SlideShare une entreprise Scribd logo
1  sur  13
Télécharger pour lire hors ligne
𝑺𝒆𝒕𝒔
𝑶𝒗𝒆𝒓𝒗𝒊𝒆𝒘
                                       𝑺𝒆𝒕𝒔




     𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒔𝒆𝒕𝒔          𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔 𝒐𝒇 𝒔𝒆𝒕𝒔           𝑹𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔 𝒐𝒇 𝒔𝒆𝒕𝒔

    −𝑈𝑛𝑖𝑜𝑛 (∪)                 −𝐸𝑚𝑝𝑡𝑦 𝑠𝑒𝑡𝑠                  −𝐸𝑞𝑢𝑎𝑙
    − 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (∩)         − 𝐹𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡𝑠
    − 𝐷𝑖𝑓𝑓𝑒𝑟𝑟𝑒𝑛𝑐𝑒 (−)          − 𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡𝑠              −𝑆𝑢𝑏𝑠𝑒𝑡𝑠
    − 𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 (′)           − 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑠𝑒𝑡𝑠             −𝑃𝑜𝑤𝑒𝑟 𝑠𝑒𝑡s




                             𝑽𝒆𝒏𝒏 − 𝑬𝒖𝒍𝒆𝒓′𝒔 𝒅𝒊𝒂𝒈𝒓𝒂𝒎




𝑾𝒉𝒂𝒕 𝒊𝒔 𝒂 𝒔𝒆𝒕?



   − 𝐴 𝒔𝒆𝒕 𝑖𝑠 𝑎 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠, 𝑡𝑕𝑖𝑛𝑔𝑠 𝑜𝑟 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 𝑤𝑕𝑖𝑐𝑕 𝑎𝑟𝑒 𝒄𝒍𝒆𝒂𝒓𝒍𝒚 𝒅𝒆𝒇𝒊𝒏𝒆𝒅.

   − 𝑇𝑕𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑖𝑛 𝑎 𝑠𝑒𝑡 𝑎𝑟𝑒 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡𝑕𝑒 𝒎𝒆𝒎𝒃𝒆𝒓𝒔 𝑜𝑟 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝑜𝑓 𝑡𝑕𝑒 𝑠𝑒𝑡.

                           𝑆𝑒𝑡 = {𝑚𝑒𝑚𝑏𝑒𝑟1, 𝑚𝑒𝑚𝑏𝑒𝑟2, 𝑚𝑒𝑚𝑏𝑒𝑟3}

    𝐸𝑥𝑎𝑚𝑝𝑙𝑒

     𝑆𝑒𝑡 𝑜𝑓 𝑑𝑎𝑦 = {𝑆𝑢𝑛𝑑𝑎𝑦, 𝑀𝑜𝑛𝑑𝑎𝑦, 𝑇𝑢𝑒𝑠𝑑𝑎𝑦, 𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦, 𝑇𝑕𝑢𝑟𝑠𝑑𝑎𝑦, 𝐹𝑟𝑖𝑑𝑎𝑦, 𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦}
𝑾𝒓𝒊𝒕𝒊𝒏𝒈 𝑺𝒆𝒕𝒔



  𝑇𝑕𝑒𝑟𝑒 𝑎𝑟𝑒 𝑡𝑤𝑜 𝑤𝑎𝑦𝑠 𝑡𝑜 𝑤𝑟𝑖𝑡𝑒 𝑠𝑒𝑡𝑠 ∶

     1)    𝐿𝑖𝑠𝑡𝑖𝑛𝑔 𝑚𝑒𝑡𝑕𝑜𝑑 ∶ 𝐴𝑙𝑙 𝑜𝑓 𝑡𝑕𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑎 𝑠𝑒𝑡 𝑎𝑟𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛, 𝑠𝑢𝑐𝑕 𝑎𝑠 𝐴 = 1,3,5,7,9 .
     2)    𝑆𝑒𝑡 − 𝑏𝑢𝑖𝑙𝑑𝑒𝑟 𝑚𝑒𝑡𝑕𝑜𝑑 ∶ 𝐴 𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑛𝑎𝑚𝑒𝑑, 𝑎𝑙𝑜𝑛𝑔 𝑤𝑖𝑡𝑕 𝑖𝑡𝑠 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛,
           𝑠𝑢𝑐𝑕 𝑎𝑠 𝐴 = {𝑥|𝑥 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑟𝑜𝑚 1 𝑡𝑜 10}.

  𝑁𝑜𝑡𝑒:       𝑇𝑕𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑏𝑎𝑟 𝑖𝑠 𝑟𝑒𝑎𝑑 "such that"



𝑴𝒆𝒎𝒃𝒆𝒓𝒔 𝒐𝒇 𝒔𝒆𝒕𝒔



  𝑊𝑒 𝑟𝑒𝑙𝑎𝑡𝑒 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑎𝑛𝑑 𝑎 𝑠𝑒𝑡 𝑢𝑠𝑖𝑛𝑔 𝑡𝑕𝑒 𝑠𝑦𝑚𝑏𝑜𝑙 ∈. 𝐼𝑓 𝑎𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 𝑥 𝑖𝑠 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠𝑒𝑡 𝐴,

   𝑤𝑒 𝑤𝑟𝑖𝑡𝑒 𝑥 ∈ 𝐴. 𝐼𝑓 𝑎𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠𝑒𝑡 𝐴, 𝑤𝑒 𝑤𝑟𝑖𝑡𝑒 𝑥 ∉ 𝐴

          ∈ 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 “𝒊𝒔 𝒂𝒏 𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝒐𝒇’ 𝑜𝑟 “𝑖𝑠 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓” 𝑜𝑟 “𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜”

          ∉ 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 “𝒊𝒔 𝒏𝒐𝒕 𝒂𝒏 𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝒐𝒇” 𝑜𝑟 “𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓” 𝑜𝑟 “𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜”

  𝐸𝑥𝑎𝑚𝑝𝑙𝑒
      𝐼𝑓 𝐴 = {1, 3, 5} 𝑡𝑕𝑒𝑛 1 ∈ 𝐴 𝑎𝑛𝑑 2 ∉ 𝐴




𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔 𝒐𝒇 𝒔𝒆𝒕𝒔

  𝑬𝒎𝒑𝒕𝒚 𝑺𝒆𝒕 𝒐𝒓 𝑵𝒖𝒍𝒍 𝑺𝒆𝒕


          𝑇𝑕𝑒𝑟𝑒 𝑎𝑟𝑒 𝑠𝑜𝑚𝑒 𝑠𝑒𝑡𝑠 𝑡𝑕𝑎𝑡 𝑑𝑜 𝑛𝑜𝑡 𝑐𝑜𝑛𝑎𝑡𝑖𝑛 𝑎𝑛𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑎𝑡 𝑎𝑙𝑙. 𝑊𝑒 𝑐𝑎𝑙𝑙 𝑎 𝑠𝑒𝑡 𝑤𝑖𝑡𝑕 𝑛𝑜
          𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑡𝑕𝑒 𝒏𝒖𝒍𝒍 𝑜𝑟 𝒆𝒎𝒑𝒕𝒚 𝑠𝑒𝑡. 𝐼𝑡 𝑖𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑏𝑦 𝑡𝑕𝑒 𝑠𝑦𝑚𝑏𝑜𝑙 { } 𝑜𝑟 Ø .

      𝐸𝑥𝑎𝑚𝑝𝑙𝑒

          -     The set of months with 32 days.
          -     The set of squares with 5 sides.
          -      𝐴 = {}
          -      𝐵=∅
𝑭𝒊𝒏𝒊𝒕𝒆 𝑺𝒆𝒕𝒔

   𝑭𝒊𝒏𝒊𝒕𝒆 𝒔𝒆𝒕𝒔 𝑎𝑟𝑒 𝑠𝑒𝑡𝑠 𝑡𝑕𝑎𝑡 𝑕𝑎𝑣𝑒 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟𝑠. 𝐼𝑓 𝑡𝑕𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒
   𝑠𝑒𝑡 𝑎𝑟𝑒 𝑙𝑖𝑠𝑡𝑒𝑑 𝑜𝑛𝑒 𝑎𝑓𝑡𝑒𝑟 𝑎𝑛𝑜𝑡𝑕𝑒𝑟, 𝑡𝑕𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑤𝑖𝑙𝑙 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 “𝑟𝑢𝑛 𝑜𝑢𝑡” 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑡𝑜
  𝑙𝑖𝑠𝑡.

  𝐸𝑥𝑎𝑚𝑝𝑙𝑒

     -     𝐴 = {0, 2, 4, 6, 8, … , 100}
     -     𝐵 = {𝑎, 𝑒, 𝐼, 𝑜, 𝑢}
     -     𝐶 = {𝑥 ∶ 𝑥 is an integer, 1 < 𝑥 < 10}




𝑰𝒏𝒇𝒊𝒏𝒊𝒕𝒆 𝑺𝒆𝒕𝒔

  𝐴𝑛 𝒊𝒏𝒇𝒊𝒏𝒊𝒕𝒆 𝒔𝒆𝒕 𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑤𝑕𝑖𝑐𝑕 𝑖𝑠 𝑛𝑜𝑡 𝑓𝑖𝑛𝑖𝑡𝑒. 𝐼𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑡𝑜 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝑙𝑦 𝑙𝑖𝑠𝑡 𝑜𝑢𝑡 𝑎𝑙𝑙 𝑡𝑕𝑒
  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑎𝑛 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡.

  𝐸𝑥𝑎𝑚𝑝𝑙𝑒

     -     𝑇 = {𝑥 ∶ 𝑥 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑥 > 100}
     -     𝑄 = {-1,-2,-3,-4…}
     -     𝑁 𝑖𝑠 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠
     -     𝐴 𝑖𝑠 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠

   𝑁𝑜𝑡𝑒:    𝑇𝑕𝑒 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝑖𝑛 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡 𝐴 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝒏(𝑨).




𝑼𝒏𝒊𝒗𝒆𝒓𝒔𝒂𝒍 𝑺𝒆𝒕

  𝐴 𝒖𝒏𝒊𝒗𝒆𝒓𝒔𝒂𝒍 𝒔𝒆𝒕 𝑖𝑠 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 U.

  𝐸𝑥𝑎𝑚𝑝𝑙𝑒

        𝐺𝑖𝑣𝑒𝑛 𝑡𝑕𝑎𝑡 𝑈 = 5, 6, 7, 8, 9, 10, 11, 12 , 𝑙𝑖𝑠𝑡 𝑡𝑕𝑒
  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡𝑕𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑠𝑒𝑡𝑠.

  𝑎) 𝐴 =    𝑥 ∶ 𝑥 𝑖𝑠 𝑎 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 60 = {5,6,10,12}

  𝑏) 𝐵 =    𝑥 ∶ 𝑥 𝑖𝑠 𝑎 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 = {5,7,11}
𝑹𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔 𝒐𝒇 𝒔𝒆𝒕𝒔

  𝐸𝑞𝑢𝑎𝑙 𝑆𝑒𝑡𝑠

    𝑇𝑤𝑜 𝑠𝑒𝑡𝑠 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 𝑖𝑓 𝑡𝑕𝑒𝑦 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑡𝑕𝑒 𝒔𝒂𝒎𝒆 𝒊𝒅𝒆𝒏𝒕𝒊𝒄𝒂𝒍 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔. 𝐼𝑓 𝑡𝑤𝑜 𝑠𝑒𝑡𝑠 𝑕𝑎𝑣𝑒
    𝑜𝑛𝑙𝑦 𝑡𝑕𝑒 𝑠𝑎𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑡𝑕𝑒𝑛 𝑡𝑕𝑒 𝑡𝑤𝑜 𝑠𝑒𝑡𝑠 𝑎𝑟𝑒 𝑂𝑛𝑒 − 𝑡𝑜 − 𝑂𝑛𝑒
    𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒. 𝐸𝑞𝑢𝑎𝑙 𝑠𝑒𝑡𝑠 𝑎𝑟𝑒 𝑂𝑛𝑒 − 𝑡𝑜 − 𝑂𝑛𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒 𝑏𝑢𝑡
    𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒 𝑠𝑒𝑡𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑙𝑤𝑎𝑦𝑠 𝑒𝑞𝑢𝑎𝑙 𝑠𝑒𝑡𝑠.

    𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐼

               𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡𝑕𝑒 𝑠𝑒𝑡𝑠: 𝑃 = {𝑇𝑜𝑚, 𝐷𝑖𝑐𝑘, 𝐻𝑎𝑟𝑟𝑦, 𝐽𝑜𝑕𝑛} , 𝑄 = {𝐷𝑖𝑐𝑘, 𝐻𝑎𝑟𝑟𝑦, 𝐽𝑜𝑕𝑛, 𝑇𝑜𝑚}

    ∴ 𝑃 𝑖𝑠 𝒆𝒒𝒖𝒂𝒍 𝑡𝑜 𝑄, 𝑎𝑛𝑑 𝑤𝑒 𝑤𝑟𝑖𝑡𝑒 𝑃 = 𝑄. 𝑇𝑕𝑒 𝑜𝑟𝑑𝑒𝑟 𝑖𝑛 𝑤𝑕𝑖𝑐𝑕 𝑡𝑕𝑒 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 𝑎𝑝𝑝𝑒𝑎𝑟 𝑖𝑛 𝑡𝑕𝑒
    𝑠𝑒𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡.

    𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐼𝐼

           𝑊𝑕𝑖𝑐𝑕 𝑜𝑓 𝑡𝑕𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑠𝑒𝑡𝑠 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 𝑎𝑛𝑑 𝑤𝑕𝑖𝑐𝑕 𝑜𝑛𝑒𝑠 𝑎𝑟𝑒 𝑂𝑛𝑒 − 𝑡𝑜 − 𝑂𝑛𝑒
    𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒 ?

           𝐴 =      𝑎, 𝑓, 𝑗, 𝑞   𝐵 = 1, 2, 3, 5, 8   𝐶 =   𝑥, 𝑦, 𝑧, 𝑤    𝐷 = {8, 1, 3, 5, 2}

    𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

       -    𝐵 𝑎𝑛𝑑 𝐷 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙. 𝑇𝑕𝑒𝑦 𝑕𝑎𝑣𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠.
       -    𝐴 𝑎𝑛𝑑 𝐶 𝑎𝑟𝑒 𝑂𝑛𝑒 − 𝑡𝑜 − 𝑂𝑛𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒 𝑜𝑟 𝑚𝑎𝑡𝑐𝑕𝑖𝑛𝑔 𝑠𝑒𝑡𝑠. 𝐸𝑎𝑐𝑕 𝑠𝑒𝑡 𝑕𝑎𝑠
           4 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠. 𝑇𝑕𝑒𝑦 𝑕𝑎𝑣𝑒 𝑡𝑕𝑒 𝑠𝑎𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑡𝑕𝑒 𝑠𝑎𝑚𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠.
       -    𝐵 𝑎𝑛𝑑 𝐷 𝑎𝑟𝑒 𝑂𝑛𝑒 − 𝑡𝑜 − 𝑂𝑛𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒 𝑎𝑛𝑑 𝑒𝑞𝑢𝑎𝑙 𝑠𝑒𝑡𝑠. 𝑇𝑕𝑒𝑦 𝑕𝑎𝑣𝑒 𝑡𝑕𝑒
           𝑠𝑎𝑚𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠.
𝑺𝒖𝒃𝒔𝒆𝒕𝒔

 𝐼𝑓 𝑒𝑣𝑒𝑟𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑎 𝑠𝑒𝑡 𝐵 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎 𝑠𝑒𝑡 𝐴, 𝑡𝑕𝑒𝑛 𝑤𝑒 𝑠𝑎𝑦 𝐵 𝑖𝑠 𝑎 𝒔𝒖𝒃𝒔𝒆𝒕 𝑜𝑓 𝐴.
                     𝑊𝑒 𝑢𝑠𝑒 𝑡𝑕𝑒 𝑠𝑦𝑚𝑏𝑜𝑙 ⊂ or ⊆ 𝑡𝑜 𝑚𝑒𝑎𝑛 “𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓” .
                     𝑆𝑒𝑡 𝐵 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑠𝑒𝑡 𝐴 𝑖𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛: 𝐵 ⊂ 𝐴 𝑜𝑟 𝐵 ⊆ 𝐴
                     𝐴𝑛𝑑 𝑡𝑕𝑒 𝑠𝑦𝑚𝑏𝑜𝑙 ⊄ or ⊈ 𝑡𝑜 𝑚𝑒𝑎𝑛 “𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓”.

 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐼

        𝐴 = 1, 3, 5 ,    𝐵 = 1, 2, 3, 4, 5
 ∴ 𝑆𝑜, 𝐴 ⊂ 𝐵 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑒𝑣𝑒𝑟𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝐴 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑖𝑛 𝐵.

 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐼𝐼

           𝑋 = 1, 3, 5 ,      𝑌 = 2, 3, 4, 5, 6
 ∴ 𝑋 ⊄     𝑌 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 1 𝑖𝑠 𝑖𝑛 𝑋 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑖𝑛 𝑌.

 𝑁𝑜𝑡𝑒:

         𝐸𝑣𝑒𝑟𝑦 𝑠𝑒𝑡 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑖𝑡𝑠𝑒𝑙𝑓 𝑖. 𝑒. 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠𝑒𝑡 𝐴, 𝐴 ⊂ 𝐴
         𝑇𝑕𝑒 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑎𝑛𝑦 𝑠𝑒𝑡 𝐴 𝑖. 𝑒. Ø ⊂ 𝐴
         𝐹𝑜𝑟 𝑎𝑛𝑦 𝑡𝑤𝑜 𝑠𝑒𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵, 𝑖𝑓 𝐴 ⊂ 𝐵 𝑎𝑛𝑑 𝐵 ⊂ 𝐴 𝑡𝑕𝑒𝑛 𝐴 = 𝐵




𝑷𝒐𝒘𝒆𝒓 𝑺𝒆𝒕𝒔

 𝑃𝑜𝑤𝑒𝑟 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑙𝑖𝑠𝑡 𝑎𝑙𝑙 𝑡𝑕𝑒 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝑡𝑕𝑒 𝑠𝑒𝑡.

 𝐸𝑥𝑎𝑚𝑝𝑙𝑒

        𝐿𝑖𝑠𝑡 𝑎𝑙𝑙 𝑡𝑕𝑒 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑄 = 𝑥, 𝑦, 𝑧
 ∴ 𝑇𝑕𝑒 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝑄 𝑎𝑟𝑒 { }, {𝑥}, {𝑦}, {𝑧}, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}𝑎𝑛𝑑 {𝑥, 𝑦, 𝑧}

 𝑁𝑜𝑡𝑒:

 𝑇𝑕𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑓𝑜𝑟 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡 𝐴 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 𝑡𝑕𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎:
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 = 2 𝑛 𝐴 𝑤𝑕𝑒𝑟𝑒 𝑛(𝐴) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡𝑕𝑒 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡 𝐴

 𝐸𝑥𝑎𝑚𝑝𝑙𝑒

        𝑄 = 𝑥, 𝑦, 𝑧 . 𝐻𝑜𝑤 𝑚𝑎𝑛𝑦 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑤𝑖𝑙𝑙 𝑄 𝑕𝑎𝑣𝑒?
 ∴ 𝑛 𝑄 = 3, 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 = 23 = 8 𝑜𝑟 𝑃(𝑄) = 23 = 8
𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒔𝒆𝒕𝒔

  𝑼𝒏𝒊𝒐𝒏 𝒐𝒇 𝑺𝒆𝒕𝒔

    𝑇𝑕𝑒 𝒖𝒏𝒊𝒐𝒏 𝑜𝑓 𝑡𝑤𝑜 𝑠𝑒𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵 𝑖𝑠 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑤𝑕𝑖𝑐𝑕 𝑎𝑟𝑒 𝑖𝑛 𝐴 𝒐𝒓 𝑖𝑛 𝐵 𝒐𝒓 𝑖𝑛 𝑏𝑜𝑡𝑕.
    𝐼𝑡 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝐴 ∪ 𝐵 𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑎𝑑 ‘𝐴 𝑢𝑛𝑖𝑜𝑛 𝐵’

                             𝐹𝑜𝑟𝑚𝑎𝑙𝑙𝑦:      𝐴 ∪ 𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵}

    𝐸𝑥𝑎𝑚𝑝𝑙𝑒

            𝐺𝑖𝑣𝑒𝑛 𝑈 = 1, 2, 3, 4, 5, 6, 7, 8, 10 , 𝑋 = 1, 2, 6, 7 𝑎𝑛𝑑 𝑌 = 1, 3, 4, 5, 8
    𝐹𝑖𝑛𝑑 𝑋 ∪ 𝑌 ?

   ∴ 𝑋 ∪ 𝑌 = {1, 2, 3, 4, 5, 6, 7, 8} ← 1 is written only once.

    𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔

           𝑪𝒍𝒐𝒔𝒖𝒓𝒆:
           − 𝑇𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑢𝑛𝑑𝑒𝑟 𝑢𝑛𝑖𝑜𝑛.
           − 𝑇𝑕𝑎𝑡 𝑖𝑠, 𝑡𝑕𝑒 𝑢𝑛𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑎 𝑠𝑒𝑡.

           𝑨𝒔𝒔𝒐𝒄𝒊𝒂𝒕𝒊𝒗𝒊𝒕𝒚:
           − 𝑈𝑛𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑨 ∪ 𝑩 ∪ 𝑪 = 𝑨 ∩            𝑩 ∪ 𝑪

           𝑪𝒐𝒎𝒎𝒖𝒕𝒂𝒕𝒊𝒗𝒊𝒕𝒚:
           − 𝑈𝑛𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑨 ∪ 𝑩 = 𝑩 ∪ 𝑨

           𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒚:
           − 𝑇𝑕𝑒 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡, ∅, 𝑖𝑠 𝑏𝑜𝑡𝑕 𝑎 𝑟𝑖𝑔𝑕𝑡 𝑎𝑛𝑑 𝑙𝑒𝑓𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑓𝑜𝑟 𝑠𝑒𝑡 𝑢𝑛𝑖𝑜𝑛:
           𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑒𝑡𝑠 𝐴, 𝑨 ∪ ∅ = 𝑨 𝑎𝑛𝑑 ∅ ∪ 𝑨 = 𝑨

           𝐈𝐝𝐞𝐦𝐩𝐨𝐭𝐞𝐧𝐜𝐲:
           − 𝑆𝑒𝑡𝑠 𝑎𝑟𝑒 𝑖𝑑𝑒𝑚𝑝𝑜𝑡𝑒𝑛𝑡 𝑢𝑛𝑑𝑒𝑟 𝑢𝑛𝑖𝑜𝑛: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑒𝑡𝑠 𝐴, 𝑨 ∪ 𝑨 = 𝑨

            𝑫𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒗𝒊𝒕𝒚:
           − 𝑈𝑛𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑜𝑣𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛: 𝑡𝑕𝑎𝑡 𝑖𝑠,
           𝑨 ∪ (𝑩 ∩ 𝑪) = (𝑨 ∩ 𝑩) ∪ (𝑨 ∩ 𝑪)




                                           𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝐴 ∪ 𝐵
𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝑺𝒆𝒕𝒔

  𝑇𝑕𝑒 𝒊𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝑜𝑓 𝑡𝑤𝑜 𝑠𝑒𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵 𝑖𝑠 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑡𝑕𝑎𝑡 𝑎𝑟𝑒 𝑐𝑜𝑚𝑚𝑜𝑛 𝑡𝑜 𝑏𝑜𝑡𝑕
  𝑠𝑒𝑡 𝐴 𝒂𝒏𝒅 𝑠𝑒𝑡 𝐵. 𝐼𝑡 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝐴 ∩ 𝐵 𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑎𝑑 ‘𝐴 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐵’.

                          𝐹𝑜𝑟𝑚𝑎𝑙𝑙𝑦:      𝐴 ∩ 𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵}

  𝐸𝑥𝑎𝑚𝑝𝑙𝑒

         𝐺𝑖𝑣𝑒𝑛 𝑈 = 1, 2, 3, 4, 5, 6, 7, 8, 10 , 𝑋 = 1, 2, 6, 7 𝑎𝑛𝑑 𝑌 = 1, 3, 4, 5, 8
  𝐹𝑖𝑛𝑑 𝑋 ∩ 𝑌 ?

 ∴ 𝑋 ∩ 𝑌 = {1}

  𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔

         𝑪𝒍𝒐𝒔𝒖𝒓𝒆:
         − 𝑇𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑢𝑛𝑑𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛.
         − 𝑇𝑕𝑎𝑡 𝑖𝑠, 𝑡𝑕𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑎 𝑠𝑒𝑡.

         𝑨𝒔𝒔𝒐𝒄𝒊𝒂𝒕𝒊𝒗𝒊𝒕𝒚:
         − 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑨 ∩ 𝑩 ∩ 𝑪 = 𝑨 ∩           𝑩 ∩ 𝑪

         𝑪𝒐𝒎𝒎𝒖𝒕𝒂𝒕𝒊𝒗𝒊𝒕𝒚:
         − 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑨 ∩ 𝑩 = 𝑩 ∩ 𝑨

         𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒚:
         − 𝑇𝑕𝑒 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑠𝑒𝑡, 𝑼, 𝑖𝑠 𝑏𝑜𝑡𝑕 𝑎 𝑟𝑖𝑔𝑕𝑡 𝑎𝑛𝑑 𝑙𝑒𝑓𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑓𝑜𝑟 𝑠𝑒𝑡 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛:
         𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑒𝑡𝑠 𝐴, 𝑨 ∩ 𝑼 = 𝑨, 𝒂𝒏𝒅 𝑼 ∩ 𝑨 = 𝑨

         𝑰𝒅𝒆𝒎𝒑𝒐𝒕𝒆𝒏𝒄𝒚:
         − 𝑆𝑒𝑡𝑠 𝑎𝑟𝑒 𝑖𝑑𝑒𝑚𝑝𝑜𝑡𝑒𝑛𝑡 𝑢𝑛𝑑𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑒𝑡𝑠 𝐴, 𝑨 ∩ 𝑨 = 𝑨

          𝑫𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒗𝒊𝒕𝒚:
         − 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑜𝑣𝑒𝑟 𝑢𝑛𝑖𝑜𝑛: 𝑡𝑕𝑎𝑡 𝑖𝑠,
         𝑨 ∩ (𝑩 ∪ 𝑪) = (𝑨 ∪ 𝑩) ∩ (𝑨 ∪ 𝑪)




                                        𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝐴 ∩ 𝐵
𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒐𝒇 𝑺𝒆𝒕𝒔

 𝑇𝑕𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑠𝑒𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵 𝑖𝑠 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝐴 𝑤𝑕𝑖𝑐𝑕 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑙𝑠𝑜
 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝐵. 𝐼𝑡 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝐴 − 𝐵 .

                         𝐹𝑜𝑟𝑚𝑎𝑙𝑙𝑦:      𝐴 − 𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵}

 𝐸𝑥𝑎𝑚𝑝𝑙𝑒

         𝐺𝑖𝑣𝑒𝑛 𝑈 = 1, 2, 3, 4, 5, 6, 7, 8, 10 , 𝑋 = 1, 2, 6, 7 𝑎𝑛𝑑 𝑌 = 1, 3, 4, 5, 8
 𝐹𝑖𝑛𝑑 𝑋 − 𝑌 ?

 ∴ 𝑋 − 𝑌 = {2,6,7}

 𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔

         𝑪𝒍𝒐𝒔𝒖𝒓𝒆:
        − 𝑇𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑢𝑛𝑑𝑒𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒.
        − 𝑇𝑕𝑎𝑡 𝑖𝑠, 𝑡𝑕𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡𝑤𝑜 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑎 𝑠𝑒𝑡.

        𝑨𝒔𝒔𝒐𝒄𝒊𝒂𝒕𝒊𝒗𝒊𝒕𝒚:
        − 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝒏𝒐𝒕 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙,
         𝐴– 𝐵 − 𝐶 ≠ 𝐴– 𝐵– 𝐶

        𝑪𝒐𝒎𝒎𝒖𝒕𝒂𝒕𝒊𝒗𝒊𝒕𝒚:
        − 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝒏𝒐𝒕 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙, 𝐴 − 𝐵 ≠ 𝐵 – 𝐴

        𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒚:
        − 𝑇𝑕𝑒 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡, ∅, 𝑖𝑠 𝑎 𝑟𝑖𝑔𝑕𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑓𝑜𝑟 𝑠𝑒𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝑏𝑢𝑡 𝑡𝑕𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑙𝑒𝑓𝑡
        𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑓𝑜𝑟 𝑠𝑒𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑒𝑡𝑠 𝐴, 𝐴 − ∅ = 𝐴

        𝑰𝒅𝒆𝒎𝒑𝒐𝒕𝒆𝒏𝒄𝒚:
        − 𝑆𝑒𝑡𝑠 𝑎𝑟𝑒 𝒏𝒐𝒕 𝑖𝑑𝑒𝑚𝑝𝑜𝑡𝑒𝑛𝑡 𝑢𝑛𝑑𝑒𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑒𝑡𝑠 𝐴,
        𝑨 − 𝑨 = ∅ ≠ 𝑨

         𝑫𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒗𝒊𝒕𝒚:
        − 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑜𝑣𝑒𝑟 𝑢𝑛𝑖𝑜𝑛: 𝑡𝑕𝑎𝑡 𝑖𝑠,
        𝑨 ∩ (𝑩 ∪ 𝑪) = (𝑨 ∪ 𝑩) ∩ (𝑨 ∪ 𝑪)




                                        𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝐴 − 𝐵
𝑪𝒐𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕 𝑶𝒇 𝑺𝒆𝒕𝒔

 𝑇𝑕𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑎 𝑠𝑒𝑡 𝐴 𝑖𝑠 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡𝑕𝑒 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 𝑤𝑕𝑖𝑐𝑕 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑖𝑛 𝐴.
 𝐼𝑡 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝐴′

                                   𝐹𝑜𝑟𝑚𝑎𝑙𝑙𝑦:       𝐴′ = {𝑥|𝑥 ∉ 𝐴}

 𝐸𝑥𝑎𝑚𝑝𝑙𝑒

           𝐿𝑒𝑡 𝑈 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 , 𝑃 = {1, 2, 3}
          𝑓𝑖𝑛𝑑 𝑃’ ?

 ∴ 𝑃′ = {4, 5, 6, 7, 8, 9, 10}

 𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔

          𝑪𝒍𝒐𝒔𝒖𝒓𝒆:
         −𝑇𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛.
         −𝑇𝑕𝑎𝑡 𝑖𝑠, 𝑡𝑕𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑎 𝑠𝑒𝑡 𝑖𝑠 𝑎 𝑠𝑒𝑡.




                                             𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝐴′
𝑽𝒆𝒏𝒏 − 𝑬𝒖𝒍𝒆𝒓′𝒔 𝒅𝒊𝒂𝒈𝒓𝒂𝒎


𝑉𝑒𝑛𝑛 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑖𝑠 𝑎 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑎𝑟𝑒𝑎𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑠𝑒𝑡𝑠 𝑎𝑛𝑑 𝑡𝑕𝑒 𝑐𝑜𝑚𝑚𝑜𝑛
𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑕𝑒𝑚.


𝑫𝒊𝒂𝒈𝒓𝒂𝒎𝒔

      −𝑉𝑒𝑛𝑛 𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑡𝑒𝑥𝑡𝑢𝑎𝑙.

                                                                                   𝑆𝑒𝑡 𝐴
                                        U
           𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑆𝑒𝑡
                                                         𝑨




      − 𝑉𝑒𝑛𝑛 𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑠 𝑢𝑠𝑢𝑎𝑙𝑙𝑦 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡𝑕𝑒 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑠𝑒𝑡 𝑎𝑠 𝑎𝑠 𝑒𝑛𝑐𝑙𝑜𝑠𝑖𝑛𝑔
       𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒, 𝑎𝑛𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑒𝑡𝑠 𝑎𝑠 𝑐𝑖𝑟𝑐𝑙𝑒𝑠 (𝑢𝑝 𝑡𝑜 𝑡𝑕𝑟𝑒𝑒).




                    𝑠𝑒𝑡 ∶ 𝐴                                                    𝑠𝑒𝑡 ∶ 𝐴 ∩ 𝐵
                                                𝑨              𝑩



           𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑆𝑒𝑡                                           U           𝑠𝑒𝑡 ∶ 𝐵

                                                    Two Sets




          𝑠𝑒𝑡 ∶ 𝐴                                                              𝑠𝑒𝑡 ∶ 𝐴 ∩ 𝐶
                                                     𝑨             U

      𝑠𝑒𝑡 ∶ 𝐴 ∩ 𝐵                                                              𝑠𝑒𝑡 ∶ 𝐶
                                            𝑩                  𝑪
          𝑠𝑒𝑡 ∶ 𝐵
                                                                               𝑠𝑒𝑡 ∶ 𝐵 ∩ 𝐶
                                                Three Sets

                              𝑠𝑒𝑡 ∶ 𝐴 ∩ 𝐵 ∩ 𝐶                      𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑆𝑒𝑡
𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐼                                      𝐴𝑛𝑠𝑤𝑒𝑟
                                                                                     15
                                                                       𝑷
        𝐿𝑒𝑡 𝑈 = {𝑥|15 ≤ 𝑥 ≤ 25, 𝑥 ∈ 𝑁}                                                     17
        𝑃 = {𝑠𝑒𝑡 𝑜𝑓 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 }                                              16    21    19
                                                               18 20
        𝐷𝑟𝑎𝑤 𝑎𝑛𝑑 𝑙𝑎𝑏𝑒𝑙 𝑎 𝑉𝑒𝑛𝑛 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑡𝑜                                                 23
                                                                  22           24          U
        𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑃                                                           25



𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐼𝐼
                                                     𝐴𝑛𝑠𝑤𝑒𝑟

        𝐷𝑟𝑎𝑤 𝑎𝑛𝑑 𝑙𝑎𝑏𝑒𝑙 𝑎 𝑉𝑒𝑛𝑛 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑡𝑜
        𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡𝑕𝑒 𝑠𝑒𝑡                                                  𝑹
        𝑅 = {𝑀𝑜𝑛𝑑𝑎𝑦, 𝑇𝑢𝑒𝑠𝑑𝑎𝑦, 𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦}.
                                                                   𝑀𝑜𝑛𝑑𝑎𝑦
                                                                   𝑇𝑢𝑒𝑠𝑑𝑎𝑦
                                                                   𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦
                                                                                            U



𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐼𝐼𝐼

        𝐺𝑖𝑣𝑒𝑛 𝑈 = 1, 2, 3, 4, 5, 6, 7, 8, 10 , 𝑋 = 1, 2, 6, 7 𝑎𝑛𝑑 𝑌 = 1, 3, 4, 5, 8
        𝐹𝑖𝑛𝑑 𝑋 ∪ 𝑌 𝑎𝑛𝑑 𝑑𝑟𝑎𝑤 𝑎 𝑉𝑒𝑛𝑛 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑡𝑜 𝑖𝑙𝑙𝑢𝑠𝑡𝑟𝑎𝑡𝑒 𝑋 ∪ 𝑌.

        𝐴𝑛𝑠𝑤𝑒𝑟

                    𝑋 ∪ 𝑌 = {1, 2, 3, 4, 5, 6, 7, 8} ← 1 𝑖𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑜𝑛𝑙𝑦 𝑜𝑛𝑐𝑒.




𝑁𝑜𝑡𝑒:   𝐼𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙, 𝑡𝑕𝑒𝑟𝑒 𝑎𝑟𝑒 𝑚𝑎𝑛𝑦 𝑤𝑎𝑦𝑠 𝑡𝑕𝑎𝑡 3 𝑠𝑒𝑡𝑠 𝑚𝑎𝑦 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡.
        𝑆𝑜𝑚𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑟𝑒 𝑠𝑕𝑜𝑤𝑛 𝑏𝑒𝑙𝑜𝑤.
𝑾𝒐𝒓𝒌𝒊𝒏𝒈 𝒘𝒊𝒕𝒉 𝒕𝒘𝒐 𝒔𝒆𝒕𝒔


  𝑬𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒊𝒏 𝒕𝒉𝒆 𝒖𝒏𝒊𝒐𝒏 𝒐𝒇 𝒕𝒘𝒐 𝒔𝒆𝒕𝒔




        𝑛 𝐴 ∪ 𝐵 = 𝑛 𝐴 + 𝑛 𝐵 − 𝑛(𝐴 ∩ 𝐵)

        𝑛 𝐴 ∪ 𝐵 = 𝑛 𝐴 − 𝐵 + 𝑛 𝐴 ∩ 𝐵 + 𝑛(𝐵 − 𝐴)

        𝑛 𝐴 = 𝑛 𝐴− 𝐵 + 𝑛 𝐴∩ 𝐵         ⟶       𝑛 𝐴 − 𝐵 = 𝑛 𝐴 − 𝑛(𝐴 ∩ 𝐵)

        𝑛 𝐵 = 𝑛 𝐵− 𝐴 + 𝑛 𝐴∩ 𝐵         ⟶        𝑛 𝐵 − 𝐴 = 𝑛 𝐵 − 𝑛(𝐴 ∩ 𝐵)



               U
                               𝑨                       𝑩




                                   𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑆𝑒𝑡𝑠

        𝑛 𝐴 ∪ 𝐵 = 𝑛 𝐴 + 𝑛(𝐵)
𝑾𝒐𝒓𝒌𝒊𝒏𝒈 𝒘𝒊𝒕𝒉 𝒕𝒘𝒐 𝒔𝒆𝒕𝒔


  𝑬𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒊𝒏 𝒕𝒉𝒆 𝒖𝒏𝒊𝒐𝒏 𝒐𝒇 𝒕𝒉𝒓𝒆𝒆 𝒔𝒆𝒕𝒔




  𝑛 𝐴∪ 𝐵∪ 𝐶 = 𝑛 𝐴 + 𝑛 𝐵 + 𝑛 𝐶 − 𝑛 𝐴∩ 𝐵 − 𝑛 𝐴∩ 𝐶 − 𝑛 𝐵∩ 𝐶 + 𝑛 𝐴∩ 𝐵∩ 𝐶

  𝑛 𝐴 ∪ 𝐵 ∪ 𝐶 = 𝑛 𝐴 + 𝑛 𝐵 ∪ 𝐶 − 𝑛(𝐴 ∩ (𝐵 ∪ 𝐶))

  𝑊𝑒 𝑕𝑎𝑣𝑒 ∶ 𝑛 𝐵 ∪ 𝐶 = 𝑛 𝐵 + 𝑛 𝐶 − 𝑛 𝐵 ∩ 𝐶

  𝑃𝑢𝑡𝑡𝑖𝑛𝑔 𝑖𝑛 𝑡𝑕𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 "𝑛(𝐴 ∪ 𝐵 ∪ 𝐶)",

  𝑛 𝐴 ∪ 𝐵 ∪ 𝐶 = 𝑛 𝐴 + 𝑛 𝐵 + 𝑛 𝐶 − 𝑛 𝐵 ∩ 𝐶 − 𝑛(𝐴 ∩ (𝐵 ∪ 𝐶))

  𝑊𝑒 𝑕𝑎𝑣𝑒 ∶ 𝑛 𝐴 ∩ 𝐵 ∪ 𝐶    = 𝑛( 𝐴 ∩ 𝐵 ∪ 𝐴 ∩ 𝐶 )

  𝑛   𝐴∩ 𝐵 ∪ 𝐴∩ 𝐶     = 𝑛 𝐴 ∪ 𝐵 + 𝑛 𝐴 ∪ 𝐶 − 𝑛((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶))

  𝑛   𝐴∩ 𝐵 ∩ 𝐴∩ 𝐶     = 𝑛(𝐴 ∩ 𝐵 ∩ 𝐶)

  𝑆𝑜, 𝑛 𝐴 ∩ 𝐵 ∪ 𝐶   = 𝑛 𝐴∪ 𝐵 + 𝑛 𝐴∪ 𝐶 − 𝑛 𝐴∩ 𝐵∩ 𝐶

  𝑛 𝐴 ∪ 𝐵 ∪ 𝐶 = 𝑛 𝐴 + 𝑛 𝐵 + 𝑛 𝐶 − 𝑛 𝐵 ∩ 𝐶 − (𝑛 𝐴 ∪ 𝐵 + 𝑛 𝐴 ∪ 𝐶
               − 𝑛 𝐴∩ 𝐵∩ 𝐶 )

  𝑛 𝐴∪ 𝐵∪ 𝐶 = 𝑛 𝐴 + 𝑛 𝐵 + 𝑛 𝐶 − 𝑛 𝐴∩ 𝐵 − 𝑛 𝐴∩ 𝐶 − 𝑛 𝐵∩ 𝐶 + 𝑛 𝐴∩ 𝐵∩ 𝐶

Contenu connexe

Tendances

The Art of Computer Programming volume 4 fascicle 6 7.7.7.2 p.47-76
The Art of Computer Programming volume 4 fascicle 6 7.7.7.2 p.47-76 The Art of Computer Programming volume 4 fascicle 6 7.7.7.2 p.47-76
The Art of Computer Programming volume 4 fascicle 6 7.7.7.2 p.47-76 Kotaro Okazaki
 
Tutorial 8 mth 3201
Tutorial 8 mth 3201Tutorial 8 mth 3201
Tutorial 8 mth 3201Drradz Maths
 
ゲーム理論BASIC 第45回 -シャープレイ値に関する定理-
ゲーム理論BASIC 第45回 -シャープレイ値に関する定理-ゲーム理論BASIC 第45回 -シャープレイ値に関する定理-
ゲーム理論BASIC 第45回 -シャープレイ値に関する定理-ssusere0a682
 
Federated Tensor Factorization for Computational Phenotyping
Federated Tensor Factorization for Computational PhenotypingFederated Tensor Factorization for Computational Phenotyping
Federated Tensor Factorization for Computational PhenotypingYejin Kim
 
Re:ゲーム理論入門 第15回 - シャープレイ値 -
Re:ゲーム理論入門 第15回 - シャープレイ値 -Re:ゲーム理論入門 第15回 - シャープレイ値 -
Re:ゲーム理論入門 第15回 - シャープレイ値 -ssusere0a682
 
A Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear EquationsA Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear Equationsinventionjournals
 
Telugu book cropped 158-190
Telugu book cropped 158-190Telugu book cropped 158-190
Telugu book cropped 158-190Srihari Obhinni
 
S1 z(def., prop., y operaciones)
S1  z(def., prop., y operaciones)S1  z(def., prop., y operaciones)
S1 z(def., prop., y operaciones)EDGARYALLI
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresArithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresLossian Barbosa Bacelar Miranda
 
Least Squares Fitting
Least Squares Fitting Least Squares Fitting
Least Squares Fitting MANREET SOHAL
 
A formação policial para além da técnica profissional reflexões sobre uma f...
A formação policial para além da técnica profissional   reflexões sobre uma f...A formação policial para além da técnica profissional   reflexões sobre uma f...
A formação policial para além da técnica profissional reflexões sobre uma f...Benôni Cavalcanti
 

Tendances (13)

The Art of Computer Programming volume 4 fascicle 6 7.7.7.2 p.47-76
The Art of Computer Programming volume 4 fascicle 6 7.7.7.2 p.47-76 The Art of Computer Programming volume 4 fascicle 6 7.7.7.2 p.47-76
The Art of Computer Programming volume 4 fascicle 6 7.7.7.2 p.47-76
 
Tutorial 8 mth 3201
Tutorial 8 mth 3201Tutorial 8 mth 3201
Tutorial 8 mth 3201
 
ゲーム理論BASIC 第45回 -シャープレイ値に関する定理-
ゲーム理論BASIC 第45回 -シャープレイ値に関する定理-ゲーム理論BASIC 第45回 -シャープレイ値に関する定理-
ゲーム理論BASIC 第45回 -シャープレイ値に関する定理-
 
Federated Tensor Factorization for Computational Phenotyping
Federated Tensor Factorization for Computational PhenotypingFederated Tensor Factorization for Computational Phenotyping
Federated Tensor Factorization for Computational Phenotyping
 
Re:ゲーム理論入門 第15回 - シャープレイ値 -
Re:ゲーム理論入門 第15回 - シャープレイ値 -Re:ゲーム理論入門 第15回 - シャープレイ値 -
Re:ゲーム理論入門 第15回 - シャープレイ値 -
 
A Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear EquationsA Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear Equations
 
Telugu book cropped 158-190
Telugu book cropped 158-190Telugu book cropped 158-190
Telugu book cropped 158-190
 
S1 z(def., prop., y operaciones)
S1  z(def., prop., y operaciones)S1  z(def., prop., y operaciones)
S1 z(def., prop., y operaciones)
 
Roots of equation
Roots of equationRoots of equation
Roots of equation
 
Algebra
AlgebraAlgebra
Algebra
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresArithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
 
Least Squares Fitting
Least Squares Fitting Least Squares Fitting
Least Squares Fitting
 
A formação policial para além da técnica profissional reflexões sobre uma f...
A formação policial para além da técnica profissional   reflexões sobre uma f...A formação policial para além da técnica profissional   reflexões sobre uma f...
A formação policial para além da técnica profissional reflexões sobre uma f...
 

Similaire à Sets

Carbohydrate Metabolism
Carbohydrate MetabolismCarbohydrate Metabolism
Carbohydrate MetabolismVedantPatel100
 
SUEC 高中 Adv Maths (2 Roots Part 1)
SUEC 高中 Adv Maths (2 Roots Part 1)SUEC 高中 Adv Maths (2 Roots Part 1)
SUEC 高中 Adv Maths (2 Roots Part 1)tungwc
 
SUEC 高中 Adv Maths (2 Roots Part 2)
SUEC 高中 Adv Maths (2 Roots Part 2)SUEC 高中 Adv Maths (2 Roots Part 2)
SUEC 高中 Adv Maths (2 Roots Part 2)tungwc
 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine LearningSEMINARGROOT
 
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)tungwc
 
Teoria Numérica (Palestra 01)
Teoria Numérica (Palestra 01)Teoria Numérica (Palestra 01)
Teoria Numérica (Palestra 01)Eugenio Souza
 
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 32018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 3Yosia Adi Setiawan
 
Blow up in a degenerate keller--segel system(Eng.)
Blow up in a degenerate keller--segel system(Eng.)Blow up in a degenerate keller--segel system(Eng.)
Blow up in a degenerate keller--segel system(Eng.)Takahiro Hashira
 
Diapositiva de Estudio: SolPrac2Am4.pptx
Diapositiva de Estudio:  SolPrac2Am4.pptxDiapositiva de Estudio:  SolPrac2Am4.pptx
Diapositiva de Estudio: SolPrac2Am4.pptxjorgejvc777
 
Mpc 006 - 02-02 types of correlation
Mpc 006 - 02-02 types of correlationMpc 006 - 02-02 types of correlation
Mpc 006 - 02-02 types of correlationVasant Kothari
 
SUEC 高中 Adv Maths (Irrational Part 3)
SUEC 高中 Adv Maths (Irrational Part 3)SUEC 高中 Adv Maths (Irrational Part 3)
SUEC 高中 Adv Maths (Irrational Part 3)tungwc
 
Ai2418281871
Ai2418281871Ai2418281871
Ai2418281871IJMER
 
SUEC 高中 Adv Maths (Permutation) (Part 1).pptx
SUEC 高中 Adv Maths (Permutation) (Part 1).pptxSUEC 高中 Adv Maths (Permutation) (Part 1).pptx
SUEC 高中 Adv Maths (Permutation) (Part 1).pptxtungwc
 
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 32018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3Yosia Adi Setiawan
 
TAoCP 7.7.7.2 Satisfiability の輪読
TAoCP 7.7.7.2 Satisfiability の輪読TAoCP 7.7.7.2 Satisfiability の輪読
TAoCP 7.7.7.2 Satisfiability の輪読Kotaro Okazaki
 

Similaire à Sets (20)

Relativity
RelativityRelativity
Relativity
 
Carbohydrate Metabolism
Carbohydrate MetabolismCarbohydrate Metabolism
Carbohydrate Metabolism
 
SUEC 高中 Adv Maths (2 Roots Part 1)
SUEC 高中 Adv Maths (2 Roots Part 1)SUEC 高中 Adv Maths (2 Roots Part 1)
SUEC 高中 Adv Maths (2 Roots Part 1)
 
Lipid Metabolism
Lipid MetabolismLipid Metabolism
Lipid Metabolism
 
SUEC 高中 Adv Maths (2 Roots Part 2)
SUEC 高中 Adv Maths (2 Roots Part 2)SUEC 高中 Adv Maths (2 Roots Part 2)
SUEC 高中 Adv Maths (2 Roots Part 2)
 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
 
Photosynthesis
PhotosynthesisPhotosynthesis
Photosynthesis
 
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
 
Teoria Numérica (Palestra 01)
Teoria Numérica (Palestra 01)Teoria Numérica (Palestra 01)
Teoria Numérica (Palestra 01)
 
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 32018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 3
 
Blow up in a degenerate keller--segel system(Eng.)
Blow up in a degenerate keller--segel system(Eng.)Blow up in a degenerate keller--segel system(Eng.)
Blow up in a degenerate keller--segel system(Eng.)
 
Diapositiva de Estudio: SolPrac2Am4.pptx
Diapositiva de Estudio:  SolPrac2Am4.pptxDiapositiva de Estudio:  SolPrac2Am4.pptx
Diapositiva de Estudio: SolPrac2Am4.pptx
 
Mpc 006 - 02-02 types of correlation
Mpc 006 - 02-02 types of correlationMpc 006 - 02-02 types of correlation
Mpc 006 - 02-02 types of correlation
 
SUEC 高中 Adv Maths (Irrational Part 3)
SUEC 高中 Adv Maths (Irrational Part 3)SUEC 高中 Adv Maths (Irrational Part 3)
SUEC 高中 Adv Maths (Irrational Part 3)
 
Ai2418281871
Ai2418281871Ai2418281871
Ai2418281871
 
SUEC 高中 Adv Maths (Permutation) (Part 1).pptx
SUEC 高中 Adv Maths (Permutation) (Part 1).pptxSUEC 高中 Adv Maths (Permutation) (Part 1).pptx
SUEC 高中 Adv Maths (Permutation) (Part 1).pptx
 
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 32018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3
 
Periodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral EquationsPeriodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral Equations
 
Selection on Observables
Selection on ObservablesSelection on Observables
Selection on Observables
 
TAoCP 7.7.7.2 Satisfiability の輪読
TAoCP 7.7.7.2 Satisfiability の輪読TAoCP 7.7.7.2 Satisfiability の輪読
TAoCP 7.7.7.2 Satisfiability の輪読
 

Dernier

FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 

Dernier (20)

FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 

Sets

  • 1. 𝑺𝒆𝒕𝒔 𝑶𝒗𝒆𝒓𝒗𝒊𝒆𝒘 𝑺𝒆𝒕𝒔 𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒔𝒆𝒕𝒔 𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔 𝒐𝒇 𝒔𝒆𝒕𝒔 𝑹𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔 𝒐𝒇 𝒔𝒆𝒕𝒔 −𝑈𝑛𝑖𝑜𝑛 (∪) −𝐸𝑚𝑝𝑡𝑦 𝑠𝑒𝑡𝑠 −𝐸𝑞𝑢𝑎𝑙 − 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (∩) − 𝐹𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡𝑠 − 𝐷𝑖𝑓𝑓𝑒𝑟𝑟𝑒𝑛𝑐𝑒 (−) − 𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡𝑠 −𝑆𝑢𝑏𝑠𝑒𝑡𝑠 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 (′) − 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑠𝑒𝑡𝑠 −𝑃𝑜𝑤𝑒𝑟 𝑠𝑒𝑡s 𝑽𝒆𝒏𝒏 − 𝑬𝒖𝒍𝒆𝒓′𝒔 𝒅𝒊𝒂𝒈𝒓𝒂𝒎 𝑾𝒉𝒂𝒕 𝒊𝒔 𝒂 𝒔𝒆𝒕? − 𝐴 𝒔𝒆𝒕 𝑖𝑠 𝑎 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠, 𝑡𝑕𝑖𝑛𝑔𝑠 𝑜𝑟 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 𝑤𝑕𝑖𝑐𝑕 𝑎𝑟𝑒 𝒄𝒍𝒆𝒂𝒓𝒍𝒚 𝒅𝒆𝒇𝒊𝒏𝒆𝒅. − 𝑇𝑕𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑖𝑛 𝑎 𝑠𝑒𝑡 𝑎𝑟𝑒 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡𝑕𝑒 𝒎𝒆𝒎𝒃𝒆𝒓𝒔 𝑜𝑟 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝑜𝑓 𝑡𝑕𝑒 𝑠𝑒𝑡. 𝑆𝑒𝑡 = {𝑚𝑒𝑚𝑏𝑒𝑟1, 𝑚𝑒𝑚𝑏𝑒𝑟2, 𝑚𝑒𝑚𝑏𝑒𝑟3} 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝑆𝑒𝑡 𝑜𝑓 𝑑𝑎𝑦 = {𝑆𝑢𝑛𝑑𝑎𝑦, 𝑀𝑜𝑛𝑑𝑎𝑦, 𝑇𝑢𝑒𝑠𝑑𝑎𝑦, 𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦, 𝑇𝑕𝑢𝑟𝑠𝑑𝑎𝑦, 𝐹𝑟𝑖𝑑𝑎𝑦, 𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦}
  • 2. 𝑾𝒓𝒊𝒕𝒊𝒏𝒈 𝑺𝒆𝒕𝒔 𝑇𝑕𝑒𝑟𝑒 𝑎𝑟𝑒 𝑡𝑤𝑜 𝑤𝑎𝑦𝑠 𝑡𝑜 𝑤𝑟𝑖𝑡𝑒 𝑠𝑒𝑡𝑠 ∶ 1) 𝐿𝑖𝑠𝑡𝑖𝑛𝑔 𝑚𝑒𝑡𝑕𝑜𝑑 ∶ 𝐴𝑙𝑙 𝑜𝑓 𝑡𝑕𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑎 𝑠𝑒𝑡 𝑎𝑟𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛, 𝑠𝑢𝑐𝑕 𝑎𝑠 𝐴 = 1,3,5,7,9 . 2) 𝑆𝑒𝑡 − 𝑏𝑢𝑖𝑙𝑑𝑒𝑟 𝑚𝑒𝑡𝑕𝑜𝑑 ∶ 𝐴 𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑛𝑎𝑚𝑒𝑑, 𝑎𝑙𝑜𝑛𝑔 𝑤𝑖𝑡𝑕 𝑖𝑡𝑠 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛, 𝑠𝑢𝑐𝑕 𝑎𝑠 𝐴 = {𝑥|𝑥 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑟𝑜𝑚 1 𝑡𝑜 10}. 𝑁𝑜𝑡𝑒: 𝑇𝑕𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑏𝑎𝑟 𝑖𝑠 𝑟𝑒𝑎𝑑 "such that" 𝑴𝒆𝒎𝒃𝒆𝒓𝒔 𝒐𝒇 𝒔𝒆𝒕𝒔 𝑊𝑒 𝑟𝑒𝑙𝑎𝑡𝑒 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑎𝑛𝑑 𝑎 𝑠𝑒𝑡 𝑢𝑠𝑖𝑛𝑔 𝑡𝑕𝑒 𝑠𝑦𝑚𝑏𝑜𝑙 ∈. 𝐼𝑓 𝑎𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 𝑥 𝑖𝑠 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠𝑒𝑡 𝐴, 𝑤𝑒 𝑤𝑟𝑖𝑡𝑒 𝑥 ∈ 𝐴. 𝐼𝑓 𝑎𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠𝑒𝑡 𝐴, 𝑤𝑒 𝑤𝑟𝑖𝑡𝑒 𝑥 ∉ 𝐴 ∈ 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 “𝒊𝒔 𝒂𝒏 𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝒐𝒇’ 𝑜𝑟 “𝑖𝑠 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓” 𝑜𝑟 “𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜” ∉ 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 “𝒊𝒔 𝒏𝒐𝒕 𝒂𝒏 𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝒐𝒇” 𝑜𝑟 “𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓” 𝑜𝑟 “𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜” 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐼𝑓 𝐴 = {1, 3, 5} 𝑡𝑕𝑒𝑛 1 ∈ 𝐴 𝑎𝑛𝑑 2 ∉ 𝐴 𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔 𝒐𝒇 𝒔𝒆𝒕𝒔 𝑬𝒎𝒑𝒕𝒚 𝑺𝒆𝒕 𝒐𝒓 𝑵𝒖𝒍𝒍 𝑺𝒆𝒕 𝑇𝑕𝑒𝑟𝑒 𝑎𝑟𝑒 𝑠𝑜𝑚𝑒 𝑠𝑒𝑡𝑠 𝑡𝑕𝑎𝑡 𝑑𝑜 𝑛𝑜𝑡 𝑐𝑜𝑛𝑎𝑡𝑖𝑛 𝑎𝑛𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑎𝑡 𝑎𝑙𝑙. 𝑊𝑒 𝑐𝑎𝑙𝑙 𝑎 𝑠𝑒𝑡 𝑤𝑖𝑡𝑕 𝑛𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑡𝑕𝑒 𝒏𝒖𝒍𝒍 𝑜𝑟 𝒆𝒎𝒑𝒕𝒚 𝑠𝑒𝑡. 𝐼𝑡 𝑖𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑏𝑦 𝑡𝑕𝑒 𝑠𝑦𝑚𝑏𝑜𝑙 { } 𝑜𝑟 Ø . 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 - The set of months with 32 days. - The set of squares with 5 sides. - 𝐴 = {} - 𝐵=∅
  • 3. 𝑭𝒊𝒏𝒊𝒕𝒆 𝑺𝒆𝒕𝒔 𝑭𝒊𝒏𝒊𝒕𝒆 𝒔𝒆𝒕𝒔 𝑎𝑟𝑒 𝑠𝑒𝑡𝑠 𝑡𝑕𝑎𝑡 𝑕𝑎𝑣𝑒 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟𝑠. 𝐼𝑓 𝑡𝑕𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡 𝑎𝑟𝑒 𝑙𝑖𝑠𝑡𝑒𝑑 𝑜𝑛𝑒 𝑎𝑓𝑡𝑒𝑟 𝑎𝑛𝑜𝑡𝑕𝑒𝑟, 𝑡𝑕𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑤𝑖𝑙𝑙 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 “𝑟𝑢𝑛 𝑜𝑢𝑡” 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑡𝑜 𝑙𝑖𝑠𝑡. 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 - 𝐴 = {0, 2, 4, 6, 8, … , 100} - 𝐵 = {𝑎, 𝑒, 𝐼, 𝑜, 𝑢} - 𝐶 = {𝑥 ∶ 𝑥 is an integer, 1 < 𝑥 < 10} 𝑰𝒏𝒇𝒊𝒏𝒊𝒕𝒆 𝑺𝒆𝒕𝒔 𝐴𝑛 𝒊𝒏𝒇𝒊𝒏𝒊𝒕𝒆 𝒔𝒆𝒕 𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑤𝑕𝑖𝑐𝑕 𝑖𝑠 𝑛𝑜𝑡 𝑓𝑖𝑛𝑖𝑡𝑒. 𝐼𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑡𝑜 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝑙𝑦 𝑙𝑖𝑠𝑡 𝑜𝑢𝑡 𝑎𝑙𝑙 𝑡𝑕𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑎𝑛 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡. 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 - 𝑇 = {𝑥 ∶ 𝑥 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑥 > 100} - 𝑄 = {-1,-2,-3,-4…} - 𝑁 𝑖𝑠 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 - 𝐴 𝑖𝑠 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑁𝑜𝑡𝑒: 𝑇𝑕𝑒 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝑖𝑛 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡 𝐴 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝒏(𝑨). 𝑼𝒏𝒊𝒗𝒆𝒓𝒔𝒂𝒍 𝑺𝒆𝒕 𝐴 𝒖𝒏𝒊𝒗𝒆𝒓𝒔𝒂𝒍 𝒔𝒆𝒕 𝑖𝑠 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 U. 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐺𝑖𝑣𝑒𝑛 𝑡𝑕𝑎𝑡 𝑈 = 5, 6, 7, 8, 9, 10, 11, 12 , 𝑙𝑖𝑠𝑡 𝑡𝑕𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡𝑕𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑠𝑒𝑡𝑠. 𝑎) 𝐴 = 𝑥 ∶ 𝑥 𝑖𝑠 𝑎 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 60 = {5,6,10,12} 𝑏) 𝐵 = 𝑥 ∶ 𝑥 𝑖𝑠 𝑎 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 = {5,7,11}
  • 4. 𝑹𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔 𝒐𝒇 𝒔𝒆𝒕𝒔 𝐸𝑞𝑢𝑎𝑙 𝑆𝑒𝑡𝑠 𝑇𝑤𝑜 𝑠𝑒𝑡𝑠 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 𝑖𝑓 𝑡𝑕𝑒𝑦 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑡𝑕𝑒 𝒔𝒂𝒎𝒆 𝒊𝒅𝒆𝒏𝒕𝒊𝒄𝒂𝒍 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔. 𝐼𝑓 𝑡𝑤𝑜 𝑠𝑒𝑡𝑠 𝑕𝑎𝑣𝑒 𝑜𝑛𝑙𝑦 𝑡𝑕𝑒 𝑠𝑎𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑡𝑕𝑒𝑛 𝑡𝑕𝑒 𝑡𝑤𝑜 𝑠𝑒𝑡𝑠 𝑎𝑟𝑒 𝑂𝑛𝑒 − 𝑡𝑜 − 𝑂𝑛𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒. 𝐸𝑞𝑢𝑎𝑙 𝑠𝑒𝑡𝑠 𝑎𝑟𝑒 𝑂𝑛𝑒 − 𝑡𝑜 − 𝑂𝑛𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒 𝑏𝑢𝑡 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒 𝑠𝑒𝑡𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑙𝑤𝑎𝑦𝑠 𝑒𝑞𝑢𝑎𝑙 𝑠𝑒𝑡𝑠. 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐼 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡𝑕𝑒 𝑠𝑒𝑡𝑠: 𝑃 = {𝑇𝑜𝑚, 𝐷𝑖𝑐𝑘, 𝐻𝑎𝑟𝑟𝑦, 𝐽𝑜𝑕𝑛} , 𝑄 = {𝐷𝑖𝑐𝑘, 𝐻𝑎𝑟𝑟𝑦, 𝐽𝑜𝑕𝑛, 𝑇𝑜𝑚} ∴ 𝑃 𝑖𝑠 𝒆𝒒𝒖𝒂𝒍 𝑡𝑜 𝑄, 𝑎𝑛𝑑 𝑤𝑒 𝑤𝑟𝑖𝑡𝑒 𝑃 = 𝑄. 𝑇𝑕𝑒 𝑜𝑟𝑑𝑒𝑟 𝑖𝑛 𝑤𝑕𝑖𝑐𝑕 𝑡𝑕𝑒 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 𝑎𝑝𝑝𝑒𝑎𝑟 𝑖𝑛 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡. 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐼𝐼 𝑊𝑕𝑖𝑐𝑕 𝑜𝑓 𝑡𝑕𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑠𝑒𝑡𝑠 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 𝑎𝑛𝑑 𝑤𝑕𝑖𝑐𝑕 𝑜𝑛𝑒𝑠 𝑎𝑟𝑒 𝑂𝑛𝑒 − 𝑡𝑜 − 𝑂𝑛𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒 ? 𝐴 = 𝑎, 𝑓, 𝑗, 𝑞 𝐵 = 1, 2, 3, 5, 8 𝐶 = 𝑥, 𝑦, 𝑧, 𝑤 𝐷 = {8, 1, 3, 5, 2} 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 - 𝐵 𝑎𝑛𝑑 𝐷 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙. 𝑇𝑕𝑒𝑦 𝑕𝑎𝑣𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠. - 𝐴 𝑎𝑛𝑑 𝐶 𝑎𝑟𝑒 𝑂𝑛𝑒 − 𝑡𝑜 − 𝑂𝑛𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒 𝑜𝑟 𝑚𝑎𝑡𝑐𝑕𝑖𝑛𝑔 𝑠𝑒𝑡𝑠. 𝐸𝑎𝑐𝑕 𝑠𝑒𝑡 𝑕𝑎𝑠 4 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠. 𝑇𝑕𝑒𝑦 𝑕𝑎𝑣𝑒 𝑡𝑕𝑒 𝑠𝑎𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑡𝑕𝑒 𝑠𝑎𝑚𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠. - 𝐵 𝑎𝑛𝑑 𝐷 𝑎𝑟𝑒 𝑂𝑛𝑒 − 𝑡𝑜 − 𝑂𝑛𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒 𝑎𝑛𝑑 𝑒𝑞𝑢𝑎𝑙 𝑠𝑒𝑡𝑠. 𝑇𝑕𝑒𝑦 𝑕𝑎𝑣𝑒 𝑡𝑕𝑒 𝑠𝑎𝑚𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠.
  • 5. 𝑺𝒖𝒃𝒔𝒆𝒕𝒔 𝐼𝑓 𝑒𝑣𝑒𝑟𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑎 𝑠𝑒𝑡 𝐵 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎 𝑠𝑒𝑡 𝐴, 𝑡𝑕𝑒𝑛 𝑤𝑒 𝑠𝑎𝑦 𝐵 𝑖𝑠 𝑎 𝒔𝒖𝒃𝒔𝒆𝒕 𝑜𝑓 𝐴. 𝑊𝑒 𝑢𝑠𝑒 𝑡𝑕𝑒 𝑠𝑦𝑚𝑏𝑜𝑙 ⊂ or ⊆ 𝑡𝑜 𝑚𝑒𝑎𝑛 “𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓” . 𝑆𝑒𝑡 𝐵 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑠𝑒𝑡 𝐴 𝑖𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛: 𝐵 ⊂ 𝐴 𝑜𝑟 𝐵 ⊆ 𝐴 𝐴𝑛𝑑 𝑡𝑕𝑒 𝑠𝑦𝑚𝑏𝑜𝑙 ⊄ or ⊈ 𝑡𝑜 𝑚𝑒𝑎𝑛 “𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓”. 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐼 𝐴 = 1, 3, 5 , 𝐵 = 1, 2, 3, 4, 5 ∴ 𝑆𝑜, 𝐴 ⊂ 𝐵 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑒𝑣𝑒𝑟𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝐴 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑖𝑛 𝐵. 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐼𝐼 𝑋 = 1, 3, 5 , 𝑌 = 2, 3, 4, 5, 6 ∴ 𝑋 ⊄ 𝑌 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 1 𝑖𝑠 𝑖𝑛 𝑋 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑖𝑛 𝑌. 𝑁𝑜𝑡𝑒:  𝐸𝑣𝑒𝑟𝑦 𝑠𝑒𝑡 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑖𝑡𝑠𝑒𝑙𝑓 𝑖. 𝑒. 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠𝑒𝑡 𝐴, 𝐴 ⊂ 𝐴  𝑇𝑕𝑒 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑎𝑛𝑦 𝑠𝑒𝑡 𝐴 𝑖. 𝑒. Ø ⊂ 𝐴  𝐹𝑜𝑟 𝑎𝑛𝑦 𝑡𝑤𝑜 𝑠𝑒𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵, 𝑖𝑓 𝐴 ⊂ 𝐵 𝑎𝑛𝑑 𝐵 ⊂ 𝐴 𝑡𝑕𝑒𝑛 𝐴 = 𝐵 𝑷𝒐𝒘𝒆𝒓 𝑺𝒆𝒕𝒔 𝑃𝑜𝑤𝑒𝑟 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑙𝑖𝑠𝑡 𝑎𝑙𝑙 𝑡𝑕𝑒 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝑡𝑕𝑒 𝑠𝑒𝑡. 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐿𝑖𝑠𝑡 𝑎𝑙𝑙 𝑡𝑕𝑒 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑄 = 𝑥, 𝑦, 𝑧 ∴ 𝑇𝑕𝑒 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝑄 𝑎𝑟𝑒 { }, {𝑥}, {𝑦}, {𝑧}, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}𝑎𝑛𝑑 {𝑥, 𝑦, 𝑧} 𝑁𝑜𝑡𝑒: 𝑇𝑕𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑓𝑜𝑟 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡 𝐴 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 𝑡𝑕𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 = 2 𝑛 𝐴 𝑤𝑕𝑒𝑟𝑒 𝑛(𝐴) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡𝑕𝑒 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡 𝐴 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝑄 = 𝑥, 𝑦, 𝑧 . 𝐻𝑜𝑤 𝑚𝑎𝑛𝑦 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑤𝑖𝑙𝑙 𝑄 𝑕𝑎𝑣𝑒? ∴ 𝑛 𝑄 = 3, 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 = 23 = 8 𝑜𝑟 𝑃(𝑄) = 23 = 8
  • 6. 𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒔𝒆𝒕𝒔 𝑼𝒏𝒊𝒐𝒏 𝒐𝒇 𝑺𝒆𝒕𝒔 𝑇𝑕𝑒 𝒖𝒏𝒊𝒐𝒏 𝑜𝑓 𝑡𝑤𝑜 𝑠𝑒𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵 𝑖𝑠 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑤𝑕𝑖𝑐𝑕 𝑎𝑟𝑒 𝑖𝑛 𝐴 𝒐𝒓 𝑖𝑛 𝐵 𝒐𝒓 𝑖𝑛 𝑏𝑜𝑡𝑕. 𝐼𝑡 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝐴 ∪ 𝐵 𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑎𝑑 ‘𝐴 𝑢𝑛𝑖𝑜𝑛 𝐵’ 𝐹𝑜𝑟𝑚𝑎𝑙𝑙𝑦: 𝐴 ∪ 𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵} 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐺𝑖𝑣𝑒𝑛 𝑈 = 1, 2, 3, 4, 5, 6, 7, 8, 10 , 𝑋 = 1, 2, 6, 7 𝑎𝑛𝑑 𝑌 = 1, 3, 4, 5, 8 𝐹𝑖𝑛𝑑 𝑋 ∪ 𝑌 ? ∴ 𝑋 ∪ 𝑌 = {1, 2, 3, 4, 5, 6, 7, 8} ← 1 is written only once. 𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔 𝑪𝒍𝒐𝒔𝒖𝒓𝒆: − 𝑇𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑢𝑛𝑑𝑒𝑟 𝑢𝑛𝑖𝑜𝑛. − 𝑇𝑕𝑎𝑡 𝑖𝑠, 𝑡𝑕𝑒 𝑢𝑛𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑎 𝑠𝑒𝑡. 𝑨𝒔𝒔𝒐𝒄𝒊𝒂𝒕𝒊𝒗𝒊𝒕𝒚: − 𝑈𝑛𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑨 ∪ 𝑩 ∪ 𝑪 = 𝑨 ∩ 𝑩 ∪ 𝑪 𝑪𝒐𝒎𝒎𝒖𝒕𝒂𝒕𝒊𝒗𝒊𝒕𝒚: − 𝑈𝑛𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑨 ∪ 𝑩 = 𝑩 ∪ 𝑨 𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒚: − 𝑇𝑕𝑒 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡, ∅, 𝑖𝑠 𝑏𝑜𝑡𝑕 𝑎 𝑟𝑖𝑔𝑕𝑡 𝑎𝑛𝑑 𝑙𝑒𝑓𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑓𝑜𝑟 𝑠𝑒𝑡 𝑢𝑛𝑖𝑜𝑛: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑒𝑡𝑠 𝐴, 𝑨 ∪ ∅ = 𝑨 𝑎𝑛𝑑 ∅ ∪ 𝑨 = 𝑨 𝐈𝐝𝐞𝐦𝐩𝐨𝐭𝐞𝐧𝐜𝐲: − 𝑆𝑒𝑡𝑠 𝑎𝑟𝑒 𝑖𝑑𝑒𝑚𝑝𝑜𝑡𝑒𝑛𝑡 𝑢𝑛𝑑𝑒𝑟 𝑢𝑛𝑖𝑜𝑛: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑒𝑡𝑠 𝐴, 𝑨 ∪ 𝑨 = 𝑨 𝑫𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒗𝒊𝒕𝒚: − 𝑈𝑛𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑜𝑣𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑨 ∪ (𝑩 ∩ 𝑪) = (𝑨 ∩ 𝑩) ∪ (𝑨 ∩ 𝑪) 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝐴 ∪ 𝐵
  • 7. 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝑺𝒆𝒕𝒔 𝑇𝑕𝑒 𝒊𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝑜𝑓 𝑡𝑤𝑜 𝑠𝑒𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵 𝑖𝑠 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑡𝑕𝑎𝑡 𝑎𝑟𝑒 𝑐𝑜𝑚𝑚𝑜𝑛 𝑡𝑜 𝑏𝑜𝑡𝑕 𝑠𝑒𝑡 𝐴 𝒂𝒏𝒅 𝑠𝑒𝑡 𝐵. 𝐼𝑡 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝐴 ∩ 𝐵 𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑎𝑑 ‘𝐴 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐵’. 𝐹𝑜𝑟𝑚𝑎𝑙𝑙𝑦: 𝐴 ∩ 𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵} 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐺𝑖𝑣𝑒𝑛 𝑈 = 1, 2, 3, 4, 5, 6, 7, 8, 10 , 𝑋 = 1, 2, 6, 7 𝑎𝑛𝑑 𝑌 = 1, 3, 4, 5, 8 𝐹𝑖𝑛𝑑 𝑋 ∩ 𝑌 ? ∴ 𝑋 ∩ 𝑌 = {1} 𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔 𝑪𝒍𝒐𝒔𝒖𝒓𝒆: − 𝑇𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑢𝑛𝑑𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛. − 𝑇𝑕𝑎𝑡 𝑖𝑠, 𝑡𝑕𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑎 𝑠𝑒𝑡. 𝑨𝒔𝒔𝒐𝒄𝒊𝒂𝒕𝒊𝒗𝒊𝒕𝒚: − 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑨 ∩ 𝑩 ∩ 𝑪 = 𝑨 ∩ 𝑩 ∩ 𝑪 𝑪𝒐𝒎𝒎𝒖𝒕𝒂𝒕𝒊𝒗𝒊𝒕𝒚: − 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑨 ∩ 𝑩 = 𝑩 ∩ 𝑨 𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒚: − 𝑇𝑕𝑒 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑠𝑒𝑡, 𝑼, 𝑖𝑠 𝑏𝑜𝑡𝑕 𝑎 𝑟𝑖𝑔𝑕𝑡 𝑎𝑛𝑑 𝑙𝑒𝑓𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑓𝑜𝑟 𝑠𝑒𝑡 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑒𝑡𝑠 𝐴, 𝑨 ∩ 𝑼 = 𝑨, 𝒂𝒏𝒅 𝑼 ∩ 𝑨 = 𝑨 𝑰𝒅𝒆𝒎𝒑𝒐𝒕𝒆𝒏𝒄𝒚: − 𝑆𝑒𝑡𝑠 𝑎𝑟𝑒 𝑖𝑑𝑒𝑚𝑝𝑜𝑡𝑒𝑛𝑡 𝑢𝑛𝑑𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑒𝑡𝑠 𝐴, 𝑨 ∩ 𝑨 = 𝑨 𝑫𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒗𝒊𝒕𝒚: − 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑜𝑣𝑒𝑟 𝑢𝑛𝑖𝑜𝑛: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑨 ∩ (𝑩 ∪ 𝑪) = (𝑨 ∪ 𝑩) ∩ (𝑨 ∪ 𝑪) 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝐴 ∩ 𝐵
  • 8. 𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒐𝒇 𝑺𝒆𝒕𝒔 𝑇𝑕𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑠𝑒𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵 𝑖𝑠 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝐴 𝑤𝑕𝑖𝑐𝑕 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑙𝑠𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝐵. 𝐼𝑡 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝐴 − 𝐵 . 𝐹𝑜𝑟𝑚𝑎𝑙𝑙𝑦: 𝐴 − 𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵} 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐺𝑖𝑣𝑒𝑛 𝑈 = 1, 2, 3, 4, 5, 6, 7, 8, 10 , 𝑋 = 1, 2, 6, 7 𝑎𝑛𝑑 𝑌 = 1, 3, 4, 5, 8 𝐹𝑖𝑛𝑑 𝑋 − 𝑌 ? ∴ 𝑋 − 𝑌 = {2,6,7} 𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔 𝑪𝒍𝒐𝒔𝒖𝒓𝒆: − 𝑇𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑢𝑛𝑑𝑒𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒. − 𝑇𝑕𝑎𝑡 𝑖𝑠, 𝑡𝑕𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡𝑤𝑜 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑎 𝑠𝑒𝑡. 𝑨𝒔𝒔𝒐𝒄𝒊𝒂𝒕𝒊𝒗𝒊𝒕𝒚: − 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝒏𝒐𝒕 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙, 𝐴– 𝐵 − 𝐶 ≠ 𝐴– 𝐵– 𝐶 𝑪𝒐𝒎𝒎𝒖𝒕𝒂𝒕𝒊𝒗𝒊𝒕𝒚: − 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝒏𝒐𝒕 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙, 𝐴 − 𝐵 ≠ 𝐵 – 𝐴 𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒚: − 𝑇𝑕𝑒 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡, ∅, 𝑖𝑠 𝑎 𝑟𝑖𝑔𝑕𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑓𝑜𝑟 𝑠𝑒𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝑏𝑢𝑡 𝑡𝑕𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑙𝑒𝑓𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑓𝑜𝑟 𝑠𝑒𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑒𝑡𝑠 𝐴, 𝐴 − ∅ = 𝐴 𝑰𝒅𝒆𝒎𝒑𝒐𝒕𝒆𝒏𝒄𝒚: − 𝑆𝑒𝑡𝑠 𝑎𝑟𝑒 𝒏𝒐𝒕 𝑖𝑑𝑒𝑚𝑝𝑜𝑡𝑒𝑛𝑡 𝑢𝑛𝑑𝑒𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑒𝑡𝑠 𝐴, 𝑨 − 𝑨 = ∅ ≠ 𝑨 𝑫𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒗𝒊𝒕𝒚: − 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑜𝑣𝑒𝑟 𝑢𝑛𝑖𝑜𝑛: 𝑡𝑕𝑎𝑡 𝑖𝑠, 𝑨 ∩ (𝑩 ∪ 𝑪) = (𝑨 ∪ 𝑩) ∩ (𝑨 ∪ 𝑪) 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝐴 − 𝐵
  • 9. 𝑪𝒐𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕 𝑶𝒇 𝑺𝒆𝒕𝒔 𝑇𝑕𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑎 𝑠𝑒𝑡 𝐴 𝑖𝑠 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡𝑕𝑒 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 𝑤𝑕𝑖𝑐𝑕 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑖𝑛 𝐴. 𝐼𝑡 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝐴′ 𝐹𝑜𝑟𝑚𝑎𝑙𝑙𝑦: 𝐴′ = {𝑥|𝑥 ∉ 𝐴} 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐿𝑒𝑡 𝑈 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 , 𝑃 = {1, 2, 3} 𝑓𝑖𝑛𝑑 𝑃’ ? ∴ 𝑃′ = {4, 5, 6, 7, 8, 9, 10} 𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔 𝑪𝒍𝒐𝒔𝒖𝒓𝒆: −𝑇𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛. −𝑇𝑕𝑎𝑡 𝑖𝑠, 𝑡𝑕𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑎 𝑠𝑒𝑡 𝑖𝑠 𝑎 𝑠𝑒𝑡. 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝐴′
  • 10. 𝑽𝒆𝒏𝒏 − 𝑬𝒖𝒍𝒆𝒓′𝒔 𝒅𝒊𝒂𝒈𝒓𝒂𝒎 𝑉𝑒𝑛𝑛 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑖𝑠 𝑎 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑎𝑟𝑒𝑎𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑠𝑒𝑡𝑠 𝑎𝑛𝑑 𝑡𝑕𝑒 𝑐𝑜𝑚𝑚𝑜𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑕𝑒𝑚. 𝑫𝒊𝒂𝒈𝒓𝒂𝒎𝒔 −𝑉𝑒𝑛𝑛 𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑡𝑒𝑥𝑡𝑢𝑎𝑙. 𝑆𝑒𝑡 𝐴 U 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑆𝑒𝑡 𝑨 − 𝑉𝑒𝑛𝑛 𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑠 𝑢𝑠𝑢𝑎𝑙𝑙𝑦 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡𝑕𝑒 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑠𝑒𝑡 𝑎𝑠 𝑎𝑠 𝑒𝑛𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒, 𝑎𝑛𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑒𝑡𝑠 𝑎𝑠 𝑐𝑖𝑟𝑐𝑙𝑒𝑠 (𝑢𝑝 𝑡𝑜 𝑡𝑕𝑟𝑒𝑒). 𝑠𝑒𝑡 ∶ 𝐴 𝑠𝑒𝑡 ∶ 𝐴 ∩ 𝐵 𝑨 𝑩 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑆𝑒𝑡 U 𝑠𝑒𝑡 ∶ 𝐵 Two Sets 𝑠𝑒𝑡 ∶ 𝐴 𝑠𝑒𝑡 ∶ 𝐴 ∩ 𝐶 𝑨 U 𝑠𝑒𝑡 ∶ 𝐴 ∩ 𝐵 𝑠𝑒𝑡 ∶ 𝐶 𝑩 𝑪 𝑠𝑒𝑡 ∶ 𝐵 𝑠𝑒𝑡 ∶ 𝐵 ∩ 𝐶 Three Sets 𝑠𝑒𝑡 ∶ 𝐴 ∩ 𝐵 ∩ 𝐶 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑆𝑒𝑡
  • 11. 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐼 𝐴𝑛𝑠𝑤𝑒𝑟 15 𝑷 𝐿𝑒𝑡 𝑈 = {𝑥|15 ≤ 𝑥 ≤ 25, 𝑥 ∈ 𝑁} 17 𝑃 = {𝑠𝑒𝑡 𝑜𝑓 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 } 16 21 19 18 20 𝐷𝑟𝑎𝑤 𝑎𝑛𝑑 𝑙𝑎𝑏𝑒𝑙 𝑎 𝑉𝑒𝑛𝑛 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑡𝑜 23 22 24 U 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑃 25 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐼𝐼 𝐴𝑛𝑠𝑤𝑒𝑟 𝐷𝑟𝑎𝑤 𝑎𝑛𝑑 𝑙𝑎𝑏𝑒𝑙 𝑎 𝑉𝑒𝑛𝑛 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑡𝑜 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡𝑕𝑒 𝑠𝑒𝑡 𝑹 𝑅 = {𝑀𝑜𝑛𝑑𝑎𝑦, 𝑇𝑢𝑒𝑠𝑑𝑎𝑦, 𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦}. 𝑀𝑜𝑛𝑑𝑎𝑦 𝑇𝑢𝑒𝑠𝑑𝑎𝑦 𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦 U 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝐼𝐼𝐼 𝐺𝑖𝑣𝑒𝑛 𝑈 = 1, 2, 3, 4, 5, 6, 7, 8, 10 , 𝑋 = 1, 2, 6, 7 𝑎𝑛𝑑 𝑌 = 1, 3, 4, 5, 8 𝐹𝑖𝑛𝑑 𝑋 ∪ 𝑌 𝑎𝑛𝑑 𝑑𝑟𝑎𝑤 𝑎 𝑉𝑒𝑛𝑛 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑡𝑜 𝑖𝑙𝑙𝑢𝑠𝑡𝑟𝑎𝑡𝑒 𝑋 ∪ 𝑌. 𝐴𝑛𝑠𝑤𝑒𝑟 𝑋 ∪ 𝑌 = {1, 2, 3, 4, 5, 6, 7, 8} ← 1 𝑖𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑜𝑛𝑙𝑦 𝑜𝑛𝑐𝑒. 𝑁𝑜𝑡𝑒: 𝐼𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙, 𝑡𝑕𝑒𝑟𝑒 𝑎𝑟𝑒 𝑚𝑎𝑛𝑦 𝑤𝑎𝑦𝑠 𝑡𝑕𝑎𝑡 3 𝑠𝑒𝑡𝑠 𝑚𝑎𝑦 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡. 𝑆𝑜𝑚𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑟𝑒 𝑠𝑕𝑜𝑤𝑛 𝑏𝑒𝑙𝑜𝑤.
  • 12. 𝑾𝒐𝒓𝒌𝒊𝒏𝒈 𝒘𝒊𝒕𝒉 𝒕𝒘𝒐 𝒔𝒆𝒕𝒔 𝑬𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒊𝒏 𝒕𝒉𝒆 𝒖𝒏𝒊𝒐𝒏 𝒐𝒇 𝒕𝒘𝒐 𝒔𝒆𝒕𝒔 𝑛 𝐴 ∪ 𝐵 = 𝑛 𝐴 + 𝑛 𝐵 − 𝑛(𝐴 ∩ 𝐵) 𝑛 𝐴 ∪ 𝐵 = 𝑛 𝐴 − 𝐵 + 𝑛 𝐴 ∩ 𝐵 + 𝑛(𝐵 − 𝐴) 𝑛 𝐴 = 𝑛 𝐴− 𝐵 + 𝑛 𝐴∩ 𝐵 ⟶ 𝑛 𝐴 − 𝐵 = 𝑛 𝐴 − 𝑛(𝐴 ∩ 𝐵) 𝑛 𝐵 = 𝑛 𝐵− 𝐴 + 𝑛 𝐴∩ 𝐵 ⟶ 𝑛 𝐵 − 𝐴 = 𝑛 𝐵 − 𝑛(𝐴 ∩ 𝐵) U 𝑨 𝑩 𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑆𝑒𝑡𝑠 𝑛 𝐴 ∪ 𝐵 = 𝑛 𝐴 + 𝑛(𝐵)
  • 13. 𝑾𝒐𝒓𝒌𝒊𝒏𝒈 𝒘𝒊𝒕𝒉 𝒕𝒘𝒐 𝒔𝒆𝒕𝒔 𝑬𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒊𝒏 𝒕𝒉𝒆 𝒖𝒏𝒊𝒐𝒏 𝒐𝒇 𝒕𝒉𝒓𝒆𝒆 𝒔𝒆𝒕𝒔 𝑛 𝐴∪ 𝐵∪ 𝐶 = 𝑛 𝐴 + 𝑛 𝐵 + 𝑛 𝐶 − 𝑛 𝐴∩ 𝐵 − 𝑛 𝐴∩ 𝐶 − 𝑛 𝐵∩ 𝐶 + 𝑛 𝐴∩ 𝐵∩ 𝐶 𝑛 𝐴 ∪ 𝐵 ∪ 𝐶 = 𝑛 𝐴 + 𝑛 𝐵 ∪ 𝐶 − 𝑛(𝐴 ∩ (𝐵 ∪ 𝐶)) 𝑊𝑒 𝑕𝑎𝑣𝑒 ∶ 𝑛 𝐵 ∪ 𝐶 = 𝑛 𝐵 + 𝑛 𝐶 − 𝑛 𝐵 ∩ 𝐶 𝑃𝑢𝑡𝑡𝑖𝑛𝑔 𝑖𝑛 𝑡𝑕𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 "𝑛(𝐴 ∪ 𝐵 ∪ 𝐶)", 𝑛 𝐴 ∪ 𝐵 ∪ 𝐶 = 𝑛 𝐴 + 𝑛 𝐵 + 𝑛 𝐶 − 𝑛 𝐵 ∩ 𝐶 − 𝑛(𝐴 ∩ (𝐵 ∪ 𝐶)) 𝑊𝑒 𝑕𝑎𝑣𝑒 ∶ 𝑛 𝐴 ∩ 𝐵 ∪ 𝐶 = 𝑛( 𝐴 ∩ 𝐵 ∪ 𝐴 ∩ 𝐶 ) 𝑛 𝐴∩ 𝐵 ∪ 𝐴∩ 𝐶 = 𝑛 𝐴 ∪ 𝐵 + 𝑛 𝐴 ∪ 𝐶 − 𝑛((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) 𝑛 𝐴∩ 𝐵 ∩ 𝐴∩ 𝐶 = 𝑛(𝐴 ∩ 𝐵 ∩ 𝐶) 𝑆𝑜, 𝑛 𝐴 ∩ 𝐵 ∪ 𝐶 = 𝑛 𝐴∪ 𝐵 + 𝑛 𝐴∪ 𝐶 − 𝑛 𝐴∩ 𝐵∩ 𝐶 𝑛 𝐴 ∪ 𝐵 ∪ 𝐶 = 𝑛 𝐴 + 𝑛 𝐵 + 𝑛 𝐶 − 𝑛 𝐵 ∩ 𝐶 − (𝑛 𝐴 ∪ 𝐵 + 𝑛 𝐴 ∪ 𝐶 − 𝑛 𝐴∩ 𝐵∩ 𝐶 ) 𝑛 𝐴∪ 𝐵∪ 𝐶 = 𝑛 𝐴 + 𝑛 𝐵 + 𝑛 𝐶 − 𝑛 𝐴∩ 𝐵 − 𝑛 𝐴∩ 𝐶 − 𝑛 𝐵∩ 𝐶 + 𝑛 𝐴∩ 𝐵∩ 𝐶