SlideShare une entreprise Scribd logo
1  sur  14
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
1
Radial flow fan test
Objective:
The main objectives of this lab>
 To measure the total pressure drop with respect to flow rate
 To measure static pressure drop with respect to flow rate.
 To know the parameters that affects the operation capacity and efficiency of
the fan.
 And determine which parameters are the most determinant for the flow fan.
Theory
A radial flow fan comprising an impeller where the direction of the entry air flow is vertical
to the direction of the exit air flow
A centrifugal fan is a mechanical device for moving air or other gases. These fans increase
the speed of air stream with the rotating impellers. They use the kinetic energy of the
impellers or the rotating blade to increase the pressure of the air/gas stream which in turn
moves them against the resistance caused by ducts, dampers and other components.
Centrifugal fans accelerate air radially, changing the direction (typically by 90°) of the
airflow. They are sturdy, quiet, reliable, and capable of operating over a wide range of
conditions.
Centrifugal fans are constant displacement devices or constant volume devices, meaning
that, at a constant fan speed, a centrifugal fan will pump a constant volume of air rather
than a constant mass. This means that the air velocity in a system is fixed even though mass
flow rate through the fan is not.
The centrifugal fan is one of the most widely used fans. Centrifugal fans are by far the most
prevalent type of fan used in the HVAC industry today. They are usually cheaper than axial
fans and simpler in construction. It is used in transporting gas or materials and in
ventilation system for buildings. They are also used commonly in central heating/cooling
systems. They are also well-suited for industrial processes and air pollution control
systems.
It has a fan wheel composed of a number of fan blades, or ribs, mounted around a hub. As
shown in the figure, the hub turns on a driveshaft that passes through the fan housing. The
gas enters from the side of the fan wheel, turns 90 degrees and accelerates due to
centrifugal force as it flows over the fan blades and exits the fan housing.
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
2
Main parts of a centrifugal fan are:
 Fan housing
 Impellers
 Inlet and outlet ducts
 Drive shaft
 Drive mechanism
Principles of operation
The centrifugal fan uses the centrifugal power generated from the rotation of impellers to
increase the kinetic energy of air/gases. When the impellers rotate, the gas near the
impellers is thrown-off from the impellers due to the centrifugal force and then moves into
the fan casing. As a result, the kinetic energy of gas is converted to pressure because of
system resistance offered by the casing and duct. The gas is then guided to the exit via
outlet ducts. After the gas is thrown-off, the gas pressure in the middle region of the
impellers decreases. The gas from the impeller eye rushes in to normalize this pressure.
This cycle repeats and therefore the gas can be continuously transferred.
Apparatus and materials used
Data
Dim
Nozzle
position
Turn 1 3 5 7 9 11 13 15 17 19
wattmete
r
𝛼 25 27 28 31.5 35 39 41 43 46 48
Voltage V 450 450 450 450 450 450 450 450 450 450
current A 2.7 2.8 2.9 3 3.05 3.12 3.15 3.20 3.25 3.3
Speed n rpm 280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
∆𝑝vent mmw 40 130 270 410 610 830 103 120 138 151
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
3
Bf=603mmHg
T=210C
B =Bf-T/8
C =20;
Power=C/2*𝛼w
SFven=1
SFfav= (808.3/0.787)*(inch/250)
AD=0.1452m
A0=34.77m
1, Calculation
c 0 0 0 0
∆𝑝fan mmw
c
930 890 885 880 860 840 790 740 680 610
value Di
m
1 Nozzle
position
Tur
n
1 3 5 7 9 11 13 15 17 19
2 wattmeter 𝛼 25 27 28 31.5 35 39 41 43 46 48
3 Voltage V 450 450 450 450 450 450 450 450 450 450
4 current A 2.7 2.8 2.9 3 3.05 3.12 3.15 3.2 3.25 3.3
5 Speed n rp
m
280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
6 ∆𝑝vent m
m
wc
40 130 270 410 610 830 103
0
120
0
138
0
151
0
7 ∆𝑝fan m
m
wc
930 890 885 880 860 840 790 740 680 610
8 Nactive=(C/
2)*
𝛼
W 250 270 280 315 350 390 410 430 460 480
9 Napparent=V*
A
VA 121
5
126
0
130
5
135
0
137
2.5
140
4
141
7.5
144
0
146
2.5
148
5
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
4
1
0
cos𝜑=Nacti
ve/Napparant
- 0.20
6
0.21
43
0.21
46
0.23 0.25
5
0.27
8
0.28
92
0.29
9
0.31
5
0.32
3
1
1
n=n(rpm)
/60
1/s 46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
1
2
𝜔=2𝜋n 1/s 293.
067
293.
067
293.
067
293.
067
293.
067
293.
067
293.
067
293.
067
293.
067
293.
067
1
3
U1=r1*𝜔 m/
s
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
1
4
U2=r2*𝜔 m/
s
23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6
1
5
U22=(r2 𝜔)
2
m2
/s2
556.
38
556.
38
556.
38
556.
38
556.
38
556.
38
556.
38
556.
38
556.
38
556.
38
1
6
A0u1=34.7
7*(r1 𝜔)
m3
/s
717.
375
717.
375
717.
375
717.
375
717.
375
717.
375
717.
375
717.
375
717.
375
717.
375
1
7
U13=(r1 𝜔)
3
m3
/s3
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
1
8
A0u13=34.
77*(r1 𝜔)3
m5
/s3
305
372
305
372
305
372
305
372
305
372
305
372
305
372
305
372
305
372
305
372
1
9
(𝜌/2)*
A0u13=0.4
5* A0u13
Kg
/m.
s3
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
2
0
∆pven/20*
0.8*0.5
m
m
wc
0.8 2.6 5.4 8.2 12.2 16.6 20.6 24 27.6 30.2
2
1
∆pven=g*pv
ent=9.81*’2
0’
Kg
/m
s2
7.85 25.5
06
52.9
74
80.4
42
119.
88
162.
85
202.
09
235.
44
270.
76
296.
3
2
2
∆pven/(𝜌/
2)
m2
/s2
17.4
4
56.6
8
117.
708
2
178.
76
266.
4
361.
89
449.
09
523.
2
601.
63
658.
44
2
3
√∆pven/𝜌 m/
s
4.17
7
7.52
9
10.8
52
13.3
7
16.3
22
19.0
23
21.2 22.9 24.5
3
25.6
6
2
4
𝛼A0√∆pve
n/𝜌=V
m/
s
0.02
756
4
0.04
97
0.07
161
0.08
823
0.10
771
0.12
553
3
0.13
49
0.15
114
0.16
2
0.16
93
2
5
∆Pfan=sʄfan
*∆P*fan
m
m
wc
18.6 17.8 17.7 17.6 17.2 16.8 15.8 14.8 13.6 12.2
2
6
∆Pfan=g∆Pf
an
Kg
/m
s2
182.
47
174.
62
173.
64
172.
66
168.
723
164.
81
155 145.
19
133.
42
119.
682
2
7
Ystat=∆Pfan
/ 𝜌
m2
/s2
202.
744
194.
02
192.
93
191.
84
187.
5
183.
122
172.
22
161.
32
148.
244
133
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
5
2,plots
A, calculationand graph
𝜑 10^
-5
3.842
3
6.93 9.983 11.472
4
15.014
5
17.5 18.80
5
21.0
7
22.58
2
23.6
cos
𝜑
0.206 0.214
3
0.214
6
0.23 0.255 0.27
8
0.289
2
0.29
9
0.315 0.32
3
Nacti w 250 270 280 315 350 390 410 430 460 480
Cos𝝋Vs Nactive graph
2
8
CD=V/AD m/
s
1.89
81
3.42
3
4.93
2
6.07
645
7.41
804
8.64
55
9.63
5
10.4
091
11.1
57
11.6
6
2
9
Ydyn=CD2/
2
m2
/s2
1.80
14
5.86 12.1
62
18.4
62
27.5
14
37.2
82
46.4
2
54.1
75
62.2
4
67.9
8
3
0
Y= Ydyn+
Ystat
m2
/s2
204.
55
199.
88
205.
092
210.
302
215.
014
220.
404
218.
64
215.
5
210.
5
201
3
1
Neff=VY𝜌 w 5.07
44
8.94
063
13.2
2
16.7 20.8
43
24.9
012
27.5
3
29.3
14
30.6
91
30.6
3
3
2
Ƞtot= Neff/
Nactive
- 0.02
03
0.03
31
0.04
721
0.05
302
0.06 0.06
4
0.06
715
0.06
82
0.06
672
0.06
4
3
3
𝜑=V/
A0u1
10
^-5
3.84
23
6.93 9.98
2
11.4
724
00
15.0
145
17.5 18.8
05
21.0
7
22.5
82
23.6
3
4
Ψ=2Y/u22 - 0.36
76
0.35
93
0.36
9
0.37
8
0.38
65
0.39
614
0.93 0.38
733
0.37
834
0.36
13
3
5 𝜇tot=2Nact/
𝜌 A0u13
10
^-3
1.82 1.96
5
2.04 2.3 2.54
7
2.84 2.98
4
3.13 3.35 3.5
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
6
B
𝜑 10^
-5
3.8423 6.93 9.983 11.47
24
15.01
45
17.5 18.80
5
21.07 22.
582
23.6
V m/
s
0.0275
64
0.04
97
0.071
61
0.088
23
0.107
71
0.1255
33
0.134
9
0.1511
4
0.1
62
0.16
93
x m
m
1 3 5 7 9 11 13 15 17 19
cos
𝜑
- 0.206 0.214
3
0.214
6
0.23 0.255 0.27
8
0.28
92
0.2
99
0.315 0.3
23
V
x
m/
s
0.0056
8
0.01
07
0.015
4
0.020
3
0.027
5
0.035 0.039 0.0452 0.0
51
0.05
5
0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34
250
300
350
400
450
500
cos@
Nactive
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
7
C
𝜑 10^
-5
3.8423 6.93 9.983 11.47
24
15.01
45
17.5 18.80
5
21.07 22.
58
2
23.6
V m/s 0.0275
64
0.049
7
0.071
61
0.088
23
0.107
71
0.1255
33
0.134
9
0.1511
4
0.1
62
0.16
93
x mm 1 3 5 7 9 11 13 15 17 19
cos
𝜑
- 0.206 0.214
3
0.214
6
0.23 0.255 0.27
8
0.28
92
0.2
99
0.315 0.3
23
V
x
m/s 0.0056
8
0.010
7
0.015
4
0.020
3
0.027
5
0.035 0.039 0.0452 0.0
51
0.05
5
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
0
2
4
6
8
10
12
14
16
18
20
Vx(m/s)
x(mm)
Vx Vs x graph
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
8
Y
x
m2/
s2
42.14 42.83
43
44.01
3
48.37 54.83 61.3 63.23
07
64.435 66.
30
8
64.9
23
Y m2/
s2
204.55 199.8
8
205.0
92
210.3
02
215.0
14
220.40
4
218.6
4
215.5 21
0.5
201
D
Vx m/
s
0.0056
8
0.010
7
0.015
4
0.020
3
0.027
5
0.03
5
0.03
9
0.045
2
0.05
1
0.05
5
Nactiv
e
w 250 270 280 315 350 390 410 430 460 480
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
40
45
50
55
60
65
70
Vx(m/s)
Yx
Vx Vs Yx graph
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
9
E
Vx m/
s
0.005
68
0.010
7
0.015
4
0.020
3
0.027
5
0.03
5
0.039 0.045
2
0.051 0.05
5
Ƞt
ot
- 0.020
3
0.033
1
0.047
21
0.053
02
0.06 0.06
4
0.067
15
0.068
2
0.066
72
0.06
4
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
250
300
350
400
450
500
Vx(m/s)
Nactive(w)
Vx Vs Nctv graph
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
10
V x v s Ƞtot graph
F
𝝋 vs. 𝚿 graph
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
0.02
0.025
0.03
0.035
0.04
0.045
0.05
0.055
0.06
0.065
0.07
Vx
totalefficiency
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
11
G
𝝋 vs. v graph
0 5 10 15 20 25
0.355
0.36
0.365
0.37
0.375
0.38
0.385
0.39
0.395
0.4
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
12
H
𝝋 vs. Ƞtot graph
0 5 10 15 20 25
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
13
Conclusion and discussion
The centrifugal fan performance tables provide the fan RPM and power requirements for
the given CFM and static pressure at standard air density. When the centrifugal fan
performance is not at standard conditions, the performance must be converted to standard
conditions before entering the performance tables. Centrifugal fans rated by the Air
0 5 10 15 20 25
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
14
Movement and Control Association are tested in laboratories with test setups that simulate
installations that are typical for that type of fan. Usually they are tested and rated as one of
four standard installation types as designated in AMCA Standard 210.
AMCA Standard 210 defines uniform methods for conducting laboratory tests on housed
fans to determine airflow rate, pressure, power and efficiency, at a given speed of rotation.
The purpose of AMCA Standard 210 is to define exact procedures and conditions of fan
testing so that ratings provided by various manufacturers are on the same basis and may
be compared. For this reason, fans must be rated in standardized SCFM.
Generally from calculation and graphs we observed the fooling points:
 From graph A, the cosine of the Angele and Native slightly has direct relation (.i.e.
when cosine of the angle increases and also power requirement also increases.). In
our design of the fan we must consider this relation,(we should compromise the
speed and power requirement).
 From graph B, the nozzle position and the speed of the motor has direct relation.
 From graph C, at lower speed there is low amount of specific energy is needed, and
then sharply increases and at higher speed the specific energy start to decrease.
 From graph D, Nactive and the speed of the motor has direct relation. As the speed
increases and also the power requirement increase.
 From graph E, generally as speed increases efficiency increases and after reaching
maximum efficiency point it start to decrease as speed increases.
 From graph H, at very low angle the total efficiency also low, but a little increscent of
the angle increase the total efficiency very sharply and then a little incensement of
angle decreases the total efficiency very sharply. Here we observed that the angle of
rotation is the greater factor that affects the total efficiency of our flow fan, so when
we design the fan we must consider the angle of rotation greatly.

Contenu connexe

Tendances

Analysis of stresses in turbine rotor 11.10
Analysis of stresses in turbine rotor 11.10Analysis of stresses in turbine rotor 11.10
Analysis of stresses in turbine rotor 11.10
Akashdeep Brijpuriya
 
Sutherland.Padi Audit Results Hvac.V1.06 Oct 07
Sutherland.Padi Audit Results    Hvac.V1.06 Oct 07Sutherland.Padi Audit Results    Hvac.V1.06 Oct 07
Sutherland.Padi Audit Results Hvac.V1.06 Oct 07
pavang
 
First fare 2010 pneumatics presentation
First fare 2010 pneumatics presentationFirst fare 2010 pneumatics presentation
First fare 2010 pneumatics presentation
Oregon FIRST Robotics
 

Tendances (19)

Analysis of stresses in turbine rotor 11.10
Analysis of stresses in turbine rotor 11.10Analysis of stresses in turbine rotor 11.10
Analysis of stresses in turbine rotor 11.10
 
Weight measurement
Weight measurementWeight measurement
Weight measurement
 
IRJET- Material Removal Rate (MRR) Study in Time Reduction Pneumatic Shaper M...
IRJET- Material Removal Rate (MRR) Study in Time Reduction Pneumatic Shaper M...IRJET- Material Removal Rate (MRR) Study in Time Reduction Pneumatic Shaper M...
IRJET- Material Removal Rate (MRR) Study in Time Reduction Pneumatic Shaper M...
 
Performance and Fault diagnosis of Horizontal Axis Wind Turbine Components
Performance and Fault diagnosis of Horizontal Axis Wind Turbine ComponentsPerformance and Fault diagnosis of Horizontal Axis Wind Turbine Components
Performance and Fault diagnosis of Horizontal Axis Wind Turbine Components
 
Performance of the four strokes diesel engine
Performance of the four strokes diesel enginePerformance of the four strokes diesel engine
Performance of the four strokes diesel engine
 
fans and blowers
fans and blowersfans and blowers
fans and blowers
 
Sutherland.Padi Audit Results Hvac.V1.06 Oct 07
Sutherland.Padi Audit Results    Hvac.V1.06 Oct 07Sutherland.Padi Audit Results    Hvac.V1.06 Oct 07
Sutherland.Padi Audit Results Hvac.V1.06 Oct 07
 
Stirling engine performance prediction using schmidt analysis by considering ...
Stirling engine performance prediction using schmidt analysis by considering ...Stirling engine performance prediction using schmidt analysis by considering ...
Stirling engine performance prediction using schmidt analysis by considering ...
 
IRJET- Theoretical & Computational Design of Wind Turbine with Wind Lens
IRJET- Theoretical & Computational Design of Wind Turbine with Wind LensIRJET- Theoretical & Computational Design of Wind Turbine with Wind Lens
IRJET- Theoretical & Computational Design of Wind Turbine with Wind Lens
 
Water cross flow shell and tube heat exchanger | Heat Transfer Laboratory
Water cross flow shell and tube heat exchanger | Heat Transfer LaboratoryWater cross flow shell and tube heat exchanger | Heat Transfer Laboratory
Water cross flow shell and tube heat exchanger | Heat Transfer Laboratory
 
First fare 2010 pneumatics presentation
First fare 2010 pneumatics presentationFirst fare 2010 pneumatics presentation
First fare 2010 pneumatics presentation
 
Measuring speed, air, fuel of i.c. engine
Measuring speed, air, fuel of i.c. engineMeasuring speed, air, fuel of i.c. engine
Measuring speed, air, fuel of i.c. engine
 
Fundamentals of Centrifugal Compressor - Head (revised)
Fundamentals of Centrifugal Compressor - Head (revised)Fundamentals of Centrifugal Compressor - Head (revised)
Fundamentals of Centrifugal Compressor - Head (revised)
 
Centrifugal compressor head - Impact of MW and other parameters
Centrifugal compressor head - Impact of MW and other parametersCentrifugal compressor head - Impact of MW and other parameters
Centrifugal compressor head - Impact of MW and other parameters
 
Az35288290
Az35288290Az35288290
Az35288290
 
Evaluation of thermal performance of a typical vapor compression refrigeratio...
Evaluation of thermal performance of a typical vapor compression refrigeratio...Evaluation of thermal performance of a typical vapor compression refrigeratio...
Evaluation of thermal performance of a typical vapor compression refrigeratio...
 
1CF-Elumalai-Sandeepkumar-FullPaper
1CF-Elumalai-Sandeepkumar-FullPaper1CF-Elumalai-Sandeepkumar-FullPaper
1CF-Elumalai-Sandeepkumar-FullPaper
 
Position characterization of electro pneumatic closed loop control valve
Position characterization of electro pneumatic closed loop control valvePosition characterization of electro pneumatic closed loop control valve
Position characterization of electro pneumatic closed loop control valve
 
Stirling engine performance prediction using schmidt
Stirling engine performance prediction using schmidtStirling engine performance prediction using schmidt
Stirling engine performance prediction using schmidt
 

En vedette

Senior Life Final PDF2 copy
Senior Life Final PDF2 copySenior Life Final PDF2 copy
Senior Life Final PDF2 copy
Sam Ayerst
 
Jeld wen 41 42 price list 2014-12-07
Jeld wen 41 42 price list 2014-12-07Jeld wen 41 42 price list 2014-12-07
Jeld wen 41 42 price list 2014-12-07
Munkhbayar Tumurbat
 
Senior Life PDF
Senior Life PDFSenior Life PDF
Senior Life PDF
Sam Ayerst
 

En vedette (20)

Senior Life Final PDF2 copy
Senior Life Final PDF2 copySenior Life Final PDF2 copy
Senior Life Final PDF2 copy
 
Visual communication and stereotypes
Visual communication and stereotypesVisual communication and stereotypes
Visual communication and stereotypes
 
Divorce and Medicare
Divorce and MedicareDivorce and Medicare
Divorce and Medicare
 
Cfpb proposed modifications-mortgage-rules
Cfpb proposed modifications-mortgage-rulesCfpb proposed modifications-mortgage-rules
Cfpb proposed modifications-mortgage-rules
 
THERAPIES
THERAPIESTHERAPIES
THERAPIES
 
Jeld wen 41 42 price list 2014-12-07
Jeld wen 41 42 price list 2014-12-07Jeld wen 41 42 price list 2014-12-07
Jeld wen 41 42 price list 2014-12-07
 
презентация судакова игоря
презентация судакова игоряпрезентация судакова игоря
презентация судакова игоря
 
2016 winmate corporate presentation in brief
2016 winmate corporate presentation in brief2016 winmate corporate presentation in brief
2016 winmate corporate presentation in brief
 
Samsung galaxy s6
Samsung galaxy s6Samsung galaxy s6
Samsung galaxy s6
 
GreyDivorce
GreyDivorceGreyDivorce
GreyDivorce
 
Special events director
Special events directorSpecial events director
Special events director
 
SuperTracker Gamification
SuperTracker GamificationSuperTracker Gamification
SuperTracker Gamification
 
From Participatory Mapping to the AgTech Revolution
From Participatory Mapping to the AgTech RevolutionFrom Participatory Mapping to the AgTech Revolution
From Participatory Mapping to the AgTech Revolution
 
Skype
SkypeSkype
Skype
 
Market Perspective - July 2016
Market Perspective - July 2016Market Perspective - July 2016
Market Perspective - July 2016
 
Senior Life PDF
Senior Life PDFSenior Life PDF
Senior Life PDF
 
Shin presentation
Shin presentationShin presentation
Shin presentation
 
Question 6
Question 6Question 6
Question 6
 
Divorce Magazine
Divorce MagazineDivorce Magazine
Divorce Magazine
 
Market perspective november 2016
Market perspective   november 2016Market perspective   november 2016
Market perspective november 2016
 

Similaire à Radial flow fan test

thermal project # 2
thermal project # 2thermal project # 2
thermal project # 2
James Li
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1
Nir Morgulis
 
Introduction المقدمة.ppt
Introduction المقدمة.pptIntroduction المقدمة.ppt
Introduction المقدمة.ppt
Ziad Salem
 
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
Doug Yang-Hsu Liao
 

Similaire à Radial flow fan test (20)

Radial flow fan test
Radial flow fan testRadial flow fan test
Radial flow fan test
 
Designing and-installation-of-lowcost-optimized-wind-monitoring-system-2169-0...
Designing and-installation-of-lowcost-optimized-wind-monitoring-system-2169-0...Designing and-installation-of-lowcost-optimized-wind-monitoring-system-2169-0...
Designing and-installation-of-lowcost-optimized-wind-monitoring-system-2169-0...
 
Designing and installation of low cost optimized wind monitoring system
Designing and installation of low cost optimized wind monitoring systemDesigning and installation of low cost optimized wind monitoring system
Designing and installation of low cost optimized wind monitoring system
 
MANUAL DE ACTUADOR NEUMATICO BRAY CONTROL.pdf
MANUAL DE ACTUADOR NEUMATICO BRAY CONTROL.pdfMANUAL DE ACTUADOR NEUMATICO BRAY CONTROL.pdf
MANUAL DE ACTUADOR NEUMATICO BRAY CONTROL.pdf
 
Proposal Wide Blower No.1 & 2 with inverter
Proposal Wide Blower No.1 & 2  with inverterProposal Wide Blower No.1 & 2  with inverter
Proposal Wide Blower No.1 & 2 with inverter
 
Lucrare de licență - Inginerie Mecanică
Lucrare de licență - Inginerie MecanicăLucrare de licență - Inginerie Mecanică
Lucrare de licență - Inginerie Mecanică
 
thermal project # 2
thermal project # 2thermal project # 2
thermal project # 2
 
IRJET- Experimental Analysis of Vertical Axis Wind Turbine by using Spinn...
IRJET-  	  Experimental Analysis of Vertical Axis Wind Turbine by using Spinn...IRJET-  	  Experimental Analysis of Vertical Axis Wind Turbine by using Spinn...
IRJET- Experimental Analysis of Vertical Axis Wind Turbine by using Spinn...
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1
 
Introduction المقدمة.ppt
Introduction المقدمة.pptIntroduction المقدمة.ppt
Introduction المقدمة.ppt
 
IRJET- Design and Fabrication of Pneumatic Stirrup Making Machine
IRJET- Design and Fabrication of Pneumatic Stirrup Making MachineIRJET- Design and Fabrication of Pneumatic Stirrup Making Machine
IRJET- Design and Fabrication of Pneumatic Stirrup Making Machine
 
Energy Saving fan .ppt
Energy Saving   fan .ppt Energy Saving   fan .ppt
Energy Saving fan .ppt
 
FABRICATION OF PNEUMATIC CONTROLLED RAMMER STRIKER FOR MOULDING PROCES.pptx
FABRICATION  OF  PNEUMATIC CONTROLLED RAMMER STRIKER FOR MOULDING PROCES.pptxFABRICATION  OF  PNEUMATIC CONTROLLED RAMMER STRIKER FOR MOULDING PROCES.pptx
FABRICATION OF PNEUMATIC CONTROLLED RAMMER STRIKER FOR MOULDING PROCES.pptx
 
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
 
IRJET- Structural and Thermal Analysis of Steam Turbine Casing
IRJET- Structural and Thermal Analysis of Steam Turbine CasingIRJET- Structural and Thermal Analysis of Steam Turbine Casing
IRJET- Structural and Thermal Analysis of Steam Turbine Casing
 
Internship Report
Internship ReportInternship Report
Internship Report
 
Design, Development, Fabrication and Testing of Small Vertical Axis Wind Turb...
Design, Development, Fabrication and Testing of Small Vertical Axis Wind Turb...Design, Development, Fabrication and Testing of Small Vertical Axis Wind Turb...
Design, Development, Fabrication and Testing of Small Vertical Axis Wind Turb...
 
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdfVolvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
 
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdfVolvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
 
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdfVolvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
 

Plus de Wolkite University

Plus de Wolkite University (11)

Chemical engineering.pptx
Chemical engineering.pptxChemical engineering.pptx
Chemical engineering.pptx
 
Apparatus design project on heat exchanger
Apparatus design project on heat exchangerApparatus design project on heat exchanger
Apparatus design project on heat exchanger
 
Staining
StainingStaining
Staining
 
Material balance 2017
Material balance 2017Material balance 2017
Material balance 2017
 
Final report 2017
Final report 2017Final report 2017
Final report 2017
 
Energy from water
Energy from waterEnergy from water
Energy from water
 
Metal extraction
Metal extractionMetal extraction
Metal extraction
 
Radial flow fan test
Radial flow fan testRadial flow fan test
Radial flow fan test
 
Flow visualization
Flow visualizationFlow visualization
Flow visualization
 
Preparetion of asprine
Preparetion of asprinePreparetion of asprine
Preparetion of asprine
 
Complexometric titration
Complexometric titrationComplexometric titration
Complexometric titration
 

Radial flow fan test

  • 1. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 1 Radial flow fan test Objective: The main objectives of this lab>  To measure the total pressure drop with respect to flow rate  To measure static pressure drop with respect to flow rate.  To know the parameters that affects the operation capacity and efficiency of the fan.  And determine which parameters are the most determinant for the flow fan. Theory A radial flow fan comprising an impeller where the direction of the entry air flow is vertical to the direction of the exit air flow A centrifugal fan is a mechanical device for moving air or other gases. These fans increase the speed of air stream with the rotating impellers. They use the kinetic energy of the impellers or the rotating blade to increase the pressure of the air/gas stream which in turn moves them against the resistance caused by ducts, dampers and other components. Centrifugal fans accelerate air radially, changing the direction (typically by 90°) of the airflow. They are sturdy, quiet, reliable, and capable of operating over a wide range of conditions. Centrifugal fans are constant displacement devices or constant volume devices, meaning that, at a constant fan speed, a centrifugal fan will pump a constant volume of air rather than a constant mass. This means that the air velocity in a system is fixed even though mass flow rate through the fan is not. The centrifugal fan is one of the most widely used fans. Centrifugal fans are by far the most prevalent type of fan used in the HVAC industry today. They are usually cheaper than axial fans and simpler in construction. It is used in transporting gas or materials and in ventilation system for buildings. They are also used commonly in central heating/cooling systems. They are also well-suited for industrial processes and air pollution control systems. It has a fan wheel composed of a number of fan blades, or ribs, mounted around a hub. As shown in the figure, the hub turns on a driveshaft that passes through the fan housing. The gas enters from the side of the fan wheel, turns 90 degrees and accelerates due to centrifugal force as it flows over the fan blades and exits the fan housing.
  • 2. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 2 Main parts of a centrifugal fan are:  Fan housing  Impellers  Inlet and outlet ducts  Drive shaft  Drive mechanism Principles of operation The centrifugal fan uses the centrifugal power generated from the rotation of impellers to increase the kinetic energy of air/gases. When the impellers rotate, the gas near the impellers is thrown-off from the impellers due to the centrifugal force and then moves into the fan casing. As a result, the kinetic energy of gas is converted to pressure because of system resistance offered by the casing and duct. The gas is then guided to the exit via outlet ducts. After the gas is thrown-off, the gas pressure in the middle region of the impellers decreases. The gas from the impeller eye rushes in to normalize this pressure. This cycle repeats and therefore the gas can be continuously transferred. Apparatus and materials used Data Dim Nozzle position Turn 1 3 5 7 9 11 13 15 17 19 wattmete r 𝛼 25 27 28 31.5 35 39 41 43 46 48 Voltage V 450 450 450 450 450 450 450 450 450 450 current A 2.7 2.8 2.9 3 3.05 3.12 3.15 3.20 3.25 3.3 Speed n rpm 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 ∆𝑝vent mmw 40 130 270 410 610 830 103 120 138 151
  • 3. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 3 Bf=603mmHg T=210C B =Bf-T/8 C =20; Power=C/2*𝛼w SFven=1 SFfav= (808.3/0.787)*(inch/250) AD=0.1452m A0=34.77m 1, Calculation c 0 0 0 0 ∆𝑝fan mmw c 930 890 885 880 860 840 790 740 680 610 value Di m 1 Nozzle position Tur n 1 3 5 7 9 11 13 15 17 19 2 wattmeter 𝛼 25 27 28 31.5 35 39 41 43 46 48 3 Voltage V 450 450 450 450 450 450 450 450 450 450 4 current A 2.7 2.8 2.9 3 3.05 3.12 3.15 3.2 3.25 3.3 5 Speed n rp m 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 6 ∆𝑝vent m m wc 40 130 270 410 610 830 103 0 120 0 138 0 151 0 7 ∆𝑝fan m m wc 930 890 885 880 860 840 790 740 680 610 8 Nactive=(C/ 2)* 𝛼 W 250 270 280 315 350 390 410 430 460 480 9 Napparent=V* A VA 121 5 126 0 130 5 135 0 137 2.5 140 4 141 7.5 144 0 146 2.5 148 5
  • 4. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 4 1 0 cos𝜑=Nacti ve/Napparant - 0.20 6 0.21 43 0.21 46 0.23 0.25 5 0.27 8 0.28 92 0.29 9 0.31 5 0.32 3 1 1 n=n(rpm) /60 1/s 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 1 2 𝜔=2𝜋n 1/s 293. 067 293. 067 293. 067 293. 067 293. 067 293. 067 293. 067 293. 067 293. 067 293. 067 1 3 U1=r1*𝜔 m/ s 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 1 4 U2=r2*𝜔 m/ s 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 1 5 U22=(r2 𝜔) 2 m2 /s2 556. 38 556. 38 556. 38 556. 38 556. 38 556. 38 556. 38 556. 38 556. 38 556. 38 1 6 A0u1=34.7 7*(r1 𝜔) m3 /s 717. 375 717. 375 717. 375 717. 375 717. 375 717. 375 717. 375 717. 375 717. 375 717. 375 1 7 U13=(r1 𝜔) 3 m3 /s3 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 1 8 A0u13=34. 77*(r1 𝜔)3 m5 /s3 305 372 305 372 305 372 305 372 305 372 305 372 305 372 305 372 305 372 305 372 1 9 (𝜌/2)* A0u13=0.4 5* A0u13 Kg /m. s3 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 2 0 ∆pven/20* 0.8*0.5 m m wc 0.8 2.6 5.4 8.2 12.2 16.6 20.6 24 27.6 30.2 2 1 ∆pven=g*pv ent=9.81*’2 0’ Kg /m s2 7.85 25.5 06 52.9 74 80.4 42 119. 88 162. 85 202. 09 235. 44 270. 76 296. 3 2 2 ∆pven/(𝜌/ 2) m2 /s2 17.4 4 56.6 8 117. 708 2 178. 76 266. 4 361. 89 449. 09 523. 2 601. 63 658. 44 2 3 √∆pven/𝜌 m/ s 4.17 7 7.52 9 10.8 52 13.3 7 16.3 22 19.0 23 21.2 22.9 24.5 3 25.6 6 2 4 𝛼A0√∆pve n/𝜌=V m/ s 0.02 756 4 0.04 97 0.07 161 0.08 823 0.10 771 0.12 553 3 0.13 49 0.15 114 0.16 2 0.16 93 2 5 ∆Pfan=sʄfan *∆P*fan m m wc 18.6 17.8 17.7 17.6 17.2 16.8 15.8 14.8 13.6 12.2 2 6 ∆Pfan=g∆Pf an Kg /m s2 182. 47 174. 62 173. 64 172. 66 168. 723 164. 81 155 145. 19 133. 42 119. 682 2 7 Ystat=∆Pfan / 𝜌 m2 /s2 202. 744 194. 02 192. 93 191. 84 187. 5 183. 122 172. 22 161. 32 148. 244 133
  • 5. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 5 2,plots A, calculationand graph 𝜑 10^ -5 3.842 3 6.93 9.983 11.472 4 15.014 5 17.5 18.80 5 21.0 7 22.58 2 23.6 cos 𝜑 0.206 0.214 3 0.214 6 0.23 0.255 0.27 8 0.289 2 0.29 9 0.315 0.32 3 Nacti w 250 270 280 315 350 390 410 430 460 480 Cos𝝋Vs Nactive graph 2 8 CD=V/AD m/ s 1.89 81 3.42 3 4.93 2 6.07 645 7.41 804 8.64 55 9.63 5 10.4 091 11.1 57 11.6 6 2 9 Ydyn=CD2/ 2 m2 /s2 1.80 14 5.86 12.1 62 18.4 62 27.5 14 37.2 82 46.4 2 54.1 75 62.2 4 67.9 8 3 0 Y= Ydyn+ Ystat m2 /s2 204. 55 199. 88 205. 092 210. 302 215. 014 220. 404 218. 64 215. 5 210. 5 201 3 1 Neff=VY𝜌 w 5.07 44 8.94 063 13.2 2 16.7 20.8 43 24.9 012 27.5 3 29.3 14 30.6 91 30.6 3 3 2 Ƞtot= Neff/ Nactive - 0.02 03 0.03 31 0.04 721 0.05 302 0.06 0.06 4 0.06 715 0.06 82 0.06 672 0.06 4 3 3 𝜑=V/ A0u1 10 ^-5 3.84 23 6.93 9.98 2 11.4 724 00 15.0 145 17.5 18.8 05 21.0 7 22.5 82 23.6 3 4 Ψ=2Y/u22 - 0.36 76 0.35 93 0.36 9 0.37 8 0.38 65 0.39 614 0.93 0.38 733 0.37 834 0.36 13 3 5 𝜇tot=2Nact/ 𝜌 A0u13 10 ^-3 1.82 1.96 5 2.04 2.3 2.54 7 2.84 2.98 4 3.13 3.35 3.5
  • 6. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 6 B 𝜑 10^ -5 3.8423 6.93 9.983 11.47 24 15.01 45 17.5 18.80 5 21.07 22. 582 23.6 V m/ s 0.0275 64 0.04 97 0.071 61 0.088 23 0.107 71 0.1255 33 0.134 9 0.1511 4 0.1 62 0.16 93 x m m 1 3 5 7 9 11 13 15 17 19 cos 𝜑 - 0.206 0.214 3 0.214 6 0.23 0.255 0.27 8 0.28 92 0.2 99 0.315 0.3 23 V x m/ s 0.0056 8 0.01 07 0.015 4 0.020 3 0.027 5 0.035 0.039 0.0452 0.0 51 0.05 5 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 250 300 350 400 450 500 cos@ Nactive
  • 7. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 7 C 𝜑 10^ -5 3.8423 6.93 9.983 11.47 24 15.01 45 17.5 18.80 5 21.07 22. 58 2 23.6 V m/s 0.0275 64 0.049 7 0.071 61 0.088 23 0.107 71 0.1255 33 0.134 9 0.1511 4 0.1 62 0.16 93 x mm 1 3 5 7 9 11 13 15 17 19 cos 𝜑 - 0.206 0.214 3 0.214 6 0.23 0.255 0.27 8 0.28 92 0.2 99 0.315 0.3 23 V x m/s 0.0056 8 0.010 7 0.015 4 0.020 3 0.027 5 0.035 0.039 0.0452 0.0 51 0.05 5 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0 2 4 6 8 10 12 14 16 18 20 Vx(m/s) x(mm) Vx Vs x graph
  • 8. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 8 Y x m2/ s2 42.14 42.83 43 44.01 3 48.37 54.83 61.3 63.23 07 64.435 66. 30 8 64.9 23 Y m2/ s2 204.55 199.8 8 205.0 92 210.3 02 215.0 14 220.40 4 218.6 4 215.5 21 0.5 201 D Vx m/ s 0.0056 8 0.010 7 0.015 4 0.020 3 0.027 5 0.03 5 0.03 9 0.045 2 0.05 1 0.05 5 Nactiv e w 250 270 280 315 350 390 410 430 460 480 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 40 45 50 55 60 65 70 Vx(m/s) Yx Vx Vs Yx graph
  • 9. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 9 E Vx m/ s 0.005 68 0.010 7 0.015 4 0.020 3 0.027 5 0.03 5 0.039 0.045 2 0.051 0.05 5 Ƞt ot - 0.020 3 0.033 1 0.047 21 0.053 02 0.06 0.06 4 0.067 15 0.068 2 0.066 72 0.06 4 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 250 300 350 400 450 500 Vx(m/s) Nactive(w) Vx Vs Nctv graph
  • 10. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 10 V x v s Ƞtot graph F 𝝋 vs. 𝚿 graph 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 Vx totalefficiency
  • 11. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 11 G 𝝋 vs. v graph 0 5 10 15 20 25 0.355 0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4
  • 12. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 12 H 𝝋 vs. Ƞtot graph 0 5 10 15 20 25 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
  • 13. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 13 Conclusion and discussion The centrifugal fan performance tables provide the fan RPM and power requirements for the given CFM and static pressure at standard air density. When the centrifugal fan performance is not at standard conditions, the performance must be converted to standard conditions before entering the performance tables. Centrifugal fans rated by the Air 0 5 10 15 20 25 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
  • 14. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 14 Movement and Control Association are tested in laboratories with test setups that simulate installations that are typical for that type of fan. Usually they are tested and rated as one of four standard installation types as designated in AMCA Standard 210. AMCA Standard 210 defines uniform methods for conducting laboratory tests on housed fans to determine airflow rate, pressure, power and efficiency, at a given speed of rotation. The purpose of AMCA Standard 210 is to define exact procedures and conditions of fan testing so that ratings provided by various manufacturers are on the same basis and may be compared. For this reason, fans must be rated in standardized SCFM. Generally from calculation and graphs we observed the fooling points:  From graph A, the cosine of the Angele and Native slightly has direct relation (.i.e. when cosine of the angle increases and also power requirement also increases.). In our design of the fan we must consider this relation,(we should compromise the speed and power requirement).  From graph B, the nozzle position and the speed of the motor has direct relation.  From graph C, at lower speed there is low amount of specific energy is needed, and then sharply increases and at higher speed the specific energy start to decrease.  From graph D, Nactive and the speed of the motor has direct relation. As the speed increases and also the power requirement increase.  From graph E, generally as speed increases efficiency increases and after reaching maximum efficiency point it start to decrease as speed increases.  From graph H, at very low angle the total efficiency also low, but a little increscent of the angle increase the total efficiency very sharply and then a little incensement of angle decreases the total efficiency very sharply. Here we observed that the angle of rotation is the greater factor that affects the total efficiency of our flow fan, so when we design the fan we must consider the angle of rotation greatly.