SlideShare une entreprise Scribd logo
1  sur  11
INTERPENETRATION OF SOLIDS
WHEN ONE SOLID PENETRATES ANOTHER SOLID THEN THEIR SURFACES INTERSECT
AND
AT THE JUNCTION OF INTERSECTION A TYPICAL CURVE IS FORMED,
WHICH REMAINS COMMON TO BOTH SOLIDS.
THIS CURVE IS CALLED CURVE OF INTERSECTION
AND
IT IS A RESULT OF INTERPENETRATION OF SOLIDS.
PURPOSE OF DRAWING THESE CURVES:-
WHEN TWO OBJECTS ARE TO BE JOINED TOGATHER, MAXIMUM SURFACE CONTACT BETWEEN BOTH
BECOMES A BASIC REQUIREMENT FOR STRONGEST & LEAK-PROOF JOINT.
Curves of Intersections being common to both Intersecting solids,
show exact & maximum surface contact of both solids.
Study Following Illustrations Carefully.Study Following Illustrations Carefully.
Square Pipes. Circular Pipes. Square Pipes. Circular Pipes.
Minimum Surface Contact.
( Point Contact) (Maximum Surface Contact)
Lines of Intersections. Curves of Intersections.
A machine component having
two intersecting cylindrical
surfaces with the axis at
acute angle to each other.
Intersection of a Cylindrical
main and Branch Pipe.
Pump lid having shape of a
hexagonal Prism and
Hemi-sphere intersecting
each other.
Forged End of a
Connecting Rod.
A Feeding Hopper
In industry.
An Industrial Dust collector.
Intersection of two cylinders.
Two Cylindrical
surfaces.
SOME ACTUAL OBJECTS ARE SHOWN, SHOWING CURVES OF INTERSECTIONS.
BY WHITE ARROWS.
FOLLOWING CASES ARE SOLVED.
REFFER ILLUSTRATIONS
AND
NOTE THE COMMON
CONSTRUCTION
FOR ALL
1.CYLINDER TO CYLINDER2.
2.SQ.PRISM TO CYLINDER
3.CONE TO CYLINDER
4.TRIANGULAR PRISM TO CYLNDER
5.SQ.PRISM TO SQ.PRISM
6.SQ.PRISM TO SQ.PRISM
( SKEW POSITION)
7.SQARE PRISM TO CONE ( from top )
8.CYLINDER TO CONE
COMMON SOLUTION STEPS
One solid will be standing on HP
Other will penetrate horizontally.
Draw three views of standing solid.
Name views as per the illustrations.
Beginning with side view draw three
Views of penetrating solids also.
On it’s S.V. mark number of points
And name those(either letters or nos.)
The points which are on standard
generators or edges of standing solid,
( in S.V.) can be marked on respective
generators in Fv and Tv. And other
points from SV should be brought to
Tv first and then projecting upward
To Fv.
Dark and dotted line’s decision should
be taken by observing side view from
it’s right side as shown by arrow.
Accordingly those should be joined
by curvature or straight lines.
Note:
Incase cone is penetrating solid Side view is not necessary.
Similarly in case of penetration from top it is not
required.
X Y
1
2
3
4
a”
g” c”
e”
b”
f” d”
h”
4” 1”3” 2”1’ 2’4’ 3’
a’
b ’h’
c’g’
d’f’
a’
CASE 1.
CYLINDER STANDING
&
CYLINDER PENETRATING
Problem: A cylinder 50mm dia.and 70mm axis is completely penetrated
by another of 40 mm dia.and 70 mm axis horizontally Both axes intersect
& bisect each other. Draw projections showing curves of intersections.
X Y
a”
d” b”
c”
4” 1”3” 2”1’ 2’4’ 3’
1
2
3
4
a’
d’
b’
c’
a’
c’
d’
b’
CASE 2.
CYLINDER STANDING
&
SQ.PRISM PENETRATING
Problem: A cylinder 50mm dia.and 70mm axis is completely penetrated
by a square prism of 25 mm sides.and 70 mm axis, horizontally. Both axes
Intersect & bisect each other. All faces of prism are equally inclined to Hp.
Draw projections showing curves of intersections.
X Y
CASE 3.
CYLINDER STANDING
&
CONE PENETRATING
Problem: A cylinder of 80 mm diameter and 100 mm axis
is completely penetrated by a cone of 80 mm diameter and
120 mm long axis horizontally.Both axes intersect & bisect
each other. Draw projections showing curve of intersections.
1
2 8
3 7
4 6
5
7’
6’ 8’
1’ 5’
2’ 4’
3’
X Y
a”
d” b”
c”
a’
c’
a’
d’
b’
c’
d’
b’
1
2
3
4
1’ 2’4’ 3’ 4” 1”3” 2”
CASE 4.
SQ.PRISM STANDING
&
SQ.PRISM PENETRATING
Problem: A sq.prism 30 mm base sides.and 70mm axis is completely penetrated
by another square prism of 25 mm sides.and 70 mm axis, horizontally. Both axes
Intersects & bisect each other. All faces of prisms are equally inclined to Vp.
Draw projections showing curves of intersections.
X Y
1
2
3
4
4” 1”3” 2”1’ 2’4’ 3’
b
e
a
c
d
f
bb
c
d
e e
aa
f f
CASE 5. CYLINDER STANDING & TRIANGULAR PRISM PENETRATING
Problem: A cylinder 50mm dia.and 70mm axis is completely penetrated
by a triangular prism of 45 mm sides.and 70 mm axis, horizontally.
One flat face of prism is parallel to Vp and Contains axis of cylinder.
Draw projections showing curves of intersections.
X Y
a”
e”
b”
d”
1
2
3
4
1’ 2’4’ 3’ 4” 1”3” 2”
300
c”
f”
a’
f’
c’
d’
b’
e’
CASE 6.
SQ.PRISM STANDING
&
SQ.PRISM PENETRATING
(300
SKEW POSITION)
Problem: A sq.prism 30 mm base sides.and 70mm axis is
completely penetrated by another square prism of 25 mm side
s.and 70 mm axis, horizontally. Both axes Intersect & bisect
each other.Two faces of penetrating prism are 300
inclined to Hp.
Draw projections showing curves of intersections.
X Y
h
a
b
c
d
e
g
f
1
2
3
4
5
6
10
9
8
7
a’ b’h’ c’g’ d’f’ e’
5 mm OFF-SET
1’
2’
5’
4’
3’
6’
CASE 7.
CONE STANDING & SQ.PRISM PENETRATING
(BOTH AXES VERTICAL)
Problem: A cone70 mm base diameter and 90 mm axis
is completely penetrated by a square prism from top
with it’s axis // to cone’s axis and 5 mm away from it.
a vertical plane containing both axes is parallel to Vp.
Take all faces of sq.prism equally inclined to Vp.
Base Side of prism is 0 mm and axis is 100 mm long.
Draw projections showing curves of intersections.
CASE 8.
CONE STANDING
&
CYLINDER PENETRATING
h
a
b
c
d
e
g
f
a’ b’h’ c’g’ d’f’ e’ g” g”h” a”e” b”d” c”
1
2
3
4
5
6
7
8
X Y
o”o’
11
33
5 5
6
7,
8,22
4 4
Problem: A vertical cone, base diameter 75 mm and axis 100 mm long,
is completely penetrated by a cylinder of 45 mm diameter. The axis of the
cylinder is parallel to Hp and Vp and intersects axis of the cone at a point
28 mm above the base. Draw projections showing curves of intersection.

Contenu connexe

Tendances

Projection of planes 021
Projection of planes 021Projection of planes 021
Projection of planes 021
Akash Sood
 

Tendances (20)

Isometric View of an Object
 Isometric View of an Object Isometric View of an Object
Isometric View of an Object
 
Intersection of-solids-guidance
Intersection of-solids-guidanceIntersection of-solids-guidance
Intersection of-solids-guidance
 
Isometric projection
Isometric projectionIsometric projection
Isometric projection
 
5. development of surfaces
5. development of surfaces5. development of surfaces
5. development of surfaces
 
Intersection - ENGINEERING DRAWING
Intersection - ENGINEERING DRAWINGIntersection - ENGINEERING DRAWING
Intersection - ENGINEERING DRAWING
 
Projection of solids
Projection of solidsProjection of solids
Projection of solids
 
Development of surfaces of solids
Development of surfaces of solidsDevelopment of surfaces of solids
Development of surfaces of solids
 
Chapter 03 orthographic projection
Chapter 03 orthographic projectionChapter 03 orthographic projection
Chapter 03 orthographic projection
 
Projection of planes 021
Projection of planes 021Projection of planes 021
Projection of planes 021
 
Ortho.ppt
Ortho.pptOrtho.ppt
Ortho.ppt
 
Engineering drawing
Engineering  drawing Engineering  drawing
Engineering drawing
 
Chapter 6 by lelis
Chapter 6 by lelisChapter 6 by lelis
Chapter 6 by lelis
 
Section of solids
Section of solidsSection of solids
Section of solids
 
Basics of engineering drawing by Rishabh Natholia
Basics of engineering drawing by Rishabh NatholiaBasics of engineering drawing by Rishabh Natholia
Basics of engineering drawing by Rishabh Natholia
 
Isometric Projection
Isometric ProjectionIsometric Projection
Isometric Projection
 
Section of solids - ENGINEERING DRAWING/GRAPHICS
Section of solids - ENGINEERING DRAWING/GRAPHICSSection of solids - ENGINEERING DRAWING/GRAPHICS
Section of solids - ENGINEERING DRAWING/GRAPHICS
 
Introduction to engineering drawing
Introduction to engineering drawingIntroduction to engineering drawing
Introduction to engineering drawing
 
Development of surfaces
Development of surfacesDevelopment of surfaces
Development of surfaces
 
Introduction to engineering graphics
Introduction to engineering graphicsIntroduction to engineering graphics
Introduction to engineering graphics
 
6 projections of lines, points, planes
6 projections of lines, points, planes6 projections of lines, points, planes
6 projections of lines, points, planes
 

En vedette

Engineering Drawing
Engineering DrawingEngineering Drawing
Engineering Drawing
Lai Chun Tat
 
Isometric projections for engineering students
Isometric projections for engineering studentsIsometric projections for engineering students
Isometric projections for engineering students
Akshay Darji
 

En vedette (13)

Intersection
IntersectionIntersection
Intersection
 
Engerring Drawing by Deepak
Engerring Drawing by DeepakEngerring Drawing by Deepak
Engerring Drawing by Deepak
 
Engineering Drawing
Engineering DrawingEngineering Drawing
Engineering Drawing
 
Mel110 part3
Mel110 part3Mel110 part3
Mel110 part3
 
Sections of solids & development of surface
Sections of solids & development of surfaceSections of solids & development of surface
Sections of solids & development of surface
 
Intersections of rotatory solids
Intersections of rotatory solidsIntersections of rotatory solids
Intersections of rotatory solids
 
presentation on solid manipulation in computer aided design
presentation on solid manipulation in computer aided designpresentation on solid manipulation in computer aided design
presentation on solid manipulation in computer aided design
 
Surface Development
Surface Development Surface Development
Surface Development
 
Solid modelling cg
Solid modelling cgSolid modelling cg
Solid modelling cg
 
Auxiliary views
Auxiliary viewsAuxiliary views
Auxiliary views
 
Engineering Drawing
Engineering DrawingEngineering Drawing
Engineering Drawing
 
B.tech i eg u3 projection of planes, solid and development of surfaces
B.tech  i eg u3 projection of planes, solid and development of surfacesB.tech  i eg u3 projection of planes, solid and development of surfaces
B.tech i eg u3 projection of planes, solid and development of surfaces
 
Isometric projections for engineering students
Isometric projections for engineering studentsIsometric projections for engineering students
Isometric projections for engineering students
 

Similaire à Intersection

Engineering graphics intersection
Engineering graphics   intersectionEngineering graphics   intersection
Engineering graphics intersection
Pranav Kulshrestha
 
Edp intersection
Edp  intersectionEdp  intersection
Edp intersection
Akhil Kumar
 
Development of surfaces of solids
Development of surfaces of solidsDevelopment of surfaces of solids
Development of surfaces of solids
Sumit Chandak
 
surface development.ppt
surface development.pptsurface development.ppt
surface development.ppt
ssuser6cdd2d
 
09 a10491 engg drawing
09 a10491 engg drawing09 a10491 engg drawing
09 a10491 engg drawing
jntuworld
 
Section and development
Section and developmentSection and development
Section and development
gtuautonomous
 
Section and development
Section and developmentSection and development
Section and development
gtuautonomous
 
09 a10591 engg drawing
09 a10591 engg drawing09 a10591 engg drawing
09 a10591 engg drawing
jntuworld
 
09 a10591 engg drawing (1)
09 a10591 engg drawing (1)09 a10591 engg drawing (1)
09 a10591 engg drawing (1)
jntuworld
 

Similaire à Intersection (20)

UPDATED INTERSECTIONS.ppt
UPDATED INTERSECTIONS.pptUPDATED INTERSECTIONS.ppt
UPDATED INTERSECTIONS.ppt
 
Engineering graphics intersection
Engineering graphics   intersectionEngineering graphics   intersection
Engineering graphics intersection
 
Intersection
IntersectionIntersection
Intersection
 
Intersection1.pdf
Intersection1.pdfIntersection1.pdf
Intersection1.pdf
 
Edp intersection
Edp  intersectionEdp  intersection
Edp intersection
 
Projection of solids
Projection of solidsProjection of solids
Projection of solids
 
engineering-graphics.pdf
engineering-graphics.pdfengineering-graphics.pdf
engineering-graphics.pdf
 
Development of surfaces of solids
Development of surfaces of solidsDevelopment of surfaces of solids
Development of surfaces of solids
 
surface development.ppt
surface development.pptsurface development.ppt
surface development.ppt
 
Eg unit 3 1
Eg unit 3   1Eg unit 3   1
Eg unit 3 1
 
intersection solids.ppt
intersection solids.pptintersection solids.ppt
intersection solids.ppt
 
CHAPTER 4 SECTION OF SOLID.pptx
CHAPTER 4 SECTION OF SOLID.pptxCHAPTER 4 SECTION OF SOLID.pptx
CHAPTER 4 SECTION OF SOLID.pptx
 
09 a10491 engg drawing
09 a10491 engg drawing09 a10491 engg drawing
09 a10491 engg drawing
 
Section and development
Section and developmentSection and development
Section and development
 
Sectionanddevelopment(thedirectdata[1].com)
Sectionanddevelopment(thedirectdata[1].com)Sectionanddevelopment(thedirectdata[1].com)
Sectionanddevelopment(thedirectdata[1].com)
 
Section and development
Section and developmentSection and development
Section and development
 
Engineering Drawing section of solid
Engineering Drawing     section of solidEngineering Drawing     section of solid
Engineering Drawing section of solid
 
Solids
SolidsSolids
Solids
 
09 a10591 engg drawing
09 a10591 engg drawing09 a10591 engg drawing
09 a10591 engg drawing
 
09 a10591 engg drawing (1)
09 a10591 engg drawing (1)09 a10591 engg drawing (1)
09 a10591 engg drawing (1)
 

Dernier

SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
Peter Brusilovsky
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
中 央社
 
The basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxThe basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptx
heathfieldcps1
 

Dernier (20)

Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
 
philosophy and it's principles based on the life
philosophy and it's principles based on the lifephilosophy and it's principles based on the life
philosophy and it's principles based on the life
 
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading RoomSternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
 
The Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDFThe Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDF
 
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
 
How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17
 
Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...
 
Mattingly "AI and Prompt Design: LLMs with NER"
Mattingly "AI and Prompt Design: LLMs with NER"Mattingly "AI and Prompt Design: LLMs with NER"
Mattingly "AI and Prompt Design: LLMs with NER"
 
How to Manage Closest Location in Odoo 17 Inventory
How to Manage Closest Location in Odoo 17 InventoryHow to Manage Closest Location in Odoo 17 Inventory
How to Manage Closest Location in Odoo 17 Inventory
 
Including Mental Health Support in Project Delivery, 14 May.pdf
Including Mental Health Support in Project Delivery, 14 May.pdfIncluding Mental Health Support in Project Delivery, 14 May.pdf
Including Mental Health Support in Project Delivery, 14 May.pdf
 
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptxAnalyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
 
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
 
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUMDEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
 
Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45
Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45
Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45
 
Major project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategiesMajor project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategies
 
The basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxThe basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptx
 
diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....
 

Intersection

  • 1. INTERPENETRATION OF SOLIDS WHEN ONE SOLID PENETRATES ANOTHER SOLID THEN THEIR SURFACES INTERSECT AND AT THE JUNCTION OF INTERSECTION A TYPICAL CURVE IS FORMED, WHICH REMAINS COMMON TO BOTH SOLIDS. THIS CURVE IS CALLED CURVE OF INTERSECTION AND IT IS A RESULT OF INTERPENETRATION OF SOLIDS. PURPOSE OF DRAWING THESE CURVES:- WHEN TWO OBJECTS ARE TO BE JOINED TOGATHER, MAXIMUM SURFACE CONTACT BETWEEN BOTH BECOMES A BASIC REQUIREMENT FOR STRONGEST & LEAK-PROOF JOINT. Curves of Intersections being common to both Intersecting solids, show exact & maximum surface contact of both solids. Study Following Illustrations Carefully.Study Following Illustrations Carefully. Square Pipes. Circular Pipes. Square Pipes. Circular Pipes. Minimum Surface Contact. ( Point Contact) (Maximum Surface Contact) Lines of Intersections. Curves of Intersections.
  • 2. A machine component having two intersecting cylindrical surfaces with the axis at acute angle to each other. Intersection of a Cylindrical main and Branch Pipe. Pump lid having shape of a hexagonal Prism and Hemi-sphere intersecting each other. Forged End of a Connecting Rod. A Feeding Hopper In industry. An Industrial Dust collector. Intersection of two cylinders. Two Cylindrical surfaces. SOME ACTUAL OBJECTS ARE SHOWN, SHOWING CURVES OF INTERSECTIONS. BY WHITE ARROWS.
  • 3. FOLLOWING CASES ARE SOLVED. REFFER ILLUSTRATIONS AND NOTE THE COMMON CONSTRUCTION FOR ALL 1.CYLINDER TO CYLINDER2. 2.SQ.PRISM TO CYLINDER 3.CONE TO CYLINDER 4.TRIANGULAR PRISM TO CYLNDER 5.SQ.PRISM TO SQ.PRISM 6.SQ.PRISM TO SQ.PRISM ( SKEW POSITION) 7.SQARE PRISM TO CONE ( from top ) 8.CYLINDER TO CONE COMMON SOLUTION STEPS One solid will be standing on HP Other will penetrate horizontally. Draw three views of standing solid. Name views as per the illustrations. Beginning with side view draw three Views of penetrating solids also. On it’s S.V. mark number of points And name those(either letters or nos.) The points which are on standard generators or edges of standing solid, ( in S.V.) can be marked on respective generators in Fv and Tv. And other points from SV should be brought to Tv first and then projecting upward To Fv. Dark and dotted line’s decision should be taken by observing side view from it’s right side as shown by arrow. Accordingly those should be joined by curvature or straight lines. Note: Incase cone is penetrating solid Side view is not necessary. Similarly in case of penetration from top it is not required.
  • 4. X Y 1 2 3 4 a” g” c” e” b” f” d” h” 4” 1”3” 2”1’ 2’4’ 3’ a’ b ’h’ c’g’ d’f’ a’ CASE 1. CYLINDER STANDING & CYLINDER PENETRATING Problem: A cylinder 50mm dia.and 70mm axis is completely penetrated by another of 40 mm dia.and 70 mm axis horizontally Both axes intersect & bisect each other. Draw projections showing curves of intersections.
  • 5. X Y a” d” b” c” 4” 1”3” 2”1’ 2’4’ 3’ 1 2 3 4 a’ d’ b’ c’ a’ c’ d’ b’ CASE 2. CYLINDER STANDING & SQ.PRISM PENETRATING Problem: A cylinder 50mm dia.and 70mm axis is completely penetrated by a square prism of 25 mm sides.and 70 mm axis, horizontally. Both axes Intersect & bisect each other. All faces of prism are equally inclined to Hp. Draw projections showing curves of intersections.
  • 6. X Y CASE 3. CYLINDER STANDING & CONE PENETRATING Problem: A cylinder of 80 mm diameter and 100 mm axis is completely penetrated by a cone of 80 mm diameter and 120 mm long axis horizontally.Both axes intersect & bisect each other. Draw projections showing curve of intersections. 1 2 8 3 7 4 6 5 7’ 6’ 8’ 1’ 5’ 2’ 4’ 3’
  • 7. X Y a” d” b” c” a’ c’ a’ d’ b’ c’ d’ b’ 1 2 3 4 1’ 2’4’ 3’ 4” 1”3” 2” CASE 4. SQ.PRISM STANDING & SQ.PRISM PENETRATING Problem: A sq.prism 30 mm base sides.and 70mm axis is completely penetrated by another square prism of 25 mm sides.and 70 mm axis, horizontally. Both axes Intersects & bisect each other. All faces of prisms are equally inclined to Vp. Draw projections showing curves of intersections.
  • 8. X Y 1 2 3 4 4” 1”3” 2”1’ 2’4’ 3’ b e a c d f bb c d e e aa f f CASE 5. CYLINDER STANDING & TRIANGULAR PRISM PENETRATING Problem: A cylinder 50mm dia.and 70mm axis is completely penetrated by a triangular prism of 45 mm sides.and 70 mm axis, horizontally. One flat face of prism is parallel to Vp and Contains axis of cylinder. Draw projections showing curves of intersections.
  • 9. X Y a” e” b” d” 1 2 3 4 1’ 2’4’ 3’ 4” 1”3” 2” 300 c” f” a’ f’ c’ d’ b’ e’ CASE 6. SQ.PRISM STANDING & SQ.PRISM PENETRATING (300 SKEW POSITION) Problem: A sq.prism 30 mm base sides.and 70mm axis is completely penetrated by another square prism of 25 mm side s.and 70 mm axis, horizontally. Both axes Intersect & bisect each other.Two faces of penetrating prism are 300 inclined to Hp. Draw projections showing curves of intersections.
  • 10. X Y h a b c d e g f 1 2 3 4 5 6 10 9 8 7 a’ b’h’ c’g’ d’f’ e’ 5 mm OFF-SET 1’ 2’ 5’ 4’ 3’ 6’ CASE 7. CONE STANDING & SQ.PRISM PENETRATING (BOTH AXES VERTICAL) Problem: A cone70 mm base diameter and 90 mm axis is completely penetrated by a square prism from top with it’s axis // to cone’s axis and 5 mm away from it. a vertical plane containing both axes is parallel to Vp. Take all faces of sq.prism equally inclined to Vp. Base Side of prism is 0 mm and axis is 100 mm long. Draw projections showing curves of intersections.
  • 11. CASE 8. CONE STANDING & CYLINDER PENETRATING h a b c d e g f a’ b’h’ c’g’ d’f’ e’ g” g”h” a”e” b”d” c” 1 2 3 4 5 6 7 8 X Y o”o’ 11 33 5 5 6 7, 8,22 4 4 Problem: A vertical cone, base diameter 75 mm and axis 100 mm long, is completely penetrated by a cylinder of 45 mm diameter. The axis of the cylinder is parallel to Hp and Vp and intersects axis of the cone at a point 28 mm above the base. Draw projections showing curves of intersection.