SlideShare une entreprise Scribd logo
1  sur  43
Chapter 3
Determinants
Linear Algebra
Ch03_2
3.1 Introduction to Determinants
Definition
The determinant of a 2  2 matrix A is denoted |A| and is given
by
Observe that the determinant of a 2  2 matrix is given by the
different of the products of the two diagonals of the matrix.
The notation det(A) is also used for the determinant of A.
21
12
22
11
22
21
12
11
a
a
a
a
a
a
a
a


Example 1








1
3
4
2
A
14
12
2
))
3
(
4
(
)
1
2
(
1
3
4
2
)
det( 









A
Ch03_3
Definition
Let A be a square matrix.
The minor of the element aij is denoted Mij and is the determinant
of the matrix that remains after deleting row i and column j of A.
The cofactor of aij is denoted Cij and is given by
Cij = (–1)i+j Mij
Note that Cij = Mij or Mij .
Ch03_4
10
)
4
3
(
)
2
1
(
2
4
3
1
1
2
0
2
1
4
3
0
1
:
of
Minor 32
32 









M
a
3
))
2
(
2
(
)
1
1
(
1
2
2
1
1
2
0
2
1
4
3
0
1
:
of
Minor 11
11 












M
a
Example 2
Solution
Determine the minors and cofactors of the elements a11 and a32
of the following matrix A.











1
2
0
2
1
4
3
0
1
A
3
)
3
(
)
1
(
)
1
(
:
of
Cofactor 2
11
1
1
11
11 



 
M
C
a
10
)
10
(
)
1
(
)
1
(
:
of
Cofactor 5
32
2
3
32
32 




 
M
C
a
Ch03_5
Definition
The determinant of a square matrix is the sum of the products
of the elements of the first row and their cofactors.
These equations are called cofactor expansions of |A|.
n
nC
a
C
a
C
a
C
a
A
n
n
A
C
a
C
a
C
a
C
a
A
A
C
a
C
a
C
a
A
A
1
1
13
13
12
12
11
11
14
14
13
13
12
12
11
11
13
13
12
12
11
11
,
is
If
4,
4
is
If
3,
3
is
If

















Ch03_6
Example 3
Evaluate the determinant of the following matrix A.







 

1
2
4
1
0
3
1
2
1
A
Solution
2
4
0
3
)
1
)(
1
(
1
4
1
3
)
1
(
2
1
2
1
0
)
1
(
1 4
3
2
13
13
12
12
11
11









 C
a
C
a
C
a
A
6
6
2
2
)]
4
0
(
)
2
3
[(
)]
4
1
(
)
1
3
[(
2
)]
2
1
(
)
1
0
[(


















Ch03_7
Theorem 3.1
The determinant of a square matrix is the sum of the products of
the elements of any row or column and their cofactors.
ith row expansion:
jth column expansion: nj
nj
j
j
j
j
in
in
i
i
i
i
C
a
C
a
C
a
A
C
a
C
a
C
a
A










2
2
1
1
2
2
1
1
Example 4
Find the determinant of the following matrix using the second row.







 

1
2
4
1
0
3
1
2
1
A
Solution
6
6
0
12
)]
4
2
(
)
2
1
[(
1
)]
4
1
(
)
1
1
[(
0
)]
2
1
(
)
1
2
[(
3
2
4
2
1
1
1
4
1
1
0
1
2
1
2
3
23
23
22
22
21
21





























 C
a
C
a
C
a
A
Ch03_8
Example 5
Evaluate the determinant of the following 4  4 matrix.













3
0
1
0
5
3
2
7
2
0
1
0
4
0
1
2
Solution
6
)
2
3
(
6
3
1
2
1
)
2
(
3
3
1
0
2
1
0
4
1
2
3









)
(
0
)
(
3
)
(
0
)
(
0 43
33
23
13
43
43
33
33
23
23
13
13
C
C
C
C
C
a
C
a
C
a
C
a
A








Ch03_9
Example 6
Solve the following equation for the variable x.
7
2
1
1 



x
x
x
Solution
Expand the determinant to get the equation
7
)
1
)(
1
(
)
2
( 



 x
x
x
Proceed to simplify this equation and solve for x.
3
or
2
0
)
3
)(
2
(
0
6
7
1
2
2
2












x
x
x
x
x
x
x
x
There are two solutions to this equation, x = – 2 or 3.
Ch03_10
Computing Determinants of 2  2
and 3  3 Matrices







22
21
12
11
a
a
a
a
A 21
12
22
11
A a
a
a
a 











33
32
31
23
22
21
13
12
11
a
a
a
a
a
a
a
a
a
A
32
31
22
21
12
11
33
32
31
23
22
21
13
12
11
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a









left)
right to
from
products
(diagonal
right)
left to
from
products
(diagonal
A
33
21
12
32
23
11
31
22
13
32
21
13
31
23
12
33
22
11
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a







Ch03_11
Homework
Exercise 3.1 pages 161-162:
1, 3, 5, 7, 9, 11, 13
Ch03_12
Let A be an n  n matrix and c be a nonzero scalar.
(a) If then |B| = c|A|.
(b) If then |B| = –|A|.
(c) If then |B| = |A|.
3.2 Properties of Determinants
Theorem 3.2
Proof (a)
|A| = ak1Ck1 + ak2Ck2 + … + aknCkn
|B| = cak1Ck1 + cak2Ck2 + … + caknCkn
|B| = c|A|.
B
A
cRk

B
A
Rj
Ri

B
A
cRj
Ri

Ch03_13
Example 1
.
3
9
2
3
6
1
2
4
3




Solution
21
3
1
2
3
)
3
(
3
3
2
3
0
1
2
0
3
3
9
2
3
6
1
2
4
3
C3
2
C2















Evaluate the determinant
Ch03_14
Example 2
If |A| = 12 is known.
Evaluate the determinants of the following matrices.
,
10
4
2
5
2
0
3
4
1











A





































16
4
0
5
2
0
3
4
1
)
c
(
5
2
0
10
4
2
3
4
1
(b)
10
12
2
5
6
0
3
12
1
)
a
( 3
2
1 B
B
B
Solution
(a) Thus |B1| = 3|A| = 36.
(b) Thus |B2| = – |A| = –12.
(c) Thus |B3| = |A| = 12.
1
2
3
B
A
C

2
3
2
B
A
R
R 

3
1
2
3
B
A
R
R 

Ch03_15
Theorem 3.3
Let A be a square matrix. A is singular if
(a) all the elements of a row (column) are zero.
(b) two rows (columns) are equal.
(c) two rows (columns) are proportional. (i.e., Ri=cRj)
Proof
(a) Let all elements of the kth row of A be zero.
0
0
0
0 2
1
2
2
1
1 







 kn
k
k
kn
kn
k
k
k
k C
C
C
C
a
C
a
C
a
A 

(c) If Ri=cRj, then , row i of B is [0 0 … 0].
 |A|=|B|=0
B
A
cRj
Ri

Definition
A square matrix A is said to be singular if |A|=0.
A is nonsingular if |A|0.
Ch03_16
Example 3
Show that the following matrices are singular.









 














8
4
2
4
2
1
3
1
2
(b)
9
0
4
1
0
3
7
0
2
)
(a B
A
Solution
(a) All the elements in column 2 of A are zero. Thus |A| = 0.
(b) Row 2 and row 3 are proportional. Thus |B| = 0.
Ch03_17
Theorem 3.4
Let A and B be n  n matrices and c be a nonzero scalar.
(a) |cA| = cn|A|.
(b) |AB| = |A||B|.
(c) |At| = |A|.
(d) (assuming A–1 exists)
A
A
1
1


Proof
(a)
A
c
cA
cA
A n
cRn
cR
cR



...,
,
2
,
1
(d)
A
A
I
A
A
A
A
1
1 1
1
1






 


Ch03_18
Example 4
If A is a 2  2 matrix with |A| = 4, use Theorem 3.4 to compute
the following determinants.
(a) |3A| (b) |A2| (c) |5AtA–1|, assuming A–1 exists
Solution
(a) |3A| = (32)|A| = 9  4 = 36.
(b) |A2| = |AA| =|A| |A|= 4  4 = 16.
(c) |5AtA–1| = (52)|AtA–1| = 25|At||A–1| .
25
1
25 

A
A
Example 5
Prove that |A–1AtA| = |A|
Solution
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A t
t
t
t




 


 1
)
( 1
1
1
1
Ch03_19
Example 6
Prove that if A and B are square matrices of the same size, with A
being singular, then AB is also singular. Is the converse true?
Solution
()
|A| = 0  |AB| = |A||B| = 0
Thus the matrix AB is singular.
()
|AB| = 0  |A||B| = 0  |A| = 0 or |B| = 0
Thus AB being singular implies that either A or B is singular.
The inverse is not true.
Ch03_20
Homework
Exercise 3.2 pp. 170-171: 1, 3, 5, 7, 9, 13
Exercise 11
Prove the following identity without evaluating the determinants.
w
v
u
r
q
p
f
d
b
w
v
u
r
q
p
e
c
a
w
v
u
r
q
p
f
e
d
c
b
a





v
u
q
p
f
e
w
u
r
p
d
c
w
v
r
q
b
a
w
v
u
r
q
p
f
e
d
c
b
a
)
(
)
(
)
( 








Ch03_21
3.3 Numerical Evaluation of a
Determinant
Definition
A square matrix is called an upper triangular matrix if all the
elements below the main diagonal are zero.
It is called a lower triangular matrix if all the elements above the
main diagonal are zero.
triangular
upper
1
0
0
0
9
0
0
0
5
3
2
0
7
0
4
1
,
9
0
0
5
1
0
2
8
3























triangular
lower
1
8
5
4
0
2
0
7
0
0
4
1
0
0
0
8
,
8
9
3
0
1
2
0
0
7























Ch03_22
.
find
,
5
0
0
4
3
0
9
1
2
Let A
A














Theorem 3.5
The determinant of a triangular matrix is the product of its
diagonal elements.
Example 1
Proof
nn
nn
n
n
nn
n
n
nn
n
n
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a























22
11
4
44
3
34
33
22
11
3
33
2
23
22
11
2
22
1
12
11
0
0
0
0
0
0
0
0
0




.
30
)
5
(
3
2
ol. 





A
S
Numerical Evaluation of a Determinant
Ch03_23
Numerical Evaluation of a Determinant
Example 2
Evaluation the determinant.










10
9
4
4
5
2
1
4
2
8
1
0
5
1
0
1
4
2
R1
)
2
(
3
R
R1
R2
10
9
4
4
5
2
1
4
2







13
0
0
5
1
0
1
4
2
2
R3 


R
26
13
)
1
(
2 





Solution (elementary row operations)
Ch03_24
Example 3
Evaluation the determinant.
1
2
0
1
3
0
0
1
0
1
1
2
1
2
0
1


Solution
2
4
0
0
2
2
0
0
2
3
1
0
1
2
0
1
R1
R4
R1
)
1
(
R3
R1
)
2
(
R2
1
2
0
1
3
0
0
1
0
1
1
2
1
2
0
1












6
0
0
0
2
2
0
0
2
3
1
0
1
2
0
1
2R3
R4 





12
6
)
2
(
)
1
(
1 






Ch03_25
Example 4
Evaluation the determinant.
11
2
2
5
2
1
4
2
1




Solution
3
2
0
1
0
0
4
2
1
1
R
)
2
(
3
R
R1
R2
11
2
2
5
2
1
4
2
1










1
0
0
3
2
0
4
2
1
)
1
(
R3
R2





2
)
1
(
2
1
)
1
( 






Ch03_26
Example 5
Evaluation the determinant.
1
5
6
6
4
3
2
2
3
2
1
1
2
0
1
1




Solution
11
5
0
0
0
3
0
0
5
2
0
0
2
0
1
1
R1
)
6
(
R4
R1
)
2
(
R3
R1
R2
1
5
6
6
4
3
2
2
3
2
1
1
2
0
1
1












diagonal element is zero and
all elements below this
diagonal element are zero.
0

Ch03_27
3.3 Determinants, Matrix Inverse,
and Systems of Linear Equations
Definition
Let A be an n  n matrix and Cij be the cofactor of aij.
The matrix whose (i, j)th element is Cij is called the matrix of
cofactors of A.
The transpose of this matrix is called the adjoint of A and is
denoted adj(A).
cofactors
of
matrix
2
1
2
22
21
1
12
11












nn
n
n
n
n
C
C
C
C
C
C
C
C
C






matrix
adjoint
2
1
2
22
21
1
12
11
t
C
C
C
C
C
C
C
C
C
nn
n
n
n
n


















Ch03_28
Example 1
Give the matrix of cofactors and the adjoint matrix of the
following matrix A.












5
3
1
2
4
1
3
0
2
A
Solution The cofactors of A are as follows.
14
5
3
2
4
11 



C 3
5
1
2
1
12 




C 1
3
1
4
1
13 




C
9
5
3
3
0
21 




C 7
5
1
3
2
22 

C 6
3
1
0
2
23 



C
12
2
4
3
0
31 



C 1
2
1
3
2
32 




C 8
4
1
0
2
33 


C
The matrix of cofactors
of A is












8
6
1
1
7
3
12
9
14
)
(
adj A













8
1
12
6
7
9
1
3
14
The adjoint of A is
Ch03_29
Theorem 3.6
Let A be a square matrix with |A|  0. A is invertible with
)
(
adj
1
1
A
A
A 

Proof
Consider the matrix product Aadj(A). The (i, j)th element of this
product is
 
jn
in
j
i
j
i
jn
j
j
in
i
i
C
a
C
a
C
a
C
C
C
a
a
a
A
j
A
i
j
i




















2
2
1
1
2
1
2
1
))
adj(
of
(column
)
of
(row
element
th
)
,
(
Ch03_30
Therefore






j
i
j
i
A
j
i
if
0
if
element
th
)
.
(  A adj(A) = |A|In
Proof of Theorem 3.6
.
2
2
1
1 A
C
a
C
a
C
a jn
in
j
i
j
i 


 
If i = j,
If i  j, let .
by
replaced
is
B
A
Ri
Rj

.
0
So 2
2
1
1 



 B
C
a
C
a
C
a jn
in
j
i
j
i 
Since |A|  0, n
I
A
A
A 








)
(
adj
1
Similarly, .
n
I
A
A
A









)
(
adj
1
Thus )
(
adj
1
1
A
A
A 

row i = row j in B
Matrices A and B have the same cofactors
Cj1, Cj2, …, Cjn.
Ch03_31
Theorem 3.7
A square matrix A is invertible if and only if |A|  0.
Proof
() Assume that A is invertible.
 AA–1 = In.
 |AA–1| = |In|.
 |A||A–1| = 1
 |A|  0.
() Theorem 3.6 tells us that if |A|  0, then A is invertible.
A–1 exists if and only if |A|  0.
Ch03_32
Example 2
Use a determinant to find out which of the following matrices are
invertible.



































 

0
8
2
2
1
1
1
2
1
1
0
1
7
12
4
3
4
2
1
2
2
4
2
3
1
1 D
C
B
A
Solution
|A| = 5  0. A is invertible.
|B| = 0. B is singular. The inverse does not exist.
|C| = 0. C is singular. The inverse does not exist.
|D| = 2  0. D is invertible.
Ch03_33
Example 3
Use the formula for the inverse of a matrix to compute the inverse
of the matrix












5
3
1
2
4
1
3
0
2
A
Solution
|A| = 25, so the inverse of A exists.We found adj(A) in Example 1












8
6
1
1
7
3
12
9
14
)
(
adj A




































25
8
25
6
25
1
25
1
25
7
25
3
25
12
25
9
25
14
8
6
1
1
7
3
12
9
14
25
1
)
adj(
1
1
A
A
A
Ch03_34
Homework
Exercise 3.3 page 178-179: 1, 3, 5, 7.
Exercise
Show that if A = A-1, then |A| = 1.
Show that if At = A-1, then |A| = 1.
Ch03_35
Theorem 3.8
Let AX = B be a system of n linear equations in n variables.
(1) If |A|  0, there is a unique solution.
(2) If |A| = 0, there may be many or no solutions.
Proof
(1) If |A|  0
 A–1 exists (Thm 3.7)
 there is then a unique solution given by X = A–1B (Thm 2.9).
(2) If |A| = 0
 since A  C implies that if |A|0 then |C|0 (Thm 3.2).
 the reduced echelon form of A is not In.
 The solution to the system AX = B is not unique.
 many or no solutions.
Ch03_36
Example 4
Determine whether or not the following system of equations has
an unique solution.
9
4
7
5
3
4
2
2
3
3
3
2
1
3
2
1
3
2
1










x
x
x
x
x
x
x
x
x
Solution
Since
0
1
4
7
3
1
4
2
3
3


Thus the system does not have an unique solution.
Ch03_37
Theorem 3.9 Cramer’s Rule
Let AX = B be a system of n linear equations in n variables such
that |A|  0. The system has a unique solution given by
Where Ai is the matrix obtained by replacing column i of A with B.
A
A
x
A
A
x
A
A
x n
n 

 ,
...
,
, 2
2
1
1
Proof
|A|  0  the solution to AX = B is unique and is given by
B
A
A
B
A
X
)
(
adj
1
1

 
Ch03_38
xi, the ith element of X, is given by
 
)
(
1
1
)]
(
adj
of
row
[
1
2
2
1
1
2
1
2
1
ni
n
i
i
n
ni
i
i
i
C
b
C
b
C
b
A
b
b
b
C
C
C
A
B
A
i
A
x




















Thus
A
A
x i
i 
Proof of Cramer’s Rule
the cofactor expansion of |Ai|
in terms of the ith column
Ch03_39
Example 5
Solving the following system of equations using Cramer’s rule.
6
3
2
5
5
2
2
3
3
2
1
3
2
1
3
2
1











x
x
x
x
x
x
x
x
x
Solution
The matrix of coefficients A and column matrix of constants B are




















6
5
2
and
3
2
1
1
5
2
1
3
1
B
A
It is found that |A| = –3  0. Thus Cramer’s rule be applied. We
get

































6
2
1
5
5
2
2
3
1
3
6
1
1
5
2
1
2
1
3
2
6
1
5
5
1
3
2
3
2
1 A
A
A
Ch03_40
Giving
Cramer’s rule now gives
9
,
6
,
3 3
2
1 



 A
A
A
3
3
9
,
2
3
6
,
1
3
3 3
3
2
2
1
1 














A
A
x
A
A
x
A
A
x
The unique solution is .
3
,
2
,
1 3
2
1 


 x
x
x
Ch03_41
Example 6
Determine values of  for which the following system of
equations has nontrivial solutions.Find the solutions for each
value of .
0
)
1
(
2
0
)
4
(
)
2
(
2
1
2
1







x
x
x
x



Solution
homogeneous system
 x1 = 0, x2 = 0 is the trivial solution.
 nontrivial solutions exist  many solutions

  
  = – 3 or  = 2.
0
1
2
4
2







0
)
3
)(
2
( 

 

0
6
2


 

0
)
4
(
2
)
1
)(
2
( 



 


Ch03_42
 = – 3 results in the system
This system has many solutions, x1 = r, x2 = r.
0
2
2
0
2
1
2
1





x
x
x
x
 = 2 results in the system
This system has many solutions, x1 = – 3r/2, x2 = r.
0
3
2
0
6
4
2
1
2
1




x
x
x
x
Ch03_43
Homework
Exercise 3.3 pages 179-180:
9, 11, 13, 15.

Contenu connexe

Similaire à Mat 223_Ch3-Determinants.ppt

determinants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdfdeterminants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdfTGBSmile
 
Determinants, crammers law, Inverse by adjoint and the applications
Determinants, crammers law,  Inverse by adjoint and the applicationsDeterminants, crammers law,  Inverse by adjoint and the applications
Determinants, crammers law, Inverse by adjoint and the applicationsNikoBellic28
 
Determinants and matrices.ppt
Determinants and matrices.pptDeterminants and matrices.ppt
Determinants and matrices.pptSauravDash10
 
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdf
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdfObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdf
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdfMohammedArish6
 
nabil-201-chap-03.ppt
nabil-201-chap-03.pptnabil-201-chap-03.ppt
nabil-201-chap-03.pptTigabu Yaya
 
6.5 determinant x
6.5 determinant x6.5 determinant x
6.5 determinant xmath260
 
determinant1.pdf
determinant1.pdfdeterminant1.pdf
determinant1.pdfLitan Saha
 
Introduction of determinant
Introduction of determinantIntroduction of determinant
Introduction of determinantPankaj Das
 
Math 2318 - Test 3In this test we will try something differe.docx
Math 2318 - Test 3In this test we will try something differe.docxMath 2318 - Test 3In this test we will try something differe.docx
Math 2318 - Test 3In this test we will try something differe.docxandreecapon
 
Determinants - Mathematics
Determinants - MathematicsDeterminants - Mathematics
Determinants - MathematicsDrishti Bhalla
 
Calculus and matrix algebra notes
Calculus and matrix algebra notesCalculus and matrix algebra notes
Calculus and matrix algebra notesVICTOROGOT4
 
Matrix and Determinants
Matrix and DeterminantsMatrix and Determinants
Matrix and DeterminantsAarjavPinara
 
Set theory and relation
Set theory and relationSet theory and relation
Set theory and relationankush_kumar
 

Similaire à Mat 223_Ch3-Determinants.ppt (20)

determinants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdfdeterminants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdf
 
determinants-160504230830.pdf
determinants-160504230830.pdfdeterminants-160504230830.pdf
determinants-160504230830.pdf
 
Determinants
DeterminantsDeterminants
Determinants
 
Determinants, crammers law, Inverse by adjoint and the applications
Determinants, crammers law,  Inverse by adjoint and the applicationsDeterminants, crammers law,  Inverse by adjoint and the applications
Determinants, crammers law, Inverse by adjoint and the applications
 
Metrix[1]
Metrix[1]Metrix[1]
Metrix[1]
 
Determinants and matrices.ppt
Determinants and matrices.pptDeterminants and matrices.ppt
Determinants and matrices.ppt
 
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdf
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdfObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdf
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdf
 
nabil-201-chap-03.ppt
nabil-201-chap-03.pptnabil-201-chap-03.ppt
nabil-201-chap-03.ppt
 
Indices
IndicesIndices
Indices
 
Es272 ch4b
Es272 ch4bEs272 ch4b
Es272 ch4b
 
6.5 determinant x
6.5 determinant x6.5 determinant x
6.5 determinant x
 
Matrix2 english
Matrix2 englishMatrix2 english
Matrix2 english
 
determinant1.pdf
determinant1.pdfdeterminant1.pdf
determinant1.pdf
 
Introduction of determinant
Introduction of determinantIntroduction of determinant
Introduction of determinant
 
Math 2318 - Test 3In this test we will try something differe.docx
Math 2318 - Test 3In this test we will try something differe.docxMath 2318 - Test 3In this test we will try something differe.docx
Math 2318 - Test 3In this test we will try something differe.docx
 
Determinants - Mathematics
Determinants - MathematicsDeterminants - Mathematics
Determinants - Mathematics
 
3. Matrix Algebra.ppt
3. Matrix Algebra.ppt3. Matrix Algebra.ppt
3. Matrix Algebra.ppt
 
Calculus and matrix algebra notes
Calculus and matrix algebra notesCalculus and matrix algebra notes
Calculus and matrix algebra notes
 
Matrix and Determinants
Matrix and DeterminantsMatrix and Determinants
Matrix and Determinants
 
Set theory and relation
Set theory and relationSet theory and relation
Set theory and relation
 

Plus de Tigabu Yaya

ML_basics_lecture1_linear_regression.pdf
ML_basics_lecture1_linear_regression.pdfML_basics_lecture1_linear_regression.pdf
ML_basics_lecture1_linear_regression.pdfTigabu Yaya
 
03. Data Exploration in Data Science.pdf
03. Data Exploration in Data Science.pdf03. Data Exploration in Data Science.pdf
03. Data Exploration in Data Science.pdfTigabu Yaya
 
MOD_Architectural_Design_Chap6_Summary.pdf
MOD_Architectural_Design_Chap6_Summary.pdfMOD_Architectural_Design_Chap6_Summary.pdf
MOD_Architectural_Design_Chap6_Summary.pdfTigabu Yaya
 
MOD_Design_Implementation_Ch7_summary.pdf
MOD_Design_Implementation_Ch7_summary.pdfMOD_Design_Implementation_Ch7_summary.pdf
MOD_Design_Implementation_Ch7_summary.pdfTigabu Yaya
 
GER_Project_Management_Ch22_summary.pdf
GER_Project_Management_Ch22_summary.pdfGER_Project_Management_Ch22_summary.pdf
GER_Project_Management_Ch22_summary.pdfTigabu Yaya
 
lecture_GPUArchCUDA02-CUDAMem.pdf
lecture_GPUArchCUDA02-CUDAMem.pdflecture_GPUArchCUDA02-CUDAMem.pdf
lecture_GPUArchCUDA02-CUDAMem.pdfTigabu Yaya
 
lecture_GPUArchCUDA04-OpenMPHOMP.pdf
lecture_GPUArchCUDA04-OpenMPHOMP.pdflecture_GPUArchCUDA04-OpenMPHOMP.pdf
lecture_GPUArchCUDA04-OpenMPHOMP.pdfTigabu Yaya
 
6_RealTimeScheduling.pdf
6_RealTimeScheduling.pdf6_RealTimeScheduling.pdf
6_RealTimeScheduling.pdfTigabu Yaya
 
200402_RoseRealTime.ppt
200402_RoseRealTime.ppt200402_RoseRealTime.ppt
200402_RoseRealTime.pptTigabu Yaya
 
matrixfactorization.ppt
matrixfactorization.pptmatrixfactorization.ppt
matrixfactorization.pptTigabu Yaya
 
The Jacobi and Gauss-Seidel Iterative Methods.pdf
The Jacobi and Gauss-Seidel Iterative Methods.pdfThe Jacobi and Gauss-Seidel Iterative Methods.pdf
The Jacobi and Gauss-Seidel Iterative Methods.pdfTigabu Yaya
 

Plus de Tigabu Yaya (20)

ML_basics_lecture1_linear_regression.pdf
ML_basics_lecture1_linear_regression.pdfML_basics_lecture1_linear_regression.pdf
ML_basics_lecture1_linear_regression.pdf
 
03. Data Exploration in Data Science.pdf
03. Data Exploration in Data Science.pdf03. Data Exploration in Data Science.pdf
03. Data Exploration in Data Science.pdf
 
MOD_Architectural_Design_Chap6_Summary.pdf
MOD_Architectural_Design_Chap6_Summary.pdfMOD_Architectural_Design_Chap6_Summary.pdf
MOD_Architectural_Design_Chap6_Summary.pdf
 
MOD_Design_Implementation_Ch7_summary.pdf
MOD_Design_Implementation_Ch7_summary.pdfMOD_Design_Implementation_Ch7_summary.pdf
MOD_Design_Implementation_Ch7_summary.pdf
 
GER_Project_Management_Ch22_summary.pdf
GER_Project_Management_Ch22_summary.pdfGER_Project_Management_Ch22_summary.pdf
GER_Project_Management_Ch22_summary.pdf
 
lecture_GPUArchCUDA02-CUDAMem.pdf
lecture_GPUArchCUDA02-CUDAMem.pdflecture_GPUArchCUDA02-CUDAMem.pdf
lecture_GPUArchCUDA02-CUDAMem.pdf
 
lecture_GPUArchCUDA04-OpenMPHOMP.pdf
lecture_GPUArchCUDA04-OpenMPHOMP.pdflecture_GPUArchCUDA04-OpenMPHOMP.pdf
lecture_GPUArchCUDA04-OpenMPHOMP.pdf
 
6_RealTimeScheduling.pdf
6_RealTimeScheduling.pdf6_RealTimeScheduling.pdf
6_RealTimeScheduling.pdf
 
Regression.pptx
Regression.pptxRegression.pptx
Regression.pptx
 
lecture6.pdf
lecture6.pdflecture6.pdf
lecture6.pdf
 
lecture5.pdf
lecture5.pdflecture5.pdf
lecture5.pdf
 
lecture4.pdf
lecture4.pdflecture4.pdf
lecture4.pdf
 
lecture3.pdf
lecture3.pdflecture3.pdf
lecture3.pdf
 
lecture2.pdf
lecture2.pdflecture2.pdf
lecture2.pdf
 
Chap 4.ppt
Chap 4.pptChap 4.ppt
Chap 4.ppt
 
200402_RoseRealTime.ppt
200402_RoseRealTime.ppt200402_RoseRealTime.ppt
200402_RoseRealTime.ppt
 
matrixfactorization.ppt
matrixfactorization.pptmatrixfactorization.ppt
matrixfactorization.ppt
 
nnfl.0620.pptx
nnfl.0620.pptxnnfl.0620.pptx
nnfl.0620.pptx
 
L20.ppt
L20.pptL20.ppt
L20.ppt
 
The Jacobi and Gauss-Seidel Iterative Methods.pdf
The Jacobi and Gauss-Seidel Iterative Methods.pdfThe Jacobi and Gauss-Seidel Iterative Methods.pdf
The Jacobi and Gauss-Seidel Iterative Methods.pdf
 

Dernier

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxdhanalakshmis0310
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxAmita Gupta
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 

Dernier (20)

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 

Mat 223_Ch3-Determinants.ppt

  • 2. Ch03_2 3.1 Introduction to Determinants Definition The determinant of a 2  2 matrix A is denoted |A| and is given by Observe that the determinant of a 2  2 matrix is given by the different of the products of the two diagonals of the matrix. The notation det(A) is also used for the determinant of A. 21 12 22 11 22 21 12 11 a a a a a a a a   Example 1         1 3 4 2 A 14 12 2 )) 3 ( 4 ( ) 1 2 ( 1 3 4 2 ) det(           A
  • 3. Ch03_3 Definition Let A be a square matrix. The minor of the element aij is denoted Mij and is the determinant of the matrix that remains after deleting row i and column j of A. The cofactor of aij is denoted Cij and is given by Cij = (–1)i+j Mij Note that Cij = Mij or Mij .
  • 4. Ch03_4 10 ) 4 3 ( ) 2 1 ( 2 4 3 1 1 2 0 2 1 4 3 0 1 : of Minor 32 32           M a 3 )) 2 ( 2 ( ) 1 1 ( 1 2 2 1 1 2 0 2 1 4 3 0 1 : of Minor 11 11              M a Example 2 Solution Determine the minors and cofactors of the elements a11 and a32 of the following matrix A.            1 2 0 2 1 4 3 0 1 A 3 ) 3 ( ) 1 ( ) 1 ( : of Cofactor 2 11 1 1 11 11       M C a 10 ) 10 ( ) 1 ( ) 1 ( : of Cofactor 5 32 2 3 32 32        M C a
  • 5. Ch03_5 Definition The determinant of a square matrix is the sum of the products of the elements of the first row and their cofactors. These equations are called cofactor expansions of |A|. n nC a C a C a C a A n n A C a C a C a C a A A C a C a C a A A 1 1 13 13 12 12 11 11 14 14 13 13 12 12 11 11 13 13 12 12 11 11 , is If 4, 4 is If 3, 3 is If                 
  • 6. Ch03_6 Example 3 Evaluate the determinant of the following matrix A.           1 2 4 1 0 3 1 2 1 A Solution 2 4 0 3 ) 1 )( 1 ( 1 4 1 3 ) 1 ( 2 1 2 1 0 ) 1 ( 1 4 3 2 13 13 12 12 11 11           C a C a C a A 6 6 2 2 )] 4 0 ( ) 2 3 [( )] 4 1 ( ) 1 3 [( 2 )] 2 1 ( ) 1 0 [(                  
  • 7. Ch03_7 Theorem 3.1 The determinant of a square matrix is the sum of the products of the elements of any row or column and their cofactors. ith row expansion: jth column expansion: nj nj j j j j in in i i i i C a C a C a A C a C a C a A           2 2 1 1 2 2 1 1 Example 4 Find the determinant of the following matrix using the second row.           1 2 4 1 0 3 1 2 1 A Solution 6 6 0 12 )] 4 2 ( ) 2 1 [( 1 )] 4 1 ( ) 1 1 [( 0 )] 2 1 ( ) 1 2 [( 3 2 4 2 1 1 1 4 1 1 0 1 2 1 2 3 23 23 22 22 21 21                               C a C a C a A
  • 8. Ch03_8 Example 5 Evaluate the determinant of the following 4  4 matrix.              3 0 1 0 5 3 2 7 2 0 1 0 4 0 1 2 Solution 6 ) 2 3 ( 6 3 1 2 1 ) 2 ( 3 3 1 0 2 1 0 4 1 2 3          ) ( 0 ) ( 3 ) ( 0 ) ( 0 43 33 23 13 43 43 33 33 23 23 13 13 C C C C C a C a C a C a A        
  • 9. Ch03_9 Example 6 Solve the following equation for the variable x. 7 2 1 1     x x x Solution Expand the determinant to get the equation 7 ) 1 )( 1 ( ) 2 (      x x x Proceed to simplify this equation and solve for x. 3 or 2 0 ) 3 )( 2 ( 0 6 7 1 2 2 2             x x x x x x x x There are two solutions to this equation, x = – 2 or 3.
  • 10. Ch03_10 Computing Determinants of 2  2 and 3  3 Matrices        22 21 12 11 a a a a A 21 12 22 11 A a a a a             33 32 31 23 22 21 13 12 11 a a a a a a a a a A 32 31 22 21 12 11 33 32 31 23 22 21 13 12 11 a a a a a a a a a a a a a a a          left) right to from products (diagonal right) left to from products (diagonal A 33 21 12 32 23 11 31 22 13 32 21 13 31 23 12 33 22 11 a a a a a a a a a a a a a a a a a a       
  • 11. Ch03_11 Homework Exercise 3.1 pages 161-162: 1, 3, 5, 7, 9, 11, 13
  • 12. Ch03_12 Let A be an n  n matrix and c be a nonzero scalar. (a) If then |B| = c|A|. (b) If then |B| = –|A|. (c) If then |B| = |A|. 3.2 Properties of Determinants Theorem 3.2 Proof (a) |A| = ak1Ck1 + ak2Ck2 + … + aknCkn |B| = cak1Ck1 + cak2Ck2 + … + caknCkn |B| = c|A|. B A cRk  B A Rj Ri  B A cRj Ri 
  • 14. Ch03_14 Example 2 If |A| = 12 is known. Evaluate the determinants of the following matrices. , 10 4 2 5 2 0 3 4 1            A                                      16 4 0 5 2 0 3 4 1 ) c ( 5 2 0 10 4 2 3 4 1 (b) 10 12 2 5 6 0 3 12 1 ) a ( 3 2 1 B B B Solution (a) Thus |B1| = 3|A| = 36. (b) Thus |B2| = – |A| = –12. (c) Thus |B3| = |A| = 12. 1 2 3 B A C  2 3 2 B A R R   3 1 2 3 B A R R  
  • 15. Ch03_15 Theorem 3.3 Let A be a square matrix. A is singular if (a) all the elements of a row (column) are zero. (b) two rows (columns) are equal. (c) two rows (columns) are proportional. (i.e., Ri=cRj) Proof (a) Let all elements of the kth row of A be zero. 0 0 0 0 2 1 2 2 1 1          kn k k kn kn k k k k C C C C a C a C a A   (c) If Ri=cRj, then , row i of B is [0 0 … 0].  |A|=|B|=0 B A cRj Ri  Definition A square matrix A is said to be singular if |A|=0. A is nonsingular if |A|0.
  • 16. Ch03_16 Example 3 Show that the following matrices are singular.                          8 4 2 4 2 1 3 1 2 (b) 9 0 4 1 0 3 7 0 2 ) (a B A Solution (a) All the elements in column 2 of A are zero. Thus |A| = 0. (b) Row 2 and row 3 are proportional. Thus |B| = 0.
  • 17. Ch03_17 Theorem 3.4 Let A and B be n  n matrices and c be a nonzero scalar. (a) |cA| = cn|A|. (b) |AB| = |A||B|. (c) |At| = |A|. (d) (assuming A–1 exists) A A 1 1   Proof (a) A c cA cA A n cRn cR cR    ..., , 2 , 1 (d) A A I A A A A 1 1 1 1 1          
  • 18. Ch03_18 Example 4 If A is a 2  2 matrix with |A| = 4, use Theorem 3.4 to compute the following determinants. (a) |3A| (b) |A2| (c) |5AtA–1|, assuming A–1 exists Solution (a) |3A| = (32)|A| = 9  4 = 36. (b) |A2| = |AA| =|A| |A|= 4  4 = 16. (c) |5AtA–1| = (52)|AtA–1| = 25|At||A–1| . 25 1 25   A A Example 5 Prove that |A–1AtA| = |A| Solution A A A A A A A A A A A A A A A A t t t t          1 ) ( 1 1 1 1
  • 19. Ch03_19 Example 6 Prove that if A and B are square matrices of the same size, with A being singular, then AB is also singular. Is the converse true? Solution () |A| = 0  |AB| = |A||B| = 0 Thus the matrix AB is singular. () |AB| = 0  |A||B| = 0  |A| = 0 or |B| = 0 Thus AB being singular implies that either A or B is singular. The inverse is not true.
  • 20. Ch03_20 Homework Exercise 3.2 pp. 170-171: 1, 3, 5, 7, 9, 13 Exercise 11 Prove the following identity without evaluating the determinants. w v u r q p f d b w v u r q p e c a w v u r q p f e d c b a      v u q p f e w u r p d c w v r q b a w v u r q p f e d c b a ) ( ) ( ) (         
  • 21. Ch03_21 3.3 Numerical Evaluation of a Determinant Definition A square matrix is called an upper triangular matrix if all the elements below the main diagonal are zero. It is called a lower triangular matrix if all the elements above the main diagonal are zero. triangular upper 1 0 0 0 9 0 0 0 5 3 2 0 7 0 4 1 , 9 0 0 5 1 0 2 8 3                        triangular lower 1 8 5 4 0 2 0 7 0 0 4 1 0 0 0 8 , 8 9 3 0 1 2 0 0 7                       
  • 22. Ch03_22 . find , 5 0 0 4 3 0 9 1 2 Let A A               Theorem 3.5 The determinant of a triangular matrix is the product of its diagonal elements. Example 1 Proof nn nn n n nn n n nn n n a a a a a a a a a a a a a a a a a a a a a a a a                        22 11 4 44 3 34 33 22 11 3 33 2 23 22 11 2 22 1 12 11 0 0 0 0 0 0 0 0 0     . 30 ) 5 ( 3 2 ol.       A S Numerical Evaluation of a Determinant
  • 23. Ch03_23 Numerical Evaluation of a Determinant Example 2 Evaluation the determinant.           10 9 4 4 5 2 1 4 2 8 1 0 5 1 0 1 4 2 R1 ) 2 ( 3 R R1 R2 10 9 4 4 5 2 1 4 2        13 0 0 5 1 0 1 4 2 2 R3    R 26 13 ) 1 ( 2       Solution (elementary row operations)
  • 24. Ch03_24 Example 3 Evaluation the determinant. 1 2 0 1 3 0 0 1 0 1 1 2 1 2 0 1   Solution 2 4 0 0 2 2 0 0 2 3 1 0 1 2 0 1 R1 R4 R1 ) 1 ( R3 R1 ) 2 ( R2 1 2 0 1 3 0 0 1 0 1 1 2 1 2 0 1             6 0 0 0 2 2 0 0 2 3 1 0 1 2 0 1 2R3 R4       12 6 ) 2 ( ) 1 ( 1       
  • 25. Ch03_25 Example 4 Evaluation the determinant. 11 2 2 5 2 1 4 2 1     Solution 3 2 0 1 0 0 4 2 1 1 R ) 2 ( 3 R R1 R2 11 2 2 5 2 1 4 2 1           1 0 0 3 2 0 4 2 1 ) 1 ( R3 R2      2 ) 1 ( 2 1 ) 1 (       
  • 26. Ch03_26 Example 5 Evaluation the determinant. 1 5 6 6 4 3 2 2 3 2 1 1 2 0 1 1     Solution 11 5 0 0 0 3 0 0 5 2 0 0 2 0 1 1 R1 ) 6 ( R4 R1 ) 2 ( R3 R1 R2 1 5 6 6 4 3 2 2 3 2 1 1 2 0 1 1             diagonal element is zero and all elements below this diagonal element are zero. 0 
  • 27. Ch03_27 3.3 Determinants, Matrix Inverse, and Systems of Linear Equations Definition Let A be an n  n matrix and Cij be the cofactor of aij. The matrix whose (i, j)th element is Cij is called the matrix of cofactors of A. The transpose of this matrix is called the adjoint of A and is denoted adj(A). cofactors of matrix 2 1 2 22 21 1 12 11             nn n n n n C C C C C C C C C       matrix adjoint 2 1 2 22 21 1 12 11 t C C C C C C C C C nn n n n n                  
  • 28. Ch03_28 Example 1 Give the matrix of cofactors and the adjoint matrix of the following matrix A.             5 3 1 2 4 1 3 0 2 A Solution The cofactors of A are as follows. 14 5 3 2 4 11     C 3 5 1 2 1 12      C 1 3 1 4 1 13      C 9 5 3 3 0 21      C 7 5 1 3 2 22   C 6 3 1 0 2 23     C 12 2 4 3 0 31     C 1 2 1 3 2 32      C 8 4 1 0 2 33    C The matrix of cofactors of A is             8 6 1 1 7 3 12 9 14 ) ( adj A              8 1 12 6 7 9 1 3 14 The adjoint of A is
  • 29. Ch03_29 Theorem 3.6 Let A be a square matrix with |A|  0. A is invertible with ) ( adj 1 1 A A A   Proof Consider the matrix product Aadj(A). The (i, j)th element of this product is   jn in j i j i jn j j in i i C a C a C a C C C a a a A j A i j i                     2 2 1 1 2 1 2 1 )) adj( of (column ) of (row element th ) , (
  • 30. Ch03_30 Therefore       j i j i A j i if 0 if element th ) . (  A adj(A) = |A|In Proof of Theorem 3.6 . 2 2 1 1 A C a C a C a jn in j i j i      If i = j, If i  j, let . by replaced is B A Ri Rj  . 0 So 2 2 1 1      B C a C a C a jn in j i j i  Since |A|  0, n I A A A          ) ( adj 1 Similarly, . n I A A A          ) ( adj 1 Thus ) ( adj 1 1 A A A   row i = row j in B Matrices A and B have the same cofactors Cj1, Cj2, …, Cjn.
  • 31. Ch03_31 Theorem 3.7 A square matrix A is invertible if and only if |A|  0. Proof () Assume that A is invertible.  AA–1 = In.  |AA–1| = |In|.  |A||A–1| = 1  |A|  0. () Theorem 3.6 tells us that if |A|  0, then A is invertible. A–1 exists if and only if |A|  0.
  • 32. Ch03_32 Example 2 Use a determinant to find out which of the following matrices are invertible.                                       0 8 2 2 1 1 1 2 1 1 0 1 7 12 4 3 4 2 1 2 2 4 2 3 1 1 D C B A Solution |A| = 5  0. A is invertible. |B| = 0. B is singular. The inverse does not exist. |C| = 0. C is singular. The inverse does not exist. |D| = 2  0. D is invertible.
  • 33. Ch03_33 Example 3 Use the formula for the inverse of a matrix to compute the inverse of the matrix             5 3 1 2 4 1 3 0 2 A Solution |A| = 25, so the inverse of A exists.We found adj(A) in Example 1             8 6 1 1 7 3 12 9 14 ) ( adj A                                     25 8 25 6 25 1 25 1 25 7 25 3 25 12 25 9 25 14 8 6 1 1 7 3 12 9 14 25 1 ) adj( 1 1 A A A
  • 34. Ch03_34 Homework Exercise 3.3 page 178-179: 1, 3, 5, 7. Exercise Show that if A = A-1, then |A| = 1. Show that if At = A-1, then |A| = 1.
  • 35. Ch03_35 Theorem 3.8 Let AX = B be a system of n linear equations in n variables. (1) If |A|  0, there is a unique solution. (2) If |A| = 0, there may be many or no solutions. Proof (1) If |A|  0  A–1 exists (Thm 3.7)  there is then a unique solution given by X = A–1B (Thm 2.9). (2) If |A| = 0  since A  C implies that if |A|0 then |C|0 (Thm 3.2).  the reduced echelon form of A is not In.  The solution to the system AX = B is not unique.  many or no solutions.
  • 36. Ch03_36 Example 4 Determine whether or not the following system of equations has an unique solution. 9 4 7 5 3 4 2 2 3 3 3 2 1 3 2 1 3 2 1           x x x x x x x x x Solution Since 0 1 4 7 3 1 4 2 3 3   Thus the system does not have an unique solution.
  • 37. Ch03_37 Theorem 3.9 Cramer’s Rule Let AX = B be a system of n linear equations in n variables such that |A|  0. The system has a unique solution given by Where Ai is the matrix obtained by replacing column i of A with B. A A x A A x A A x n n    , ... , , 2 2 1 1 Proof |A|  0  the solution to AX = B is unique and is given by B A A B A X ) ( adj 1 1   
  • 38. Ch03_38 xi, the ith element of X, is given by   ) ( 1 1 )] ( adj of row [ 1 2 2 1 1 2 1 2 1 ni n i i n ni i i i C b C b C b A b b b C C C A B A i A x                     Thus A A x i i  Proof of Cramer’s Rule the cofactor expansion of |Ai| in terms of the ith column
  • 39. Ch03_39 Example 5 Solving the following system of equations using Cramer’s rule. 6 3 2 5 5 2 2 3 3 2 1 3 2 1 3 2 1            x x x x x x x x x Solution The matrix of coefficients A and column matrix of constants B are                     6 5 2 and 3 2 1 1 5 2 1 3 1 B A It is found that |A| = –3  0. Thus Cramer’s rule be applied. We get                                  6 2 1 5 5 2 2 3 1 3 6 1 1 5 2 1 2 1 3 2 6 1 5 5 1 3 2 3 2 1 A A A
  • 40. Ch03_40 Giving Cramer’s rule now gives 9 , 6 , 3 3 2 1      A A A 3 3 9 , 2 3 6 , 1 3 3 3 3 2 2 1 1                A A x A A x A A x The unique solution is . 3 , 2 , 1 3 2 1     x x x
  • 41. Ch03_41 Example 6 Determine values of  for which the following system of equations has nontrivial solutions.Find the solutions for each value of . 0 ) 1 ( 2 0 ) 4 ( ) 2 ( 2 1 2 1        x x x x    Solution homogeneous system  x1 = 0, x2 = 0 is the trivial solution.  nontrivial solutions exist  many solutions       = – 3 or  = 2. 0 1 2 4 2        0 ) 3 )( 2 (      0 6 2      0 ) 4 ( 2 ) 1 )( 2 (        
  • 42. Ch03_42  = – 3 results in the system This system has many solutions, x1 = r, x2 = r. 0 2 2 0 2 1 2 1      x x x x  = 2 results in the system This system has many solutions, x1 = – 3r/2, x2 = r. 0 3 2 0 6 4 2 1 2 1     x x x x
  • 43. Ch03_43 Homework Exercise 3.3 pages 179-180: 9, 11, 13, 15.