SlideShare une entreprise Scribd logo
1  sur  56
Télécharger pour lire hors ligne
MICINN‐DST Joint Workshop on Renewable Energy




Energy from Biomass
              Work Supported BY MNRE

                       P. J. Paul
   Combustion, Gasication and Propulsion Laboratory,
       Department of Aerospace Engineering,
             Indian Institute of Science,
             Indian Institute of Science
                  Bangalore 560012
Overview
• Biomass and its potential for power 
  g
  generation
• Types of biomass
• T h l
  Technology for biomass utilization
              f bi           ili i
  – Biomass conversion technologies
  – Biomass gasification
  – Engines
Climate change
              Climate change
• Increase in green house gases emission possibly 
  leading to global warming and climate change
• Fossil fuels play a very important role in the 
  economies and lifestyles of people throughout 
  economies and lifestyles of people throughout
  the world
• C th l b l
  Can the global economy can be powered in ways 
                                b           di
  that might have less impact on the environment 
  because they discharge less carbon dioxide?
  b         h di h          l     b di id ?
How do biofuels reduce green house 
            gas emissions?
• Bi
  Biomass fuels as well as fossil fuels release carbon dioxide to the 
            f l         ll f il f l l              b di id t th
  atmosphere when burnt.
• Fossil fuels produce CO2 from carbon which was stored in the earth 
  over several millions of years
               l illi     f
• if the biomass is produced sustainably, the growing trees and other 
  plants remove carbon dioxide from the atmosphere during 
  photosynthesis and store the carbon in plant structures.
    h t      th i     d t    th      b i l t t t
• When the biomass is burned, the carbon released back to the 
  atmosphere will be recycled into the next generation of growing 
  plants.
    l
• When biomass is used as fuel instead of fossil fuel, the carbon 
  contained in the fossil fuels remain in ground instead of being 
  released to the atmosphere.
• Fast‐growing trees can recycle carbon rapidly and will displace 
  fossil‐fuel use with every cycle.
Can CO2 growth rate be arrested by 
        afforestation alone?
• Forests that are not harvested does not continue 
             h            h       dd              i
  to accumulate carbon indefinitely.
• In mature forests photosynthesis nearly balances 
  the carbon that is released to the atmosphere by 
  respiration, oxidation of dead organic matter, and 
  fires and pests.
• If fossil fuels are to be used continuously, then 
  ever expanding afforestation would be needed to 
  prevent increasing levels of carbon dioxide in the 
  atmosphere.
What is biomass?
               What is biomass?
• Biomass is any residue from plant or animal 
   i      i         id f       l         i l
  matter.
• Sources
  –   Agricultural residues
  –   Energy plantation
  –   Biofuels
  –   Wastes from Argo industries
  –   Domestic and urban wastes
• Many of these will generate CO2 and other green 
  house gases even if left unutilized.
        g
Types of biomass
            Types of biomass
Biomass Components
  –   Sugars
  –   Oils
  –   Starch
  –   Cellulose
  –   Hemi‐cellulose
  –   Lignin
Leafy biomass – Mostly cellulosic + some starch + 
    f b                l   ll l               h
  some lignin
Woody biomass – 50 % cellulose + 25 % hemi‐
Woody biomass 50 % cellulose + 25 % hemi
  cellulose + 25 % lignin
Seeds  Starch and/or oils
Seeds – Starch and/or oils
Sources of biomass
           Sources of biomass
• Kitchen wastes – fruits/vegetables/some starchy stuff 
• Market wastes  – similar  to the above ‐ Contain large 
  amount of  sugars/starch.
  amount of sugars/starch
• Sewage – contains starch/more complex biodegradable 
  matter 
• Urban solid wastes – contains some biodegradable 
     b       lid              i         bi d    d bl
  matter and a larger amount of matter that can be 
  converted only by thermo chemical means (lignaceous, 
  plastics, etc)
   l ti      t )
• Agricultural wastes – contains a large amount of 
  matter that can be converted by thermo‐chemical 
                                  y
  means
• Plantation residues – same as above
• Energy plantation/ wild growth
  Energy plantation/ wild growth
Energy plantation
                Energy plantation
• F t
  Fast‐growing trees can recycle carbon rapidly and will 
             i t                 l     b      idl    d ill
  displace fossil‐fuel use with every cycle.
• There plantations, either managed or not managed, 
         p           ,              g               g ,
  existing in India.
• Eucalyptus and casuarinas plantations for fuel wood and 
  paper and pulp industries are examples of managed 
  paper and pulp industries are examples of managed
  plantations.
• Prosopis Juliflora is being utilized as biomass fuel in several 
        p                   g
  parts of the country — an example of utilization of wild 
  growth.
• Bamboo under intensive cultivation can generate biomass
  Bamboo, under intensive cultivation, can generate biomass 
  at a rate of more then 100 ton/ha/yr (Growmore Biotech, 
  Hosur, Tamil Nadu)
Availability of Bioamass in India
  Availability of Bioamass in India
• Agricultural residues
     i l     l id
  – Total Area: 143 M ha
  – Crop production: 500 M T/ yr
  – Residue generation: > 500 MT/ yr
             g                   /y
  – Surplus residues: 150 MT /yr
  – Power potential: 20000 MW
    Power potential: 20000 MW
• Other residues
  –FForest residues
         t id
  – Waste land
National Biomass Resource Atlas of India
        National Biomass Resource Atlas of India


• A l t i tl
  An electronic atlas of India for excess biomass to enable 
                       f I di f           bi      t     bl
  obtain local power potential
• Partners:
   –   Ministry of Agriculture (MoA, GOI) – their data base
   –   RRSSC (Regional Remote Sensing Centers of ISRO)
       RRSSC (Regional Remote Sensing Centers of ISRO)
   –   Consultants and Apex Institutions appointed by MNRE, GOI
   –   Other institutions like Coir Board, Agricultural Universities, etc



  •IISc – National Focal Point for acquiring assessing and processing
          National Focal Point for acquiring, assessing and processing 
  the data from various sources into digital maps on a GIS format to 
  be used by industrialists, planners and others
Remote Sensing
                                         Data
               Taluka and
                  l k    d           (ISRO-RRSSC)
              District Level                          MOA, Other
                                   Project Partners   Gov. Sources
                 Surveys


The Scheme
of the Work
               Statistical            NFP,
               Database             CGPL, IISc
                                                      Census, Other
                                                        Boards &
                 Discussion,                            Ageences
                                                         g
                 Interactive
              Meetings with AIs,
                Consultants
                                       GIS B
                                           Based
                                               d
                                      Interactive
                                        Package
The Key-Aspects of the Work:
    Key-               Work:
1. The Statistical Data Analysis and Compilation.
                            y        Compilation.
                                        p
2. Graphical vectorisation for the base GIS layers.
                                            layers.
3. Integration of remote sensing d t i t GIS l
3 I t     ti    f     t      i data into     layers.
                                             layers.
4. Strategies for crop identification – use of NDVI
   (Vegetation Index) and AI (Artificial Intelligence)
   techniques.
   techniques.
5. Create a strategy for stand alone use for a variety of
   users
6. Provide options for dynamic queries with graphical or
   tabular outputs
The Main Features of the Package
                               g
• Statistical Data on crops, residues and estimate of surplus
  residues taking account of the socially essential usage are
  embedded as dynamic data.
                         data.
• About 40 crops all over the country, several of them having
               p                    y,                      g
  multiple residues are accounted for.
                                  for.
• In a quick summary, 540 million tons/year of residue
  leading to an excess of 120 to 140 million tons/year with
  power potential of 15,000±1000 MWe is estimated having a
                      15,000±
  scope of distributed generation in 1–6 MWe range.
                                             range.
• Users can obtain the data from the Atlas, the nature of
                                             ,
  crops, residues, power potential of each district over the
  country and also the estimate for the talukas.
                                        talukas.
Samples of the Views 
Main Achievements of the Project

• A method of seamless integration of the data from all 
  essential sources to generate a single electronic document to 
  essential sources to generate a single electronic document to
  be used as biomass resource atlas is developed and 
  demonstrated.
• Methods for Crop Identification from land‐use data and 
  remote sensing data for deriving coefficients from survey data 
  and obtaining assessment of biomass resource spatially are 
  and obtaining assessment of biomass resource spatially are
  developed and used. 
• The atlas available at http://lab.cgpl.iisc.ernet.in/Atlas/
• Also at MNRE web site
Biomass conversion technologies
 Biomass conversion technologies
• Efficient utilization of biomass for energy
• Conversion of biomass to suitable forms of
  Conversion of biomass to suitable forms of 
  fuel
• Di
  Direct Combustion to generate thermal energy
         C b i                       h     l
• Advanced energy conversion devices
                   gy
Technology Routes for Biomass Conversion
  Technology Routes for Biomass Conversion
Biomass characteristics are relevant for conversion
Biomass characteristics are relevant for conversion
• Biomethanation – Biogas
• Gasification Producer gas
   Gasification ‐ Producer gas
• Direct combustion
• Liquid Fuels – Non edible oil from trees
   Liquid Fuels – Non‐edible oil from trees 
    Alcohols from sugarcane and biomass
    Pyrolitic oil through fast pyrolisis
              oil through fast pyrolisis.
    Liquid fuels through FT synthesis from PG
• Reciprocating engines and gas turbines with
   Reciprocating engines and gas turbines with 
liquid fuels, biogas and producer gas
Biomethanation

•Sugars + starch     easily digested by bacteria (without or
with air)

• Vegetable and leafy wastes          digested by bacteria
even though not so completely or easily (time
requirement) again, without or with air.

•Woody wastes      difficult to be digested by bacteria
  • Lignin requires fungi for digestion
Biomethanation route is well known for cattle dung and both China
 a d d a a e a y a ge u be o p a ts o do est c a d
 and India have vary large number of plants for domestic and
 community applications, The design is simple - a feed system and
 a extraction system – hydraulic residence time of 30 to 40 days at
 ambient temperature. This functions well at tropical conditions with
 liquid temperatures ~ 25 to 35 C
                                C.
Biomethanation plants for liquid residues, such as sewage and agro-
  industrial effluents are well established
 At lower temperatures, performance goes down.
 High rate Biomethanation techniques (35 and 55 C operations) can
 improve the performance These have not been attempted with
              performance.
 bovine dung since the market cannot sustain the capital investment
 costs.
  In the above cases the solids content is about 10 %.
 Other processes with lower content of water is also available.
•    1 kg of solids with 4 to 9 times the water will produce
    about 50 to 120 g (30 to 70 liters) of gas.
•   The composition of the gas is: 50 to 55 % Methane, ~ 1000
    to 5000 ppm Hydrogen sulfide and the remaining amount
    ~ 47 % carbondioxide
•   For distillery effluents one uses anaerobic digestion
    technique to reduce the BOD/COD of the effluent. These
          q                          /
    plants use generally high rate biomethanation processes.
•   The composition of the gas is 60 to 65 % Methane, 2 to 5
    %H d
       Hydrogen sulfide and remaining ~ 33 % CO2.
                   lfid     d       i i
•    The gas has a calorific value of 18 to 22 MJ/m3.
•   A number of institutions are involved in research in this
    area (eg. Agharkar Research Institute, IISc
Liquid Fuels from biomass
       Liquid Fuels from biomass
• N
  Non-edible oil f
         dibl il from t trees
• Alcohols from sugarcane and other biomass containing
  largely cellulose/ sugar
• Pyrolitic oil through thermal degradation process
• A large number of trees store in their seeds, starch or
  oils. Some of these are non-edible. They can be used for
  power generation.
• Th
  These are R  Rape seed oil, J
                          d il Jatropha, J j b M h
                                     h Jojoba, Mohua, S l
                                                       Sal,
  Pongemia, Cashew, Neem, Anderouba, Soumarouba.
• Indian government in collaboration with public sector
           government,
  undertaking and private partners, is taking initiative in
  increasing the bio-oil production.
Biomass utilization for energy
      (Thermal root)
            B iom ass U tilisation
                for Energy

     Therm al                     Pow er        Am b. Pr.
                                                High Pr.

                Boiler Steam turbine       Gasifier


                              R/c engine        Gas turbine


                       Mecha nica l               Electricity
                      W a ter pum ping




   Stoves                 Large                   Gasifier
                         Com bustors



   Dom estic     Industrial                   Gas Burner
Thermochemical conversion Technologies
                  Solids
              (Combustion)
• Use combustion process – on a grate/ fluidized bed –
  to provide hot gases to be used to raise high pressure
  steam and then extract power from steam turbine –
  generator route (standard)
                   (standard).
• The calorific value of dry biomass is 16 MJ/kg.
• The air-to-biomass ratio at stoichiometry is about 6.
        air to biomass
  (note for reference, the calorific value of fossil fuels is
  about 42 MJ/kg and the stoichiometric air-to-fuel ratio
  is 15)
• Several projects have been implemented with mixed
  results
   – L k of mechanism f collection and di t ib ti
     Lack f    h i    for ll ti      d distribution of bi
                                                     f biomass
     residues
• Cost of energy critically depends on the biomass price.
Cogeneration potential in India
   Cogeneration potential in India
India has several industries which has potential 
        g            (           p )
  for cogeneration. (ref: Teri report)
     Industry              Cogeneration potential (MW)
     Sugar                 5000
     Paper                 600
     Cotton                500
     Non‐agro‐industries   1400


Sugar industry is one large potential for 
  cogeneration. 
Cogeneration in Sugar Industries in 
                India
• Sugar industry is one of the industries having 
     g p                 g
  large potential for cogeneration.
• The fuel for power generation is generated in‐
  house.
  house
• The potential for power generation in sugar 
  industries in India is about 5000 MW
• The achieved potential is about 1000 MW
  The achieved potential is about 1000 MW
Gasification

•   For power levels less than 2 MWe, the cost can be cut down by
    using gasification t h l i
       i        ifi ti   technologies and using th gas i reciprocating
                                         d    i     the      in   i     ti
    engines.
•   Gasification of solid biomass occurs because of thermo-chemical
    reactions at sub-stoichiometric conditions.
•   Gas composition: CO = 20 %, H2 = 18 %,CH4 = 2 %, CO2 = 12 %,
    H2O = 2 %, Rest =N2
•   This gasification process captures between 78 to 82 % of the energy
    in Biomass. Every kg of dry biomass generates 2.6 m3 of gas. The
    gas has a calorific value of 4.5 to 5 MJ/m3. The stoichiometric air-to-
    g
    fuel ratio is 1.3 [note: 1 kg biomass needs 6 kg of air for combustion.
    This is the same as the above calculation as follows: Biomass
    requires 1.8 kg air for gasification. 2.8 kg of gas requires 2.8 times
    1.4 kg air = 3.92 kg air – thus the total air required for combustion is
    1.8 + 3.92 = 5.72, a value close to 6.0]
Gasification – contd.
          Gasification contd


• When used in dual fuel mode in diesel engines,
  the dry biomass and diesel required are about
  0.9 to kg d
  0 9 t 1 k and 60 t 75 ml per kWh
                    to     l    kWh.
• When used in producer gas engines, the dry
  biomass required i about 0 8 t 1 3 k /kWh
  bi          i d is b t 0.8 to 1.3 kg/kWh.
The Gasification Process
      The Gasification Process
Biomass when heated looses volatiles leaving fixed 
Biomass when heated looses volatiles leaving fixed
carbon (about 20–25 %)
The volatile matter reacts with air providing energy for 
                                    p       g      gy
biomass heating and to raise the temperature of gases 
b        h          d          h                 f
to about 1200–1400°C.
The hot gases thus produced, which contains CO2 and 
The hot gases thus produced, which contains CO2 and
H2O react further with the fixed carbon to generate CO 
and H2.
These are endothermic reduction reactions and brings 
These are endothermic reduction reactions and brings
down the temperature to about 600–700°C.
The IISc open top reactor has a second stage of 
oxidation‐reduction process to minimize the tar in the 
  id ti      d ti            t    i i i th t i th
product gases and to improve the carbon conversion.
Work at IISc
                            Work at IISc
Novel reactor design
N l        t d i
  Air is drawn from the top and from the air nozzles –
   • Uniform distribution                                       Air (~ 50-70%)
                                                                             Biomass

                                                                             A
  Broader high temperature zone              Broader than in               Stratific ation (upward
                                             closed-top.
  Enough residence time                                                    propagation of flame front)
                                                                             B

                                                                              A
                                                                            Air
                                                                              B
                                                                            Grate

                                                        o                        Hot gases
                                                1200 - 1400 C                               o
                                                                                 (700 - 800 C)




  • Consistent high quality gas over the turn down ratio
  • Varying biomass quality – can accept a variety of agro residues

  The ratio of air flow rate from the nozzle to the top depends on the fuel
  properties – size, density; the char consumption rate, etc
Gas cleaning ‐
             Gas cleaning process
• Gas has to be cooled and cleaned for end use application
  Gas has to be cooled and cleaned for end use application
  T and P levels of 100 ppm and 1000 ppm respectively in the raw gas at 350 
  T and P levels of 100 ppm and 1000 ppm
  – 650°C
    650°

   – Cooling and cleaning is achieved by using a number of components
   – These are cyclones and cooling devices by spraying water in scrubbers
   – Further cleaning is achieved using chilled scrubbers
     Further cleaning is achieved using chilled scrubbers

 With this gas cleaning process it is possible to restrict the 
  contaminants to ppb levels
  contaminants to ppb levels
• Water is the only medium used for cooling and 
  cleaning process. Water treatment process 
  cleaning process Water treatment process
  enables reusing of water
Gasification Elements
          Gasification Elements

   1                  5
                  4       6

          2   3                           1
                                          0
                              8




                              7           9   11   12


Components
• The reactor
• N
  Necessary cooling and cleaning system
                 li    d l    i     t
    - to meet the end use requirements
Comparison of steam and gasification 
    root for electricity generation
                       Steam                     Gasification
Elements               Boiler, steam turbine
                       Boiler steam turbine      Gasifier, IC engine
                                                 Gasifier IC engine

Technology             Well established          Reasonably matured

Skills required for    Low to medium             Medium
operation
Installation cost      4 – 4.5 crores/ MWe       5 ‐ 6 crores/ MWe

Efficiency             Reasonably high at        High efficiency can be 
                       several 100 MW level,     achieved at low power 
                       but low at lower power 
                       but low at lower power    levels
                       levels
Research on gasification process
  Research on gasification process
• Single particle behaviour in various 
         p
  atmospheres
• Behaviour of packed beds
• G ifi modeling
  Gasifier    d li
• Gas cleaning processes
              gp
• Water treatment
Research on Gasification process –
                         Single particle
                                                     Reactants : (a) CO2 (b) H 2O (c) air (d) O2

                                                                                Kinetic and
                                                                         CO2    diffusion
                                                       t b ~ d 1.03
                1



                                                               0
                                                                                dependence
                        CO 2
tc/ρ(s m3/kg)




                                                                                Kinetic and
                          H2 O
                -1




                                                                         H 2O   diffusion
                10




                                                       t b ~ d1.2 -1.3
                                                              0
                                                                                dependence
                        air
                                                       t b ~ d 1 .9      air    diffusion limited
                -2




                                                               0
                10




                               O2
                                        T = 1273 K     tb ~ d      2
                                                                         O2     diffusion limited
                                                                   0
                10 -3




                         1                  10
                                                     Conversion time for char reaction with
                                 d 0 (mm)
                                                     1. CO2 is 3-4 times that of H 2O

                                                     2. H2O is comparable to air at dp > 8
                                                     mm
Basic Research packed bed
                    Basic Research – packed bed




With increase in mass flux the front velocity initially increases and then reduces
    ‐ This fixes the turn down ratio of the gasification system
    ‐ Superficial mass flux and ash properties are used as design 
      parameters
Power generation using producer gas

   Using R/C engines



                   Dual – Fuel Engine
                       80% gas & 20% diesel




                       Gas Engine
                            100% gas
Research on Engines
           Research on Engines
• Basic Research – Experimental & Modeling
• Development of gas carburetion system
         p           g                y
• Reliability tests - Long duration trails
• Collaborative work with Cummins India
  – Adaptation of Natural gas engines
  – Laboratory trails & Field monitoring
• Collaborative work with engine manufacturers
How is PG different from NG in
                engine?
• Th air-to-fuel ratio of PG is 1.3:1, whereas for
  The i t f l ti f             i 131 h            f
  NG it is 17:1 – this calls for a different carburetor
• PG has higher octane rating, therefore can be used
                          rating                     sed
  in engines with higher Compression ratio
• The flame speed of PG is higher ~ 20%; calls for
  a different ignition timing setting
• The energy density of PG is lower ~ 20%, this
                                          20%
  causes de-rating of the engine power
• The flame temperature is lower by about 300 K,    K
  implies different operating condition in the engine
  cylinder and turbocharger
   y                       g
Analysis of Producer Gas Engine
           y                      g
                  Reasons for
                 de-rating with
                       PG




Energy density
    gy       y   Sub-optimal –
                      p
                                          Reactant:Product
                                          R   t tP d t
  PG < NG        Turbocharger
                                               < 12%
 by 20 - 23%

                                                                   Properties of Gaseous Fuel
                                                                      p
                          Fuel    Fuel     Air/Fuel   Mixture,    Φ, Limit     SL (Limit),    SL      Peak      Product/
                           +      LCV,     @ (Φ =1)    MJ/kg                      cm/s       Φ =1,    Flame     Reactant
                          Air     MJ/kg                          Lean   Rich   Lean   Rich   cm/s    Temp, K   Mole Ratio

                          H2      121        34.4
                                             34 4      3.41
                                                       3 41      0.01
                                                                 0 01   7.17
                                                                        7 17    65     75    270      2400        0.67
                                                                                                                  0 67

                          CO      10.2       2.46      2.92      0.34   6.80    12     23     45      2400        0.67

                          CH4     50.2       17.2      2.76      0.54   1.69   2.5     14     35      2210        1.00

                          C3H8    46.5       15.6      2.80      0.52   2.26    -       -     44      2250        1.17

                          C4H10   45.5       15.4      2.77      0.59   2.63    -       -     44      2250        1.20

                          PG      5.00       1.35      2.12      0.47   1.60   10.3    12     50      1800        0.87
                                                                  a       b                    c       d
Typical Applications
  Application             Requirement
  Rural Electrification   •Short duration ~ 4 – 6 hour/day, low PLF
                          •High plant availability > 95%
                            i h l         il bili
                          •Load reasonably constant
  Industrial - Captive
                 p        •Continuous operation – 24 hr x 6/7 day a week
                                        p                       y
                          •High plant availability > 90%
                          •Large load fluctuations
  Independent Power       •Continuous operation – 24 hr x 7 day a week
  Producer – grid lined   •High plant availability > 90%
                          •Ability to take fluctuations in the grid (in India)
                                 y                             g (           )



Producer gas engine can meet each of the above applications
Emission
            1                     Load ~ 80-90%              2

           0.8                                               1.6
                         CO
NO, g/MJ




                                                                   CO, g/MJ
           0.6                                               1.2
    g




                                                                       g
           0.4                           NO
                                                             0.8


           0.2                                               0.4

            0                                                0
                 0   4        8     12        16   20   24
                              Time Cycle, Hour
Engine modeling
Engine modeling
Some Case Studies
            Some Case Studies
• Gasification technology is commercially deployed 
  in India with mixed performance in the field
• A few manufacturers in India provides gasifiers
  for industrial use
  for industrial use
• While it has been proved in the field on 
  commercial operations, optimal use still to be 
            i l      ti       ti l      till t b
  achieved
• Biomass collection and distribution still to be 
         p
  developed
Grid connected 100 kWe biomass 
 gasification power plant in Karnataka
• 08
  0.8 MWe of gasification power plant connected 
              f    ifi i             l              d
  to the grid in Karnataka as a part of Biomass 
  Energy for Rural India a program under 
  E       f R l I di                     d
  GoK/UNDP/MNRE
• The project is being implemented in five village 
  clusters with a total of 26 villages in the state of 
  Karnataka, India 
  K       k I di
• The project had six gasifier based power plants 
  composed of two 100 kWe and one 200 kWe in 
  different villages
Performance details
Performance details
Beach Mineral Corporation –Tamil 
         Nadu 1.5 MW
Performance




• In the last 12 months the system has operated for 
  14500 hours (~ 7250 each) of operation 
  generating about 4.0 million units of electricity 
                b         ll          f l
  using about 5500 tons of biomass.
Heat treatment –Tahafet, Hosur
  Heat treatment Tahafet Hosur
• Eight furnaces and temperatures vary from 
  600 C to 1000 C 
• Each furnace is fitted with two burners having 
  air to fuel ratio control and also a PID 
  air to fuel ratio control and also a PID
  controller to oversee the operations. The 
  industry operates on three shifts for about 6 
                          h      hf f       b
  days in a week
• Typical LDO consumption per day = 1500‐2000
Heat treatment .. contd
          Heat treatment contd
• 300 k /h
  300‐kg/hr capacity installed
                    it i t ll d
• All the eight furnaces are 
  connected to the gasifier
  connected to the gasifier
  using WESMAN make dual‐
  fuel burner. The temperatures 
  in the individual furnaces are 
  i th i di id l f
  maintained independently.
• With 8 furnaces connected
  With 8 furnaces connected 
  presently to gasifier saving is 
  about 2000 litres/day.
• Average fuel consumed per 
  day 5.2 ton of coconut shells, 
  woodchips
• Total operating hours ~35000
5 MW th for heat application
5 MW th for heat application
Performance using briquetted fuels
Performance using briquetted fuels
• Agro residue briquettes tested at 20 % ash
  – Same gasification system can handle 1 to 20 % ash
          g            y
  – Gas quality acceptable for engine
  – SFC consumption similar on ash free basis
    SFC consumption similar on ash free basis
• Fuel quality requirement
  – Thermal stability of the briquette important
  – Density and binding an important property
    Density and binding an important property
Future Directions and possible areas of 
             cooperation
• Fuel cells for increased efficiency
     l ll f i            d ffi i
   – High temperature fuel cells operating directly on 
     producer gas.
        d
• Liquid fuel generation (FT process) for generation 
  transportation fuels.
              i f l
   – Work in progress at IISc and IIT Guahati
• Hydrogen from biomass
   – Generation of hydrogen rich syngas and hydrogen 
     separation.
   – Work in progress at IISc

Contenu connexe

En vedette

WE1.L09 - GLOBAL BIOMASS ESTIMATES FROM DESDYNI
WE1.L09 - GLOBAL BIOMASS ESTIMATES FROM DESDYNIWE1.L09 - GLOBAL BIOMASS ESTIMATES FROM DESDYNI
WE1.L09 - GLOBAL BIOMASS ESTIMATES FROM DESDYNI
grssieee
 
Road2Ideas_Biomass_Gasifier_Team_Renegade (MICA-II)
Road2Ideas_Biomass_Gasifier_Team_Renegade (MICA-II)Road2Ideas_Biomass_Gasifier_Team_Renegade (MICA-II)
Road2Ideas_Biomass_Gasifier_Team_Renegade (MICA-II)
team_renegade
 
File (1)
File (1)File (1)
File (1)
ludrudy
 
(8,6) pojava na evropska unija
(8,6) pojava na evropska unija(8,6) pojava na evropska unija
(8,6) pojava na evropska unija
teodoramishevska
 

En vedette (17)

BioPotentials_Oslo2009
BioPotentials_Oslo2009BioPotentials_Oslo2009
BioPotentials_Oslo2009
 
Cyprus national report- Biomass Cyprus
Cyprus national report- Biomass CyprusCyprus national report- Biomass Cyprus
Cyprus national report- Biomass Cyprus
 
La suma de fracciones
La suma de fraccionesLa suma de fracciones
La suma de fracciones
 
2012 05 08 eu asia biomass conference malaysia 9 may 2012 dwa
2012 05 08 eu asia biomass conference malaysia 9 may 2012 dwa2012 05 08 eu asia biomass conference malaysia 9 may 2012 dwa
2012 05 08 eu asia biomass conference malaysia 9 may 2012 dwa
 
WE1.L09 - GLOBAL BIOMASS ESTIMATES FROM DESDYNI
WE1.L09 - GLOBAL BIOMASS ESTIMATES FROM DESDYNIWE1.L09 - GLOBAL BIOMASS ESTIMATES FROM DESDYNI
WE1.L09 - GLOBAL BIOMASS ESTIMATES FROM DESDYNI
 
Composition analysis of biomass for biofuels
Composition analysis of biomass for biofuels Composition analysis of biomass for biofuels
Composition analysis of biomass for biofuels
 
Road2Ideas_Biomass_Gasifier_Team_Renegade (MICA-II)
Road2Ideas_Biomass_Gasifier_Team_Renegade (MICA-II)Road2Ideas_Biomass_Gasifier_Team_Renegade (MICA-II)
Road2Ideas_Biomass_Gasifier_Team_Renegade (MICA-II)
 
Biotechnological Routes to Biomass Conversion
Biotechnological Routes to Biomass ConversionBiotechnological Routes to Biomass Conversion
Biotechnological Routes to Biomass Conversion
 
Biomass gassifier
Biomass gassifierBiomass gassifier
Biomass gassifier
 
Biomass Pyrolysis
Biomass PyrolysisBiomass Pyrolysis
Biomass Pyrolysis
 
Biomass Success Factors And Opportunities In Asia
Biomass Success Factors And Opportunities In AsiaBiomass Success Factors And Opportunities In Asia
Biomass Success Factors And Opportunities In Asia
 
Emerson Power plant applications
Emerson Power plant applicationsEmerson Power plant applications
Emerson Power plant applications
 
Biodiesel
BiodieselBiodiesel
Biodiesel
 
Bio mass Energy
Bio mass EnergyBio mass Energy
Bio mass Energy
 
File (1)
File (1)File (1)
File (1)
 
(8,6) pojava na evropska unija
(8,6) pojava na evropska unija(8,6) pojava na evropska unija
(8,6) pojava na evropska unija
 
Engaging Educators and Evangelists
Engaging Educators and EvangelistsEngaging Educators and Evangelists
Engaging Educators and Evangelists
 

Similaire à 15 energy from_biomass_p_paul

Gldi detailed haiti backgrond
Gldi   detailed haiti backgrondGldi   detailed haiti backgrond
Gldi detailed haiti backgrond
graciuslee
 
Session 2 1 Development of the Site Specific Fertilizer Recommendation (FR) a...
Session 2 1 Development of the Site Specific Fertilizer Recommendation (FR) a...Session 2 1 Development of the Site Specific Fertilizer Recommendation (FR) a...
Session 2 1 Development of the Site Specific Fertilizer Recommendation (FR) a...
African Cassava Agronomy Initiative
 

Similaire à 15 energy from_biomass_p_paul (20)

Options for Mitigation in Agriculture
Options for Mitigation in AgricultureOptions for Mitigation in Agriculture
Options for Mitigation in Agriculture
 
Preliminary project work .pptx
Preliminary project work .pptxPreliminary project work .pptx
Preliminary project work .pptx
 
GFW Carbon Data Office Hours_September 18 2023
GFW Carbon Data Office Hours_September 18 2023GFW Carbon Data Office Hours_September 18 2023
GFW Carbon Data Office Hours_September 18 2023
 
Gfw presentation for wb master class 27march15
Gfw presentation for wb master class 27march15Gfw presentation for wb master class 27march15
Gfw presentation for wb master class 27march15
 
IGAD_CODATA
IGAD_CODATAIGAD_CODATA
IGAD_CODATA
 
Item 8: Preparation of the potential of Global SOC sequestration - Ms. Rosa C...
Item 8: Preparation of the potential of Global SOC sequestration - Ms. Rosa C...Item 8: Preparation of the potential of Global SOC sequestration - Ms. Rosa C...
Item 8: Preparation of the potential of Global SOC sequestration - Ms. Rosa C...
 
Presentation to MCGM regarding Mumbai Development Plan 2014-34 - SWM
Presentation to MCGM regarding Mumbai Development Plan 2014-34 - SWMPresentation to MCGM regarding Mumbai Development Plan 2014-34 - SWM
Presentation to MCGM regarding Mumbai Development Plan 2014-34 - SWM
 
GSP: Soil Data and Information Pillar - Parviz Koohafkan
GSP: Soil Data and Information Pillar - Parviz KoohafkanGSP: Soil Data and Information Pillar - Parviz Koohafkan
GSP: Soil Data and Information Pillar - Parviz Koohafkan
 
Gldi detailed haiti backgrond
Gldi   detailed haiti backgrondGldi   detailed haiti backgrond
Gldi detailed haiti backgrond
 
Transparent monitoring in practice: Supporting post-Paris land use sector mit...
Transparent monitoring in practice: Supporting post-Paris land use sector mit...Transparent monitoring in practice: Supporting post-Paris land use sector mit...
Transparent monitoring in practice: Supporting post-Paris land use sector mit...
 
IRJET - Agrotech: Soil Analysis and Crop Prediction
IRJET - Agrotech: Soil Analysis and Crop PredictionIRJET - Agrotech: Soil Analysis and Crop Prediction
IRJET - Agrotech: Soil Analysis and Crop Prediction
 
Development of the Site-Specific Fertilizer Recommendation (FR) and Best Fert...
Development of the Site-Specific Fertilizer Recommendation (FR) and Best Fert...Development of the Site-Specific Fertilizer Recommendation (FR) and Best Fert...
Development of the Site-Specific Fertilizer Recommendation (FR) and Best Fert...
 
CIFOR REDD+ Datasets & Preliminary Result on Indonesia Sites: Research of Sub...
CIFOR REDD+ Datasets & Preliminary Result on Indonesia Sites: Research of Sub...CIFOR REDD+ Datasets & Preliminary Result on Indonesia Sites: Research of Sub...
CIFOR REDD+ Datasets & Preliminary Result on Indonesia Sites: Research of Sub...
 
FAO National Forest Assessment Project in Vietnam
FAO National Forest Assessment Project in VietnamFAO National Forest Assessment Project in Vietnam
FAO National Forest Assessment Project in Vietnam
 
Analysis of National Footprint Accounts using MapReduce, Hive, Pig and Sqoop
Analysis of National Footprint Accounts using MapReduce, Hive, Pig and SqoopAnalysis of National Footprint Accounts using MapReduce, Hive, Pig and Sqoop
Analysis of National Footprint Accounts using MapReduce, Hive, Pig and Sqoop
 
Souza ipam methods ws oct 2011
Souza ipam methods ws oct 2011Souza ipam methods ws oct 2011
Souza ipam methods ws oct 2011
 
Day 1_Session3_TRIPS_WASDS_ICRISAT
Day 1_Session3_TRIPS_WASDS_ICRISATDay 1_Session3_TRIPS_WASDS_ICRISAT
Day 1_Session3_TRIPS_WASDS_ICRISAT
 
diapo_1.pdf
diapo_1.pdfdiapo_1.pdf
diapo_1.pdf
 
Experience and lessons of the Rice Information Portal in Asia – bringing info...
Experience and lessons of the Rice Information Portal in Asia – bringing info...Experience and lessons of the Rice Information Portal in Asia – bringing info...
Experience and lessons of the Rice Information Portal in Asia – bringing info...
 
Session 2 1 Development of the Site Specific Fertilizer Recommendation (FR) a...
Session 2 1 Development of the Site Specific Fertilizer Recommendation (FR) a...Session 2 1 Development of the Site Specific Fertilizer Recommendation (FR) a...
Session 2 1 Development of the Site Specific Fertilizer Recommendation (FR) a...
 

Dernier

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Victor Rentea
 

Dernier (20)

[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 

15 energy from_biomass_p_paul

  • 1. MICINN‐DST Joint Workshop on Renewable Energy Energy from Biomass Work Supported BY MNRE P. J. Paul Combustion, Gasication and Propulsion Laboratory, Department of Aerospace Engineering, Indian Institute of Science, Indian Institute of Science Bangalore 560012
  • 2. Overview • Biomass and its potential for power  g generation • Types of biomass • T h l Technology for biomass utilization f bi ili i – Biomass conversion technologies – Biomass gasification – Engines
  • 3. Climate change Climate change • Increase in green house gases emission possibly  leading to global warming and climate change • Fossil fuels play a very important role in the  economies and lifestyles of people throughout  economies and lifestyles of people throughout the world • C th l b l Can the global economy can be powered in ways  b di that might have less impact on the environment  because they discharge less carbon dioxide? b h di h l b di id ?
  • 4. How do biofuels reduce green house  gas emissions? • Bi Biomass fuels as well as fossil fuels release carbon dioxide to the  f l ll f il f l l b di id t th atmosphere when burnt. • Fossil fuels produce CO2 from carbon which was stored in the earth  over several millions of years l illi f • if the biomass is produced sustainably, the growing trees and other  plants remove carbon dioxide from the atmosphere during  photosynthesis and store the carbon in plant structures. h t th i d t th b i l t t t • When the biomass is burned, the carbon released back to the  atmosphere will be recycled into the next generation of growing  plants. l • When biomass is used as fuel instead of fossil fuel, the carbon  contained in the fossil fuels remain in ground instead of being  released to the atmosphere. • Fast‐growing trees can recycle carbon rapidly and will displace  fossil‐fuel use with every cycle.
  • 5. Can CO2 growth rate be arrested by  afforestation alone? • Forests that are not harvested does not continue  h h dd i to accumulate carbon indefinitely. • In mature forests photosynthesis nearly balances  the carbon that is released to the atmosphere by  respiration, oxidation of dead organic matter, and  fires and pests. • If fossil fuels are to be used continuously, then  ever expanding afforestation would be needed to  prevent increasing levels of carbon dioxide in the  atmosphere.
  • 6. What is biomass? What is biomass? • Biomass is any residue from plant or animal  i i id f l i l matter. • Sources – Agricultural residues – Energy plantation – Biofuels – Wastes from Argo industries – Domestic and urban wastes • Many of these will generate CO2 and other green  house gases even if left unutilized. g
  • 7. Types of biomass Types of biomass Biomass Components – Sugars – Oils – Starch – Cellulose – Hemi‐cellulose – Lignin Leafy biomass – Mostly cellulosic + some starch +  f b l ll l h some lignin Woody biomass – 50 % cellulose + 25 % hemi‐ Woody biomass 50 % cellulose + 25 % hemi cellulose + 25 % lignin Seeds  Starch and/or oils Seeds – Starch and/or oils
  • 8. Sources of biomass Sources of biomass • Kitchen wastes – fruits/vegetables/some starchy stuff  • Market wastes  – similar  to the above ‐ Contain large  amount of  sugars/starch. amount of sugars/starch • Sewage – contains starch/more complex biodegradable  matter  • Urban solid wastes – contains some biodegradable  b lid i bi d d bl matter and a larger amount of matter that can be  converted only by thermo chemical means (lignaceous,  plastics, etc) l ti t ) • Agricultural wastes – contains a large amount of  matter that can be converted by thermo‐chemical  y means • Plantation residues – same as above • Energy plantation/ wild growth Energy plantation/ wild growth
  • 9. Energy plantation Energy plantation • F t Fast‐growing trees can recycle carbon rapidly and will  i t l b idl d ill displace fossil‐fuel use with every cycle. • There plantations, either managed or not managed,  p , g g , existing in India. • Eucalyptus and casuarinas plantations for fuel wood and  paper and pulp industries are examples of managed  paper and pulp industries are examples of managed plantations. • Prosopis Juliflora is being utilized as biomass fuel in several  p g parts of the country — an example of utilization of wild  growth. • Bamboo under intensive cultivation can generate biomass Bamboo, under intensive cultivation, can generate biomass  at a rate of more then 100 ton/ha/yr (Growmore Biotech,  Hosur, Tamil Nadu)
  • 10. Availability of Bioamass in India Availability of Bioamass in India • Agricultural residues i l l id – Total Area: 143 M ha – Crop production: 500 M T/ yr – Residue generation: > 500 MT/ yr g /y – Surplus residues: 150 MT /yr – Power potential: 20000 MW Power potential: 20000 MW • Other residues –FForest residues t id – Waste land
  • 11. National Biomass Resource Atlas of India National Biomass Resource Atlas of India • A l t i tl An electronic atlas of India for excess biomass to enable  f I di f bi t bl obtain local power potential • Partners: – Ministry of Agriculture (MoA, GOI) – their data base – RRSSC (Regional Remote Sensing Centers of ISRO) RRSSC (Regional Remote Sensing Centers of ISRO) – Consultants and Apex Institutions appointed by MNRE, GOI – Other institutions like Coir Board, Agricultural Universities, etc •IISc – National Focal Point for acquiring assessing and processing National Focal Point for acquiring, assessing and processing  the data from various sources into digital maps on a GIS format to  be used by industrialists, planners and others
  • 12. Remote Sensing Data Taluka and l k d (ISRO-RRSSC) District Level MOA, Other Project Partners Gov. Sources Surveys The Scheme of the Work Statistical NFP, Database CGPL, IISc Census, Other Boards & Discussion, Ageences g Interactive Meetings with AIs, Consultants GIS B Based d Interactive Package
  • 13. The Key-Aspects of the Work: Key- Work: 1. The Statistical Data Analysis and Compilation. y Compilation. p 2. Graphical vectorisation for the base GIS layers. layers. 3. Integration of remote sensing d t i t GIS l 3 I t ti f t i data into layers. layers. 4. Strategies for crop identification – use of NDVI (Vegetation Index) and AI (Artificial Intelligence) techniques. techniques. 5. Create a strategy for stand alone use for a variety of users 6. Provide options for dynamic queries with graphical or tabular outputs
  • 14. The Main Features of the Package g • Statistical Data on crops, residues and estimate of surplus residues taking account of the socially essential usage are embedded as dynamic data. data. • About 40 crops all over the country, several of them having p y, g multiple residues are accounted for. for. • In a quick summary, 540 million tons/year of residue leading to an excess of 120 to 140 million tons/year with power potential of 15,000±1000 MWe is estimated having a 15,000± scope of distributed generation in 1–6 MWe range. range. • Users can obtain the data from the Atlas, the nature of , crops, residues, power potential of each district over the country and also the estimate for the talukas. talukas.
  • 16.
  • 17. Main Achievements of the Project • A method of seamless integration of the data from all  essential sources to generate a single electronic document to  essential sources to generate a single electronic document to be used as biomass resource atlas is developed and  demonstrated. • Methods for Crop Identification from land‐use data and  remote sensing data for deriving coefficients from survey data  and obtaining assessment of biomass resource spatially are  and obtaining assessment of biomass resource spatially are developed and used.  • The atlas available at http://lab.cgpl.iisc.ernet.in/Atlas/ • Also at MNRE web site
  • 18. Biomass conversion technologies Biomass conversion technologies • Efficient utilization of biomass for energy • Conversion of biomass to suitable forms of Conversion of biomass to suitable forms of  fuel • Di Direct Combustion to generate thermal energy C b i h l • Advanced energy conversion devices gy
  • 19. Technology Routes for Biomass Conversion Technology Routes for Biomass Conversion Biomass characteristics are relevant for conversion Biomass characteristics are relevant for conversion • Biomethanation – Biogas • Gasification Producer gas Gasification ‐ Producer gas • Direct combustion • Liquid Fuels – Non edible oil from trees Liquid Fuels – Non‐edible oil from trees  Alcohols from sugarcane and biomass Pyrolitic oil through fast pyrolisis oil through fast pyrolisis. Liquid fuels through FT synthesis from PG • Reciprocating engines and gas turbines with Reciprocating engines and gas turbines with  liquid fuels, biogas and producer gas
  • 20. Biomethanation •Sugars + starch easily digested by bacteria (without or with air) • Vegetable and leafy wastes digested by bacteria even though not so completely or easily (time requirement) again, without or with air. •Woody wastes difficult to be digested by bacteria • Lignin requires fungi for digestion
  • 21. Biomethanation route is well known for cattle dung and both China a d d a a e a y a ge u be o p a ts o do est c a d and India have vary large number of plants for domestic and community applications, The design is simple - a feed system and a extraction system – hydraulic residence time of 30 to 40 days at ambient temperature. This functions well at tropical conditions with liquid temperatures ~ 25 to 35 C C. Biomethanation plants for liquid residues, such as sewage and agro- industrial effluents are well established At lower temperatures, performance goes down. High rate Biomethanation techniques (35 and 55 C operations) can improve the performance These have not been attempted with performance. bovine dung since the market cannot sustain the capital investment costs. In the above cases the solids content is about 10 %. Other processes with lower content of water is also available.
  • 22. 1 kg of solids with 4 to 9 times the water will produce about 50 to 120 g (30 to 70 liters) of gas. • The composition of the gas is: 50 to 55 % Methane, ~ 1000 to 5000 ppm Hydrogen sulfide and the remaining amount ~ 47 % carbondioxide • For distillery effluents one uses anaerobic digestion technique to reduce the BOD/COD of the effluent. These q / plants use generally high rate biomethanation processes. • The composition of the gas is 60 to 65 % Methane, 2 to 5 %H d Hydrogen sulfide and remaining ~ 33 % CO2. lfid d i i • The gas has a calorific value of 18 to 22 MJ/m3. • A number of institutions are involved in research in this area (eg. Agharkar Research Institute, IISc
  • 23. Liquid Fuels from biomass Liquid Fuels from biomass • N Non-edible oil f dibl il from t trees • Alcohols from sugarcane and other biomass containing largely cellulose/ sugar • Pyrolitic oil through thermal degradation process • A large number of trees store in their seeds, starch or oils. Some of these are non-edible. They can be used for power generation. • Th These are R Rape seed oil, J d il Jatropha, J j b M h h Jojoba, Mohua, S l Sal, Pongemia, Cashew, Neem, Anderouba, Soumarouba. • Indian government in collaboration with public sector government, undertaking and private partners, is taking initiative in increasing the bio-oil production.
  • 24. Biomass utilization for energy (Thermal root) B iom ass U tilisation for Energy Therm al Pow er Am b. Pr. High Pr. Boiler Steam turbine Gasifier R/c engine Gas turbine Mecha nica l Electricity W a ter pum ping Stoves Large Gasifier Com bustors Dom estic Industrial Gas Burner
  • 25. Thermochemical conversion Technologies Solids (Combustion) • Use combustion process – on a grate/ fluidized bed – to provide hot gases to be used to raise high pressure steam and then extract power from steam turbine – generator route (standard) (standard). • The calorific value of dry biomass is 16 MJ/kg. • The air-to-biomass ratio at stoichiometry is about 6. air to biomass (note for reference, the calorific value of fossil fuels is about 42 MJ/kg and the stoichiometric air-to-fuel ratio is 15) • Several projects have been implemented with mixed results – L k of mechanism f collection and di t ib ti Lack f h i for ll ti d distribution of bi f biomass residues • Cost of energy critically depends on the biomass price.
  • 26. Cogeneration potential in India Cogeneration potential in India India has several industries which has potential  g ( p ) for cogeneration. (ref: Teri report) Industry Cogeneration potential (MW) Sugar 5000 Paper 600 Cotton 500 Non‐agro‐industries 1400 Sugar industry is one large potential for  cogeneration. 
  • 27. Cogeneration in Sugar Industries in  India • Sugar industry is one of the industries having  g p g large potential for cogeneration. • The fuel for power generation is generated in‐ house. house • The potential for power generation in sugar  industries in India is about 5000 MW • The achieved potential is about 1000 MW The achieved potential is about 1000 MW
  • 28. Gasification • For power levels less than 2 MWe, the cost can be cut down by using gasification t h l i i ifi ti technologies and using th gas i reciprocating d i the in i ti engines. • Gasification of solid biomass occurs because of thermo-chemical reactions at sub-stoichiometric conditions. • Gas composition: CO = 20 %, H2 = 18 %,CH4 = 2 %, CO2 = 12 %, H2O = 2 %, Rest =N2 • This gasification process captures between 78 to 82 % of the energy in Biomass. Every kg of dry biomass generates 2.6 m3 of gas. The gas has a calorific value of 4.5 to 5 MJ/m3. The stoichiometric air-to- g fuel ratio is 1.3 [note: 1 kg biomass needs 6 kg of air for combustion. This is the same as the above calculation as follows: Biomass requires 1.8 kg air for gasification. 2.8 kg of gas requires 2.8 times 1.4 kg air = 3.92 kg air – thus the total air required for combustion is 1.8 + 3.92 = 5.72, a value close to 6.0]
  • 29. Gasification – contd. Gasification contd • When used in dual fuel mode in diesel engines, the dry biomass and diesel required are about 0.9 to kg d 0 9 t 1 k and 60 t 75 ml per kWh to l kWh. • When used in producer gas engines, the dry biomass required i about 0 8 t 1 3 k /kWh bi i d is b t 0.8 to 1.3 kg/kWh.
  • 30. The Gasification Process The Gasification Process Biomass when heated looses volatiles leaving fixed  Biomass when heated looses volatiles leaving fixed carbon (about 20–25 %) The volatile matter reacts with air providing energy for  p g gy biomass heating and to raise the temperature of gases  b h d h f to about 1200–1400°C. The hot gases thus produced, which contains CO2 and  The hot gases thus produced, which contains CO2 and H2O react further with the fixed carbon to generate CO  and H2. These are endothermic reduction reactions and brings  These are endothermic reduction reactions and brings down the temperature to about 600–700°C. The IISc open top reactor has a second stage of  oxidation‐reduction process to minimize the tar in the  id ti d ti t i i i th t i th product gases and to improve the carbon conversion.
  • 31. Work at IISc Work at IISc Novel reactor design N l t d i Air is drawn from the top and from the air nozzles – • Uniform distribution Air (~ 50-70%) Biomass A Broader high temperature zone Broader than in Stratific ation (upward closed-top. Enough residence time propagation of flame front) B A Air B Grate o Hot gases 1200 - 1400 C o (700 - 800 C) • Consistent high quality gas over the turn down ratio • Varying biomass quality – can accept a variety of agro residues The ratio of air flow rate from the nozzle to the top depends on the fuel properties – size, density; the char consumption rate, etc
  • 32. Gas cleaning ‐ Gas cleaning process • Gas has to be cooled and cleaned for end use application Gas has to be cooled and cleaned for end use application T and P levels of 100 ppm and 1000 ppm respectively in the raw gas at 350  T and P levels of 100 ppm and 1000 ppm – 650°C 650° – Cooling and cleaning is achieved by using a number of components – These are cyclones and cooling devices by spraying water in scrubbers – Further cleaning is achieved using chilled scrubbers Further cleaning is achieved using chilled scrubbers With this gas cleaning process it is possible to restrict the  contaminants to ppb levels contaminants to ppb levels • Water is the only medium used for cooling and  cleaning process. Water treatment process  cleaning process Water treatment process enables reusing of water
  • 33. Gasification Elements Gasification Elements 1 5 4 6 2 3 1 0 8 7 9 11 12 Components • The reactor • N Necessary cooling and cleaning system li d l i t - to meet the end use requirements
  • 34. Comparison of steam and gasification  root for electricity generation Steam Gasification Elements Boiler, steam turbine Boiler steam turbine Gasifier, IC engine Gasifier IC engine Technology Well established Reasonably matured Skills required for  Low to medium Medium operation Installation cost 4 – 4.5 crores/ MWe 5 ‐ 6 crores/ MWe Efficiency Reasonably high at  High efficiency can be  several 100 MW level,  achieved at low power  but low at lower power  but low at lower power levels levels
  • 35. Research on gasification process Research on gasification process • Single particle behaviour in various  p atmospheres • Behaviour of packed beds • G ifi modeling Gasifier d li • Gas cleaning processes gp • Water treatment
  • 36. Research on Gasification process – Single particle Reactants : (a) CO2 (b) H 2O (c) air (d) O2 Kinetic and CO2 diffusion t b ~ d 1.03 1 0 dependence CO 2 tc/ρ(s m3/kg) Kinetic and H2 O -1 H 2O diffusion 10 t b ~ d1.2 -1.3 0 dependence air t b ~ d 1 .9 air diffusion limited -2 0 10 O2 T = 1273 K tb ~ d 2 O2 diffusion limited 0 10 -3 1 10 Conversion time for char reaction with d 0 (mm) 1. CO2 is 3-4 times that of H 2O 2. H2O is comparable to air at dp > 8 mm
  • 37. Basic Research packed bed Basic Research – packed bed With increase in mass flux the front velocity initially increases and then reduces ‐ This fixes the turn down ratio of the gasification system ‐ Superficial mass flux and ash properties are used as design  parameters
  • 38. Power generation using producer gas Using R/C engines Dual – Fuel Engine 80% gas & 20% diesel Gas Engine 100% gas
  • 39. Research on Engines Research on Engines • Basic Research – Experimental & Modeling • Development of gas carburetion system p g y • Reliability tests - Long duration trails • Collaborative work with Cummins India – Adaptation of Natural gas engines – Laboratory trails & Field monitoring • Collaborative work with engine manufacturers
  • 40. How is PG different from NG in engine? • Th air-to-fuel ratio of PG is 1.3:1, whereas for The i t f l ti f i 131 h f NG it is 17:1 – this calls for a different carburetor • PG has higher octane rating, therefore can be used rating sed in engines with higher Compression ratio • The flame speed of PG is higher ~ 20%; calls for a different ignition timing setting • The energy density of PG is lower ~ 20%, this 20% causes de-rating of the engine power • The flame temperature is lower by about 300 K, K implies different operating condition in the engine cylinder and turbocharger y g
  • 41. Analysis of Producer Gas Engine y g Reasons for de-rating with PG Energy density gy y Sub-optimal – p Reactant:Product R t tP d t PG < NG Turbocharger < 12% by 20 - 23% Properties of Gaseous Fuel p Fuel Fuel Air/Fuel Mixture, Φ, Limit SL (Limit), SL Peak Product/ + LCV, @ (Φ =1) MJ/kg cm/s Φ =1, Flame Reactant Air MJ/kg Lean Rich Lean Rich cm/s Temp, K Mole Ratio H2 121 34.4 34 4 3.41 3 41 0.01 0 01 7.17 7 17 65 75 270 2400 0.67 0 67 CO 10.2 2.46 2.92 0.34 6.80 12 23 45 2400 0.67 CH4 50.2 17.2 2.76 0.54 1.69 2.5 14 35 2210 1.00 C3H8 46.5 15.6 2.80 0.52 2.26 - - 44 2250 1.17 C4H10 45.5 15.4 2.77 0.59 2.63 - - 44 2250 1.20 PG 5.00 1.35 2.12 0.47 1.60 10.3 12 50 1800 0.87 a b c d
  • 42. Typical Applications Application Requirement Rural Electrification •Short duration ~ 4 – 6 hour/day, low PLF •High plant availability > 95% i h l il bili •Load reasonably constant Industrial - Captive p •Continuous operation – 24 hr x 6/7 day a week p y •High plant availability > 90% •Large load fluctuations Independent Power •Continuous operation – 24 hr x 7 day a week Producer – grid lined •High plant availability > 90% •Ability to take fluctuations in the grid (in India) y g ( ) Producer gas engine can meet each of the above applications
  • 43. Emission 1 Load ~ 80-90% 2 0.8 1.6 CO NO, g/MJ CO, g/MJ 0.6 1.2 g g 0.4 NO 0.8 0.2 0.4 0 0 0 4 8 12 16 20 24 Time Cycle, Hour
  • 45.
  • 46.
  • 47. Some Case Studies Some Case Studies • Gasification technology is commercially deployed  in India with mixed performance in the field • A few manufacturers in India provides gasifiers for industrial use for industrial use • While it has been proved in the field on  commercial operations, optimal use still to be  i l ti ti l till t b achieved • Biomass collection and distribution still to be  p developed
  • 48. Grid connected 100 kWe biomass  gasification power plant in Karnataka • 08 0.8 MWe of gasification power plant connected  f ifi i l d to the grid in Karnataka as a part of Biomass  Energy for Rural India a program under  E f R l I di d GoK/UNDP/MNRE • The project is being implemented in five village  clusters with a total of 26 villages in the state of  Karnataka, India  K k I di • The project had six gasifier based power plants  composed of two 100 kWe and one 200 kWe in  different villages
  • 51. Performance • In the last 12 months the system has operated for  14500 hours (~ 7250 each) of operation  generating about 4.0 million units of electricity  b ll f l using about 5500 tons of biomass.
  • 52. Heat treatment –Tahafet, Hosur Heat treatment Tahafet Hosur • Eight furnaces and temperatures vary from  600 C to 1000 C  • Each furnace is fitted with two burners having  air to fuel ratio control and also a PID  air to fuel ratio control and also a PID controller to oversee the operations. The  industry operates on three shifts for about 6  h hf f b days in a week • Typical LDO consumption per day = 1500‐2000
  • 53. Heat treatment .. contd Heat treatment contd • 300 k /h 300‐kg/hr capacity installed it i t ll d • All the eight furnaces are  connected to the gasifier connected to the gasifier using WESMAN make dual‐ fuel burner. The temperatures  in the individual furnaces are  i th i di id l f maintained independently. • With 8 furnaces connected With 8 furnaces connected  presently to gasifier saving is  about 2000 litres/day. • Average fuel consumed per  day 5.2 ton of coconut shells,  woodchips • Total operating hours ~35000
  • 54. 5 MW th for heat application 5 MW th for heat application
  • 55. Performance using briquetted fuels Performance using briquetted fuels • Agro residue briquettes tested at 20 % ash – Same gasification system can handle 1 to 20 % ash g y – Gas quality acceptable for engine – SFC consumption similar on ash free basis SFC consumption similar on ash free basis • Fuel quality requirement – Thermal stability of the briquette important – Density and binding an important property Density and binding an important property
  • 56. Future Directions and possible areas of  cooperation • Fuel cells for increased efficiency l ll f i d ffi i – High temperature fuel cells operating directly on  producer gas. d • Liquid fuel generation (FT process) for generation  transportation fuels. i f l – Work in progress at IISc and IIT Guahati • Hydrogen from biomass – Generation of hydrogen rich syngas and hydrogen  separation. – Work in progress at IISc