X
African Tall
224.50* 13.30* 15.83* 0.71** 70.33 2.43* 8.68 0.062** 443.54** 34.98* 46.63 -15.90
FDM12 X
FDM37
188.33 25.37** 13.84 0.92** 68.50 -1.29 7.95 0.53** 217.95 6.69 39.50 -0.46
FDM12 X
African Tall
208.67 11.78* 15.34 0.77** 79.50** 6.32** 8.30 0.30 407.28* 42.79** 76.13** 15.03**
FDM12 X
FDM36
173.00 26.98** 13.34 -0.19 67.67 1.15 8.09 0.57** 234.20 20.09 38.42 -0.25
FDM37 X
African Tall
236.17** 14.84** 14.66 0.38 86.83** 6.39** 8.40 0.48* 442.90** 52.16** 80.29** 15.34**
African Tall
X FDM36
201.00 -3.38 14.66 -0.23 73.50 -3.66** 7.55 -0.46 328.41 -65.17** 48.76 -14.90**
Mean 68.05 184.42 14.06 7.99 277.26 46.98
Sed 1.43 16.83 0.80 0.59 51.37 8.70
CD at 5% 2.94 34.50 1.65 1.22 105.31 17.87
SE(sij) 0.91 10.68 0.51 0.38 32.60 5.53
Dhasarathan et al., (2015)
Table 16.Estimates of mean and specific combining ability effects (sca) of the parents for diff. fodder maize characters
*P=0.05, **P=0.0165
Hybrids
PHT NOL LLT LWD GFY DMY
MP BP MP BP MP BP MP BP MP BP MP BP
FDM10 X
FDM 37
62.45** 38.56** 26.55** 22.73** 12.13 -8.84 4.53 3.79 39.48 18.19 44.35 12.25
FDM10 X
FDM36
77.35** 73.58** 9.87 2.65 40.27** 20.16** 18.12* 15.23 62.41* 29.39 49.19 10.89
FDM8 X
FDM12
104.74** 74.58** 16.09* 15.29* 32.78** 32.34** 32.79** 22.36** 86.52* 44.77 109.51** 72.81*
FDM8 X
FDM36
75.65** 71.21** 13.52* 10.54 11.50 -1.03 1.31 -1.74 38.72 29.66 44.17 25.73
FDM7 X
FDM12
95.60** 58.78** 10.09 5.15 29.01** 26.84** 24.50** 14.71 97.08** 50.18 113.95** 71.50*
FDM12 X
FDM37
90.72** 47.71** 23.89** 15.29* 10.93 -6.80 23.26** 15.22 70.21 32.82 65.89* 29.01
FDM12 X
FDM36
110.98** 84.04** 8.13 5.29 18.20** 4.91 20.22* 8.52 64.87* 21.92 47.93 9.96
FDM37 X
FDM36
78.83** 55.08** 24.99** 11.84 5.65 -1.13 -0.14 -3.15 64.64 52.60 60.54* 51.50*
Mean 68.05 184.42 14.06 7.99 277.26 46.98
Sed 1.43 16.83 0.80 0.59 51.37 8.70
CD at 5% 2.94 34.50 1.65 1.22 105.31 17.87
SE(sij) 0.91 10.68 0.51 0.38 32.60 5.53
Table 17 Heterosis over mid and better parent for different fodder yield component traits
66 *P=0.05, **P=0.01 Dhasarathan et al., (2015)
Maize Varieties for fodder purpose in India
Pedigree : Selection from 7 varieties
Centre : MPKV, Kolhapur
Area of adaptation : Across the country
Maturity : Late
Grain colour & type : White , dent
Fodder yield : 600-700 q/ha
Avg. yield : 30 q/ha
67
African Tall (1982)
Chaudhary et al. (2012)
Pedigree : MS 1 X Tuxpeno PBL
Centre : PAU, Ludhiana
Area of adaptation : Punjab
Maturity : Late
Grain colour & type : White,
dent
Avg. yield : - 15-30 q/ha
Fodder yield : 400-500 q/ha
J 1006 (1992)
Maize Varieties for fodder purpose in India
68
Chaudhary et al. (2012)
Pedigree : Compositing of 11 early to
medium white seeded entries
Centre : MPUA & T, Udaipur
Area of adaptation : Punjab,
Haryana, West UP & Rajasthan
Maturity : Medium
Grain colour & type : White, semi-
flint
Fodder yield : 350-450 q/ha
Avg. yield : 40 q/ha
Maize Varieties for fodder purpose in India
69
Partap makka Chari 6 (2008)
Chaudhary et al. (2012)
70
Conclusion
 Fodder yield is significantly correlated with traits like plant height, number of leaves per
plant, leaf length, leaf area and stem girth.
 African Tall was identified as the best general combiner for fodder yield and its
contributing characters.
 Selection of good heritable characters based on their performance over mid parent and
better parent can be use for the development of good quality fodder maize hybrid.
 Sufficient amount of diversity is present in maize played important role in breeding of
maize for fodder yield and fodder quality purpose.
 Higher dominance effect and degree of dominance found for fodder quality traits and
selection of these traits may be useful for the development of good quality maize hybrid
through heterosis breeding.
Crop Improvement in Fodder maize (Zea mays L.) for Feed Security

Contenu connexe

Tendances

Role of Plant Growth Regulators in Vegetable Crops
Role of Plant Growth Regulators in Vegetable CropsRole of Plant Growth Regulators in Vegetable Crops
Role of Plant Growth Regulators in Vegetable Crops
Neha Verma
 

Tendances (20)

Steps involve in Seed processing
Steps involve in Seed processingSteps involve in Seed processing
Steps involve in Seed processing
 
1. breeding of tomato
1. breeding of tomato1. breeding of tomato
1. breeding of tomato
 
Maize .ppt
 Maize .ppt  Maize .ppt
Maize .ppt
 
Seed development and maturation
Seed development and maturationSeed development and maturation
Seed development and maturation
 
Seed multiplication
Seed multiplicationSeed multiplication
Seed multiplication
 
Emasculation and hybridization in rice
Emasculation and hybridization in riceEmasculation and hybridization in rice
Emasculation and hybridization in rice
 
Physiological disorders of temperate and subtropical fruit crops
Physiological disorders of temperate and subtropical fruit cropsPhysiological disorders of temperate and subtropical fruit crops
Physiological disorders of temperate and subtropical fruit crops
 
Three line system of hybrid seed production
Three line system of hybrid seed productionThree line system of hybrid seed production
Three line system of hybrid seed production
 
Heterosis and its exploitation in plant breeding
Heterosis and its exploitation in plant breedingHeterosis and its exploitation in plant breeding
Heterosis and its exploitation in plant breeding
 
Fruit Drop its Causes and Measures to Control
Fruit Drop its Causes and Measures to ControlFruit Drop its Causes and Measures to Control
Fruit Drop its Causes and Measures to Control
 
Sesame lecture
Sesame lectureSesame lecture
Sesame lecture
 
Presentation on Breeding Techniques in Maize
Presentation on Breeding Techniques in Maize Presentation on Breeding Techniques in Maize
Presentation on Breeding Techniques in Maize
 
Breeding methods of mango
Breeding methods of mangoBreeding methods of mango
Breeding methods of mango
 
Factors affecting seed deteriaration
Factors affecting seed deteriarationFactors affecting seed deteriaration
Factors affecting seed deteriaration
 
CURRENT STATUS AND FUTURE PROSPECTS OF SUGARCANE BREEDING
CURRENT STATUS AND FUTURE PROSPECTS OF SUGARCANE BREEDINGCURRENT STATUS AND FUTURE PROSPECTS OF SUGARCANE BREEDING
CURRENT STATUS AND FUTURE PROSPECTS OF SUGARCANE BREEDING
 
Mango breeding
Mango breedingMango breeding
Mango breeding
 
Advances in use of plant bio-regulators for fruit production-includes new gen...
Advances in use of plant bio-regulators for fruit production-includes new gen...Advances in use of plant bio-regulators for fruit production-includes new gen...
Advances in use of plant bio-regulators for fruit production-includes new gen...
 
Role of Plant Growth Regulators in Vegetable Crops
Role of Plant Growth Regulators in Vegetable CropsRole of Plant Growth Regulators in Vegetable Crops
Role of Plant Growth Regulators in Vegetable Crops
 
Cultivation of oil palm
Cultivation of oil palmCultivation of oil palm
Cultivation of oil palm
 
Weed physiology
Weed physiology Weed physiology
Weed physiology
 

Similaire à Crop Improvement in Fodder maize (Zea mays L.) for Feed Security

Prof-Suresh-Prasad-Delhi-Conf-on-millets-presentation (1).pdf
Prof-Suresh-Prasad-Delhi-Conf-on-millets-presentation (1).pdfProf-Suresh-Prasad-Delhi-Conf-on-millets-presentation (1).pdf
Prof-Suresh-Prasad-Delhi-Conf-on-millets-presentation (1).pdf
Naveen kumar .L
 
Pseudocereals (grain amaranth, buckwheat, chenopods) Kuldeep Singh, NBPGR, India
Pseudocereals (grain amaranth, buckwheat, chenopods) Kuldeep Singh, NBPGR, IndiaPseudocereals (grain amaranth, buckwheat, chenopods) Kuldeep Singh, NBPGR, India
Pseudocereals (grain amaranth, buckwheat, chenopods) Kuldeep Singh, NBPGR, India
apaari
 
Strucuture of cereal grains and legumes
Strucuture of cereal grains and legumesStrucuture of cereal grains and legumes
Strucuture of cereal grains and legumes
Parimita Khatri
 

Similaire à Crop Improvement in Fodder maize (Zea mays L.) for Feed Security (20)

Cereal plant
Cereal plant Cereal plant
Cereal plant
 
Crop improvement in fodder maize for sustanable economic development
Crop improvement in fodder maize for sustanable economic developmentCrop improvement in fodder maize for sustanable economic development
Crop improvement in fodder maize for sustanable economic development
 
Maize (2)
Maize (2)Maize (2)
Maize (2)
 
Maize
MaizeMaize
Maize
 
MAIZE
MAIZEMAIZE
MAIZE
 
Prof-Suresh-Prasad-Delhi-Conf-on-millets-presentation (1).pdf
Prof-Suresh-Prasad-Delhi-Conf-on-millets-presentation (1).pdfProf-Suresh-Prasad-Delhi-Conf-on-millets-presentation (1).pdf
Prof-Suresh-Prasad-Delhi-Conf-on-millets-presentation (1).pdf
 
Pseudocereals (grain amaranth, buckwheat, chenopods) Kuldeep Singh, NBPGR, India
Pseudocereals (grain amaranth, buckwheat, chenopods) Kuldeep Singh, NBPGR, IndiaPseudocereals (grain amaranth, buckwheat, chenopods) Kuldeep Singh, NBPGR, India
Pseudocereals (grain amaranth, buckwheat, chenopods) Kuldeep Singh, NBPGR, India
 
Peas (Botanical and Reproductive Biology)
Peas (Botanical and Reproductive Biology)Peas (Botanical and Reproductive Biology)
Peas (Botanical and Reproductive Biology)
 
Strucuture of cereal grains and legumes
Strucuture of cereal grains and legumesStrucuture of cereal grains and legumes
Strucuture of cereal grains and legumes
 
Cereal
CerealCereal
Cereal
 
The Science of seeds
The Science of seedsThe Science of seeds
The Science of seeds
 
Maize Crop cultivation steps
Maize Crop cultivation stepsMaize Crop cultivation steps
Maize Crop cultivation steps
 
Cereal chemistry
Cereal chemistryCereal chemistry
Cereal chemistry
 
Cereals & Millet Processing
Cereals & Millet Processing Cereals & Millet Processing
Cereals & Millet Processing
 
Rabi crops 1
Rabi crops 1Rabi crops 1
Rabi crops 1
 
Quality Seed Production in Agriculture
Quality Seed Production in AgricultureQuality Seed Production in Agriculture
Quality Seed Production in Agriculture
 
Breeding of cowpea
Breeding of cowpeaBreeding of cowpea
Breeding of cowpea
 
Production Thechnology of Leguminous Summer Vegetables
Production Thechnology of Leguminous Summer VegetablesProduction Thechnology of Leguminous Summer Vegetables
Production Thechnology of Leguminous Summer Vegetables
 
International Year Of Millets (IYOM) 2023.pptx
International Year Of Millets (IYOM) 2023.pptxInternational Year Of Millets (IYOM) 2023.pptx
International Year Of Millets (IYOM) 2023.pptx
 
Millets
Millets Millets
Millets
 

Dernier

Dernier (20)

Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 

Crop Improvement in Fodder maize (Zea mays L.) for Feed Security

  • 2. M A J O R C R E D I T S E M I N A R P R E S E N T A T I O N Crop Improvement in Fodder Maize for Feed Security Major Advisor Dr. R. M. Patel Assistant Research Scientist Maize Research Station Sardarkrushinagar Dantiwada Agricultural University, Bhiloda-383 245 Minor Advisor Dr. P. C. Patel Assistant Professor Dept. Of GPB, CPCA Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar-385 506 PRESENTED BY: DAMOR KALPESHKUMAR M. Reg.No.-04-AGRMA-01983-2019
  • 3. C O N T E N T 1 . I N T R O D U C T I O N 2 . C U R R E N T S C E N A R I O 3 . C L A S S I F I C AT I O N O F M A I Z E 4 . M A I Z E A S F O D D E R 5 . B R E E D I N G O B J E C T I V E A N D M E T H O D S 6 . VA R I E T I E S C U LT I VAT E D I N I N D I A 7 . C A S E S T U D Y 8 . C O N C L U S I O N 3
  • 4. INTRODUCTION - MAIZE Maize is one of the most important cereal crop in the world after rice and wheat. Maize is a monoecious plant in that the reproductive organs are partitioned into separate pistillate (ear female organ) and staminate (tassel male organ) inflorescences. Maize is generally protandrous plant. Being a C4 plant, it is physiologically more efficient as well as resilient to changing climatic conditions Maize has immense potential therefore, it occupies the unique place as “queen of cereals”. 4
  • 5. Domestication Of Maize Maize was domesticated from its wild grass ancestor more than 8,700 years ago in Central America. Teosinte Modern corn Teosinte branches, which allows for more ears per plant. No branches and all that extra energy goes into producing larger ears of corn. Teosinte has 2 rows of seeds. Corn has 8-12 rows of seeds. Teosinte seeds (kernels) are covered by a fruit case. In corn, the fruit case is part of thecorn cob, leaving the corn kernels accessible.5
  • 6. SCIENTIFIC CLASSIFICATION Kingdom plantea Order Poales Family Poaceae Subfamily Panicoideae Genus Zea Species Zea mays L. Chromosome no. 2n=20 Origin Central America (Mexico) Mode of pollination Cross pollination 6 DMR, India
  • 7. MORPHOLOGY OF MAIZE PLANT Male inflorescence Female inflorescence 7 IIMR, India
  • 8. Maize Area And Production Statistics Area (million ha ) Production (million tones ) Productivity (kg/ha) Source India (2018-19) 9.2 27.8 2965 IIMR, Ludhiana Gujarat (2019-20) 0.43 0.79 1808.84 DOA, Gujarat Gujarat Kharif maize (2019-20) 0.30 0.44 1497.34 DOA, Gujarat Gujarat Rabi Maize (2019-20) 0.13 0.33 2494.83 DOA, Gujarat Gujarat Summer Maize(2019-20) 0.005 0.012 2307.12 DOA, Gujarat 8
  • 9. Area : 3 times Prod : 16 times Productivity: 5 times (IIMR, Ludhiana)9
  • 10.  India rank 4th in area and 7th in production.  Representing around 4% of world maize area and 2% of total production. Maize Producing states of India (IIMR, Ludhiana)10
  • 11. Fig-2 Usage Pattern of Maize in India (IIMR, Ludhiana) Poultry feed Livestock Feed Food Processed Food Starch Export & Others 47% 13% 13% 7% 14% 6% 11
  • 12. • Maize has been classified into several groups or types based on the endosperm of the kernels. These are described as under. 1. Dent corn (Zea mays indentata) 2. Flint corn (Zea mays indurata) 3. Pop corn (Zea mays everta) 4. Flour corn (Zea mays amylacea) 5. Sweet corn (Zea mays saccharata) 6. Waxy corn (Zea mays ceratina) 7. Baby corn Classification of Maize 12 CIMMYT
  • 13. Dent Corn (Zea mays indentata) • Dent corn makes up the majority of commercially raised corn in the United States. It is primarily used for animal feed, processed foods, and ethanol. • Dent corn was given its name because of the kernel’s appearance as it dries. The kernels contain a hard form of starch at the sides and a soft type in the center. These center starches tend to shrink as the kernel dries, creating a “dent” in the top of the kernel. • There are two categories of dent corn hybrids. • Yellow Dent Corn • White Dent Corn 13
  • 14. Flint Corn (Zea mays indurata) • This is the type first developed by Europeans. • It has an early maturity. • Kernels of this type are rounded on the top. It is grown in Europe, Asia, Central America and South America. • It is a principle type of grain corn grown in India. 14
  • 15. Pop Corn (Zea mays everta) • Popcorn is one of the oldest types of domesticated corn. • The characteristics of the popcorn kernels are very similar to those in flint corn. • The popcorn kernel has a hard yet brittle, slightly translucent kernel that is glass-like. When popcorn is heated, the moisture inside the kernel turns to steam that builds up enough pressure for the kernel to explode- creating the white, starchy, edible mass that we all know and love. • All popcorn pops a white color due to the color of the endosperm (starch), but if it is a colored popcorn kernel and you look close enough, you may see a little bit of the color in the middle of the exploded kernel. 15
  • 16. Flour Corn (Zea mays amylacea) • Flour corn is composed mainly of soft starch, which gives it the ability to be easily ground into a finer cornmeal than any other type would be able to provide. • Flour corn can be eaten in its immature or “milk” stage when steamed. While it is sweeter and more tender than flint types in this stage, it is not as sweet as sweet corn types. • Most often flour corn is harvested when fully ripe and dry and ground into cornmeal. 16
  • 17. Sweet Corn (Zea mays saccharata) • It can be eaten right off the cob in its early or “milk” stage when it is still tender and juicy, identified by the release of a milky substance from the kernel when pressed. • Standard sweet corn originated from genetic mutations which prevent the conversion of sugars into starch. • Sweet corn kernels wrinkle when they are dry as the sugars dehydrate when mature. Madhuri 17
  • 18. Waxy Corn (Zea mays caratina) • The Kernels look to have waxy appearance with gummy starch because of higher amylopectin (upto 100%) whereas common maize starch is about 70 per cent of amylopectin. • Waxy corn was found in China in 1909. • Increases of both milk production and butterfat content for lactating dairy cattle, • Increase in daily weight gains in fattening lambs. 18
  • 19. Baby Corn • Baby corn is the young ear of female inflorescence of maize plant harvested before fertilization when the silk has just emerged. • After harvest the still young plants may be used as fodder for cattle. • The baby corn maize stalks are green, succulent, nutritious and possess excellent digestibility. • The protein content of baby corn stalks were almost equivalent to the maize HM 4 VL Baby Corn 1 19
  • 20. WHY FEED SECURITY? • Rapidly growing populations, along with increased urbanization and income, is expected to rise the consumption of animal products by 70% in 2050. The increase in animal production will require an additional amount of feed to be produced. • Over the half of the people in the world are non-vegetarian so complete the food security first feed security is necessary. Also for requirement of necessary amount of milk and milk products in 2050 feed security is important. 20
  • 21. Maize As Fodder  Fodder refers to the crops which are harvested and used entire plants for feeding purposed, including leaves, stalks, and grain. African Tall Fodder Maize 21
  • 22. Maize as Fodder Wider Adaptability production for Hay Intercrop with Legumes Free from any anti- quality component Highest Productivity Silage Fodder Bank Speciality corn QPM, Baby corn, Sweet corn Increase 60% of milk production 22 HCN Oxalate
  • 23. Year Supply Demand Deficit as % of demand (as actual) Green Dry Green Dry Green Dry 1995 379.3 421 947 526 568 (59.95) 105 (19.95) 2000 384.5 428 988 549 604 ( 61.10) 121 (21.93) 2005 389.9 443 1,025 569 635 ( 61.96) 126 (22.08) 2010 395.2 451 1,061 589 666 ( 62.76) 138 ( 23.46) 2015 400.6 466 1,097 609 696 ( 63.50) 143 ( 23.56) 2020 405.9 473 1,134 630 728 (64.21) 157 (24.81) 2025 411.3 488 1,170 650 759 (64.87) 162 (24.92) 23 Table-1: Supply and demand scenario of forage and roughages (1995 - 2025) (in million tonnes) Chaudhary et al. (2012)
  • 24. Quality Parameter Of Maize Fodder • Dry Matter (DM) • Crude Protein (CP) • Neutral Detergent Fiber (NDF) • Acid Detergent Fiber (ADF) • Ether Extract (EE) • Acid Detergent Lignin (ADL) 24
  • 25. Chaudhary et al. (2012)25 Nutrient Content (% dry basis) Dry Matter 22.68 Organic Matter 94.17 Gross Energy 17.62 Crude protein 7.43 Ether Extract 2.35 Neutral Detergent Fiber 66.17 Acid Detergent Fiber 37.63 Ca 0.49 P 0.20 Nutrient content in fodder maize Plant
  • 27. Conventional Method Introduction Mass Selection Back cross breeding Hybrid Varieties Synthetic Variety Composite Variety Non Conventional Method Transgenic Breeding Marker Assisted selection Breeding Methods 27
  • 28. Breeding Methods 1. Mass Selection :  In mass selection a number of plants are selected on the basis of their phenotype and open pollinated seed from them is bulked together to raise the next generation.  It is highly efficient in improving characters that are easily identified visually and have high heritability, plant height, size of ear, date of maturity. 28 Conventional Breeding Method Plant Breeding- B. D. Singh Fig. 3 Mass selection
  • 29. 2. Back Cross Breeding: • A cross between hybrid and one of its parents is known as backcross breeding. • It is mostly used to transfer disease rasistance gene into crop species. • Sometimes it cause linkage drag while breeding. 29 Plant Breeding- B. D. Singh Fig. 4 Backcross breeding
  • 30. Hybrid Breeding : • The Term hybrids used to designate F1 populations obtained by crossing genetically unlike parents. • The tassels of the female plants are removed immediately as soon as it appears- Detasseling • It is always done in the morning. • Cob which emerging from the leaf sheath is bagged 1 to 2 days before pollination. • The tassels of selected male parents is also covered with bag on following day in the morning between 9.00 to 10.00 a.m. Types of Hybrids: Inbred: Single Cross: A nearly homozygous line obtained through A x B continuous inbreeding of a cross-pollinated Species with selection accompanying inbreeding. Double Cross: (A x B) x (C x D) Top Cross: Cross between an inbred line and an Three way cross: open-pollinated variety. (A x B) x C Test Cross: Varietal cross: Cross between F1 and homozygous recessive Cross between two varieties. parent.30
  • 31. 31 Powell et al. 2015
  • 32. 32 4. Synthetic Variety: • A Variety which is produced by crossing in all combination number of inbred lines that combine well with each other. Once synthesized, a synthetic is maintained by open-pollination in isolation is referred as synthetic variety. • It is develop from inbreds, clones, and open pollinated varieties. • Development of synthetic variety consists of three major steps. 1) Evaluation of lines for GCA. 2) Production of synthetic variety, 3) Multiplication of synthetic variety. Image : Plant Breeding- B.D.Singh
  • 33. 33 5. Composite Variety: • In cross pollinated crops, the mixture of genotype from several sources is maintained bulk from one generation to the next is referred as composite variety. • Mixing the seeds of various genotypes, which are similar in maturity height, seed size, colour, etc. develops composite varieties. • The yields of composite verities cannot be predicted in advance ,which is contrast to synthetic . • There is no restriction to the number of lines included in the development of composite , but the line possessing desirable characteristics should be selected like earliness, insect resistance, drought and frost resistance can be included in the development.
  • 34. Transgenic Breeding 34 Fig. 4 Transgenic breeding in corn Naqvi et al., 2009 Non-Conventional Breeding Method
  • 35. Marker Assisted Selection • It is indirect selection for a gene/QTL based on molecular markers closely linked to the gene/QTL. 35 • Step of MAS for crop improvement 1. Selection of parents 2. Development of breeding population 3. Isolation of DNA from each plant 4. Scoring RFLP 5. Correlation with morphological traits.
  • 37. Genetic variability and correlation analysis for various morpho-physiological traits in maize (Zea mays L.) for green fodder yield CASE STUDY 1 Ali et al.,2015Pakistan • The experimental material - 80 accessions • Ten check variety • Accession grown in three replication in Completely Randomized Block Design. 37
  • 38. Source of variation Chlorophyll contents (mg g-1 fr. wt.) Leaf temperature (°C) Photosynthetic rate (µg CO2 s-1) Stomata conductance (mmol m-2 s-1) Transpiration rate (mm/day ) Sub-stomata CO2 concentration (µmol mol-1 CO2) Water use efficiency (%) M.S 79.655** 1.4669* 154.259** 0.0126* 13.197** 10724.94** 1583.85** G.M 45.735 48.385 16.718 0.172 9.392 113.3 53.322 S.E 1.00 0.1204 0.2470 0.03873 0.1688 1.414 2.2439 G.V 39.291 0.719 77.069 0.00499 6.571 5361.861 789.405 GCV 13.71 1.75 52.51 41.08 27.29 64.63 52.692 PV 39.827 0.733 77.129 0.00629 6.599 5362.472 794.445 PCV 13.80 1.77 52.53 46.14 27.35 64.63 52.859 EV 0.537 0.0145 0.0607 0.0013 0.0283 0.611 5.04 ECV 1.60 0.25 1.47 20.99 1.79 0.69 4.21 h2bs% 98.65 98.00 99.90 79.30 96.60 99.98 99.37 S.E h2bs 0.017724 0.131 0.0127 1.538 0.0433 0.0015 0.0056 GA% 23.891 3.046 92.122 64.198 47.798 113.418 93.231 Table 3: Genetic components for various physiological traits of maize 38 Ali et al.,2015* = Significant at 1 % significance level, ** = Significant at 5 % significance level
  • 39. Source of variation Number of leaves per plant Plant height (cm) Stem diameter (cm) Leaves weight (g) Stem weight (g) Green fodder yield (g) Leaves /stem weight ratio Leaf length (cm) Leaf width (cm) Leaf area (cm2) M.S 2.661* 2980.196** 0.0491* 2570.358** 30780.7997** 46063.658** 0.0286* 132.062** 2.489* 27756.886** G.M 11.333 151.915 0.856 110.856 339.61 450.466 0.354 72.713 8.984 654.86 S.E 0.1936 1.2561 0.0413 1.3241 0.8907 1.3421 0.0634 0.2413 0.1032 0.2018 G.V 1.293 1489.24 0.0244 1284.868 15389.99 23031.19 0.0143 65.842 1.236 13815.58 GCV 10.03 25.41 18.25 32.33 36.53 33.69 33.79 11.16 12.38 17.95 PV 1.330 1490.089 0.0245 1285.179 15390.4 23031.83 0.0143 66.031 1.244 13878.44 PCV 10.180 25.41 18.30 32.34 36.53 33.69 33.81 11.18 12.42 17.99 EV 0.038 0.474 0.000133 0.3116 0.408 0.642 0.00001 0.1889 0.0082 62.8621 ECV 1.71 0.45 1.35 0.50 0.19 0.18 1.01 0.60 1.01 1.21 h2bs % 97.20 99.94 99.50 99.97 99.99 99.99 99.90 99.71 99.30 99.50 S.E h2bs 0.0977 0.0029 0.711 0.031 0.000896 0.000732 0.9289 0.0137 0.0999 0.000945 GA% 17.362 44.569 31.960 56.741 64.108 59.124 59.285 19.557 21.648 31.429 Table 4: Genetic components for various morphological traits of maize 39 Ali et al.,2015* = Significant at 1 % significance level, ** = Significant at 5 % significance level
  • 40. Traits NLP PH SD LW SW GFY LSWR LL LW LA LT A Ch.C 0.0923* 0.3754* 0.1960* 0.1494* 0.2038* 0.2019* -0.1487 0.1247* 0.2432* 0.2444* 0.0008 0.0919* NLP 0.3096* 0.4471* 0.4968* 0.3313* 0.3882* -0.1278 0.4139* 0.1274 0.3478* 0.0794 -0.0178 PH 0.2919* 0.2405* 0.6131* 0.5579* -0.6960* 0.2512* 0.2956* 0.3576* 0.0537* 0.1386* SD 0.6744* 0.6392* 0.6818* -0.2415 0.5250* 0.1221 0.3896* -0.0199 -0.0438 LW 0.7147* 0.8204* -0.0652* 0.5482* 0.2710* 0.5136* 0.1339* 0.0732* SW 0.9863* -0.6361* 0.4039* 0.3173* 0.4555* 0.0095 0.0556* GFY -0.5354* 0.4596* 0.3234* 0.4937* 0.0394* 0.0627* LSWR -0.1322 -0.0990 -0.1529 0.1425 -0.0078 LL 0.1782* 0.7238* 0.1315* 0.0060 LW 0.8027* 0.1371* -0.0863 LA 0.1725* -0.0541 LT -0.1368 Table 5: Genotypic correlations of various morphological and physiological traits of maize 40 Ali et al.,2015* = Significant at 1 % significance level, ** = Significant at 5 % significance level
  • 41. Traits NLP PH SD LW SW GFY LSWR LL LW LA LT A Ch.C 0.0926** 0.3731** 0.1956* 0.1483** 0.2024* 0.2005* -0.1478 0.1231 0.2416** 0.2424** -0.0013 0.0912 NLP 0.3026** 0.4347** 0.4895** 0.3266** 0.3826** -0.1260 0.4085** 0.1288 0.3453** 0.0761 -0.0160 PH 0.2911** 0.2404** 0.6130** 0.5579** -0.6995** 0.2509** 0.2947** 0.3569** 0.0565 0.1385* SD 0.6726** 0.6376** 0.6801** -0.2407** 0.5234** 0.1213 0.3880** -0.0197 -0.0440 LW 0.7146** 0.8204** -0.0648 0.5474** 0.2701** 0.5124** 0.1326 0.1732* SW 0.9863** -0.6359** 0.4033** 0.3162** 0.4545** 0.0094 0.1555* GFY -0.5351** 0.4590** 0.3223** 0.4926** 0.0390 0.0627 LSWR -0.1318 -0.0987 -0.1525 0.1414 -0.0078 LL 0.1777* 0.7232** 0.1294 0.0061 LW 0.8029** 0.1351 -0.0853 LA 0.1698* -0.0534 LT -0.1346* Table 6: Phenotypic correlations of various morphological and physiological traits of maize 41 Ali et al.,2015* = Significant at 1 % significance level, ** = Significant at 5 % significance level
  • 42. Heterosis response for green fodder yield and its quality traits in forage maize (Zea mays L.) Case study 2 Nanavati et al., 2016(Gujarat), India  Hybrid produced by Line x Testers in Rabi season.  14 parents (5 lines + 9 testers) and 45 hybrids  Randomized Block Design 42
  • 43. Mean sum of square Source of variation df Green forage yield per plant Dry matter content Dry matter yield per plant Crude protein content Crude protein yield per plant Replications 2 416.90 1.41 1.42 0.00132 0.058 * Genotypes 58 32563.08 ** 6.48** 987.77 ** 0.045 ** 2.11 ** Parents 13 25934.92 ** 6.23** 669.93 ** 0.082 ** 1.49 ** Males (Testers) 4 23456.67 ** 11.77** 665.73 ** 0.060 ** 1.78 ** Females Vs Males 8 10022.14 ** 3.87** 305.70 ** 0.10 ** 0.93 ** Hybrids 1 163150.20 ** 2.87 3600.59 ** 0.016 4.86 ** Parents Vs Hybrids 44 33628.32 ** 6.41** 1034.79 ** 0.035 ** 2.21 ** Error 1 71852.00 ** 12.48** 3052.20 ** 0.000122 5.73 ** 116 266.846 0.94 20.41 0.00898 0.107 Table 7: Analysis of variance for different characters 43 Nanavati et al., 2016* = Significant at 1 % significance level, ** = Significant at 5 % significance level
  • 44. 44 Nanavati et al., 2016* = Significant at 1 % significance level, ** = Significant at 5 % significance level Crosses Green forage yield per plant Dry matter content Dry matter yield per plant Crude protein content Crude protein yield per plant B.P % B.P % B.P % B.P % B.P % IC-130726 X GWC-0319 -42.68** -3.95 -47.04** -7.22** -53.10** GM-6 X GWC-0321 -38.64 24.74** -15.79 -2.55 -25.96** GM-6 X GWC-9603 -11.39** 22.71** 38.91** -2.82 33.68** J-1006 X GWC-0319 -1.10. -13.52** -12.94** -11.27** -11.59 J-1006 X GEC-9603 -40.84** -16.61** -50.80** -2.99 -50.77** African Tall X IC-130343 14.83** -26.33** -11.59 1.37 2.62 African Tall X GWC-0319 104.87** 7.06 122.79** 7.62** 42.30** African Tall X GWC-0321 101.87** 7.06 116.97** 9.78** 128.78** African Tall X GWC-9603 -18.22** 0.39 -14.83 -4.69** -6.31 Range -42.68 -26.33 -50.80 -11.27 -53.10 104.87 24.74 122.79 9.78 128.78 SE (+_) 13.34 0.97 4.52 0.09 0.33 No. of significant crosses 41 20 35 19 28 Positive 13 6 13 6 11 Negative 28 14 22 13 17 Table 7: Magnitude of heterosis over better parent for different characters
  • 45. Case study 3 Gene Action for Various Grain and Fodder Quality Traits in Zea Mays L. Ali et al.,2014Pakistan  12 parents and 36 F1 cross in experiment 45
  • 46. Table 9. Genetic components for various grain and fodder quality traits in maize 46 Ali et al.,2014
  • 47. Source of variation Acid detergent fiber % Nutrient detergent fiber % Fodder Cellulose % Fodder dry matter % fodder crude fiber % Fodder crude protein % Fodder moisture % Ether extractable fat % Nitrogen free extract % Fodder ash % M.S.S 5.532* 38.761* 36.316* 2.058* 5.500** 4.980* 0.083* 0.025** 10.760* 1.148** G.M±S E 22.899± 0.2528 51.696± 0.3078 28.797± 0.2755 40.178± 0.2442 26.845 ± 0.1080 10.353± 0.1072 9.0951± 0.0142 2.9055± 0.0262 41.861± 0.3720 8.9026± 0.100 G.V 1.780 12.826 11.996 0.627 1.822 1.649 0.028 0.008 5.183 0.559 GCV 5.826 6.928 12.027 1.970 5.028 12.402 1.830 3.049 5.439 6.282 PV 1.844 12.920 12.072 0.686 1.833 1.660 0.028 0.009 5.649 0.589 PCV 5.930 6.953 12.065 2.062 5.044 12.445 1.837 3.179 5.678 6.619 EV 0.064 0.095 0.076 0.060 0.012 0.011 0.0001 0.001 0.466 0.029 ECV 1.104 0.595 0.957 0.608 0.402 1.035 0.157 0.900 1.113 0.337 h2 bs 96.50 99.30 99.40 91.30 99.40 99.30 99.30 92.00 91.70 94.90 S.E h2 bs 0.087 0.033 0.034 0.144 0.086 0.091 0.700 1.289 1.453 0.789 GA % 8.01 9.66 16.79 2.64 7.02 17.30 2.55 9.09 9.143 14.362 Table 8. Genetic components for various fodder quality traits in maize 47 Ali et al.,2014* = Significant at 1 % significance level, ** = Significant at 5 % significance level
  • 48. SOV/Traits Acid Detergent fiber % Nutrient detergent fiber % Fodder cellulose % Fodder dry matter % Fodder crude fiber % Fodder crude protein % Fodder moisture % Fodder ether extractable fat % Fodder nitrogen free extract (Carbohydrate %) Fodder ash (%) Replication 0.2973ns 0.111ns 0.022ns 0.4504ns 0.0306ns 0.0263ns 0.0002ns 0.0016ns 0.5738ns 0.0370ns Males 4.1819* 35.281* 18.827* 0.8319* 1.8399* 2.0761** 0.0501** 0.0041** 4.1020* 1.5453* Females 18.3353* 162.591 * 158.548* 4.6045* 16.4070* 9.2478* 0.0572** 0.0521* 12.4019* 1.7604* M × F 3.2882* 25.672* 22.520** 1.0589** 2.4384* 4.2583* 0.0195** 0.0181* 9.4472* 1.2101* Error 0.2369 0.239 0.255 0.0797 0.0403 0.0304 0.0002 0.0020 0.5298 0.0381 SOV/Traits Acid detergent fiber % Nutrient Detergent fiber % Fodder cellulose % Fodder dry matter % Fodder crude fiber % Fodder crude protein % Fodder moisture % Fodder ether extractable fat % Fodder Nitrogen free extract (Carbohydrate%) Fodder ash (%) σ2m 0.049 0.534 -0.205 -0.013 -0.033 -0.121 0.002 -0.001 -0.297 0.019 σ2f 0.836 7.607 7.557 0.197 0.776 0.277 0.002 0.002 0.164 0.031 σ2m×f 1.017 8.478 7.422 0.326 0.799 1.409 0.006 0.005 2.973 0.391 σ2D 1.181 10.854 9.803 0.246 0.990 0.208 0.005 0.001 -0.177 0.066 σ2H 4.068 33.911 29.688 1.306 3.197 5.637 0.026 0.021 11.889 1.563 [σ2H/σ2D]1/2 1.856 1.768 1.740 2.305 1.797 5.206 2.251 3.786 -8.194 4.881 Table 9-a. Analysis of variance for fodder quality traits in maize (North Carolina matting design-II) Table 9-b. various genetic components fodder quality traits in maize (North Carolina matting design-II) * = Significant at 1 % significance level, ** = Significant at 5 % significance level48 Ali et al.,2014
  • 49. Case study 4 Combining ability analysis for evaluation of maize hybrids under drought stress Malook et al.,2016Pakistan 49
  • 50. Traits Plant height Leaves per plant Cobs per plant Leaf area (cm2) Grain rows/ Cob girth Grain yield/ plant 100 grain weight Cob length Mean sum of squares 380.69** 3.63** 1.75** 7016.84** 8.06** 2.62** 2669.31** 179.64** 13.39** Grand mean 161.66 12.77 1.75 452.52 14.69 4.33 136.54 37.99 16.32 Environmental variance 2.44 1.59 1.29 1224.03 1.67 1.28 34.91 2.92 1.95 Genotypic variance 189.12 1.02 0.24 2896.41 3.19 0.67 1317.19 88.36 5.72 Phenotypic variance 191.57 2.61 1.52 4120.43 4.87 1.95 1352.11 91.28 7.67 Genotypic coefficient 116.99 7.95 13.36 640.06 21.75 15.55 964.69 232.58 35.04 of variance Phenotypic coefficient 118.49 20.46 87.00 910.56 33.12 45.07 990.27 240.25 46.99 of variance Heritability h2(bs) 98.72 38.84 15.36 70.29 65.65 34.49 97.42 96.81 74.57 Genetic advance % 14.84 8.63 19.02 17.49 17.29 19.54 46.04 42.72 22.21 Table 8: Genetic component for various agronomic traits of maize under normal irrigation conditions Malook et al.,201650
  • 51. Traits Plant height Leaves/ plant Cobs/ plant Leaf area Grain rows/ cob Cob girth Grainyield/ plant 100-grain weight Cob length Mean sum of squares 536.66** 12.96** 16.58** 532.12** 42.56** 38.49** 4993.48** 613.8** 98.8** Grand Mean 160.16 12.27 4.28 1.75 14.21 36.49 447.52 15.82 133.54 Environmental variance 5.53 1.73 1.27 459.85 1.78 1.35 298.04 3.46 1.69 Genotypic variance 265.56 5.62 7.65 18.07 20.39 18.58 2347.72 305.17 48.56 Phenotypic variance 271.09 7.35 8.93 477.92 22.17 19.92 2645.76 308.63 50.25 Genotypic coefficient of variance 165.81 45.75 178.92 1033.79 143.46 50.91 524.61 1928.65 36.36 Phenotypic coefficient of variance 169.27 59.84 208.67 27345.51 155.98 54.59 591.21 1950.52 37.63 Heritability h2 (bs) 97.96 76.46 85.74 3.78 91.97 93.24 88.74 98.88 96.64 Genetic advance % 17.68 29.62 105.09 82.99 53.47 20.02 17.89 192.67 9 Table 9: Genetic component for various agronomic traits of maize under drought conditions Malook et al.,2016 51
  • 52. Parents Plant height Leaves/ plant Cobs/ plant Leaf area Grain rows/ cob Cob girth Grain yield/ plant 100-grain weight Cob length A-495 0.87 -0.10 0.062 1.32 -0.99 -0.26 -11.36 3.91 -0.31 A-509 2.68 -0.17 -0.21 -11.51 1.14 0.15 28.15 1.57 0.77 W-64SP -4.68 0.51 -0.04 11.01 0.58 0.51 -4.19 -1.23 0.85 W-10 1.87 -0.51 0.06 -4.88 -0.35 -0.73 10.17 -7.33 -0.79 A-545 0.20 0.22 0.03 1.22 0.85 0.31 -17.80 -1.21 0.07 A427-2 1.91 0.31 0.08 7.41 -1.29 0.36 4.71 -1.03 -0.44 A50-2 0.33 -0.69 0.08 -13.19 -0.57 -0.28 16.76 0.59 0.45 A-239 -3.19 0.43 -0.06 8.62 0.63 -0.06 -26.43 4.73 -0.59 Table 10: General combining ability for various agronomic traits of maize under normal conditions Malook et al.,2016 52
  • 53. Parents Plant height Leaves/ plant Cobs/ plant Leaf area Grain rows/ cob Cob girth Grain yield/ plant 100-grain weight Cob length A-495 -0.22 0.04 0.051 11.49 0.92 -0.26 -11.36 2.88 -0.34 A-509 0.82 0.12 -0.13 -13.33 0.06 0.15 23.01 3.54 0.74 W-64SP 1.04 0.71 -0.03 10.19 0.50 0.41 -4.03 -1.16 0.14 W-10 -0.72 -0.32 0.07 -4.69 -0.42 -0.73 10.16 -7.37 -0.32 A-545 0.14 0.42 0.06 1.39 -0.82 0.31 -22.82 -2.24 0.04 A427-2 -0.96 -0.51 0.07 7.64 -0.56 0.47 4.71 -0.85 -1.07 A50-2 0.52 -0.50 0.07 -18.70 -0.11 -0.29 21.76 0.52 1.44 A-239 -0.62 0.03 -0.17 5.99 0.43 -0.06 -21.43 4.68 -0.63 Table 11: General combining ability for various agronomic traits of maize under drought conditions Malook et al.,2016 53
  • 54. Crosses Plant height Leaves/ plant Cobs/ plant Leaf area Grain rows/cob Cob girth Grain yield/plant 100-grain weight Cob length A-495 × A427-2 -5.69 0.23 0.65 13.82 -0.84 -0.23 -31.93 -2.07 -1.00 A-495 × A50-2 1.54 0.54 -0.24 9.17 0.24 -0.46 -12.06 0.34 1.02 A-495 ×A-239 2.47 0.54 -0.11 -19.68 0.91 0.99 10.29 2.04 1.06 A-509 × A427-2 1.15 0.44 0.50 -16.06 2.30 0.28 -2.97 -6.07 1.25 A-509 ×A50-2 1.79 0.02 -0.17 2.49 -1.79 0.18 10.94 7.14 -1.09 A-509 ×A-239 -4.63 -0.85 -0.03 16.87 -0.58 -0.15 -7.64 -0.77 -0.85 W-64SP×A427-2 -4.15 0.23 -0.16 60.19 -1.03 0.08 36.18 9.42 1.45 W-64SP×A50-2 1.08 0.12 0.50 -0.31 1.02 -0.31 -13.28 0.74 1.24 W-64SP×A-239 3.38 -0.90 -0.08 -24.58 0.32 0.54 -22.39 -8.25 -2.39 W-10×A427-2 0.41 -0.28 -0.22 -53.19 -0.06 0.35 6.20 -1.25 -1.79 W-10×A50-2 -3.28 0.38 -0.54 71.07 1.19 0.12 2.82 -4.77 -0.62 W-10×A-239 3.17 -0.95 0.78 -14.57 -0.82 -1.17 -3.72 6.39 2.20 A-545×A427-2 1.31 0.34 -1.84 0.76 -0.23 0.04 0.24 1.50 1.32 A-545×A50-2 -0.62 0.05 0.64 -44.92 -0.15 -0.98 14.09 -2.91 -1.53 A-545×A-239 2.08 0.09 0.31 -1.07 -0.48 0.72 13.23 -1.49 -0.28 Table 12: Specific combining ability for various agronomic traits of maize under normal conditions Malook et al.,201654
  • 55. Crosses Plant height Leaves/ plant Cobs/ plant Leaf area Grain rows/ cob Cob girth Grain yield/ plant 100-grain weight Cob length A-495 × A427-2 -1.07 -0.18 0.66 13.13 0.001 -0.23 -34.93 -1.07 -0.77 A-495 × A50-2 0.21 0.64 -0.31 7.34 0.24 -0.46 -12.06 1.34 0.02 A-495 ×A-239 0.56 0.92 0.21 -19.24 0.39 0.99 34.27 3.04 0.06 A-509 × A427-2 2.15 0.01 0.23 14.23 2.91 0.28 -2.98 -5.07 0.25 A-509 ×A50-2 -0.43 -0.18 -0.67 -15.23 -2.34 0.18 13.94 4.14 0.91 A-509 ×A-239 -0.46 -1.41 -0.19 25.06 -1.34 -0.15 -7.65 0.23 0.12 W-64SP×A427-2 1.56 0.13 0.35 35.45 -0.90 0.05 36.48 3.42 -4.49 W-64SP×A50-2 2.11 0.11 0.44 -23.23 0.012 -0.32 -13.28 1.24 2.24 W-64SP×A-239 -3.45 -1.01 -1.24 -20.24 0.42 0.54 -20.39 -7.85 -1.39 W-10×A427-2 -2.69 0.55 0.003 -36.34 -0.24 0.35 6.20 -0.29 -0.79 W-10×A50-2 -0.79 -0.32 0.001 34.56 2.19 0.12 2.82 -3.79 0.88 W-10×A-239 1.11 -0.11 -0.46 -15.37 -0.42 -1.17 -5.72 1.37 0.21 A-545×A427-2 2.04 1.20 0.45 -0.33 -0.33 0.04 0.24 2.52 2.31 A-545×A50-2 -1.43 -0.55 0.50 -48.23 0.23 0.49 14.09 -1.91 -0.53 A-545×A-239 0.58 0.21 0.04 48.43 -0.83 -0.72 -11.03 2.69 1.00 Table 13: Specific combining ability for various agronomic traits of maize under drought conditions Malook et al.,201655 • Inbred line W-64SP, A-495, A-509, A50-2 are grought tolerant
  • 56. Case study 5 Genetic variability and association studies in fodder maize (Zea mays L.) hybrids Kapoor et al.,2015India • Twelve maize genotypes and two checks • Randomized Block Design 56
  • 57. Characters Range h2 (%) GA (%) PCV GCV GM PH 143 - 203 98.37 28.82 14.22 14.11 173.02 LL 43 - 90 97.56 42.11 20.95 20.70 70.71 LW 6.1 - 10.8 94.90 25.91 13.25 12.91 8.96 SG 1.1 - 2.1 75.93 22.81 13.58 12.71 1.74 NOL 11 - 14 15.71 3.13 9.69 3.84 13.67 NOC 1.3 - 2.0 30.54 18.48 29.37 16.23 1.35 NOS 210 - 550 27.89 16.90 29.41 15.53 362.11 CP% 7.2 - 8.8 93.55 20.10 10.43 10.09 7.70 IVDMD 60.5 - 60.5 68.64 11.51 5.66 5.62 57.31 ADF% 29.9 - 39.6 99.62 23.75 11.57 11.55 34.17 NDF% 53.4 - 60.5 98.87 8.43 4.14 4.11 57.18 DMY 4.0 - 18.0 93.94 82.01 42.38 41.07 9.86 GFY 22.0 - 94.0 97.58 71.61 35.63 35.19 54.84 Table 10. Estimates of genetic parameters for different traits in maize genotypes 57 Kapoor et al., 2015
  • 58. Characters PH LL LW SG NOL NOC NOS CP% IVDMD ADF% NDF% DMY LL G .8857** P .8680** LW G .4941** .6523** P 4787** .6316** SG G 7507** .8533** .4923** P .6445** .7297** 3918** NOL G .5704** .5024** .4217** .6826** P .5069** .4804** .1794* .4882** NOC G .1054 .2849** .2962** .5562** .3447** P .1035 .1617* .1756* .2746** .1587 NOS G - .3331** -.2895** -.4450** -.6188** -.4032** -.3317** P - .2021** -.1752* -.2499** -.3192** -.1671* -.1267 CP% G .0512** -.2660** -.5519** .1421 .4226** -.1481 -.2371** P .0449** -.2606** -.4965** .0911 .0807 -.0829 -.1783* IVDMD G .3134** .0926** -.2720** .5004** .8674** .1507 -.3518** .8925** P 3019** .0897** -.2726** .4369** .3344** .0350 -.1426 .8444** ADF% G - .2209** -.0968** .2010* -.5816** -.6881** -.1894* .6131** -.7588** -.9197** P - .2159** -.0957** .1952* -.5011** -.2591** -.0866 .3270** -.7386** -.9124** NDF% G .0181* .0431** .2324** -.3870** -.2068* -.3086** .2579** -.6716** -.7670** .8240** P .0153 .0399** .2243** -.3468** -.0606 -.1978* .1421 -.6428** -.7562** .8171** DMY G .8507** .7633** .5881** .6680** .7772** -.0750 -.2816** .1646* .3510** -.2450** -.2026** P .8210** .7241** .5567** .5654** .3287** -.0600 -.1275 .1311 .3436** -.2326** -.1895* GFY G .8720** .7905** .6362** .6726** .8920** -.0411 -.3544** .1195 .3233** -.2229** -.1474 .9908** P .8553** .7660** .6125** .5973** .3750** -.0218 -.1818* .1030 .3190** -.2171** -.1426 .9824** Table 11. Genotypic and phenotypic correlation coefficients among various traits of maize genotypes 58 Kapoor et al.,2015*=Critical value of ‘r’ at 5% = 0.16, **=Critical value of ‘r’ at 1% = 0.21;
  • 59. Characters PH LL LW SG NOL NOC NOS CP% IVDMD ADF% NDF% DMY Genotypic correlation with GFY PH 0.3051 -.5571 0.0469 0.331 -.0314 0.0031 -.0584 -.0021 -.0721 0.0555 0.0034 0.8482 0.8721 LL 0.2702 -0.629 0.062 0.3762 -.0296 0.0084 -.0508 0.0109 -.0213 0.0243 0.008 0.7611 0.7904 LW 0.1507 -.4103 0.095 0.2171 -.0113 0.0087 -.0781 0.0226 0.0626 -.0505 0.0432 0.586 0.6357 SG 0.229 -.5368 0.0468 0.4409 -.0344 0.0163 -.1085 -.0058 -.1151 0.1461 -0.072 0.6661 0.6726 NOL 0.3571 -.6934 0.0401 0.5655 .0268 0.0278 -.0707 -.0173 -.1995 0.1728 -.0385 0.775 0.8921 NOC 0.0321 -.1792 0.0281 0.2453 -.0254 -0.0294 -.0582 0.0061 -.0347 0.0476 -.0574 -0.0748 -0.0411 NOS -.1016 0.1821 -.0423 -.2728 0.0108 -.0097 -0.1754 0.0097 0.0809 -0.154 0.048 -0.2808 -0.3543 CP% 0.0156 0.1673 -.0524 0.0627 -.0113 -.0044 -.0416 -.0409 -.2053 0.1906 -0.125 0.1641 0.1194 IVDMD 0.0956 -.0583 -.0258 0.2206 -.0233 0.0044 -.0617 -.0365 -0.23 0.231 -.1427 0.35 0.3233 ADF% -.0674 0.0609 0.0191 -.2564 0.0185 -.0056 0.1075 0.031 0.2115 -.2511 0.1533 -0.2443 -0.223 NDF% 0.0055 -.0271 0.0221 -.1706 0.0055 -.0091 0.0452 0.0275 0.1764 -.2069 0.1861 -0.202 0.1474 DMY 0.2595 -.4802 0.0559 .2945 -.0209 -.0022 -.0494 -.0067 -.0807 0.0615 -.0377 0.9971 0.9907 Table 12: Path coefficient analysis for direct and indirect effects on green fodder yield (kg/plot) in maize genotypes 59 Kapoor et al.,2015
  • 60. Estimation of Combining Ability and Gene Effects in Forage Maize (Zea mays L.) Using Line × Tester Crosses Abadi et al.,2011Pakistan 60 • A set of 20 S6 inbred lines as female were cross with three inbred lines as male • Randomized Block Design Case study 6
  • 61. Line Number of leaves Number of leaves above ear Number of ear/ plant Forage yield Days to silking Days to anthesis ASI Stem diameter Plant height Ear height Days to physiological maturity L1 0.70 0.36 0.04 6.36 -0.19 0.12 -0.32 0.60 0.45 -0.22 0.244 L2 0.13 -0.08 0.08 -5.25 0.03 0.01 0.02 0.55 -9.92 -10.86 -0.978 L3 -0.66 -0.31 -0.07 -1.43 -0.64 -0.77 0.13 0.24 -10.95 -11.09 -2.200 L4 -0.33 -0.61 0.07 0.09 -1.31 -1.54 0.24 0.89 -15.93 -1.17 -1.422 L5 0.26 0.04 0.02 10.04 0.92 1.46 -0.54 1.10 3.38 5.79 2.689 L6 -0.64 -0.32 -0.06 -9.45 -2.86 -3.10 0.24 -1.00 -22.36 -13.44 -1.867 L7 -0.24 0.15 -0.06 -2.55 -0.53 -0.77 0.24 -0.01 4.45 -7.67 1.578 L11 0.53 0.64 0.08 0.72 -0.75 -0.43 -0.32 0.12 1.95 -0.77 -3.867 L12 0.02 -0.01 -0.08 -5.08 -1.97 -1.88 -0.09 -0.61 -11.13 -5.08 -2.533 L13 -0.18 -0.15 -0.03 -2.53 -0.08 -0.10 0.02 -1.14 4.53 5.57 -1.644 L14 0.53 0.26 0.10 7.44 1.03 1.23 -0.21 1.72 19.06 12.69 3.022 L15 -0.08 0.01 0.06 0.21 1.03 1.12 -0.09 0.07 5.84 7.56 1.133 Tester T1 -0.05 -0.10 -0.036 -4.44 0.50 0.51 -0.01 0.35 -8.31 -4.23 1.77 T2 -0.35 -0.01 -0.004 -1.24 2.05 1.97 0.08 1.01 11.92 6.88 2.27 T3 0.40 0.11 0.040 5.68 -2.55 -2.48 -0.07 -1.36 -3.69 -2.66 -4.03 SE(GCA) 0.073 0.032 0.015 1.084 0.223 0.229 0.098 0.155 1.095 0.970 0.60 SE(GCAj-0.103 0.045 0.022 1.533 0.315 0.325 0.139 0.220 1.549 1.371 0.85 Table 13. Estimates of general combining ability of maize inbred lines and testers 61 Abadi et al.,2011
  • 62. Cross Forage yield SCA Cross Forage yield SCA Forage yield Days to silking Days to anthesis No. of leaves above ear Forage yield Days to silking Days to anthesis No. of leaves above ear L1×T1 51.952 -5.140 -0.722 -0.506 -0.154 L11×T1 50.445 -1.005 -1.500 -1.950 0.035 L1×T2 66.615 6.328 1.061 1.028 -0.046 L11×T2 55.897 1.252 0.617 1.250 0.076 L1×T3 66.019 -1.187 -0.339 -0.522 0.200 L11×T3 61.317 -0.247 0.883 0.700 -0.111 L2×T1 41.954 -3.531 0.389 0.605 0.046 L12×T1 43.154 -2.495 0.056 -0.172 0.113 L2×T2 43.060 -5.621 1.172 1.138 -0.013 L12×T2 55.813 6.968 -0.494 -0.306 0.020 L2×T3 64.752 9.152 -1.561 -1.745 -0.033 L12×T3 51.290 -4.473 0.439 0.478 -0.133 L3×T1 45.981 -3.319 -0.944 -0.283 0.146 L13×T1 53.730 5.530 0.500 1.050 -0.110 L4×T2 56.038 2.104 1.172 1.028 0.220 L14×T2 57.463 -3.906 -0.161 0.583 -0.180 L4×T3 61.908 1.055 0.439 0.811 0.000 L14×T3 68.348 0.060 0.106 -0.300 0.000 L5×T1 58.145 -2.625 -0.167 0.161 0.002 L15×T1 48.145 -2.790 1.722 2.161 -0.210 L5×T2 58.433 -5.532 1.283 1.028 -0.057 L15×T2 62.485 8.354 -1.161 -1.306 0.131 L5×T3 79.040 8.156 -1.117 -1.189 0.056 L15×T3 55.486 -5.564 -0.561 -0.856 0.078 L6×T1 40.723 -20.047 0.278 0.050 -0.343 L16×T1 50.876 1.167 0.056 -0.172 0.057 SE (mean) SE (SCA) 4.848 4.848 0.997 1.026 0.143 4.848 4.848 0.997 1.026 0.143 SE (SCAij – CAi'j') 6.856 1.409 1.451 0.202 6.856 1.409 1.451 0.202 Table 14. Forage yield and specific combining ability of several characters for line × tester combinations of maize under study 62 Abadi et al.,2011
  • 63. Genetic analysis for fodder yield and component traits in maize (Zea mays L.) Dhasarathan et al., (2015)India • Seven inbred lines of fodder maize were crossed in a diallel fashion excluding the reciprocals • 21 F1s and their parents were raised in a Randomized Block Design (RBD) with two replications Case study 7
  • 64. Parents PHT NOL LLT LWD SGR GFY DMY Mean gca Mean gca Mean gca Mean gca Mean gca Mean gca Mean Gca FDM10 90.00 - 19.40** 11.34 -0.63** 45.50 -4.88** 7.12 0.07 5.00 -0.47 113.92 - 61.91** 17.07 0.06 FDM8 99.17 - 12.09** 11.84 -0.32 50.34 -4.88** 6.69 0.00 5.57 -0.23* 166.89 -28.49 26.48 0.10* FDM7 11.84 -0.31 12.84 0.35 47.84 -6.64** 6.77 -0.05 6.72 0.047** 175.60 6.36 28.12 -1.07** FDM12 69.84 - 14.62** 11.84 -0.21 49.67 -1.37 5.90 -0.11 4.69 -0.19 92.24 - 37.69** 16.89 0.92** FDM37 127.50 9.81* 10.34 -0.48* 73.50** 5.89** 6.90 -0.19 4.97 -0.21 164.10 -11.45 30.61 0.66** African Tall 232.34* * 43.74** 14.84** 1.16** 79.17** 9.28** 7082 0.038** 7.32** 0.51** 563.93* * 141.79* * 87.81** -0.66** FDM36 94.00 -7.13 12.67 0.13 64.50 2.61** 7.45 -0.10 6.15 0.13 192.10 -8.60 34.93 -0.02 Mean 117.81 12.24 58.65 6.95 5.77 209.83 34.55 SEd 16.83 0.80 4.09 0.59 0.50 51.37 8.70 CD at 5% 34.50 1.65 8.39 1.22 1.03 105.31 17.87 SE(gi) 3.67 0.18 0.89 0.13 0.11 11.21 1.90 *P=0.05, **P=0.01, PHT = Plant height (cm); NOL = Number of leaves; LLT = Leaf length (cm), LWD = Leaf width (cm), ); SGR = Stem girth (cm), GFY = Green fodder yield per plant (g); DMY = Dry matter yield (g) Table 15. Estimates of mean and general combining ability effects(gca) of the parents for diff. fodder maize characters Dhasarathan et al., (2015)64
  • 65. Hybrids PHT NOL LLT LWD GFY DMY Mean sca Mean sca Mean sca Mean sca Mean sca Mean sca FDM7 X FDM12 177.83 25.00** 13.67 -0.08 63.00 5.74** 8.03 0.47* 264.32 35.25* 48.02 10.49** FDM7 X FDM37 195.67 18.39** 14.66 1.19** 65.67 1.15 7.73 0.24 293.27 37.96* 44.73 3.35 FDM7 X African Tall 224.50* 13.30* 15.83* 0.71** 70.33 2.43* 8.68 0.062** 443.54** 34.98* 46.63 -15.90 FDM12 X FDM37 188.33 25.37** 13.84 0.92** 68.50 -1.29 7.95 0.53** 217.95 6.69 39.50 -0.46 FDM12 X African Tall 208.67 11.78* 15.34 0.77** 79.50** 6.32** 8.30 0.30 407.28* 42.79** 76.13** 15.03** FDM12 X FDM36 173.00 26.98** 13.34 -0.19 67.67 1.15 8.09 0.57** 234.20 20.09 38.42 -0.25 FDM37 X African Tall 236.17** 14.84** 14.66 0.38 86.83** 6.39** 8.40 0.48* 442.90** 52.16** 80.29** 15.34** African Tall X FDM36 201.00 -3.38 14.66 -0.23 73.50 -3.66** 7.55 -0.46 328.41 -65.17** 48.76 -14.90** Mean 68.05 184.42 14.06 7.99 277.26 46.98 Sed 1.43 16.83 0.80 0.59 51.37 8.70 CD at 5% 2.94 34.50 1.65 1.22 105.31 17.87 SE(sij) 0.91 10.68 0.51 0.38 32.60 5.53 Dhasarathan et al., (2015) Table 16.Estimates of mean and specific combining ability effects (sca) of the parents for diff. fodder maize characters *P=0.05, **P=0.0165
  • 66. Hybrids PHT NOL LLT LWD GFY DMY MP BP MP BP MP BP MP BP MP BP MP BP FDM10 X FDM 37 62.45** 38.56** 26.55** 22.73** 12.13 -8.84 4.53 3.79 39.48 18.19 44.35 12.25 FDM10 X FDM36 77.35** 73.58** 9.87 2.65 40.27** 20.16** 18.12* 15.23 62.41* 29.39 49.19 10.89 FDM8 X FDM12 104.74** 74.58** 16.09* 15.29* 32.78** 32.34** 32.79** 22.36** 86.52* 44.77 109.51** 72.81* FDM8 X FDM36 75.65** 71.21** 13.52* 10.54 11.50 -1.03 1.31 -1.74 38.72 29.66 44.17 25.73 FDM7 X FDM12 95.60** 58.78** 10.09 5.15 29.01** 26.84** 24.50** 14.71 97.08** 50.18 113.95** 71.50* FDM12 X FDM37 90.72** 47.71** 23.89** 15.29* 10.93 -6.80 23.26** 15.22 70.21 32.82 65.89* 29.01 FDM12 X FDM36 110.98** 84.04** 8.13 5.29 18.20** 4.91 20.22* 8.52 64.87* 21.92 47.93 9.96 FDM37 X FDM36 78.83** 55.08** 24.99** 11.84 5.65 -1.13 -0.14 -3.15 64.64 52.60 60.54* 51.50* Mean 68.05 184.42 14.06 7.99 277.26 46.98 Sed 1.43 16.83 0.80 0.59 51.37 8.70 CD at 5% 2.94 34.50 1.65 1.22 105.31 17.87 SE(sij) 0.91 10.68 0.51 0.38 32.60 5.53 Table 17 Heterosis over mid and better parent for different fodder yield component traits 66 *P=0.05, **P=0.01 Dhasarathan et al., (2015)
  • 67. Maize Varieties for fodder purpose in India Pedigree : Selection from 7 varieties Centre : MPKV, Kolhapur Area of adaptation : Across the country Maturity : Late Grain colour & type : White , dent Fodder yield : 600-700 q/ha Avg. yield : 30 q/ha 67 African Tall (1982) Chaudhary et al. (2012)
  • 68. Pedigree : MS 1 X Tuxpeno PBL Centre : PAU, Ludhiana Area of adaptation : Punjab Maturity : Late Grain colour & type : White, dent Avg. yield : - 15-30 q/ha Fodder yield : 400-500 q/ha J 1006 (1992) Maize Varieties for fodder purpose in India 68 Chaudhary et al. (2012)
  • 69. Pedigree : Compositing of 11 early to medium white seeded entries Centre : MPUA & T, Udaipur Area of adaptation : Punjab, Haryana, West UP & Rajasthan Maturity : Medium Grain colour & type : White, semi- flint Fodder yield : 350-450 q/ha Avg. yield : 40 q/ha Maize Varieties for fodder purpose in India 69 Partap makka Chari 6 (2008) Chaudhary et al. (2012)
  • 70. 70 Conclusion  Fodder yield is significantly correlated with traits like plant height, number of leaves per plant, leaf length, leaf area and stem girth.  African Tall was identified as the best general combiner for fodder yield and its contributing characters.  Selection of good heritable characters based on their performance over mid parent and better parent can be use for the development of good quality fodder maize hybrid.  Sufficient amount of diversity is present in maize played important role in breeding of maize for fodder yield and fodder quality purpose.  Higher dominance effect and degree of dominance found for fodder quality traits and selection of these traits may be useful for the development of good quality maize hybrid through heterosis breeding.