SlideShare une entreprise Scribd logo
1  sur  144
EC6503 TRANSMISSION LINES
AND WAVEGUIDES
BY
H.UMMA HABIBA, Professor
SVCE,Chennai.
Overview of syllabus
OBJECTIVES
 To introduce the various types of transmission lines and to
discuss the losses associated.
 To give thorough understanding about impedance
transformation and matching.
 To use the Smith chart in problem solving.
 To impart knowledge on filter theories and waveguide
theories
Overview of syllabus
OUTCOMES
Upon completion of the course, students will be able
to Discuss the propagation of signals through transmission
lines.
 Analyze signal propagation at Radio frequencies.
 Explain radio propagation in guided systems.
 Utilize cavity resonators
Overview of syllabus
TEXT BOOK
1. John D Ryder, “Networks lines and fields”, Prentice Hall of India,
New Delhi, 2005
REFERENCES
1.William H Hayt and Jr John A Buck, “Engineering Electromagnetics”
Tata Mc Graw-Hill Publishing Company Ltd, New Delhi, 2008
2.David K Cheng, “Field and Wave Electromagnetics”, Pearson
Education Inc, Delhi, 2004
3.John D Kraus and Daniel A Fleisch, “Electromagnetics with
Applications”, Mc Graw Hill Book Co,2005
4.GSN Raju, “Electromagnetic Field Theory and Transmission Lines”,
Pearson Education, 2005
5.Bhag Singh Guru and HR Hiziroglu, “Electromagnetic Field
Theory Fundamentals”, Vikas Publishing House, New Delhi, 2001.
6. N. Narayana Rao, “ Elements of Engineering Electromagnetics” 6
Overview of syllabus
UNIT I -TRANSMISSION LINE THEORY
General theory of Transmission lines - the transmission line
- general solution - The infinite line - Wavelength, velocity
of propagation - Waveform distortion - the distortion-less
line - Loading and different methods of loading - Line not
terminated in Z0 - Reflection coefficient - calculation of
current, voltage, power delivered and efficiency of
transmission - Input and transfer impedance - Open and
short circuited lines - reflection factor and reflection loss.
Overview of syllabus
UNIT II -HIGH FREQUENCY TRANSMISSION LINES
Transmission line equations at radio frequencies - Line of
Zero dissipation - Voltage and current on the dissipation-
less line, Standing Waves, Nodes, Standing Wave Ratio -
Input impedance of the dissipation-less line - Open and
short circuited lines - Power and impedance measurement
on lines - Reflection losses - Measurement of VSWR and
wavelength.
Overview of syllabus
UNIT III-IMPEDANCE MATCHING IN HIGH
FREQUENCY LINES
Impedance matching: Quarter wave transformer -
Impedance matching by stubs - Single stub and
double stub matching - Smith chart - Solutions of
problems using Smith chart - Single and double
stub matching using Smith chart.
Overview of syllabus
UNIT IV-PASSIVE FILTERS
Characteristic impedance of symmetrical networks
- filter fundamentals, Design of filters: Constant K -
Low Pass, High Pass, Band Pass, Band
Elimination, m- derived sections - low pass, high
pass composite filters.
Overview of syllabus
UNIT V -WAVE GUIDES AND CAVITY RESONATORS
General Wave behaviours along uniform Guiding
structures, Transverse Electromagnetic waves, Transverse
Magnetic waves, Transverse Electric waves, TM and TE
waves between parallel plates, TM and TE waves in
Rectangular wave guides, Bessel‟s differential equation
and Bessel function, TM and TE waves in Circular wave
guides, Rectangular and circular cavity Resonators.
UNIT I
TRANSMISSION LINE
THEORY UNIFORM PLANE
WAVES
Transmission Line
 Has two conductors running parallel
 Can propagate a signal at any frequency (in theory)
 Becomes lossy at high frequency
 Can handle low or moderate amounts of power
 Does not have signal distortion, unless there is loss
 May or may not be immune to interference
 Does not have Ez or Hz components of the fields (TEMz)
Properties
Coaxial cable (coax)
Twin lead
(shown connected to a 4:1
impedance-transforming balun)
11
Transmission Line (cont.)
CAT 5 cable
(twisted pair)
The two wires of the transmission line are twisted to reduce interference and
radiation from discontinuities.
12
Transmission Line (cont.)
Microstrip
h
w
er
er
w
Stripline
h
Transmission lines commonly met on printed-circuit boards
Coplanar strips
h
er
w w
Coplanar waveguide (CPW)
h
er
w
13
Transmission Line (cont.)
Transmission lines are commonly met on printed-circuit boards.
A microwave integrated circuit
Microstrip line
14
Fiber-Optic Guide
Properties
 Uses a dielectric rod
 Can propagate a signal at any frequency (in theory)
 Can be made very low loss
 Has minimal signal distortion
 Very immune to interference
 Not suitable for high power
 Has both Ez and Hz components of the fields
15
Fiber-Optic Guide (cont.)
Two types of fiber-optic guides:
1) Single-mode fiber
2) Multi-mode fiber
Carries a single mode, as with the mode on a
transmission line or waveguide. Requires the fiber
diameter to be small relative to a wavelength.
Has a fiber diameter that is large relative to a
wavelength. It operates on the principle of total internal
reflection (critical angle effect).
16
Fiber-Optic Guide (cont.)
http://en.wikipedia.org/wiki/Optical_fiber
Higher index core region
17
Waveguides
 Has a single hollow metal pipe
 Can propagate a signal only at high frequency: > c
 The width must be at least one-half of a wavelength
 Has signal distortion, even in the lossless case
 Immune to interference
 Can handle large amounts of power
 Has low loss (compared with a transmission line)
 Has either Ez or Hz component of the fields (TMz or TEz)
Properties
http://en.wikipedia.org/wiki/Waveguide_(electromagnetism) 18
 Lumped circuits: resistors, capacitors, inductors
neglect time delays (phase)
account for propagation and
time delays (phase change)
Transmission-Line Theory
 Distributed circuit elements: transmission lines
We need transmission-line theory whenever the length of
a line is significant compared with a wavelength.
19
Transmission Line
2 conductors
4 per-unit-length parameters:
C = capacitance/length [F/m]
L = inductance/length [H/m]
R = resistance/length [/m]
G = conductance/length [ /m or S/m]

Dz
20
21
Transmission Line (cont.)
z
D
 
,
i z t
+ + + + + + +
- - - - - - - - - -
 
,
v z t
x x x
B
21
RDz LDz
GDz CDz
z
v(z+ z,t)
+
-
v(z,t)
+
-
i(z,t) i(z+ z,t)
22
( , )
( , ) ( , ) ( , )
( , )
( , ) ( , ) ( , )
i z t
v z t v z z t i z t R z L z
t
v z z t
i z t i z z t v z z t G z C z
t

  D  D  D

  D
  D   D D  D

Transmission Line (cont.)
22
RDz LDz
GDz CDz
z
v(z+ z,t)
+
-
v(z,t)
+
-
i(z,t) i(z+ z,t)
23
Hence
( , ) ( , ) ( , )
( , )
( , ) ( , ) ( , )
( , )
v z z t v z t i z t
Ri z t L
z t
i z z t i z t v z z t
Gv z z t C
z t
 D  
  
D 
 D    D
   D 
D 
Now let Dz 0:
v i
Ri L
z t
i v
Gv C
z t
 
  
 
 
  
 
“Telegrapher’s
Equations”
TEM Transmission Line (cont.)
23
24
To combine these, take the derivative of the first one with
respect to z:
2
2
2
2
v i i
R L
z z z t
i i
R L
z t z
v
R Gv C
t
v v
L G C
t t
   
 
    
   
 
  
 
    
  
 

 
   
 

 
 
 
  
 
 
 
Switch the
order of the
derivatives.
TEM Transmission Line (cont.)
24
25
 
2 2
2 2
( ) 0
v v v
RG v RC LG LC
z t t
  
 
    
 
  
 
The same equation also holds for i.
Hence, we have:
2 2
2 2
v v v v
R Gv C L G C
z t t t
   
   
      
   
   
   
TEM Transmission Line (cont.)
25
26
 
2
2
2
( ) ( ) 0
d V
RG V RC LG j V LC V
dz
 
     
 
2 2
2 2
( ) 0
v v v
RG v RC LG LC
z t t
  
 
    
 
  
 
TEM Transmission Line (cont.)
Time-Harmonic Waves:
26
27
Note that
= series impedance/length
   
2
2
2
( )
d V
RG V j RC LG V LC V
dz
 
   
2
( ) ( )( )
RG j RC LG LC R j L G j C
   
     
Z R j L
Y G j C


 
  = parallel admittance/length
Then we can write:
2
2
( )
d V
ZY V
dz

TEM Transmission Line (cont.)
27
28
Let
Convention:
Solution:
2
  ZY
( ) z z
V z Ae Be
 
 
 
 
1/2
( )( )
R j L G j C
  
  
 principal square root
2
2
2
( )
d V
V
dz


Then
TEM Transmission Line (cont.)
 is called the "propagation constant."
/2
j
z z e 

  
  
j
  
 
0, 0
 
 




attenuationcontant
phaseconstant
28
29
TEM Transmission Line (cont.)
0 0
( ) z z j z
V z V e V e e
  
     
 
Forward travelling wave (a wave traveling in the positive z direction):
 
 
 
 
 
0
0
0
( , ) Re
Re
cos
z j z j t
j z j z j t
z
v z t V e e e
V e e e e
V e t z
  
   

  
   
  
 


  
g

0
t 
z
0
z
V e 
 
2
g




2
g
 

The wave “repeats” when:
Hence:
29
30
Phase Velocity
Track the velocity of a fixed point on the wave (a point of constant phase), e.g., the
crest.
0
( , ) cos( )
z
v z t V e t z

  
  
  
z
vp (phase velocity)
30
31
Phase Velocity (cont.)
0
constant
 
 


 
 

t z
dz
dt
dz
dt
Set
Hence p
v



 
 
1/2
Im ( )( )
p
v
R j L G j C

 

 
In expanded form:
31
32
Characteristic Impedance Z0
0
( )
( )
V z
Z
I z



0
0
( )
( )
z
z
V z V e
I z I e


  
  


so 0
0
0
V
Z
I



+
V+(z)
-
I+ (z)
z
A wave is traveling in the positive z direction.
(Z0 is a number, not a function of z.)
32
33
Use Telegrapher’s Equation:
v i
Ri L
z t
 
  
 
so
dV
RI j LI
dz
ZI

  
 
Hence
0 0
z z
V e ZI e
 
    
  
Characteristic Impedance Z0 (cont.)
33
34
From this we have:
Using
We have
1/2
0
0
0
V Z Z
Z
I Y



 
    
 
Y G j C

 
1/2
0
R j L
Z
G j C


 

  

 
Characteristic Impedance Z0 (cont.)
Z R j L

 
Note: The principal branch of the square root is chosen, so that Re (Z0) > 0.
34
35
 
0
0
0 0
j z j j z
z z
z j z
V e e
V z V e V
V e e e
e
e
 
 

  


  

   


 
 
   
 
 
 
0
0 cos
c
, R
os
e j t
z
z
V e t
v z t V z
z
V z
e
e t



 
  

 
 









Note:
wave in +z
direction
wave in -z
direction
General Case (Waves in Both Directions)
35
36
Backward-Traveling Wave
0
( )
( )
V z
Z
I z



 0
( )
( )
V z
Z
I z


 
so
+
V -(z)
-
I - (z)
z
A wave is traveling in the negative z direction.
Note: The reference directions for voltage and current are the same as
for the forward wave.
36
37
General Case
0 0
0 0
0
( )
1
( )
z z
z z
V z V e V e
I z V e V e
Z
 
 
   
   
 
 
 
 
A general superposition of forward and
backward traveling waves:
Most general case:
Note: The reference
directions for voltage
and current are the
same for forward and
backward waves.
37
+
V(z)
-
I(z)
z
38
 
 
  
1
2
1
2
0
0 0
0 0
0 0
z z
z z
V z V e V e
V V
I z e e
Z
j R j L G j C
R j L
Z
G j
Z
C
 
 
    


   
 
 

 
   
 
 
 

 






I(z)
V(z)
+
-
z
 
2
m
g




[m/s]
p
v



guided wavelength g
phase velocity vp
Summary of Basic TL formulas
38
Lossless Case
0, 0
R G
 
 
1/ 2
( )( )
j R j L G j C
j LC
    

    

so 0
LC

 


1/2
0
R j L
Z
G j C


 

  

 
0
L
Z
C

1
p
v
LC

p
v



(indep. of freq.)
(real and indep. of freq.)
39
40
Lossless Case (cont.)
1
p
v
LC

In the medium between the two conductors is homogeneous (uniform)
and is characterized by ( , ), then we have that
LC e

The speed of light in a dielectric medium is
1
d
c
e

Hence, we have that p d
v c

The phase velocity does not depend on the frequency, and it is always the
speed of light (in the material).
(proof given later)
40
41
  0 0
z z
V z V e V e
 
   
 
Where do we assign z = 0?
The usual choice is at the load.
I(z)
V(z)
+
-
z
ZL
z = 0
Terminating impedance (load)
Ampl. of voltage wave
propagating in negative z
direction at z = 0.
Ampl. of voltage wave
propagating in positive z
direction at z = 0.
Terminated Transmission Line
Note: The length l measures distance from the load: z
 
41
What if we know
@
V V z
 
 
and
   
0 0
V V V e 
   
  
     
   
z z
V z V e V e
 
  
 
   
   
0
V V e 
  
 
   
0 0
V V V e
  
   
Terminated Transmission Line (cont.)
  0 0
z z
V z V e V e
 
   
 
Hence
Can we use z = - l as
a reference plane?
I(z)
V(z)
+
-
z
ZL
z = 0
Terminating impedance (load)
42
     
   
( ) ( )
z z
V z V e V e
 
    
 
   
Terminated Transmission Line (cont.)
     
0 0
z z
V z V e V e
 
   
 
Compare:
Note: This is simply a change of reference plane, from z = 0 to z = -l.
I(z)
V(z)
+
-
z
ZL
z = 0
Terminating impedance (load)
43
  0 0
z z
V z V e V e
 
   
 
What is V(-l )?
  0 0
V V e V e
 
  
  
  0 0
0 0
V V
I e e
Z Z
 
 

  
propagating
forwards
propagating
backwards
Terminated Transmission Line (cont.)
l distance away from load
The current at z = - l is then
I(z)
V(z)
+
-
z
ZL
z = 0
Terminating impedance (load)
44
   
2
0
0
1 L
V
I e e
Z
 


   
  2
0
0
0
0 0 1
V
V e
V V e e
e
V
V  
 


 
 

 
 
 

 
 
Total volt. at distance l
from the load
Ampl. of volt. wave prop.
towards load, at the load
position (z = 0).
Similarly,
Ampl. of volt. wave prop.
away from load, at the
load position (z = 0).
 
0
2
1 L
V e e
 
 
  
L Load reflection
coefficient
Terminated Transmission Line (cont.)
I(-l )
V(-l )
+
l
ZL
-
0,
Z 
l Reflection coefficient at z = - l
45
   
   
 
 
 
2
0
2
2
0
0
2
0
1
1
1
1
L
L
L
L
V V e e
V
I e e
Z
V e
Z Z
I e
 
 


 




   
  
 
    
 
  

 
Input impedance seen “looking” towards load
at z = -l .
Terminated Transmission Line (cont.)
I(-l )
V(-l )
+
l
ZL
-
0,
Z 
 
Z 
46
At the load (l = 0):
  0
1
0
1
L
L
L
Z Z Z
 
 
  


 
Thus,
 
2
0
0
0
2
0
0
1
1
L
L
L
L
Z Z
e
Z Z
Z Z
Z Z
e
Z Z




 
 


 
 

 
 
 
 
 


 
 
 

 
 
Terminated Transmission Line (cont.)
0
0
L
L
L
Z Z
Z Z

  

 
2
0 2
1
1
L
L
e
Z Z
e




 
 
   

 
Recall
47
Simplifying, we have
 
 
 
0
0
0
tanh
tanh
L
L
Z Z
Z Z
Z Z


 

   
 

 
Terminated Transmission Line (cont.)
 
   
   
   
   
   
   
2
0
2
0 0 0
0 0 2
2 0 0
0
0
0 0
0
0 0
0
0
0
1
1
cosh sinh
cosh sinh
L
L L L
L L
L
L
L L
L L
L
L
Z Z
e
Z Z Z Z Z Z e
Z Z Z
Z Z Z Z e
Z Z
e
Z Z
Z Z e Z Z e
Z
Z Z e Z Z e
Z Z
Z
Z Z




 
 
 
 




 
 
 
 


 
   
   
 
 
    
 
    
 
  

 
 
 

 
 
 
  
  
 
  
 
 

 
 




Hence, we have
48
   
   
 
2
0
2
0
0
2
0 2
1
1
1
1
j j
L
j j
L
j
L
j
L
V V e e
V
I e e
Z
e
Z Z
e
 
 


 




   
  
 
 
   

 
Impedance is periodic
with period g/2
2
/ 2
g
g
 






 
Terminated Lossless Transmission Line
j j
   
  
Note:      
tanh tanh tan
j j
  
 
tan repeats when
 
 
 
0
0
0
tan
tan
L
L
Z jZ
Z Z
Z jZ


 

   
 

 
49
For the remainder of our transmission line discussion we will assume that the
transmission line is lossless.
   
   
 
 
 
 
 
2
0
2
0
0
2
0 2
0
0
0
1
1
1
1
tan
tan
j j
L
j j
L
j
L
j
L
L
L
V V e e
V
I e e
Z
V e
Z Z
I e
Z jZ
Z
Z jZ
 
 




 




   
  
  
 
    
 
 
 

  
 

 
0
0
2
L
L
L
g
p
Z Z
Z Z
v






 



Terminated Lossless Transmission Line
I(-l )
V(-l )
+
l
ZL
-
0 ,
Z 
 
Z 
50
Matched load: (ZL=Z0)
0
0
0
L
L
L
Z Z
Z Z

  

For any l
No reflection from the load
A
Matched Load
I(-l )
V(-l )
+
l
ZL
-
0 ,
Z 
 
Z 
  0
Z Z
  
 
 
0
0
0
j
j
V V e
V
I e
Z


 


  
 
51
Short circuit load: (ZL = 0)
   
0
0
0
0
1
0
tan
L
Z
Z
Z jZ 

   

  
Always imaginary!
Note:
B
2
g
 


  sc
Z jX
  
S.C. can become an O.C.
with a g/4 trans. line
0 1/4 1/2 3/4
g
/ 
XSC
inductive
capacitive
Short-Circuit Load
l
0 ,
Z 
 
0 tan
sc
X Z 

52
Using Transmission Lines to Synthesize Loads
A microwave filter constructed from microstrip.
This is very useful is microwave engineering.
53
 
 
 
0
0
0
tan
tan
L
in
L
Z jZ d
Z Z d Z
Z jZ d


 

    
 

 
  in
TH
in TH
Z
V d V
Z Z
 
    

 
I(-l)
V(-l)
+
l
ZL
-
0
Z 

ZTH
VTH
d
Zin
+
-
ZTH
VTH
+
Zin
V(-d)
+
-
Example
Find the voltage at any point on the line.
54
Note:    
0
2
1 j
L
j
V V e e
 
 
 


0
0
L
L
L
Z Z
Z Z

 

   
2
0 1
j d j d in
TH
in TH
L
V d
Z
Z
e V
Z
V e  
 
   
 
  

 
   
2
2
1
1
j
j d
in L
TH j d
m TH L
Z e
V V e
Z Z e




 

   
 
     
  
 
 
At l = d:
Hence
Example (cont.)
0 2
1
1
j d
in
TH j d
in TH L
Z
V V e
Z Z e


 

   
     
  
 
 
55
Some algebra:  
2
0 2
1
1
j d
L
in j d
L
e
Z Z d Z
e




 
 
    

 
 
   
 
   
 
2
2
0 2
0
2 2
2
0
0 2
2
0
2
0 0
2
0
2
0 0
0
1
1
1
1 1
1
1
1
1
1
j d
L
j d
j d
L
L
j d j d
j d
L TH L
L
TH
j d
L
j d
L
j d
TH L TH
j d
L
j d
TH TH
L
TH
in
in TH
e
Z
Z e
e
Z e Z e
e
Z Z
e
Z e
Z Z e Z Z
e
Z
Z
Z
Z Z
Z Z Z
e
Z Z
Z



 









 






 
 
   
 
 
  
      
 

 
 
 
 

  


 
 
  
  

     

 

 
2
0
2
0 0
0
1
1
j d
L
j d
TH TH
L
TH
e
Z Z Z Z
e
Z Z




 
 
 
  

     

 
Example (cont.)
56
   
2
0
2
0
1
1
j
j d L
TH j d
TH S L
Z e
V V e
Z Z e




 

   
 
     
  
   
2
0
2
0
1
1
j d
in L
j d
in TH TH S L
Z Z e
Z Z Z Z e




  
 
   
    
  
where 0
0
TH
S
TH
Z Z
Z Z

 

Example (cont.)
Therefore, we have the following alternative form for the result:
Hence, we have
57
   
2
0
2
0
1
1
j
j d L
TH j d
TH S L
Z e
V V e
Z Z e




 

   
 
     
  
   
Example (cont.)
I(-l)
V(-l)
+
l
ZL
-
0
Z 

ZTH
VTH
d
Zin
+
-
Voltage wave that would exist if there were no reflections from
the load (a semi-infinite transmission line or a matched load).
58
 
 
       
2 2
2 2 2 2
0
0
1 j d j d
L L S
j d j d j d j d
TH L S L L S L S
TH
e e
Z
V d V e e e e
Z Z
 
   
 
   
 
    
 
  
   
          
     
 

 
 

 
Example (cont.)
ZL
0
Z 

ZTH
VTH
d
+
-
Wave-bounce method (illustrated for l = d):
59
Example (cont.)
 
   
   
2
2 2
2
2 2 2
0
0
1
1
j d j d
L S L S
j d j d j d
TH L L S L S
TH
e e
Z
V d V e e e
Z Z
 
  
 
  
 
      
 
  
 
          
  
 
 

  

 
 
Geometric series:
2
0
1
1 , 1
1
n
n
z z z z
z


     


 
 
       
2 2
2 2 2 2
0
0
1 j d j d
L L S
j d j d j d j d
TH L S L L S L S
TH
e e
Z
V d V e e e e
Z Z
 
   
 
   
 
    
 
  
   
          
     
 

 
 

 
2
j d
L S
z e 

  
60
Example (cont.)
or
 
2
0
2
0
2
1
1
1
1
j d
L s
TH
j d
TH
L j d
L s
e
Z
V d V
Z Z
e
e






 
 
 
  
    
 

   
 
 
 
 
 
 
 
2
0
2
0
1
1
j d
L
TH j d
TH L s
Z e
V d V
Z Z e




  
 
    
  
  
This agrees with the previous result (setting l = d).
Note: This is a very tedious method – not recommended.
Hence
61
I(-l )
V(-l )
+
l
ZL
-
0 ,
Z 
At a distance l from the load:
     
 
  
*
*
2
0 2 2 * 2
*
0
1
Re 1 1
1
R
2
e
2
L L
V
e e
Z
V I
e
P
  

 
 
 
 
   
 
 
 
   
2
2
0 2 4
0
1
1
2
L
V
P e e
Z
 


   
If Z0 real (low-loss transmission line)
Time- Average Power Flow
   
   
2
0
2
0
0
1
1
L
L
V V e e
V
I e e
Z
j
 
 
  
 


   
  
 
 
*
2 * 2
*
2 2
L L
L L
e e
e e
 
 
 
 
 
   
 pure imaginary
Note:
62
Low-loss line
   
2
2
0 2 4
0
2 2
2
0 0
2 2
* *
0 0
1
1
2
1 1
2 2
L
L
V
P d e e
Z
V V
e e
Z Z
 
 


 

   
  
power in forward wave power in backward wave
   
2
2
0
0
1
1
2
L
V
P d
Z

   
Lossless line ( = 0)
Time- Average Power Flow
I(-l )
V(-l )
+
l
ZL
-
0 ,
Z 
63
0
0
0
tan
tan
L T
in T
T L
Z jZ
Z Z
Z jZ


 

  

 
2
4 4 2
g g
g
 
 
 

  
0
0
T
in T
L
jZ
Z Z
jZ
 
   
 
0
2
0
0
0
in in
T
L
Z Z
Z
Z
Z
   
 
Quarter-Wave Transformer
2
0T
in
L
Z
Z
Z

so
 
1/2
0 0
T L
Z Z Z

Hence
This requires ZL to be real.
ZL
Z0 Z0T
Zin
64
  2
0 1 L
j j
L
V V e e
 
 
   
   
 
2
0
2
0
1
1 L
j j
L
j
j j
L
V V e e
V e e e
 

 
 
 
   
  
 
 
max 0
min 0
1
1
L
L
V V
V V


  
  
  max
min
V
V

VoltageStanding WaveRatio VSWR
Voltage Standing Wave Ratio
I(-l )
V(-l )
+
l
ZL
-
0 ,
Z 
1
1
L
L
 

 
VSWR
z
1+ L

1
1- L

0
( )
V z
V 
/ 2
z 
D 
0
z 
65
Coaxial Cable
Here we present a “case study” of one particular transmission line, the coaxial cable.
a
b ,
r
e 
Find C, L, G, R
We will assume no variation in the z direction, and take a length of one meter in the z
direction in order top calculate the per-unit-length parameters.
66
For a TEMz mode, the shape of the fields is independent of frequency, and hence we
can perform the calculation using electrostatics and magnetostatics.
Coaxial Cable (cont.)
- l0
l0
a
b
r
e
0 0
0
ˆ ˆ
2 2 r
E
 
 
e  e e 
 
 
   
 
   
Find C (capacitance / length)
Coaxial cable
h = 1 [m]
r
e
From Gauss’s law:
0
0
ln
2
B
AB
A
b
r
a
V V E dr
b
E d
a



e e
  
 
   
 


67
- l0
l0
a
b
r
e
Coaxial cable
h = 1 [m]
r
e
 
0
0
0
1
ln
2 r
Q
C
V b
a


e e
 
   
   
 
 
Hence
We then have
0
F/m
2
[ ]
ln
r
C
b
a
e e

 
 
 
Coaxial Cable (cont.)
68
ˆ
2
I
H 
 
 
  
 
Find L (inductance / length)
From Ampere’s law:
Coaxial cable
h = 1 [m]
r

I
0
ˆ
2
r
I
B   
 
 
  
 
(1)
b
a
B d

 
 
S
h
I
I
z
center conductor
Magnetic flux:
Coaxial Cable (cont.)
69
Note: We ignore “internal inductance”
here, and only look at the magnetic field
between the two conductors (accurate
for high frequency.
Coaxial cable
h = 1 [m]
r

I
  0
0
0
1
2
ln
2
b
r
a
b
r
a
r
H d
I
d
I b
a

   
  

 



 
  
 


0
1
ln
2
r
b
L
I a

 

 
   
 
0
H/m
ln [ ]
2
r b
L
a
 

 
  
 
Hence
Coaxial Cable (cont.)
70
0
H/m
ln [ ]
2
r b
L
a
 

 
  
 
Observation:
0
F/m
2
[ ]
ln
r
C
b
a
e e

 
 
 
 
0 0 r r
LC e  e  e
 
This result actually holds for any transmission line.
Coaxial Cable (cont.)
71
0
H/m
ln [ ]
2
r b
L
a
 

 
  
 
For a lossless cable:
0
F/m
2
[ ]
ln
r
C
b
a
e e

 
 
 
0
L
Z
C

0 0
1
ln [ ]
2
r
r
b
Z
a


e 
 
 
 
 
0
0
0
376.7303 [ ]


e
  
Coaxial Cable (cont.)
72
- l0
l0
a
b

0 0
0
ˆ ˆ
2 2 r
E
 
 
e  e e 
 
 
   
 
   
Find G (conductance / length)
Coaxial cable
h = 1 [m]

From Gauss’s law:
0
0
ln
2
B
AB
A
b
r
a
V V E dr
b
E d
a



e e
  
 
   
 


Coaxial Cable (cont.)
73
- l0
l0
a
b
 J E


We then have leak
I
G
V

 
0
0
(1)2
2
2
2
leak a
a
r
I J a
a E
a
a
 
 

 

 
e e




 
  
 
0
0
0
0
2
2
ln
2
r
r
a
a
G
b
a

 
e e

e e
 
 
 

 
 
 
2
[S/m]
ln
G
b
a


 
 
 
or
Coaxial Cable (cont.)
74
Observation:
F/m
2
[ ]
ln
C
b
a
e

 
 
 
G C

e
 
  
 
This result actually holds for any transmission line.
2
[S/m]
ln
G
b
a


 
 
 
0 r
e e e

Coaxial Cable (cont.)
75
G C

e
 
  
 
To be more general:
tan
G
C


 e
 
 
 
 
tan
G
C



Note: It is the loss tangent that is usually (approximately)
constant for a material, over a wide range of frequencies.
Coaxial Cable (cont.)
As just derived,
The loss tangent actually arises from
both conductivity loss and polarization
loss (molecular friction loss), ingeneral.
76
This is the loss tangent that would
arise from conductivity effects.
General expression for loss tangent:
 
c
c c
j
j j
j

e e


e e

e e
 
   
 
 
 
    
 
 
 
tan c
c

e
e 

e
e
 
  
  
 


Effective permittivity that accounts for conductivity
Loss due to molecular friction Loss due to conductivity
Coaxial Cable (cont.)
77
Find R (resistance / length)
Coaxial cable
h = 1 [m]
Coaxial Cable (cont.)
,
b rb
 
a
b

,
a ra
 
a b
R R R
 
1
2
a sa
R R
a

 
  
 
1
2
b sb
R R
b

 
  
 
1
sa
a a
R
 

1
sb
b b
R
 

0
2
a
ra a

  

0
2
b
rb b

  

Rs = surface resistance of metal
78
General Transmission Line Formulas
tan
G
C



 
0 0 r r
LC e  e  e
 
 
0
lossless
L
Z
C
  characteristic impedance of line (neglectingloss)
(1)
(2)
(3)
Equations (1) and (2) can be used to find L and C if we know the material
properties and the characteristic impedance of the lossless line.
Equation (3) can be used to find G if we know the material loss tangent.
a b
R R R
 
tan
G
C



(4)
Equation (4) can be used to find R (discussed later).
,
i
C i a b
 
contourof conductor,
2
2
1
( )
i
i s sz
C
R R J l dl
I
 
  
 
 

79
General Transmission Line Formulas (cont.)
 tan
G C
 

0
lossless
L Z e

0
/ lossless
C Z
e

R R

Al four per-unit-length parameters can be found from 0 ,
lossless
Z R
80
Common Transmission Lines
0 0
1
ln [ ]
2
lossless r
r
b
Z
a


e 
 
 
 
 
Coax
Twin-lead
1
0
0 cosh [ ]
2
lossless r
r
h
Z
a
 
 e
  
 
 
 
2
1 2
1
2
s
h
a
R R
a h
a

 
 
 
 
 
 
  
 
 

 
 
 
 
1 1
2 2
sa sb
R R R
a b
 
   
 
   
   
a
b
,
r r
e 
h
,
r r
e 
a a
81
Common Transmission Lines (cont.)
Microstrip
   
 
 
 
 
0 0
1 0
0
0 1
eff eff
r r
eff eff
r r
f
Z f Z
f
e e
e e
 

  
 

 
 
     
 
0
120
0
0 / 1.393 0.667ln / 1.444
eff
r
Z
w h w h

e

 
 
  
 
( / 1)
w h 
2
1 ln
t h
w w
t

 
 
     
 
 
 
h
w
er
t
82
Common Transmission Lines (cont.)
Microstrip ( / 1)
w h 
h
w
er
t
 
2
1.5
(0)
(0)
1 4
eff
r r
eff eff
r r
f
F
e e
e e 
 

 
 
 

 
 
 
1 1 1
1 /
0
2 2 4.6 /
1 12 /
eff r r r
r
t h
w h
h w
e e e
e
 
    
   
 
  
    
 
   
  
 
2
0
4 1 0.5 1 0.868ln 1
r
h w
F
h
e

 
   
 
    
 
   
 
 
 
 
   
83
At high frequency, discontinuity effects can become important.
Limitations of Transmission-Line Theory
Bend
incident
reflected
transmitted
The simple TL model does not account for the bend.
ZTH
ZL
Z0
+
-
84
At high frequency, radiation effects can become important.
When will radiation occur?
We want energy to travel from the generator to the load, without radiating.
Limitations of Transmission-Line Theory (cont.)
ZTH
ZL
Z0
+
-
85
r
e a
b
z
The coaxial cable is a perfectly
shielded system – there is never
any radiation at any frequency, or
under any circumstances.
The fields are confined to the region
between the two conductors.
Limitations of Transmission-Line Theory (cont.)
86
The twin lead is an open type of transmission
line – the fields extend out to infinity.
The extended fields may cause
interference with nearby objects.
(This may be improved by using
“twisted pair.”)
+ -
Limitations of Transmission-Line Theory (cont.)
Having fields that extend to infinity is not the same thing as having radiation, however.
87
The infinite twin lead will not radiate by itself, regardless of how far apart
the lines are.
h
incident
reflected
The incident and reflected waves represent an exact solution to Maxwell’s
equations on the infinite line, at any frequency.
 
*
1
ˆ
Re E H 0
2
t
S
P dS

 
   
 
 

S
+ -
Limitations of Transmission-Line Theory (cont.)
No attenuation on an infinite lossless line
88
A discontinuity on the twin lead will cause radiation to occur.
Note: Radiation effects
increase as the
frequency increases.
Limitations of Transmission-Line Theory (cont.)
h
Incident wave
pipe
Obstacle
Reflected wave
Bend h
Incident wave
bend
Reflected wave
89
To reduce radiation effects of the twin lead at discontinuities:
h
1) Reduce the separation distance h (keep h << ).
2) Twist the lines (twisted pair).
Limitations of Transmission-Line Theory (cont.)
CAT 5 cable
(twisted pair)
90
91
Two conductor
wire Coaxial line Shielded
Strip line
Dielectric
92
Two conductor
wire Coaxial line Shielded
Strip line
Dielectric
93
Rectangular
guide
Circular
guide
Ridge guide
Common Hollow-pipe waveguides
94
STRIP LINE CONFIGURATIONS
W
SINGLE STRIP LINE COUPLED LINES
COUPLED STRIPS
TOP & BOTTOM
COUPLED ROUND BARS
95
MICROSTRIP LINE CONFIGURATIONS
TWO COUPLED MICROSTRIPS SINGLE MICROSTRIP
TWO SUSPENDED
SUBSTRATE LINES
SUSPENDED SUBSTRATE
LINE
96
TRANSMISSION MEDIA
• TRANSVERSE ELECTROMAGNETIC (TEM):
– COAXIAL LINES
– MICROSTRIP LINES (Quasi TEM)
– STRIP LINES AND SUSPENDED SUBSTRATE
• METALLIC WAVEGUIDES:
– RECTANGULAR WAVEGUIDES
–CIRCULAR WAVEGUIDES
• DIELECTRIC LOADED WAVEGUIDES
ANALYSIS OF WAVE PROPAGATION ON THESE
TRANSMISSION MEDIA THROUGH MAXWELL’S
EQUATIONS
97
Auxiliary Relations:
 
ty
Permeabili
Relative
H/m
10
4
;
5.
Constant
Dielectric
Relative
F/m
10
854
.
8
;
4.
Current
Convection
;
3.
Current
Conduction
;
ty
Conductivi
Law)
s
(Ohm'
2.
Velocity
;
Charge
Newton
.
1
r
12
o
12




























e
e
e
e
e



H
H
B
E
E
D
J
v
J
J
E
J
v
q
B
v
E
q
F
o
r
r
o
o
r
98
Maxwell’s Equations in Large Scale Form
S
d
D
t
S
d
J
l
d
H
S
d
M
S
d
B
t
l
d
E
S
d
B
dv
S
d
D
S
S
l
S
S
l
S
S
V


























 
0

ENEE482 99
•Maxwell’s Equations for the Time - Harmonic Case
D
j
J
H
M
B
j
E
B
D
E
E
t
E
E
e
E
E
e
jE
E
E
jE
E
a
jE
E
a
jE
E
a
z
y
x
E
e
z
y
x
E
t
z
y
x
E
xr
xi
xi
xr
j
t
j
xi
xr
t
j
xi
xr
x
zi
zr
z
yi
yr
y
xi
xr
x
t
j
t
j











































,
0
,
)
/
(
tan
,
)
cos(
]
Re[
]
)
Re[(
)
(
)
(
)
(
)
,
,
(
]
)
,
,
(
Re[
)
,
,
,
(
:
then
,
variations
e
Assume
1
2
2
2
2
100
Boundary Conditions at a General Material Interface
s
s
s
s
t
t
n
n
s
s
n
n
s
t
t
J
H
H
n
M
E
E
n
B
B
n
D
D
n
J
H
H
B
B
D
D
M
E
E






















)
(
ˆ
)
(
ˆ
0
)
(
ˆ
)
(
ˆ
;
Density
Charge
Surface
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1



D1n
D2n
h
Ds
h
E1t
E2t
1,e1
2,e2
101
)
(
ˆ
)
(
ˆ
)
(
ˆ
)
(
ˆ
)
(
ˆ
)
(
ˆ
)
(
ˆ
)
(
ˆ
0
;
0
0
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
H
n
H
n
E
n
E
n
B
n
B
n
D
n
D
n
H
H
B
B
D
D
E
E
t
t
n
n
n
n
t
t



















Fields at a Dielectric Interface
102
H
n
H
J
B
D
n
t
s
n












ˆ
0
B
n̂
0
ˆ
ρ
D
0
E
n̂
o
E
:
Conductor
Perfect
a
at
Conditions
Boundary
s
n
t
+ + +
n

s
Js
Ht
103
0
)
(
ˆ
)
(
ˆ
0
)
(
ˆ
0
)
(
ˆ









H
n
M
E
n
B
n
D
n
s
104



e

e


2
/
;
0
;
0
:
medium
free
Source
a
For
)
(
)
(
2
2
2
2
2
2
2


























v
k
H
k
H
k
E
k
E
E
j
J
j
H
j
E
E
E
Wave Equation
105
z
a
y
a
x
a
r
k
a
k
a
k
a
k
Ae
E
k
k
k
z
y
x
E
z
y
x
i
E
k
z
E
y
E
x
E
E
k
z
E
y
E
x
E
E
k
E
z
y
x
z
z
y
y
x
x
z
jk
y
jk
x
jk
x
z
y
x
i
i
i
i
z
y
s














































Let
,
k
variables
of
separation
Using
),
,
,
(
for
Solve
,
,
,
0
0
2
0
2
2
2
x
2
0
2
2
2
2
2
2
2
0
2
2
2
2
2
2
2
0
2
106
space.
free
of
admittance
intrinsic
the
is
377
space
free
of
impedance
interensic
the
is
1
1
1
1
wave
plane
called
is
solution
The
.
k
n
propagatio
of
direction
the
lar to
perpendicu
is
vector
The
0
0
Since
,
Similarly
,
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Y
E
n
E
n
Y
E
n
E
n
k
e
E
k
e
E
j
e
E
j
H
H
j
E
E
E
k
E
e
E
E
Ce
E
Be
E
Ae
E
r
k
j
r
k
j
r
k
j
r
k
j
r
k
j
z
r
k
j
y
r
k
j
x



















































e





107
s
j










e

e




e

1
)
1
(
2
j)
(1
j
2
1
2
j)
(1
j
j
j
s













108
The field amplitude decays exponentially from its surface
According to e-u/
s where u is the normal distance into th
Conductor, s is the skin depth
H
n̂
,
1
:
Impedance
surface
The
E
J
,
2







m
s
m
t
s
m
s
Z
J
Z
E
j
Z




109
Parallel Polarization
z
x
Ei
Et
Er
3
1
2
n1
n3
n2
e0
e
0
0
0
0
0
2
0
2
1
0
1
Y
,
,
,
1
2
0
1
1
0

e
e

 











k
E
n
Y
H
e
E
E
E
n
Y
H
e
E
E
r
r
r
n
jk
r
i
i
r
n
jk
i
110
sin
,
cos
sin
,
cos
sin
,
cos
sin
sin
cos
sin
cos
sin
cos
sin
,
,
,
3
3
1
3
3
3
2
2
1
2
2
2
1
1
1
1
1
1
3
1
2
1
3
3
3
2
2
2
1
1
1
3
0
3
2
0
1
0
0
0
3
3
1
3
















e

E
E
E
E
E
E
E
E
E
E
E
E
n
a
a
n
a
a
n
a
a
n
n
nk
kn
n
k
n
k
n
k
k
nY
Y
E
n
Y
H
e
E
E
z
x
z
x
z
x
z
x
z
x
z
x
x
x
x
x
t
t
r
n
jk
t

































111
Under steady-state sinusoidal time-varying
Conditions, the time-average energy stored in the
Electric field is










V
e
V
V
e
dV
E
E
W
dV
E
E
dV
D
E
W
*
*
*
4
then
real,
and
constant
is
If
4
1
4
1
Re
e
e
e
112










S
V
V
m
dS
H
E
P
dV
H
H
dV
B
H
W
*
*
*
Re
2
1
:
by
given
is
S
surface
closed
a
across
smitted
power tran
average
time
The
constant
and
real
is
if
4
4
1
Re
:
is
field
magnetic
the
in
stored
energy
average
Time


113
dV
M
H
J
E
dV
D
E
H
B
j
dV
M
H
J
E
dV
D
E
H
B
j
dS
H
E
V
d
H
E
E
J
J
J
E
E
D
j
H
M
B
j
E
H
H
E
H
E
V
s
V
s
V
V
S
V
s

















 








































)
(
2
1
4
4
2
)
(
2
1
)
(
2
2
1
2
1
)
(
)
(
)
(
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*






114
dS
H
E
P
dV
E
E
H
H
j
dV
E
E
H
H
dV
E
E
dS
H
E
dV
M
H
J
E
j
S
V
V
V
S
S
V
Ss








































*
0
*
*
*
*
*
*
*
2
1
)
(
2
)
(
2
2
1
2
1
)
(
2
1
-
ty
conductivi
and
j
-
,
:
by
zed
characteri
is
medium
the
If
e


e







e
e
e
115
volume.
in the
stored
energy
reactive
the
times
2
and
)
(
volume
in the
heat
lost to
power
the
,
P
surface
he
through t
smitted
power tran
the
of
sum
the
to
equal
is
)
(P
sources
by the
delivered
power
The
)
(
2
)
(
2
4
4
2
2
1
Im
)
(
2
1
P
0
s
0
*
*
*
*
s



e




P
W
W
j
P
P
P
W
W
dV
E
E
H
H
dS
H
E
dV
M
H
J
E
e
m
s
e
m
V
S
s
s
V
s













 
















loss
power
average
Time
2
1
)
(
2
*
*
*










 
 dV
E
E
dV
E
E
H
H
P
V
V

e



116
C
L R
I
V
network
a
of
impedance
the
of
n
Definitio
General
2
1
)
(
2
P
)
(
2
P
)
4
1
4
1
(
2
2
1
)
(
2
1
2
1
2
1
*
2
*
*
*
*
*
*
II
W
W
j
Z
W
W
j
C
II
LII
j
RII
C
j
L
j
R
II
ZII
VI
e
m
e
m





















117
 
e


e
e
e


e
e
e

e




















































































2
2
2
2
2
2
2
2
2
0
D
equation.
Helmholtz
ous
Inhomogene
condition)
(Lorentz
or
Let
,
,
1
,
0
,
Let
k
J
A
k
A
j
A
j
A
k
J
j
A
k
A
A
A
J
j
A
J
E
j
A
H
A
j
E
A
j
E
A
j
E
A
j
B
j
E
A
B


118
Solution For Vector Potential
(x,y,z)
(x’,y’, z’) R
r
r’
J
V
d
R
e
r
J
r
A
r
r
z
z
y
y
x
x
R
V
d
R
e
r
J
r
A
z
y
x
A
jkR
V
jkR





















 )
(
4
)
(
)
(
)
(
)
(
current
al
infinitism
an
for
)
(
4
)
(
)
,
,
(
2
2
2




119
R
g
z
Ldz
Cdz
I(z,t)
V(z,t)
V(z,t)+v/z
dz
I(z,t)+I/z dz
Lumped element circuit model for a transmission line
120
Impedance
stic
Characteri
:
C
L
,
,
)
(
)
(
)
,
(
)
(
)
(
)
,
(
1
0
)
,
(
)
,
(
0
)
,
(
)
,
(
2
2
2
2
2
2
2
2
c
c
c
c
Z
Z
Z
V
I
Z
V
I
v
z
t
f
I
v
z
t
f
I
t
z
I
v
z
t
f
V
v
z
t
f
V
t
z
V
LC
v
t
t
z
I
LC
z
t
z
I
t
t
z
V
LC
z
t
z
V




































121
LC
C
L
Y
Z
V
Y
I
V
Y
I
e
I
e
I
z
I
e
V
e
V
z
V
v
z
V
v
dz
z
V
d
z
CV
j
z
z
I
z
LI
j
z
z
V
t
V
t
V
c
c
c
c
z
j
z
j
z
j
z
j
g
g












































,
1
,
,
)
(
)
(
,
0
)
(
)
(
)
(
)
(
)
(
)
(
cos
)
(
2
2
2
2
122
ZL
Zc
Z
To generator
1
/
1
/
,
1
1
t
coefficien
on
Reflecti
)
(
1
L




























c
L
c
L
c
L
L
L
L
c
L
L
L
L
Z
Z
Z
Z
Z
Z
V
V
V
V
Z
Z
V
I
I
I
I
V
V
V
V
123
 












 





tan
tan
1
1
)
2
(
sin
4
1
,
)
1
(
2
1
)
1
)(
1
(
Re
2
1
)
Re(
2
1
2
/
1
2
2
2
2
*
2
*
L
c
c
L
c
in
in
j
L
z
j
j
z
j
z
j
L
z
j
L
c
L
L
c
L
L
jZ
Z
jZ
Z
Z
Z
Z
S
l
V
V
e
e
V
e
e
V
e
V
e
V
V
V
Y
V
Y
I
V
P
































 














124
Transmission Lines & Waveguides
Wave Propagation in the Positive z-Direction is Represented By:e-jz
     
   
     
   
,
,
)
(
)
(
)
(
)
(
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
z
t
t
z
t
t
z
t
t
z
t
t
z
j
z
t
z
z
z
t
z
t
z
j
z
t
z
j
z
t
z
t
z
j
z
z
j
t
z
t
z
j
z
z
j
t
z
t
e
j
e
h
j
h
e
j
h
h
j
e
e
h
h
j
e
a
j
e
e
a
j
e
e
h
h
j
e
e
e
a
j
E
e
y
x
h
e
y
x
h
z
y
x
H
z
y
x
H
z
y
x
H
e
y
x
e
e
y
x
e
z
y
x
E
z
y
x
E
z
y
x
E


e































































125
Modes Classification:
1. Transverse Electromagnetic (TEM) Waves
0

 z
z H
E
2. Transverse Electric (TE), or H Modes
0
but
,
0 
 z
z H
E
3. Transverse Magnetic (TM), or E Modes
0
But
,
0 
 z
z E
H
4. Hybrid Modes
0
,
0 
 z
z E
H
126
TEM WAVES
   
 
z
j
z
z
j
t
t
z
j
t
z
j
t
t
t
t
t
t
t
t
t
t
e
e
a
Y
e
h
H
e
y
x
e
e
E
y
x
y
x
y
x
e
h
e
e
h




e











































ˆ
)
,
(
0
,
ential
Scalar Pot
0
,
,
e
h
â
,
0
h
e
â
,
0
0
,
0
0
2
t
0
t
z
t
t
0
t
z
t
127
waves
TEM
for
0
]
)
(
[
,
0
)
(
,
but
,
0
:
equation
Helmholtz
satisfy
must
field
The
direction
z
-
or
in the
n
propagatio
for wave
H
E
Impedance
Wave
,
1
0
2
0
2
t
2
0
2
2
2
2
t
2
0
2
0
y
x
0
0
0
k
k
E
k
E
a
j
E
k
E
H
E
Z
Y
t
t
t
t
t
z
t
t
x
y









































e
128
TE WAVES
0
,
0
,
0
let
,
0
)
(
0
)
,
(
)
(
0
,
2
2
2
2
2
2
2
2
2
2
2
2
2





































t
t
z
t
t
t
z
z
t
z
t
t
t
t
z
z
t
t
z
c
z
t
c
z
t
z
z
t
e
h
j
h
e
j
h
a
j
h
a
h
h
e
a
h
j
e
h
k
h
k
k
h
k
h
k
y
x
h
H
k
H

e








129
h
x
y
h
t
z
t
z
t
z
t
c
t
Z
h
e
k
Z
h
a
Z
k
h
a
e
h
k
j
h
















y
x
0
0
0
0
2
h
e
Impedance
Wave
;
ˆ
ˆ


e






130
Admittance
Wave
ˆ
0
let
,
0
)
(
0
)
,
(
)
(
0
0
2
2
2
2
2
2
2
2
2
2
2
2
2
2

























Y
k
Y
e
a
Y
h
e
k
j
e
e
k
e
k
k
e
k
e
e
k
y
x
e
E
k
E
e
z
e
t
z
t
c
t
z
c
z
t
c
z
z
t
z
z
t





TM WAVES
131
TEM TRANSMISSION LINES
Parallel -plate
Two-wire Coaxial
COAXIAL LINES
132
a b
e

e































0
jkz
-
0
0
jkz
-
r
0
0
0
2
1
2
2
2
e
a
)
/
ln(
and
e
a
)
/
ln(
)
/
ln(
)
/
ln(
0
at
0
,
at
ln
0
for
0
1
)
(
1
Y
a
b
r
V
Y
H
a
b
r
V
E
b
a
b
r
V
r
a
r
V
C
r
C
r
r
r
r
r
133
)
/
ln(
ˆ
Re
2
1
e
)
/
ln(
2
e
)
/
ln(
I
e
ˆ
)
/
ln(
ˆ
ˆ
2
0
0
2
0
*
jkz
-
2
0
0
0
jkz
-
0
0
jkz
-
0
0
a
b
V
Y
rdrd
a
H
E
P
a
b
V
Y
ad
a
b
a
V
Y
a
a
b
a
V
Y
H
a
H
n
J
z
b
a
z
r
s

















 

• THE CHARACTERISTIC IMPEDANCE OF A COAXIAL IS Z0
Ohms
ln
2
1
0
0
0








a
b
Y
I
V
Zc

Zc OF COAXIAL LINE AS A FUNCTION OF b/a
134
er Zo
=
X
b/a
1
10
100
0
20
40
60
80
100
120
140
160
180
200
220
240
260
135
E
J
Y
Y
k
k
E
a
Y
H
e
E
k
k
k
k
j
j
k
j
j
jk
j
j
Y
Y
j
k
k
r
r
r
z
jkz
t
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r


e
e
e
e

e
e

e
e
e
e
e
e


e
e
e
e
e
e
e
e
e
e
e





















































ty
conductivi
the
to
equivalent
is
,
ˆ
,
,
2
2
)
1
(
losses
small
For
)
(
)
(
and
)
(
0
0
0
0
0
0
2
/
1
0
0
2
/
1
0
2
/
1
0
136
0
0
c
*
*
*
0
0
*
0
*
*
,
)
/
ln(
2
Re
2
1
2
Re
2
1
,
1
:
loss
conductor
the
to
due
loss
power
The
2
2
2
,
2
2
-
,
2
2
1
:
is
length
unit
per
loss
power
The
2
1
2
1
e
e


e
e
e
e




e















































Y
Y
ab
a
b
a
b
Y
R
S
d
H
E
P
d
H
H
R
d
J
J
Z
P
j
Z
k
Y
Y
dS
E
E
Y
P
P
P
z
P
e
P
P
dS
E
E
dS
J
J
P
m
s
S
S
s
m
s
S
S
s
m
s
m
r
r
r
d
S
z
S
S





Qc OF COAXIAL LINE AS A FUNCTION OF Zo
137
Q-Copper
of
Coaxial
Line
2000
2200
2400
2600
2800
3000
3200
3400 0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
er Zc
GHz
c
f
b
Q
138
w
y
x
d
jkz
w
w
s
jkz
d
y
jkz
jkz
jkz
t
t
e
d
wV
dx
z
H
y
dx
z
J
I
e
dy
E
V
e
d
V
x
E
z
y
x
H
e
d
V
y
e
y
x
e
y
x
E
d
V
y
y
x
e
d
y
V
y
x
y
x














































0
0
0
0
0
0
0
0
0
0
2
ˆ
)
ˆ
(
ˆ
V
,
ˆ
ˆ
)
,
(
ˆ
)
,
(
)
,
(
ˆ
)
,
(
,
)
,
(
V
d)
(x,
0,
(x,0)
By
A
y)
(x,
d
y
0
w,
x
0
0
)
,
(
TEM Modes
139
z
j
-
z
j
-
2
2
2
2
2
e
cos
)
,
,
(
e
sin
)
,
,
(
sin
)
,
(
)
(
,....
3
,
2
,
1
,
0
,
,
0
B
d
0,
y
at
0
)
,
(
cos
sin
)
,
(
0
)
,
(



e





y
d
n
A
k
j
z
y
x
H
y
d
n
A
z
y
x
E
y
d
n
A
y
x
e
d
n
K
n
n
d
k
y
x
e
y
k
B
y
k
A
y
x
e
y
x
e
k
y
n
c
x
n
z
n
z
c
z
c
c
z
z
c
























140



























 
   
 
0
n
for
2
)
Re(
0
n
for
4
)
Re(
2
1
ˆ
2
1
2
,
Z
:
is
modes
TM
the
of
impedance
wave
The
2
2
0
E
,
e
cos
)
,
,
(
2
2
2
2
*
0 0
0 0
*
0
g
TM
x
z
j
-
n
c
n
c
x
w
x
d
y
y
w
x
d
y
p
x
y
c
c
y
n
c
y
A
k
d
A
k
d
dydx
H
E
dydx
z
H
E
P
v
k
H
E
d
k
f
H
y
d
n
A
k
j
z
y
x
E
e


e








e

e

e


 
141
0
n
for
Np/m
2
2
2
2
2
loss
conductor
to
due
n
Attenuatio
2
2
2
2
2
0
0
c













d
kR
d
R
A
k
w
R
dx
J
R
P
P
P
s
s
c
n
c
s
w
x
s
s




e




142
z
j
-
z
j
-
2
2
2
2
2
e
sin
)
,
,
(
e
cos
)
,
,
(
cos
)
,
(
)
(
,....
3
,
2
,
1
,
,
0
A
d
0,
y
at
0
)
,
(
cos
sin
)
,
(
0
)
,
(









y
d
n
B
k
j
z
y
x
E
y
d
n
B
z
y
x
H
y
d
n
B
y
x
h
d
n
k
n
n
d
k
y
x
e
y
k
B
y
k
A
y
x
h
y
x
h
k
y
n
c
x
n
z
n
z
c
x
c
c
z
z
c
























143
Np/m
2
0
n
For
)
Re(
4
2
1
ˆ
2
1
2
,
Z
:
is
modes
TM
the
of
impedance
wave
The
2
2
0
E
,
e
sin
)
,
,
(
2
c
2
2
*
0 0
0 0
*
0
g
TE
y
z
j
-
d
k
R
k
B
k
dw
dydx
H
E
dydx
z
H
E
P
v
k
H
E
d
k
f
H
y
d
n
B
k
j
z
y
x
H
s
c
n
c
y
w
x
d
y
x
w
x
d
y
p
y
x
c
c
x
n
c
y













e

e


 

















 
   
 
144
COUPLED LINES EVEN & ODD
MODES OF EXCITATIONS
AXIS OF EVEN SYMMETRY AXIS OF ODD SYMMETRY
P.M.C. P.E.C.
EVEN MODE ELECTRIC
FIELD DISTRUBUTION
ODD MODE ELECTRIC
FIELD DISTRIBUTION
e
Z0 o
Z0
=EVEN MODE CHAR.
IMPEDANCE
=ODD MODE CHAR.
IMPEDANCE
Equal currents are flowing
in the two lines
Equal &opposite currents are
flowing in the two lines

Contenu connexe

Tendances

Butterworth filter design
Butterworth filter designButterworth filter design
Butterworth filter design
Sushant Shankar
 

Tendances (20)

Decimation in time and frequency
Decimation in time and frequencyDecimation in time and frequency
Decimation in time and frequency
 
Two stage op amp design on cadence
Two stage op amp design on cadenceTwo stage op amp design on cadence
Two stage op amp design on cadence
 
CMOS TG
CMOS TGCMOS TG
CMOS TG
 
MOSFET Small signal model
MOSFET Small signal modelMOSFET Small signal model
MOSFET Small signal model
 
Butterworth filter design
Butterworth filter designButterworth filter design
Butterworth filter design
 
VLSI
VLSIVLSI
VLSI
 
Microwave measurements in detail
Microwave measurements in detailMicrowave measurements in detail
Microwave measurements in detail
 
Ee6378 bandgap reference
Ee6378 bandgap referenceEe6378 bandgap reference
Ee6378 bandgap reference
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor Logic
 
Sampling Theorem and Band Limited Signals
Sampling Theorem and Band Limited SignalsSampling Theorem and Band Limited Signals
Sampling Theorem and Band Limited Signals
 
EEP306: pulse width modulation
EEP306: pulse width modulation EEP306: pulse width modulation
EEP306: pulse width modulation
 
Threshold Voltage & Channel Length Modulation
Threshold Voltage & Channel Length ModulationThreshold Voltage & Channel Length Modulation
Threshold Voltage & Channel Length Modulation
 
Frequency modulation
Frequency modulationFrequency modulation
Frequency modulation
 
M ary psk modulation
M ary psk modulationM ary psk modulation
M ary psk modulation
 
Types of Sampling in Analog Communication
Types of Sampling in Analog CommunicationTypes of Sampling in Analog Communication
Types of Sampling in Analog Communication
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
 
Noise in AM systems.ppt
Noise in AM systems.pptNoise in AM systems.ppt
Noise in AM systems.ppt
 
Introduction to FPGAs
Introduction to FPGAsIntroduction to FPGAs
Introduction to FPGAs
 
Chap 5
Chap 5Chap 5
Chap 5
 
Matched filter
Matched filterMatched filter
Matched filter
 

Similaire à UNIT I.ppt

Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
DibyadipRoy1
 
Class06 transmission line_basics
Class06 transmission line_basicsClass06 transmission line_basics
Class06 transmission line_basics
s.p.c.e.t.
 
High speed board design considerations
High speed board design considerationsHigh speed board design considerations
High speed board design considerations
Mohamad Tisani
 
Class06_Transmission_line_basics.ppt
Class06_Transmission_line_basics.pptClass06_Transmission_line_basics.ppt
Class06_Transmission_line_basics.ppt
DOAFCLF
 

Similaire à UNIT I.ppt (20)

emtl
emtlemtl
emtl
 
Microwave Engineering Lecture Notes
Microwave Engineering Lecture NotesMicrowave Engineering Lecture Notes
Microwave Engineering Lecture Notes
 
Tem
TemTem
Tem
 
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
 
Transmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxTransmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptx
 
transmission line theory prp
transmission line theory prptransmission line theory prp
transmission line theory prp
 
Microwave waveguides 1st 1
Microwave waveguides 1st 1Microwave waveguides 1st 1
Microwave waveguides 1st 1
 
TLW_Unit I material pdf.ppt
TLW_Unit I material pdf.pptTLW_Unit I material pdf.ppt
TLW_Unit I material pdf.ppt
 
Transmissionline
TransmissionlineTransmissionline
Transmissionline
 
Class06 transmission line_basics
Class06 transmission line_basicsClass06 transmission line_basics
Class06 transmission line_basics
 
Transmission Lines Part 2 (TL Formulas).pptx
Transmission Lines Part 2 (TL Formulas).pptxTransmission Lines Part 2 (TL Formulas).pptx
Transmission Lines Part 2 (TL Formulas).pptx
 
BASIC CONCEPTS OF TRANSMISSION LINES & WAVEGUIDES ForC 18 DECE unit 1, SBTET
BASIC CONCEPTS OF TRANSMISSION LINES  &  WAVEGUIDES ForC 18 DECE unit 1, SBTETBASIC CONCEPTS OF TRANSMISSION LINES  &  WAVEGUIDES ForC 18 DECE unit 1, SBTET
BASIC CONCEPTS OF TRANSMISSION LINES & WAVEGUIDES ForC 18 DECE unit 1, SBTET
 
Introduction to microwaves
Introduction to microwavesIntroduction to microwaves
Introduction to microwaves
 
Transmission line By Lipun
Transmission line By LipunTransmission line By Lipun
Transmission line By Lipun
 
TL_Theory_L_28-08.pdf
TL_Theory_L_28-08.pdfTL_Theory_L_28-08.pdf
TL_Theory_L_28-08.pdf
 
7 slides
7 slides7 slides
7 slides
 
Transmission lines
Transmission linesTransmission lines
Transmission lines
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line Theory
 
High speed board design considerations
High speed board design considerationsHigh speed board design considerations
High speed board design considerations
 
Class06_Transmission_line_basics.ppt
Class06_Transmission_line_basics.pptClass06_Transmission_line_basics.ppt
Class06_Transmission_line_basics.ppt
 

Dernier

Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
dharasingh5698
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Dernier (20)

Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Intro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfIntro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdf
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 

UNIT I.ppt