SlideShare une entreprise Scribd logo
1  sur  9
Télécharger pour lire hors ligne
Methods for Characterization
of Epitaxial Thin Films
- Matthew Clark -
PLT (110) Pt (110)
Analysis of thin film materials http://www.rigaku.com/en/products/xrd/ultima/app033 (accessed Nov 15, 2016).
Thin Films
• Crucial to the success of
modern electronic devices
• Allows for complex layering in
devices
• Many different deposition
techniques: PLD, ALD,
Sputtering, Spin coating etc.
Substrate (mm)
Deposited Thin Film (nm - μm)
Epitaxy
• Perfectly epitaxial thin films
consist of ordered crystallite
domains matching the
structure of the underlying
substrate
• Necessary to maximize
desired properties of
anisotropic materials
Substrate
Film
Polycrystalline Film
Epitaxial Film
Substrate
Film
Pole Figure Diagrams
• X(α), φ(β) scan
• Used to determine degree of
preferred orientation
• Pole figures are measured along
varying crystallographic
orientations
• Tailoring of preferred orientation
crucial to device engineering
Polycrystalline Randomly Oriented
Polycrystalline Degree of Orientation
Crystallographic Texture http://www.doitpoms.ac.uk/tlplib/crystallographic_texture/texture_representation.php (accessed Nov 18, 2016).
Relationship Between Film
and Substrate
• Heteroepitaxy
• If lattice mismatch between film and substrate is small material
can conform to substrate
• Relaxation can create dislocations or defects
Res, H.; Zimmerman, M. High Resolution X-ray Diffractometry. www.bruker-webinars.com.
Reciprocal Space Mapping
• 2θ/ω , ω2θχ/φ , φ scan
• 2D representation of 3D
intensity data
• Allows for characterization
of lattice distortion/
relaxation
• Epitaxial orientation
(Mosaicity)
Konya, T. The Rigaku Journal 2009, 25 (2).
In Plane Diffraction
• 2θχ/φ , φ scan
• Reflection Intensities of thin
film often weak with respect
to substrate
• Diffraction from lattice planes
normal to the substrate
observed
• Measurement depth is
controllable
Kobayashi, S. The Rigaku Journal 2010, 26 (1).
Current Work
• In situ determination of lattice strain pole figures (Kazimirov et al.)
• Employing lattice strain helps to develop modeling methodology
capable of predicting alloy behavior
• In situ growth studies using synchrotron radiation (Kawamura et al.)
• Diffraction experiments performed at elevated temperatures
throughout growth stage
• Synchrotron study of microstructure gradient in laser additively formed
epitaxial Ni-based superalloy (Chen et al.)
• Laser additive formation, preferred orientation sometimes may
deviate from the axial direction of the actual growth
References
• Li, X.; Sundaram, S.; Disseix, P.; Gac, G. L.; Bouchoule, S.; Patriarche, G.; Réveret, F.; Leymarie, J.; Gmili, Y. E.;
Moudakir, T.; Genty, F.; Salvestrini, J.-P.; Dupuis, R. D.; Voss, P. L.; Ougazzaden, A. Optical Materials Express
2015, 5 (2), 380.
• Analysis of thin film materials http://www.rigaku.com/en/products/xrd/ultima/app033 (accessed Nov
15, 2016).
• Crystallographic Texture http://www.doitpoms.ac.uk/tlplib/crystallographic_texture/
texture_representation.php (accessed Nov 18, 2016).
• Res, H.; Zimmerman, M. High Resolution X-ray Diffractometry. www.bruker-webinars.com.
• Kobayashi, S. The Rigaku Journal 2010, 26 (1).
• Inaba, K. The Rigaku Journal 2008, 24 (1).
• Konya, T. The Rigaku Journal 2009, 25 (2).
• Mitsunaga, T. The Rigaku Journal 2009, 25 (1).
• Nagao, K.;Kagami, E The Rigaku Journal 2011, 27 (2).
• Xue, J.; Zhang, A.; Li, Y.; Qian, D.; Wan, J.; Qi, B.; Tamura, N.; Song, Z.;
Chen, K. Sci. Rep. Scientific Reports 2015, 5, 14903.
• Miller, M. P.; Bernier, J. V.; Park, J.-S.; Kazimirov, A. Review of Scientific Instruments 2005,
76 (11), 113903.
• Lamberti, C. Surface Science Reports 2004, 53 (1-5), 1–197.
• T. Kawamura, Y. Watanabe, S. Fujikawa, S. Bhunia, K. Uchida, J. Matsui, Y. Kagoshima, Y. Tsusaka,
Real-time observation of surface morphology of indium phosphide MOVPE growth with using X-ray
reflectivity technique, J. Cryst. Growth 237 (2002) 398 


Contenu connexe

En vedette

Nano material and surface engineering ppt
Nano material  and surface engineering pptNano material  and surface engineering ppt
Nano material and surface engineering pptVipin Singh
 
Surface modification of nanomaterials
Surface modification of nanomaterialsSurface modification of nanomaterials
Surface modification of nanomaterialszenziyan
 
2016年中国实验室过滤设备产业研究报告
2016年中国实验室过滤设备产业研究报告2016年中国实验室过滤设备产业研究报告
2016年中国实验室过滤设备产业研究报告Adele Huang
 
สมบูรณ์ -
สมบูรณ์   -สมบูรณ์   -
สมบูรณ์ -Lolicon Siscon
 

En vedette (8)

Thin films
Thin films Thin films
Thin films
 
Nano material and surface engineering ppt
Nano material  and surface engineering pptNano material  and surface engineering ppt
Nano material and surface engineering ppt
 
Surface modification of nanomaterials
Surface modification of nanomaterialsSurface modification of nanomaterials
Surface modification of nanomaterials
 
Electrodeposition and Characterization of Copper Oxide Thin Film for Solar Ce...
Electrodeposition and Characterization of Copper Oxide Thin Film for Solar Ce...Electrodeposition and Characterization of Copper Oxide Thin Film for Solar Ce...
Electrodeposition and Characterization of Copper Oxide Thin Film for Solar Ce...
 
Trabajo de investigación
Trabajo de investigaciónTrabajo de investigación
Trabajo de investigación
 
Deber modulo 5
Deber modulo 5Deber modulo 5
Deber modulo 5
 
2016年中国实验室过滤设备产业研究报告
2016年中国实验室过滤设备产业研究报告2016年中国实验室过滤设备产业研究报告
2016年中国实验室过滤设备产业研究报告
 
สมบูรณ์ -
สมบูรณ์   -สมบูรณ์   -
สมบูรณ์ -
 

Similaire à Methods for Characterization of Epitaxial Thin Films Using XRD

XPDF leaflet.pdf
XPDF leaflet.pdfXPDF leaflet.pdf
XPDF leaflet.pdfGosha7
 
Presentation 10 15 v1
Presentation 10 15 v1Presentation 10 15 v1
Presentation 10 15 v1Geet Lahoti
 
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...Akinola Oyedele
 
Askar Syrlybekov's updated CV
Askar Syrlybekov's updated CVAskar Syrlybekov's updated CV
Askar Syrlybekov's updated CVAskar Syrlybekov
 
PhD Viva Presentation-9-6-2015
PhD Viva Presentation-9-6-2015PhD Viva Presentation-9-6-2015
PhD Viva Presentation-9-6-2015omar wahdan
 
Xrd nanomaterials course_s2015_bates
Xrd nanomaterials course_s2015_batesXrd nanomaterials course_s2015_bates
Xrd nanomaterials course_s2015_batesMichael Bates
 
Presentation 10 15 v1
Presentation 10 15 v1Presentation 10 15 v1
Presentation 10 15 v1Alicia White
 
Generative AI to Accelerate Discovery of Materials
Generative AI to Accelerate Discovery of MaterialsGenerative AI to Accelerate Discovery of Materials
Generative AI to Accelerate Discovery of MaterialsDeakin University
 
PillarHall basic concept SlideShare
PillarHall basic concept SlideSharePillarHall basic concept SlideShare
PillarHall basic concept SlideShareRiikka Puurunen
 
X ray diffraction.pptx
X ray diffraction.pptxX ray diffraction.pptx
X ray diffraction.pptxnawabaman1
 
Morphing Aircraft Workshop 26/03/13 - Presentation on Auxetics
Morphing Aircraft Workshop 26/03/13 - Presentation on AuxeticsMorphing Aircraft Workshop 26/03/13 - Presentation on Auxetics
Morphing Aircraft Workshop 26/03/13 - Presentation on AuxeticsFabrizio Scarpa
 

Similaire à Methods for Characterization of Epitaxial Thin Films Using XRD (13)

XPDF leaflet.pdf
XPDF leaflet.pdfXPDF leaflet.pdf
XPDF leaflet.pdf
 
Presentation 10 15 v1
Presentation 10 15 v1Presentation 10 15 v1
Presentation 10 15 v1
 
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
 
Askar Syrlybekov's updated CV
Askar Syrlybekov's updated CVAskar Syrlybekov's updated CV
Askar Syrlybekov's updated CV
 
PhD Viva Presentation-9-6-2015
PhD Viva Presentation-9-6-2015PhD Viva Presentation-9-6-2015
PhD Viva Presentation-9-6-2015
 
Cirriculum Vitae...
Cirriculum Vitae...Cirriculum Vitae...
Cirriculum Vitae...
 
Xrd nanomaterials course_s2015_bates
Xrd nanomaterials course_s2015_batesXrd nanomaterials course_s2015_bates
Xrd nanomaterials course_s2015_bates
 
Presentation 10 15 v1
Presentation 10 15 v1Presentation 10 15 v1
Presentation 10 15 v1
 
Generative AI to Accelerate Discovery of Materials
Generative AI to Accelerate Discovery of MaterialsGenerative AI to Accelerate Discovery of Materials
Generative AI to Accelerate Discovery of Materials
 
M. Asadirad Resume
M. Asadirad ResumeM. Asadirad Resume
M. Asadirad Resume
 
PillarHall basic concept SlideShare
PillarHall basic concept SlideSharePillarHall basic concept SlideShare
PillarHall basic concept SlideShare
 
X ray diffraction.pptx
X ray diffraction.pptxX ray diffraction.pptx
X ray diffraction.pptx
 
Morphing Aircraft Workshop 26/03/13 - Presentation on Auxetics
Morphing Aircraft Workshop 26/03/13 - Presentation on AuxeticsMorphing Aircraft Workshop 26/03/13 - Presentation on Auxetics
Morphing Aircraft Workshop 26/03/13 - Presentation on Auxetics
 

Methods for Characterization of Epitaxial Thin Films Using XRD

  • 1. Methods for Characterization of Epitaxial Thin Films - Matthew Clark - PLT (110) Pt (110) Analysis of thin film materials http://www.rigaku.com/en/products/xrd/ultima/app033 (accessed Nov 15, 2016).
  • 2. Thin Films • Crucial to the success of modern electronic devices • Allows for complex layering in devices • Many different deposition techniques: PLD, ALD, Sputtering, Spin coating etc. Substrate (mm) Deposited Thin Film (nm - μm)
  • 3. Epitaxy • Perfectly epitaxial thin films consist of ordered crystallite domains matching the structure of the underlying substrate • Necessary to maximize desired properties of anisotropic materials Substrate Film Polycrystalline Film Epitaxial Film Substrate Film
  • 4. Pole Figure Diagrams • X(α), φ(β) scan • Used to determine degree of preferred orientation • Pole figures are measured along varying crystallographic orientations • Tailoring of preferred orientation crucial to device engineering Polycrystalline Randomly Oriented Polycrystalline Degree of Orientation Crystallographic Texture http://www.doitpoms.ac.uk/tlplib/crystallographic_texture/texture_representation.php (accessed Nov 18, 2016).
  • 5. Relationship Between Film and Substrate • Heteroepitaxy • If lattice mismatch between film and substrate is small material can conform to substrate • Relaxation can create dislocations or defects Res, H.; Zimmerman, M. High Resolution X-ray Diffractometry. www.bruker-webinars.com.
  • 6. Reciprocal Space Mapping • 2θ/ω , ω2θχ/φ , φ scan • 2D representation of 3D intensity data • Allows for characterization of lattice distortion/ relaxation • Epitaxial orientation (Mosaicity) Konya, T. The Rigaku Journal 2009, 25 (2).
  • 7. In Plane Diffraction • 2θχ/φ , φ scan • Reflection Intensities of thin film often weak with respect to substrate • Diffraction from lattice planes normal to the substrate observed • Measurement depth is controllable Kobayashi, S. The Rigaku Journal 2010, 26 (1).
  • 8. Current Work • In situ determination of lattice strain pole figures (Kazimirov et al.) • Employing lattice strain helps to develop modeling methodology capable of predicting alloy behavior • In situ growth studies using synchrotron radiation (Kawamura et al.) • Diffraction experiments performed at elevated temperatures throughout growth stage • Synchrotron study of microstructure gradient in laser additively formed epitaxial Ni-based superalloy (Chen et al.) • Laser additive formation, preferred orientation sometimes may deviate from the axial direction of the actual growth
  • 9. References • Li, X.; Sundaram, S.; Disseix, P.; Gac, G. L.; Bouchoule, S.; Patriarche, G.; Réveret, F.; Leymarie, J.; Gmili, Y. E.; Moudakir, T.; Genty, F.; Salvestrini, J.-P.; Dupuis, R. D.; Voss, P. L.; Ougazzaden, A. Optical Materials Express 2015, 5 (2), 380. • Analysis of thin film materials http://www.rigaku.com/en/products/xrd/ultima/app033 (accessed Nov 15, 2016). • Crystallographic Texture http://www.doitpoms.ac.uk/tlplib/crystallographic_texture/ texture_representation.php (accessed Nov 18, 2016). • Res, H.; Zimmerman, M. High Resolution X-ray Diffractometry. www.bruker-webinars.com. • Kobayashi, S. The Rigaku Journal 2010, 26 (1). • Inaba, K. The Rigaku Journal 2008, 24 (1). • Konya, T. The Rigaku Journal 2009, 25 (2). • Mitsunaga, T. The Rigaku Journal 2009, 25 (1). • Nagao, K.;Kagami, E The Rigaku Journal 2011, 27 (2). • Xue, J.; Zhang, A.; Li, Y.; Qian, D.; Wan, J.; Qi, B.; Tamura, N.; Song, Z.; Chen, K. Sci. Rep. Scientific Reports 2015, 5, 14903. • Miller, M. P.; Bernier, J. V.; Park, J.-S.; Kazimirov, A. Review of Scientific Instruments 2005, 76 (11), 113903. • Lamberti, C. Surface Science Reports 2004, 53 (1-5), 1–197. • T. Kawamura, Y. Watanabe, S. Fujikawa, S. Bhunia, K. Uchida, J. Matsui, Y. Kagoshima, Y. Tsusaka, Real-time observation of surface morphology of indium phosphide MOVPE growth with using X-ray reflectivity technique, J. Cryst. Growth 237 (2002) 398