SlideShare une entreprise Scribd logo
1  sur  30
C.K.PITHAWALA COLLEGE OF
ENGINEERING & TECHNOLOGY, SURAT
Branch:- computer 1st Year (Div. D)
ALA Subject:- Calculus
ALA Topic Name:- Power series, Taylor’s & Maclaurin’s series
Group No:- D9
Student Roll No Enrolment No Name
403 160090107051 Sharma Shubham
421 160090107028 Naik Rohan
455 160090107027 Modi Yash
456 160090107054 Solanki Divyesh
Submitted To
Gautam Hathiwala
Power Series
Taylor’s and Maclaurin’s Series
Introduction to Taylor’s series & Maclaurin’s series
› A Taylor series is a representation of a function as an infinite sum of
terms that are calculated from the values of the function’s derivatives at
a single point.
› The concept of Taylor series was discovered by the Scottish
mathematician James Gregory and formally introduced by the English
mathematician Brook Taylor in 1715.
› A Maclaurin series is a Taylor series expansion of a function about zero.
› It is named after Scottish mathematician Colin Maclaurin, who made
extensive use of this special case of Taylor series.
Statement of Taylor’s series
If 𝑓 𝑥 + ℎ is a given function of h which can be expanded into a
convergent series of positive ascending integral power of h then,
𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′
𝑥 + ℎ2
𝑓′′
𝑥
1
2!
+
ℎ3 𝑓′′′ 𝑥
1
3!
+. . . . . . . . .
ℎ 𝑛
𝑛!
𝑓 𝑛 𝑥 +. . . . . . .
Proof of Taylor’s series
› Let 𝑓(𝑥 + ℎ) be a function of h which can be expanded into a convergent series of
positive ascending integral powers of h then
𝑓 𝑥 + ℎ = 𝑎 𝑜 + 𝑎1ℎ + 𝑎2ℎ2
+ 𝑎3ℎ3
+. . . . . . . . . .
Differentiating w.r.t. h successively,
(1)
𝑓′
𝑥 + ℎ = 𝑎1 + 𝑎2. 2ℎ + 𝑎3. 3ℎ2
+. . . . . . . . . .
𝑓′′ 𝑥 + ℎ = 𝑎2. 2 + 𝑎3. 6ℎ+. . . . . . . . . .
and so on.
(2)
(3)
Putting h=0 in Eq. (1) (2) & (3),
𝑎0 = 𝑓 𝑥
𝑎1 = 𝑓′ 𝑥
𝑎2 = 𝑓′′ 𝑥 and so on
Substituting 𝑎0, 𝑎1, 𝑎2 in Eq.(1) we get,
𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′
𝑥 + ℎ2
𝑓′′
𝑥
1
2!
+
ℎ3 𝑓′′′ 𝑥
1
3!
+. . . . . . . . .
ℎ 𝑛
𝑛!
𝑓 𝑛 𝑥 +. . . . . . .
This is known as Taylor’s series.
Putting 𝑥 = 𝑎 and ℎ = 𝑥 − 𝑎 in the series, we get Taylor’s series in the powers
of 𝑥 − 𝑎 as,
𝑓 𝑥 = 𝑓(𝑎) +(𝑥 − 𝑎)𝑓′
𝑎 + (𝑥 − 𝑎)2
𝑓′′
𝑎
1
2!
+
(𝑥 − 𝑎)3 𝑓′′′ 𝑎
1
3!
+. . . . . . . . .
(𝑥−𝑎) 𝑛
𝑛!
𝑓 𝑛 𝑎 +. . . . . . .
NOTE : To express a function in ascending power of 𝑥, express h in terms of 𝑥.
Statement of Maclaurin’s series
If 𝑓 𝑥 is a given function of 𝑥 which can be expanded into a convergent
series of positive ascending integral power of 𝑥 then,
𝑓 𝑥 = 𝑓(𝑥) +ℎ𝑓′
0 + ℎ2
𝑓′′
0
1
2!
+
ℎ3 𝑓′′′ 0
1
3!
+. . . . . . . . .
ℎ 𝑛
𝑛!
𝑓 𝑛 0 +. . . . . . .
Proof of Maclaurin series
› Let 𝑓(𝑥) be a function of 𝑥 which can be expanded into positive ascending integral
powers of 𝑥 then
𝑓 𝑥 = 𝑎 𝑜 + 𝑎1 𝑥 + 𝑎2 𝑥2
+ 𝑎3 𝑥3
+. . . . . . . . . .
Differentiating w.r.t. 𝑥 successively,
(1
)
𝑓′
𝑥 = 𝑎1 + 𝑎2. 2𝑥 + 𝑎3. 3𝑥2
+. . . . . . . . . .
𝑓′′ 𝑥 = 𝑎2. 2 + 𝑎3. 6𝑥+. . . . . . . . . .
and so
on.
(2)
(3)
Putting 𝑥 =0 in Eq. (1) (2) & (3),
𝑎0 = 𝑓 0
𝑎1 = 𝑓′
0
𝑎2 = 𝑓′′
0 and so on
Substituting 𝑎0, 𝑎1, 𝑎2 in Eq.(1) we get,
𝑓 𝑥 = 𝑓(0) +𝑥𝑓′
0 + 𝑥2
𝑓′′
0
1
2!
+ 𝑥3
𝑓′′′
0
1
3!
+. . . . . . . . .
𝑥 𝑛
𝑛!
𝑓 𝑛
0 +. . . . . . .
This is known as Maclaurin’s series.
› The Taylor’s series and Maclaurin’s series gives the expansion of a function 𝑓(𝑥) as a
power series under the assumption of possibility of expansion of 𝑓 𝑥 .
› Such an investigation will not give any information regarding the range of values 𝑥 for
which the expansion is valid.
› In order to find the range of values of 𝑥, it is necessary to examine the behaviour of 𝑅 𝑛,
where 𝑅 𝑛 is the Remainder after n terms.
We have,
𝑓 𝑥 = 𝑓(𝑎) + 𝑥 − 𝑎 𝑓′ 𝑎 + 𝑥 − 𝑎 2 𝑓′′ 𝑎
1
2!
+
𝑥 − 𝑎 3 𝑓′′′ 𝑎
1
3!
+. . . . . . . . .
𝑥 − 𝑎 𝑛−1
𝑛 − 1 !
𝑓 𝑛−1 𝑎 + 𝑅 𝑛
Where 𝑅 𝑛 is the remainder after n terms defined as,
(1)
𝑅 𝑛 =
𝑥−𝑎 𝑛
𝑛!
𝑓 𝑛 𝜀 : 𝑎 < 𝜀 < 𝑥.
when this expansion (1) converges over a certain range of value of 𝑥 that is
𝑅 𝑛 → 0 𝑎𝑛𝑑 𝑛 → ∾ then the expansion is called Taylor series of 𝑓(𝑥) expanded
about a with the range values of 𝑥. (also known as 𝑟𝑎dius of convergence) for
which the expansion is valid.
Examples of Taylor’s series
Example 1.
Prove that: 𝑓 𝑚𝑥 = 𝑓 𝑥 + 𝑚 − 1 𝑥𝑓′
𝑥 +
𝑚−1 2
2!
𝑥2
𝑓′′(𝑥) + ⋯
Solution
𝑓 𝑚𝑥 = 𝑓 𝑚𝑥 − 𝑥 + 𝑥 = 𝑓 𝑥 + 𝑚 − 1 𝑥
By Taylor’s series,
𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′
𝑥 + ℎ2
𝑓′′
𝑥
1
2!
+ ℎ3
𝑓′′′
𝑥
1
3!
+. . . .
Putting ℎ = 𝑚 − 1 𝑥,
𝑓 𝑥 + 𝑚 − 1 𝑥 = 𝑓 𝑚𝑥 = 𝑓 𝑥 + 𝑚 − 1 𝑥𝑓′ 𝑥 +
𝑚−1 2
2!
𝑥2 𝑓′′(𝑥) + ⋯
Example 2:
Prove that:
𝑓
𝑥2
1 + 𝑥
= 𝑓 𝑥 −
𝑥
1 + 𝑥
𝑓′
𝑥 +
𝑥2
2! 1 + 𝑥 2 𝑓′′(𝑥) −
𝑥3
3! 1 + 𝑥 3 𝑓′′′(𝑥) … …
Solution:
𝑥2
1 + 𝑥
= 𝑥 −
𝑥
1 + 𝑥
By Taylor’s series,
𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′ 𝑥 + ℎ2 𝑓′′ 𝑥
1
2!
+ ℎ3 𝑓′′′ 𝑥
1
3!
+. . . .
Putting ℎ = −
𝑥
1+𝑥
𝑓 𝑥 −
𝑥
1 + 𝑥
= 𝑓
𝑥2
1 + 𝑥
𝑓
𝑥2
1 + 𝑥
= 𝑓 𝑥 −
𝑥
1 + 𝑥
𝑓′ 𝑥 +
𝑥2
2! 1 + 𝑥 2
𝑓′′ 𝑥
−
𝑥3
3! 1 + 𝑥 3
𝑓′′′(𝑥) … …
Hence proved.
Example 3:
Express 𝑓 𝑥 = 2𝑥3 + 3𝑥2 − 8𝑥 + 7 in terms of 𝑓(𝑥 − 2)
Solution:
𝑓(𝑥) = 2𝑥3
+ 3𝑥2
− 8𝑥 + 7
By Taylor’s series,
𝑓 𝑥 = 𝑓(𝑎) +(𝑥 − 𝑎)𝑓′ 𝑎 + (𝑥 − 𝑎)2 𝑓′′ 𝑎
1
2!
+
(𝑥 − 𝑎)3 𝑓′′′ 𝑎
1
3!
+. . . . . . . . .
(𝑥−𝑎) 𝑛
𝑛!
𝑓 𝑛 𝑎 +. . . . . . .
Putting 𝑎 = 2,
𝑓 𝑥 = 𝑓(2) +(𝑥 − 2)𝑓′
𝑎 + (𝑥 − 2)2
𝑓′′
2
1
2!
+ (𝑥 − 2)3
𝑓′′′
2
1
3!
+. . . . . . (1)
𝑓(𝑥) = 2𝑥3 + 3𝑥2 − 8𝑥 + 7, 𝑓 2 = 16 + 12 − 16 + 7 = 19
𝑓′ 𝑥 = 6𝑥2 + 6𝑥 − 8, 𝑓′ 2 = 24 + 12 − 8 = 28
𝑓′′ 𝑥 = 12𝑥 + 6, 𝑓′′ 2 = 24 + 6 = 30
𝑓′′′
𝑥 = 12, 𝑓′′′
2 = 12 and so on.
Substituting in Eq.(1),
𝑓 𝑥 = 19 + 𝑥 − 2 28 + (𝑥 − 2)2
30
2!
+ (𝑥 − 2)3
12
3!
+. . . . . .
𝑓 𝑥 = 19 + 𝑥 − 2 28 + 15(𝑥 − 2)2
+ 2(𝑥 − 2)3
+. . . . . .
Example 4.
Express 5 + 4 𝑥 − 1 2
− 3 𝑥 − 1 3
+ 𝑥 − 1 4
in ascending powers of x.
Solution:
Let, 𝑓 𝑥 − 1 = 5 + 4 𝑥 − 1 2
− 3 𝑥 − 1 3
+ 𝑥 − 1 4
𝑓 𝑥 = 5 + 4𝑥2
− 3𝑥3
+ 𝑥4
By Taylor’s series,
𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′ 𝑥 + ℎ2 𝑓′′ 𝑥
1
2!
+ ℎ3 𝑓′′′ 𝑥
1
3!
+. . . .
putting ℎ = −1,
𝑓 𝑥 − 1 = 𝑓(𝑥) +(−1)𝑓′ 𝑥 + −1 2 𝑓′′ 𝑥
1
2!
+ −1 3 𝑓′′′ 𝑥
1
3!
+. . . .
= 5 + 4𝑥2 − 3𝑥3 + 𝑥4 + −1 8𝑥 − 9𝑥2 + 4𝑥3 + −1 2(8 − 18𝑥 +
Solution:
Let, 𝑓 𝑥 +
𝜋
4
= tan 𝑥 +
𝜋
4
𝑓 𝑥 = tan 𝑥
By Taylor’s series,
𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′
𝑥 + ℎ2
𝑓′′
𝑥
1
2!
+ ℎ3
𝑓′′′
𝑥
1
3!
+. . . .
Putting 𝑥 =
𝜋
4
, ℎ = 𝑥,
𝑓
𝜋
4
+ 𝑥 = 𝑓(𝜋/4) +𝑥𝑓′ 𝜋/4 + 𝑥2 𝑓′′ 𝜋/4
1
2!
+ 𝑥3 𝑓′′′ 𝜋/4
1
3!
+. . . . (1)
𝑓 𝑥 = tan 𝑥 , 𝑓 𝜋/4 = tan 𝜋/4 = 1
𝑓′
𝑥 = sec2
𝑥, 𝑓′
𝜋/4 = sec2
𝜋/4 = 2
𝑓′′
𝑥 = 2 sec 𝑥 . sec 𝑥 tan 𝑥 , 𝑓′′ 𝜋
4
= 2 tan
𝜋
4
+ 2 tan3 𝜋
4
= 4
= 2 1 + tan2 𝑥 tan 𝑥 ,
= 2 tan 𝑥 + 2 tan3
𝑥
𝑓′′′ 𝑥 = 2 sec2 𝑥 + 6 tan2 𝑥 sec2 𝑥 , 𝑓′′′ 𝜋
4
= 2 + 8 tan2 𝜋
4
+ 6 tan4 𝜋
4
= 16
= 2 1 + tan2
𝑥 + 6 tan2
𝑥 1 + tan2
𝑥
= 2 + 8 tan2 𝑥 + 6 tan4 𝑥
𝑓4
𝑥 = 16 tan 𝑥 . sec2
𝑥 + 24 tan3
𝑥 . sec2
𝑥 ,
𝑓4 𝜋
4
= 16 tan
𝜋
4
. sec2 𝜋
4
+ 24 tan3 𝜋
4
. sec2 𝜋
4
=80 and so on.
Substituting in Eq.(1),
𝑓
𝜋
4
+ 𝑥 = 1 + 𝑥 2 + 𝑥2
4
2!
+ 𝑥3
16
3!
+ 𝑥4
80
4!
. . . .
tan
𝜋
4
+ 𝑥 = 1 + 2𝑥 + 2𝑥2 +
8
3
𝑥3 +
10
3
𝑥4 …
Now tan 43 𝑜
= tan(45 𝑜
− 2 𝑜
)
= tan
𝜋
4
−
2𝜋
180
= tan
𝜋
4
− 0.0349
=1 + 2(0.0349) + 2(0.0349)2
+
8
3
(0.0349)3
+
10
3
(0.0349)4
…
= 0.9326 𝑎𝑝𝑝𝑟𝑜𝑥.
Maclaurin series expansion of some standard functions
𝑒 𝑥
= 1 + 𝑥 +
𝑥2
2!
+
𝑥3
3!
+ ⋯
sin 𝑥 = 𝑥 −
𝑥3
3!
+
𝑥5
5!
− ⋯
cos 𝑥 = 1 −
𝑥2
2!
+
𝑥4
4!
− ⋯
tan 𝑥 = 𝑥 +
𝑥3
3
+
2𝑥5
15
+ ⋯
log 1 + 𝑥 = 𝑥 −
𝑥2
2!
+
𝑥3
3!
…
(1 + 𝑥) 𝑚= 1 + 𝑚𝑥 +
𝑚 𝑚 − 1
2!
𝑥2 +
𝑚 𝑚 − 1 (𝑚 − 2)
3!
𝑥3 + ⋯
Examples of Maclaurin’s series
Example 1.
𝑒𝑥𝑝𝑎𝑛𝑑 5 𝑥 𝑢𝑝𝑡𝑜 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡ℎ𝑟𝑒𝑒 𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑖𝑒𝑠.
Solution :
Let 𝑓 𝑥 = 5 𝑥
By Maclaurin’s series,
𝑓 𝑥 = 𝑓 0 + 𝑥𝑓′
𝑥 +
𝑥2
2!
𝑓′′
𝑥 … … (1)
𝑓 𝑥 = 5 𝑥
, 𝑓 0 = 50
= 1
𝑓′ 𝑥 = 5 𝑥 log 5, 𝑓′ 0 = 50 log 5 = log 5
𝑓′′
𝑥 = 5 𝑥
log 5 2
𝑓′′
0 = 50
log 5 2
= log 5 2
Substituting in Eq.(1),
𝑓 𝑥 = 5 𝑥
= 1 + 𝑥 log 5
𝑥2
2!
log 5 2
… …
OR
Using Exponential series expansion,
𝑓 𝑥 = 5 𝑥 = 𝑒log 5 𝑥
= 𝑒 𝑥 log 5
= 1 + 𝑥 log 5 +
𝑥 log 5 2
2!
+ ⋯
Example 2.
𝑖𝑓 𝑥 = 𝑦 −
𝑦2
2
+
𝑦3
3
−
𝑦4
4
+ ⋯ prove that,
𝑦 = 𝑥 +
𝑥2
2
+
𝑥3
3
+
𝑥4
4
+ ⋯ and conversely.
Solution :
𝑥 = log(1 + 𝑦)
1 + 𝑦 = 𝑒 𝑥
𝑦 = 𝑒 𝑥 − 1
By using exponential series expansion we get,
𝑦 = 𝑥 +
𝑥2
2
+
𝑥3
3
+
𝑥4
4
+ ⋯
Conversely,
𝑦 = 𝑒 𝑥 − 1
𝑒 𝑥
= 1 + 𝑦
𝑥 = log(1 + 𝑦)
= 𝑦 −
𝑦2
2
+
𝑦3
3
−
𝑦4
4
+ ⋯
Example 3.
Prove that tan−1
𝑥 = 𝑥 −
𝑥3
3
+
𝑥5
5
−
𝑥7
7
+ ⋯
Solution :
Let 𝑦 = tan−1 𝑥
𝑑𝑦
𝑑𝑥
=
1
1 + 𝑥2
= 1 + 𝑥2 −1
= 1 − 𝑥2
+ 𝑥4
− 𝑥6
+ ⋯
Integrating the Eq.(1),
𝑦 = 𝑐 + 𝑥 −
𝑥3
3
+
𝑥5
5
−
𝑥7
7
+ ⋯
tan−1 𝑥 = 𝑐 + 𝑥 −
𝑥3
3
+
𝑥5
5
−
𝑥7
7
+ ⋯
Putting 𝑥 = 0,
tan−1 0 = 𝑐,
𝑐 = 0
Hence, tan−1 𝑥 = 𝑥 −
𝑥3
3
+
𝑥5
5
−
𝑥7
7
+ ⋯
Example 4.
Expand sec−1 1
1−2𝑥2
Solution :
Let, 𝑦 = sec−1 1
1−2𝑥2
Putting 𝑥 = 𝑠𝑖𝑛θ,
𝑦 = sec−1
1
1 − 2𝑠𝑖𝑛2θ
= sec−1
1
cos 2θ
= sec−1 sec 2θ
= 2θ
2 sin−1 𝑥
Using expansion series of sin−1
𝑥,
𝑦 = 2 𝑥 +
𝑥3
6
+
3𝑥5
40
+ ⋯
Example 5.
Prove that
𝑒 𝑒 𝑥
= 𝑒 1 + 𝑥 + 𝑥2
+
5𝑥3
6
+ ⋯
Solution :
𝑒 𝑒 𝑥
= 𝑒
1+𝑥+
𝑥2
2!
+
𝑥3
3!
+⋯
= 𝑒𝑒 𝑥+
𝑥2
2!
+
𝑥3
3!
+⋯
= 𝑒 1 + 𝑥 +
𝑥2
2!
+
𝑥3
3!
+ ⋯ +
1
2!
𝑥 +
𝑥2
2!
+ ⋯
2
+
1
3!
𝑥 + ⋯ 3
…
= 𝑒 1 + 𝑥 + 𝑥2
1
2
+
1
2
+ 𝑥3
1
6
+
1
2
+
1
6
+ ⋯
= 𝑒 1 + 𝑥 + 𝑥2
+
5𝑥3
6
+ ⋯
Example 6.
Expand (1 + sin 𝑥)
Solution :
(1 + sin 𝑥) = sin
𝑥
2
+ cos
𝑥
2
=
𝑥
2
−
1
3!
𝑥
2
3
+ ⋯ + 1 −
1
2!
𝑥
2
2
+
1
4!
𝑥
2
4
− ⋯
= 1 +
𝑥
2
−
𝑥2
8
−
𝑥3
48
+
𝑥4
384
− ⋯
End of Presentation
Thank You

Contenu connexe

Tendances

Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Rai University
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability Seyid Kadher
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential EquationsAMINULISLAM439
 
Pre-calculus 1, 2 and Calculus I (exam notes)
Pre-calculus 1, 2 and Calculus I (exam notes)Pre-calculus 1, 2 and Calculus I (exam notes)
Pre-calculus 1, 2 and Calculus I (exam notes)William Faber
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT 03062679929
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1Pokkarn Narkhede
 
Applications of differential equations
Applications of differential equationsApplications of differential equations
Applications of differential equationsSohag Babu
 
Line integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremLine integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremHassan Ahmed
 
Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method Bhavik Vashi
 
A presentation on differencial calculus
A presentation on differencial calculusA presentation on differencial calculus
A presentation on differencial calculusbujh balok
 
Laurent Series ........ By Muhammad Umer
Laurent Series ........ By Muhammad UmerLaurent Series ........ By Muhammad Umer
Laurent Series ........ By Muhammad Umersialkot123
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equationsEmdadul Haque Milon
 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalharshid panchal
 
Straight Lines ( Especially For XI )
Straight Lines ( Especially For XI ) Straight Lines ( Especially For XI )
Straight Lines ( Especially For XI ) Atit Gaonkar
 

Tendances (20)

B.Tech-II_Unit-V
B.Tech-II_Unit-VB.Tech-II_Unit-V
B.Tech-II_Unit-V
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
 
Pre-calculus 1, 2 and Calculus I (exam notes)
Pre-calculus 1, 2 and Calculus I (exam notes)Pre-calculus 1, 2 and Calculus I (exam notes)
Pre-calculus 1, 2 and Calculus I (exam notes)
 
Power series
Power series Power series
Power series
 
ABSTRACT ALGEBRA
ABSTRACT ALGEBRAABSTRACT ALGEBRA
ABSTRACT ALGEBRA
 
Double Integrals
Double IntegralsDouble Integrals
Double Integrals
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
 
Applications of differential equations
Applications of differential equationsApplications of differential equations
Applications of differential equations
 
Line integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremLine integral,Strokes and Green Theorem
Line integral,Strokes and Green Theorem
 
Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method
 
A presentation on differencial calculus
A presentation on differencial calculusA presentation on differencial calculus
A presentation on differencial calculus
 
Sequences And Series
Sequences And SeriesSequences And Series
Sequences And Series
 
Laurent Series ........ By Muhammad Umer
Laurent Series ........ By Muhammad UmerLaurent Series ........ By Muhammad Umer
Laurent Series ........ By Muhammad Umer
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equations
 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
 
Straight Lines ( Especially For XI )
Straight Lines ( Especially For XI ) Straight Lines ( Especially For XI )
Straight Lines ( Especially For XI )
 

En vedette

Taylor and maclaurian series
Taylor and maclaurian seriesTaylor and maclaurian series
Taylor and maclaurian seriesNishant Patel
 
Taylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesTaylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesHernanFula
 
The Power Series Power Prospecting
The Power Series    Power ProspectingThe Power Series    Power Prospecting
The Power Series Power ProspectingRichard Mulvey
 
Introductory Lecture to Applied Mathematics Stream
Introductory Lecture to Applied Mathematics StreamIntroductory Lecture to Applied Mathematics Stream
Introductory Lecture to Applied Mathematics StreamSSA KPI
 
Digital to Analog Converter by LDCE students
Digital to Analog Converter by LDCE studentsDigital to Analog Converter by LDCE students
Digital to Analog Converter by LDCE studentsMitul Lakhani
 
What is analytic functions
What is analytic functionsWhat is analytic functions
What is analytic functionsTarun Gehlot
 
Power series & Radius of convergence
Power series & Radius of convergencePower series & Radius of convergence
Power series & Radius of convergenceDhruv Darji
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
Cpd ch 9 engage deeply
Cpd ch 9 engage deeplyCpd ch 9 engage deeply
Cpd ch 9 engage deeplyKamlesh Joshi
 

En vedette (20)

Taylor and maclaurian series
Taylor and maclaurian seriesTaylor and maclaurian series
Taylor and maclaurian series
 
Taylor series
Taylor seriesTaylor series
Taylor series
 
Taylor’s series
Taylor’s   seriesTaylor’s   series
Taylor’s series
 
Taylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesTaylor series and maclaurin with exercices
Taylor series and maclaurin with exercices
 
Act math lnes
Act math   lnesAct math   lnes
Act math lnes
 
The Power Series Power Prospecting
The Power Series    Power ProspectingThe Power Series    Power Prospecting
The Power Series Power Prospecting
 
Introductory Lecture to Applied Mathematics Stream
Introductory Lecture to Applied Mathematics StreamIntroductory Lecture to Applied Mathematics Stream
Introductory Lecture to Applied Mathematics Stream
 
Digital to Analog Converter by LDCE students
Digital to Analog Converter by LDCE studentsDigital to Analog Converter by LDCE students
Digital to Analog Converter by LDCE students
 
On the Zeros of Analytic Functions inside the Unit Disk
On the Zeros of Analytic Functions inside the Unit DiskOn the Zeros of Analytic Functions inside the Unit Disk
On the Zeros of Analytic Functions inside the Unit Disk
 
What is analytic functions
What is analytic functionsWhat is analytic functions
What is analytic functions
 
Arrays in C language
Arrays in C languageArrays in C language
Arrays in C language
 
Power series & Radius of convergence
Power series & Radius of convergencePower series & Radius of convergence
Power series & Radius of convergence
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
Taylor series
Taylor seriesTaylor series
Taylor series
 
1605 power series
1605 power series1605 power series
1605 power series
 
Power series
Power seriesPower series
Power series
 
Taylor series
Taylor seriesTaylor series
Taylor series
 
Cpd ch 9 engage deeply
Cpd ch 9 engage deeplyCpd ch 9 engage deeply
Cpd ch 9 engage deeply
 
Taylor Series
Taylor SeriesTaylor Series
Taylor Series
 
Taylor series
Taylor seriesTaylor series
Taylor series
 

Similaire à Power Series,Taylor's and Maclaurin's Series

Study Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsStudy Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsMeenakshisundaram N
 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxjyotidighole2
 
Semana 30 series álgebra uni ccesa007
Semana 30 series  álgebra uni ccesa007Semana 30 series  álgebra uni ccesa007
Semana 30 series álgebra uni ccesa007Demetrio Ccesa Rayme
 
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي
ملزمة الرياضيات للصف السادس العلمي  الاحيائي -  التطبيقيملزمة الرياضيات للصف السادس العلمي  الاحيائي -  التطبيقي
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقيanasKhalaf4
 
taller transformaciones lineales
taller transformaciones linealestaller transformaciones lineales
taller transformaciones linealesemojose107
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1tinardo
 
Laplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxLaplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxjyotidighole2
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfHebaEng
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Март
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau
 
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsxClass-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsxSoftcare Solution
 

Similaire à Power Series,Taylor's and Maclaurin's Series (20)

Study Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsStudy Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential Equations
 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptx
 
Semana 30 series álgebra uni ccesa007
Semana 30 series  álgebra uni ccesa007Semana 30 series  álgebra uni ccesa007
Semana 30 series álgebra uni ccesa007
 
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي
ملزمة الرياضيات للصف السادس العلمي  الاحيائي -  التطبيقيملزمة الرياضيات للصف السادس العلمي  الاحيائي -  التطبيقي
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي
 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
 
taller transformaciones lineales
taller transformaciones linealestaller transformaciones lineales
taller transformaciones lineales
 
Derivación 1.
Derivación 1.Derivación 1.
Derivación 1.
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
 
doc
docdoc
doc
 
Laplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxLaplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptx
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
 
Taylors series
Taylors series Taylors series
Taylors series
 
Lecture5_Laplace_ODE.pdf
Lecture5_Laplace_ODE.pdfLecture5_Laplace_ODE.pdf
Lecture5_Laplace_ODE.pdf
 
Lecture 3
Lecture 3Lecture 3
Lecture 3
 
Lecture 3
Lecture 3Lecture 3
Lecture 3
 
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsxClass-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
 

Dernier

General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxDr. Sarita Anand
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxcallscotland1987
 

Dernier (20)

General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 

Power Series,Taylor's and Maclaurin's Series

  • 1. C.K.PITHAWALA COLLEGE OF ENGINEERING & TECHNOLOGY, SURAT Branch:- computer 1st Year (Div. D) ALA Subject:- Calculus ALA Topic Name:- Power series, Taylor’s & Maclaurin’s series Group No:- D9 Student Roll No Enrolment No Name 403 160090107051 Sharma Shubham 421 160090107028 Naik Rohan 455 160090107027 Modi Yash 456 160090107054 Solanki Divyesh Submitted To Gautam Hathiwala
  • 2. Power Series Taylor’s and Maclaurin’s Series
  • 3. Introduction to Taylor’s series & Maclaurin’s series › A Taylor series is a representation of a function as an infinite sum of terms that are calculated from the values of the function’s derivatives at a single point. › The concept of Taylor series was discovered by the Scottish mathematician James Gregory and formally introduced by the English mathematician Brook Taylor in 1715. › A Maclaurin series is a Taylor series expansion of a function about zero. › It is named after Scottish mathematician Colin Maclaurin, who made extensive use of this special case of Taylor series.
  • 4. Statement of Taylor’s series If 𝑓 𝑥 + ℎ is a given function of h which can be expanded into a convergent series of positive ascending integral power of h then, 𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′ 𝑥 + ℎ2 𝑓′′ 𝑥 1 2! + ℎ3 𝑓′′′ 𝑥 1 3! +. . . . . . . . . ℎ 𝑛 𝑛! 𝑓 𝑛 𝑥 +. . . . . . .
  • 5. Proof of Taylor’s series › Let 𝑓(𝑥 + ℎ) be a function of h which can be expanded into a convergent series of positive ascending integral powers of h then 𝑓 𝑥 + ℎ = 𝑎 𝑜 + 𝑎1ℎ + 𝑎2ℎ2 + 𝑎3ℎ3 +. . . . . . . . . . Differentiating w.r.t. h successively, (1) 𝑓′ 𝑥 + ℎ = 𝑎1 + 𝑎2. 2ℎ + 𝑎3. 3ℎ2 +. . . . . . . . . . 𝑓′′ 𝑥 + ℎ = 𝑎2. 2 + 𝑎3. 6ℎ+. . . . . . . . . . and so on. (2) (3)
  • 6. Putting h=0 in Eq. (1) (2) & (3), 𝑎0 = 𝑓 𝑥 𝑎1 = 𝑓′ 𝑥 𝑎2 = 𝑓′′ 𝑥 and so on Substituting 𝑎0, 𝑎1, 𝑎2 in Eq.(1) we get, 𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′ 𝑥 + ℎ2 𝑓′′ 𝑥 1 2! + ℎ3 𝑓′′′ 𝑥 1 3! +. . . . . . . . . ℎ 𝑛 𝑛! 𝑓 𝑛 𝑥 +. . . . . . . This is known as Taylor’s series.
  • 7. Putting 𝑥 = 𝑎 and ℎ = 𝑥 − 𝑎 in the series, we get Taylor’s series in the powers of 𝑥 − 𝑎 as, 𝑓 𝑥 = 𝑓(𝑎) +(𝑥 − 𝑎)𝑓′ 𝑎 + (𝑥 − 𝑎)2 𝑓′′ 𝑎 1 2! + (𝑥 − 𝑎)3 𝑓′′′ 𝑎 1 3! +. . . . . . . . . (𝑥−𝑎) 𝑛 𝑛! 𝑓 𝑛 𝑎 +. . . . . . . NOTE : To express a function in ascending power of 𝑥, express h in terms of 𝑥.
  • 8. Statement of Maclaurin’s series If 𝑓 𝑥 is a given function of 𝑥 which can be expanded into a convergent series of positive ascending integral power of 𝑥 then, 𝑓 𝑥 = 𝑓(𝑥) +ℎ𝑓′ 0 + ℎ2 𝑓′′ 0 1 2! + ℎ3 𝑓′′′ 0 1 3! +. . . . . . . . . ℎ 𝑛 𝑛! 𝑓 𝑛 0 +. . . . . . .
  • 9. Proof of Maclaurin series › Let 𝑓(𝑥) be a function of 𝑥 which can be expanded into positive ascending integral powers of 𝑥 then 𝑓 𝑥 = 𝑎 𝑜 + 𝑎1 𝑥 + 𝑎2 𝑥2 + 𝑎3 𝑥3 +. . . . . . . . . . Differentiating w.r.t. 𝑥 successively, (1 ) 𝑓′ 𝑥 = 𝑎1 + 𝑎2. 2𝑥 + 𝑎3. 3𝑥2 +. . . . . . . . . . 𝑓′′ 𝑥 = 𝑎2. 2 + 𝑎3. 6𝑥+. . . . . . . . . . and so on. (2) (3)
  • 10. Putting 𝑥 =0 in Eq. (1) (2) & (3), 𝑎0 = 𝑓 0 𝑎1 = 𝑓′ 0 𝑎2 = 𝑓′′ 0 and so on Substituting 𝑎0, 𝑎1, 𝑎2 in Eq.(1) we get, 𝑓 𝑥 = 𝑓(0) +𝑥𝑓′ 0 + 𝑥2 𝑓′′ 0 1 2! + 𝑥3 𝑓′′′ 0 1 3! +. . . . . . . . . 𝑥 𝑛 𝑛! 𝑓 𝑛 0 +. . . . . . . This is known as Maclaurin’s series.
  • 11. › The Taylor’s series and Maclaurin’s series gives the expansion of a function 𝑓(𝑥) as a power series under the assumption of possibility of expansion of 𝑓 𝑥 . › Such an investigation will not give any information regarding the range of values 𝑥 for which the expansion is valid. › In order to find the range of values of 𝑥, it is necessary to examine the behaviour of 𝑅 𝑛, where 𝑅 𝑛 is the Remainder after n terms. We have, 𝑓 𝑥 = 𝑓(𝑎) + 𝑥 − 𝑎 𝑓′ 𝑎 + 𝑥 − 𝑎 2 𝑓′′ 𝑎 1 2! + 𝑥 − 𝑎 3 𝑓′′′ 𝑎 1 3! +. . . . . . . . . 𝑥 − 𝑎 𝑛−1 𝑛 − 1 ! 𝑓 𝑛−1 𝑎 + 𝑅 𝑛 Where 𝑅 𝑛 is the remainder after n terms defined as, (1)
  • 12. 𝑅 𝑛 = 𝑥−𝑎 𝑛 𝑛! 𝑓 𝑛 𝜀 : 𝑎 < 𝜀 < 𝑥. when this expansion (1) converges over a certain range of value of 𝑥 that is 𝑅 𝑛 → 0 𝑎𝑛𝑑 𝑛 → ∾ then the expansion is called Taylor series of 𝑓(𝑥) expanded about a with the range values of 𝑥. (also known as 𝑟𝑎dius of convergence) for which the expansion is valid.
  • 13. Examples of Taylor’s series Example 1. Prove that: 𝑓 𝑚𝑥 = 𝑓 𝑥 + 𝑚 − 1 𝑥𝑓′ 𝑥 + 𝑚−1 2 2! 𝑥2 𝑓′′(𝑥) + ⋯ Solution 𝑓 𝑚𝑥 = 𝑓 𝑚𝑥 − 𝑥 + 𝑥 = 𝑓 𝑥 + 𝑚 − 1 𝑥 By Taylor’s series, 𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′ 𝑥 + ℎ2 𝑓′′ 𝑥 1 2! + ℎ3 𝑓′′′ 𝑥 1 3! +. . . . Putting ℎ = 𝑚 − 1 𝑥, 𝑓 𝑥 + 𝑚 − 1 𝑥 = 𝑓 𝑚𝑥 = 𝑓 𝑥 + 𝑚 − 1 𝑥𝑓′ 𝑥 + 𝑚−1 2 2! 𝑥2 𝑓′′(𝑥) + ⋯
  • 14. Example 2: Prove that: 𝑓 𝑥2 1 + 𝑥 = 𝑓 𝑥 − 𝑥 1 + 𝑥 𝑓′ 𝑥 + 𝑥2 2! 1 + 𝑥 2 𝑓′′(𝑥) − 𝑥3 3! 1 + 𝑥 3 𝑓′′′(𝑥) … … Solution: 𝑥2 1 + 𝑥 = 𝑥 − 𝑥 1 + 𝑥 By Taylor’s series, 𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′ 𝑥 + ℎ2 𝑓′′ 𝑥 1 2! + ℎ3 𝑓′′′ 𝑥 1 3! +. . . . Putting ℎ = − 𝑥 1+𝑥
  • 15. 𝑓 𝑥 − 𝑥 1 + 𝑥 = 𝑓 𝑥2 1 + 𝑥 𝑓 𝑥2 1 + 𝑥 = 𝑓 𝑥 − 𝑥 1 + 𝑥 𝑓′ 𝑥 + 𝑥2 2! 1 + 𝑥 2 𝑓′′ 𝑥 − 𝑥3 3! 1 + 𝑥 3 𝑓′′′(𝑥) … … Hence proved. Example 3: Express 𝑓 𝑥 = 2𝑥3 + 3𝑥2 − 8𝑥 + 7 in terms of 𝑓(𝑥 − 2) Solution: 𝑓(𝑥) = 2𝑥3 + 3𝑥2 − 8𝑥 + 7
  • 16. By Taylor’s series, 𝑓 𝑥 = 𝑓(𝑎) +(𝑥 − 𝑎)𝑓′ 𝑎 + (𝑥 − 𝑎)2 𝑓′′ 𝑎 1 2! + (𝑥 − 𝑎)3 𝑓′′′ 𝑎 1 3! +. . . . . . . . . (𝑥−𝑎) 𝑛 𝑛! 𝑓 𝑛 𝑎 +. . . . . . . Putting 𝑎 = 2, 𝑓 𝑥 = 𝑓(2) +(𝑥 − 2)𝑓′ 𝑎 + (𝑥 − 2)2 𝑓′′ 2 1 2! + (𝑥 − 2)3 𝑓′′′ 2 1 3! +. . . . . . (1) 𝑓(𝑥) = 2𝑥3 + 3𝑥2 − 8𝑥 + 7, 𝑓 2 = 16 + 12 − 16 + 7 = 19 𝑓′ 𝑥 = 6𝑥2 + 6𝑥 − 8, 𝑓′ 2 = 24 + 12 − 8 = 28 𝑓′′ 𝑥 = 12𝑥 + 6, 𝑓′′ 2 = 24 + 6 = 30 𝑓′′′ 𝑥 = 12, 𝑓′′′ 2 = 12 and so on.
  • 17. Substituting in Eq.(1), 𝑓 𝑥 = 19 + 𝑥 − 2 28 + (𝑥 − 2)2 30 2! + (𝑥 − 2)3 12 3! +. . . . . . 𝑓 𝑥 = 19 + 𝑥 − 2 28 + 15(𝑥 − 2)2 + 2(𝑥 − 2)3 +. . . . . . Example 4. Express 5 + 4 𝑥 − 1 2 − 3 𝑥 − 1 3 + 𝑥 − 1 4 in ascending powers of x. Solution: Let, 𝑓 𝑥 − 1 = 5 + 4 𝑥 − 1 2 − 3 𝑥 − 1 3 + 𝑥 − 1 4 𝑓 𝑥 = 5 + 4𝑥2 − 3𝑥3 + 𝑥4 By Taylor’s series, 𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′ 𝑥 + ℎ2 𝑓′′ 𝑥 1 2! + ℎ3 𝑓′′′ 𝑥 1 3! +. . . .
  • 18. putting ℎ = −1, 𝑓 𝑥 − 1 = 𝑓(𝑥) +(−1)𝑓′ 𝑥 + −1 2 𝑓′′ 𝑥 1 2! + −1 3 𝑓′′′ 𝑥 1 3! +. . . . = 5 + 4𝑥2 − 3𝑥3 + 𝑥4 + −1 8𝑥 − 9𝑥2 + 4𝑥3 + −1 2(8 − 18𝑥 +
  • 19. Solution: Let, 𝑓 𝑥 + 𝜋 4 = tan 𝑥 + 𝜋 4 𝑓 𝑥 = tan 𝑥 By Taylor’s series, 𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′ 𝑥 + ℎ2 𝑓′′ 𝑥 1 2! + ℎ3 𝑓′′′ 𝑥 1 3! +. . . . Putting 𝑥 = 𝜋 4 , ℎ = 𝑥, 𝑓 𝜋 4 + 𝑥 = 𝑓(𝜋/4) +𝑥𝑓′ 𝜋/4 + 𝑥2 𝑓′′ 𝜋/4 1 2! + 𝑥3 𝑓′′′ 𝜋/4 1 3! +. . . . (1) 𝑓 𝑥 = tan 𝑥 , 𝑓 𝜋/4 = tan 𝜋/4 = 1 𝑓′ 𝑥 = sec2 𝑥, 𝑓′ 𝜋/4 = sec2 𝜋/4 = 2
  • 20. 𝑓′′ 𝑥 = 2 sec 𝑥 . sec 𝑥 tan 𝑥 , 𝑓′′ 𝜋 4 = 2 tan 𝜋 4 + 2 tan3 𝜋 4 = 4 = 2 1 + tan2 𝑥 tan 𝑥 , = 2 tan 𝑥 + 2 tan3 𝑥 𝑓′′′ 𝑥 = 2 sec2 𝑥 + 6 tan2 𝑥 sec2 𝑥 , 𝑓′′′ 𝜋 4 = 2 + 8 tan2 𝜋 4 + 6 tan4 𝜋 4 = 16 = 2 1 + tan2 𝑥 + 6 tan2 𝑥 1 + tan2 𝑥 = 2 + 8 tan2 𝑥 + 6 tan4 𝑥 𝑓4 𝑥 = 16 tan 𝑥 . sec2 𝑥 + 24 tan3 𝑥 . sec2 𝑥 , 𝑓4 𝜋 4 = 16 tan 𝜋 4 . sec2 𝜋 4 + 24 tan3 𝜋 4 . sec2 𝜋 4 =80 and so on.
  • 21. Substituting in Eq.(1), 𝑓 𝜋 4 + 𝑥 = 1 + 𝑥 2 + 𝑥2 4 2! + 𝑥3 16 3! + 𝑥4 80 4! . . . . tan 𝜋 4 + 𝑥 = 1 + 2𝑥 + 2𝑥2 + 8 3 𝑥3 + 10 3 𝑥4 … Now tan 43 𝑜 = tan(45 𝑜 − 2 𝑜 ) = tan 𝜋 4 − 2𝜋 180 = tan 𝜋 4 − 0.0349 =1 + 2(0.0349) + 2(0.0349)2 + 8 3 (0.0349)3 + 10 3 (0.0349)4 … = 0.9326 𝑎𝑝𝑝𝑟𝑜𝑥.
  • 22. Maclaurin series expansion of some standard functions 𝑒 𝑥 = 1 + 𝑥 + 𝑥2 2! + 𝑥3 3! + ⋯ sin 𝑥 = 𝑥 − 𝑥3 3! + 𝑥5 5! − ⋯ cos 𝑥 = 1 − 𝑥2 2! + 𝑥4 4! − ⋯ tan 𝑥 = 𝑥 + 𝑥3 3 + 2𝑥5 15 + ⋯ log 1 + 𝑥 = 𝑥 − 𝑥2 2! + 𝑥3 3! … (1 + 𝑥) 𝑚= 1 + 𝑚𝑥 + 𝑚 𝑚 − 1 2! 𝑥2 + 𝑚 𝑚 − 1 (𝑚 − 2) 3! 𝑥3 + ⋯
  • 23. Examples of Maclaurin’s series Example 1. 𝑒𝑥𝑝𝑎𝑛𝑑 5 𝑥 𝑢𝑝𝑡𝑜 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡ℎ𝑟𝑒𝑒 𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑖𝑒𝑠. Solution : Let 𝑓 𝑥 = 5 𝑥 By Maclaurin’s series, 𝑓 𝑥 = 𝑓 0 + 𝑥𝑓′ 𝑥 + 𝑥2 2! 𝑓′′ 𝑥 … … (1) 𝑓 𝑥 = 5 𝑥 , 𝑓 0 = 50 = 1 𝑓′ 𝑥 = 5 𝑥 log 5, 𝑓′ 0 = 50 log 5 = log 5 𝑓′′ 𝑥 = 5 𝑥 log 5 2 𝑓′′ 0 = 50 log 5 2 = log 5 2 Substituting in Eq.(1), 𝑓 𝑥 = 5 𝑥 = 1 + 𝑥 log 5 𝑥2 2! log 5 2 … …
  • 24. OR Using Exponential series expansion, 𝑓 𝑥 = 5 𝑥 = 𝑒log 5 𝑥 = 𝑒 𝑥 log 5 = 1 + 𝑥 log 5 + 𝑥 log 5 2 2! + ⋯ Example 2. 𝑖𝑓 𝑥 = 𝑦 − 𝑦2 2 + 𝑦3 3 − 𝑦4 4 + ⋯ prove that, 𝑦 = 𝑥 + 𝑥2 2 + 𝑥3 3 + 𝑥4 4 + ⋯ and conversely. Solution : 𝑥 = log(1 + 𝑦) 1 + 𝑦 = 𝑒 𝑥 𝑦 = 𝑒 𝑥 − 1
  • 25. By using exponential series expansion we get, 𝑦 = 𝑥 + 𝑥2 2 + 𝑥3 3 + 𝑥4 4 + ⋯ Conversely, 𝑦 = 𝑒 𝑥 − 1 𝑒 𝑥 = 1 + 𝑦 𝑥 = log(1 + 𝑦) = 𝑦 − 𝑦2 2 + 𝑦3 3 − 𝑦4 4 + ⋯ Example 3. Prove that tan−1 𝑥 = 𝑥 − 𝑥3 3 + 𝑥5 5 − 𝑥7 7 + ⋯
  • 26. Solution : Let 𝑦 = tan−1 𝑥 𝑑𝑦 𝑑𝑥 = 1 1 + 𝑥2 = 1 + 𝑥2 −1 = 1 − 𝑥2 + 𝑥4 − 𝑥6 + ⋯ Integrating the Eq.(1), 𝑦 = 𝑐 + 𝑥 − 𝑥3 3 + 𝑥5 5 − 𝑥7 7 + ⋯ tan−1 𝑥 = 𝑐 + 𝑥 − 𝑥3 3 + 𝑥5 5 − 𝑥7 7 + ⋯ Putting 𝑥 = 0, tan−1 0 = 𝑐, 𝑐 = 0 Hence, tan−1 𝑥 = 𝑥 − 𝑥3 3 + 𝑥5 5 − 𝑥7 7 + ⋯
  • 27. Example 4. Expand sec−1 1 1−2𝑥2 Solution : Let, 𝑦 = sec−1 1 1−2𝑥2 Putting 𝑥 = 𝑠𝑖𝑛θ, 𝑦 = sec−1 1 1 − 2𝑠𝑖𝑛2θ = sec−1 1 cos 2θ = sec−1 sec 2θ = 2θ 2 sin−1 𝑥 Using expansion series of sin−1 𝑥, 𝑦 = 2 𝑥 + 𝑥3 6 + 3𝑥5 40 + ⋯
  • 28. Example 5. Prove that 𝑒 𝑒 𝑥 = 𝑒 1 + 𝑥 + 𝑥2 + 5𝑥3 6 + ⋯ Solution : 𝑒 𝑒 𝑥 = 𝑒 1+𝑥+ 𝑥2 2! + 𝑥3 3! +⋯ = 𝑒𝑒 𝑥+ 𝑥2 2! + 𝑥3 3! +⋯ = 𝑒 1 + 𝑥 + 𝑥2 2! + 𝑥3 3! + ⋯ + 1 2! 𝑥 + 𝑥2 2! + ⋯ 2 + 1 3! 𝑥 + ⋯ 3 …
  • 29. = 𝑒 1 + 𝑥 + 𝑥2 1 2 + 1 2 + 𝑥3 1 6 + 1 2 + 1 6 + ⋯ = 𝑒 1 + 𝑥 + 𝑥2 + 5𝑥3 6 + ⋯ Example 6. Expand (1 + sin 𝑥) Solution : (1 + sin 𝑥) = sin 𝑥 2 + cos 𝑥 2 = 𝑥 2 − 1 3! 𝑥 2 3 + ⋯ + 1 − 1 2! 𝑥 2 2 + 1 4! 𝑥 2 4 − ⋯ = 1 + 𝑥 2 − 𝑥2 8 − 𝑥3 48 + 𝑥4 384 − ⋯