SlideShare une entreprise Scribd logo
1  sur  53
Télécharger pour lire hors ligne
Accelerating materials design through natural
language processing
Anubhav Jain
Energy Technologies Area
Lawrence Berkeley National Laboratory
Berkeley, CA
KSU Virtual Seminar, Feb 23 2021
Slides (already) posted to hackingmaterials.lbl.gov
• Often, materials are known for several decades
before their functional applications are known
– MgB2 sitting on lab shelves for 50 years before its
identification as a superconductor in 2001
– LiFePO4 known since 1938, only identified as a Li-ion
battery cathode in 1997
• Even after discovery, optimization and
commercialization still take decades
• How is this typically done?
2
Typically, both new materials discovery and optimization
take decades
What constrains traditional approaches to materials design?
3
“[The Chevrel] discovery resulted from a lot of
unsuccessful experiments of Mg ions insertion
into well-known hosts for Li+ ions insertion, as
well as from the thorough literature analysis
concerning the possibility of divalent ions
intercalation into inorganic materials.”
-Aurbach group, on discovery of Chevrel cathode
for multivalent (e.g., Mg2+) batteries
Levi, Levi, Chasid, Aurbach
J. Electroceramics (2009)
4
Researchers are starting to fundamentally re-think how we
invent the materials that make up our devices
Next-
generation
materials
design
Computer-
aided
materials
design
Natural
language
processing
“Self-driving
laboratories”
Outline
5
① Natural language processing - where are
we right now?
② What’s next for the NLP work?
6
Can ML help us work through our backlog of information we
need to assimilate from text sources?
papers to read “someday”
NLP algorithms
• It is difficult to look up all information any given material
due to the many different ways chemical compositions
are written
– a search for “TiNiSn” will give different results than “NiTiSn”
– a search for “GaSb” won’t match text that reads “Ga0.5Sb0.5”
– a search for “SnBi4Te7” won’t match text that reads “we studied
SnBi4X7 (X=S, Se, Te)”.
– a search for “AgCrSe2”, if it doesn’t have any hits, won’t suggest
“CuCrSe2” as a similar result
• It is difficult to ask questions or compile summaries, e.g.:
– What is the band gap of “Si”?
– What are all the known dopants into GaAs?
– What are all materials studied as thermoelectrics?
7
Traditional search doesn’t answer the questions we want
What is matscholar?
• Matscholar is an attempt to organize the world’s
information on materials science, connecting
together topics of study, synthesis and
characterization methods, and specific materials
compositions
• It is also an effort to use state-of-the-art natural
language processing to make collective use of
the information in millions of articles
One of our main projects concerns named entity
recognition, or automatically labeling text
9
This allows for search
and is crucial to
downstream tasks
1
0
> 4 million
Papers Collected
31 million
Properties
19 million
Materials Mentions
8.8 million
Characterization Methods
7.5 million
Applications
5 million
Synthesis Methods
•Data Collection: Over 4 million papers
collected from more than 2100 journals.
Note – entities are currently extracted only from the abstracts of the papers
11
Now we can search!
Live on www.matscholar.com
12
Another example …
• The publication data set is not complete
• Currently analyzing abstracts only
• The algorithms are not perfect
• The search interface could be improved further
• We would like to hear from you if you try this!
13
Limitations (it is not perfect)
14
How does this work? High-level view
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
Extracted 4 million abstracts
of relevant scientific articles
using various APIs from
journal publishers
Some are more difficult than
others to obtain.
Data cleaning is often
needed (e.g., stray HTML
tags, copyright statements)
Abstract collection
continues …
15
Step 1 – data collection
16
Ok so how does this work? High-level view
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
• First split the text into sentences
– Seems simple, but remember edge cases like ”et al.” or
“etc.” does not necessarily signify end of sentence despite
the period
• Then split the sentences into words
– Tricky things are detecting and normalizing chemical
formulas, selective lowercasing (“Battery” vs “battery” or
“BaS” vs “BAs”), homogenizing numbers, etc.
• Done largely with the ChemDataExtractor* with
some custom improvements
– We may move to a fully custom tokenizer soon
17
Step 2 - tokenization
*http://chemdataextractor.org
18
Ok so how does this work? High-level view
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
• Part A is marking abstracts
as relevant / non-relevant
to inorganic materials
science
• Part B is tediously labeling
~600 abstracts
– Largely done by one person
– Spot-check of 25 abstracts
by a second person gave
87.4% agreement
19
Step 3 – hand label abstracts
20
Ok so how does this work? High-level view
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
• We use the word2vec
algorithm (Google) to turn
each unique word in our
corpus into a 200-
dimensional vector
• These vectors encode the
meaning of each word
meaning based on trying to
predict context words
around the target
21
Step 4a: the word2vec algorithm is used to “featurize” words
Barazza, L. How does Word2Vec’s Skip-Gram work? Becominghuman.ai. 2017
• We use the word2vec
algorithm (Google) to turn
each unique word in our
corpus into a 200-
dimensional vector
• These vectors encode the
meaning of each word
meaning based on trying to
predict context words
around the target
22
Step 4a: the word2vec algorithm is used to “featurize” words
Barazza, L. How does Word2Vec’s Skip-Gram work? Becominghuman.ai. 2017
“You shall know a word by
the company it keeps”
- John Rupert Firth (1957)
• The classic example is:
– “king” - “man” + “woman” = ? → “queen”
23
Word embeddings trained on ”normal” text learns
relationships between words
24
Ok so how does this work? High-level view
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
• If you read this sentence:
“The band gap of ___ is 4.5 eV”
It is clear that the blank should be filled in with a
material word (not a synthesis method, characterization
method, etc.)
How do we get a neural network to take into account
context (as well as properties of the word itself)?
25
Step 4b: How do we train a model to recognize context?
26
Step 4b.An LSTM neural net classifies words by reading
word sequences
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
27
Ok so how does this work? High-level view
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
28
Step 5. Sit back and let the model label things for you!
Named Entity Recognition
X
• Custom machine learning models to
extract the most valuable materials-related
information.
• Utilizes a long short-term memory (LSTM)
network trained on ~1000 hand-annotated
abstracts.
• f1 scores of ~0.9. f1 score for inorganic
materials extraction is >0.9.
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
29
Could these techniques also be used to predict which
materials we might want to screen for an application?
papers to read “someday”
NLP algorithms
• The classic example is:
– “king” - “man” + “woman” = ? → “queen”
30
Remember that word embeddings seem to learn
relationships in text
31
For scientific text, it learns scientific concepts as well
crystal structures of the elements
Tshitoyan, V. et al. Unsupervised word embeddings capture latent
knowledge from materials science literature. Nature 571, 95–98 (2019).
32
There seems to be materials knowledge encoded in the
word vectors
Tshitoyan, V. et al. Unsupervised word embeddings capture latent
knowledge from materials science literature. Nature 571, 95–98 (2019).
33
Note that more data is not always better!
We want relevance
Tshitoyan, V. et al. Unsupervised word embeddings capture latent
knowledge from materials science literature. Nature 571, 95–98 (2019).
34
Word embeddings also have the periodic table encoded in it
with no prior knowledge
“word embedding”
periodic table
Tshitoyan, V. et al. Unsupervised word embeddings capture latent
knowledge from materials science literature. Nature 571, 95–98 (2019).
• Dot product of a composition word with
the word “thermoelectric” essentially
predicts how likely that word is to appear
in an abstract with the word
thermoelectric
• Compositions with high dot products are
typically known thermoelectrics
• Sometimes, compositions have a high dot
product with “thermoelectric” but have
never been studied as a thermoelectric
• These compositions usually have high
computed power factors!
(DFT+BoltzTraP)
35
Making predictions: dot products measure likelihood for
words to co-occur
Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from
materials science literature. Nature 571, 95–98 (2019).
36
Try ”going back in time” and ranking materials, and follow
what happens in later years
Tshitoyan, V. et al.
Unsupervised word
embeddings capture latent
knowledge from materials
science literature. Nature
571, 95–98 (2019).
– For every year since
2001, see which
compounds we would
have predicted using
only literature data until
that point in time
– Make predictions of
what materials are the
most promising
thermoelectrics for
data until that year
– See if those materials
were actually studied as
thermoelectrics in
subsequent years 37
A more comprehensive “back in time” test
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
38
We also published a list of potential new thermoelectrics
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
It is one thing to
retroactively test, but
perhaps another to see
how things go after
publication
39
Two were studied between submission and publication of
manuscript
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
40
More were studied since then (mainly computationally)
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
41
More were studied since then (mainly computationally)
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
42
More were studied since then (mainly computationally)
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
https://arxiv.org/abs/2010.08461
43
Our collaborators also synthesized a prediction, finding a
moderate zT of 0.14
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
44
How is this working?
“Context
words” link
together
information
from different
sources
Outline
45
① Natural language processing - where are
we right now?
② What’s next for the NLP work?
46
1.Automatic creation of structured materials databases from
the literature, e.g. doping database
Sentence Base
Material
Dopant Doping
Concentr.
…the influence of yttrium doping (0-10mol%) on BSCF… BSCF Yttrium 0-10 mol%
undoped, anion-doped(Sb,Bi) and cation-doped(Ca,Zn) solid sln.
of Mg10Si2Sn3…
Mg10Si2Sn3 Sb, Bi, Ca, Zn
The zT of As2Cd3 with electron doping is found to be ~ with
n=10^20cm-3
As2Cd3 electron n=10^20cm-3
This leads to zT=0.5 obtained at 500K (p=10^20cm-3) in p-type
As2Cd3T
As2Cd3 p-type p=10^20cm-3
The undoped and 0.25wt% La doped CdO films show 111…
…however, …. for doping concentrations greater than 0.50wt%.
CdO La 0.25wt%,
>0.5%
Will allow you to answer questions like “what
are all the materials known to be doped with
Eu3+” ?
47
2. Learning representations of materials
● Mat2vec suggested that embeddings contain chemical information
● Can we make embeddings for arbitrary materials as material descriptors?
● i.e., word embeddings for materials not in the literature
● Descriptors could be used for direct classification for application (link
prediction), or quantitative property prediction (regression features)
48
AnyMat2Vec expands word embeddings beyond materials
seen explicitly by the algorithm
49
Initial results – predicting experimental band gap from
composition (~3000 data points)
50
3. Creating a comprehensive software library for materials
science NLP research (multiple LBNL research groups)
https://github.com/lbnlp
51
4. D2S2 - data driven synthesis science
(in progress, larger LBNL collaboration)
Can we combine natural language processing with theory
and experiments to control synthesis?
Title auto-generated from abstract Published Title
Dynamics of molecular hydrogen
confined in narrow nanopores
Restricted dynamics of molecular
hydrogen confined in activated carbon
nanopores
Microfluidic Generation of
Polydisperse Solid Foams
Generation of Solid Foams with
Controlled Polydispersity Using
Microfluidics
Minimum variance unbiased estimator
of product performance
Assessing the lifetime performance
index of gamma lifetime products in
the manufacturing industry
Angle resolved ultraviolet
photoemission study of fluorescein
films on Ag 110
The growth of thin fluorescein films on
Ag 110”
52
... and also some fun things, like automatic title generation
Also have results in suggesting journals to submit a new article to, etc.
53
The Matscholar team
Kristin Persson
Anubhav Jain
Gerbrand Ceder
John
Dagdelen
Leigh
Weston
Vahe
Tshitoyan
Amalie
Trewartha
Alex
Dunn
Viktoriia
Baibakova
Funding from
(now at Google) (now at Medium)
Slides (already) posted to
hackingmaterials.lbl.gov

Contenu connexe

Tendances

Computational screening of tens of thousands of compounds as potential thermo...
Computational screening of tens of thousands of compounds as potential thermo...Computational screening of tens of thousands of compounds as potential thermo...
Computational screening of tens of thousands of compounds as potential thermo...
Anubhav Jain
 

Tendances (20)

Applications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials DesignApplications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials Design
 
Open-source tools for generating and analyzing large materials data sets
Open-source tools for generating and analyzing large materials data setsOpen-source tools for generating and analyzing large materials data sets
Open-source tools for generating and analyzing large materials data sets
 
Assessing Factors Underpinning PV Degradation through Data Analysis
Assessing Factors Underpinning PV Degradation through Data AnalysisAssessing Factors Underpinning PV Degradation through Data Analysis
Assessing Factors Underpinning PV Degradation through Data Analysis
 
Materials discovery through theory, computation, and machine learning
Materials discovery through theory, computation, and machine learningMaterials discovery through theory, computation, and machine learning
Materials discovery through theory, computation, and machine learning
 
Machine learning for materials design: opportunities, challenges, and methods
Machine learning for materials design: opportunities, challenges, and methodsMachine learning for materials design: opportunities, challenges, and methods
Machine learning for materials design: opportunities, challenges, and methods
 
Combined Theory and Data-Driven Approaches to Thermoelectrics Materials Disco...
Combined Theory and Data-Driven Approaches to Thermoelectrics Materials Disco...Combined Theory and Data-Driven Approaches to Thermoelectrics Materials Disco...
Combined Theory and Data-Driven Approaches to Thermoelectrics Materials Disco...
 
Overview of accelerated materials design efforts in the Hacking Materials res...
Overview of accelerated materials design efforts in the Hacking Materials res...Overview of accelerated materials design efforts in the Hacking Materials res...
Overview of accelerated materials design efforts in the Hacking Materials res...
 
Accelerated Materials Discovery Using Theory, Optimization, and Natural Langu...
Accelerated Materials Discovery Using Theory, Optimization, and Natural Langu...Accelerated Materials Discovery Using Theory, Optimization, and Natural Langu...
Accelerated Materials Discovery Using Theory, Optimization, and Natural Langu...
 
Computational Materials Design and Data Dissemination through the Materials P...
Computational Materials Design and Data Dissemination through the Materials P...Computational Materials Design and Data Dissemination through the Materials P...
Computational Materials Design and Data Dissemination through the Materials P...
 
TMS workshop on machine learning in materials science: Intro to deep learning...
TMS workshop on machine learning in materials science: Intro to deep learning...TMS workshop on machine learning in materials science: Intro to deep learning...
TMS workshop on machine learning in materials science: Intro to deep learning...
 
Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...
 
High-throughput computation and machine learning methods applied to materials...
High-throughput computation and machine learning methods applied to materials...High-throughput computation and machine learning methods applied to materials...
High-throughput computation and machine learning methods applied to materials...
 
Machine Learning in computational materials science: an overview, a primer, a...
Machine Learning in computational materials science: an overview, a primer, a...Machine Learning in computational materials science: an overview, a primer, a...
Machine Learning in computational materials science: an overview, a primer, a...
 
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
 
Data dissemination and materials informatics at LBNL
Data dissemination and materials informatics at LBNLData dissemination and materials informatics at LBNL
Data dissemination and materials informatics at LBNL
 
DuraMat Data Management and Analytics
DuraMat Data Management and AnalyticsDuraMat Data Management and Analytics
DuraMat Data Management and Analytics
 
The Status of ML Algorithms for Structure-property Relationships Using Matb...
The Status of ML Algorithms for Structure-property Relationships Using Matb...The Status of ML Algorithms for Structure-property Relationships Using Matb...
The Status of ML Algorithms for Structure-property Relationships Using Matb...
 
Computational screening of tens of thousands of compounds as potential thermo...
Computational screening of tens of thousands of compounds as potential thermo...Computational screening of tens of thousands of compounds as potential thermo...
Computational screening of tens of thousands of compounds as potential thermo...
 
Conducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials ProjectConducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials Project
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...
 

Similaire à Accelerating materials design through natural language processing

Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
aimsnist
 
The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
The Computer Science Ontology:  A Large-Scale Taxonomy of Research AreasThe Computer Science Ontology:  A Large-Scale Taxonomy of Research Areas
The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
Angelo Salatino
 
The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
The Computer Science Ontology: A Large-Scale Taxonomy of Research AreasThe Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
Angelo Salatino
 
ECS 111 Homework ProblemsJanuary 20181) Choose a region (.docx
ECS 111  Homework ProblemsJanuary 20181) Choose a region (.docxECS 111  Homework ProblemsJanuary 20181) Choose a region (.docx
ECS 111 Homework ProblemsJanuary 20181) Choose a region (.docx
SALU18
 
Knowledge codification and abstraction
Knowledge codification and abstractionKnowledge codification and abstraction
Knowledge codification and abstraction
Eva Ortoll
 
Mining and Supporting Community Structures in Sensor Network Research
Mining and Supporting Community Structures in Sensor Network ResearchMining and Supporting Community Structures in Sensor Network Research
Mining and Supporting Community Structures in Sensor Network Research
Marko Rodriguez
 

Similaire à Accelerating materials design through natural language processing (20)

Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
 
Knowledge graph construction for research & medicine
Knowledge graph construction for research & medicineKnowledge graph construction for research & medicine
Knowledge graph construction for research & medicine
 
Connected Data for Machine Learning | Paul Groth
Connected Data for Machine Learning | Paul GrothConnected Data for Machine Learning | Paul Groth
Connected Data for Machine Learning | Paul Groth
 
The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
The Computer Science Ontology:  A Large-Scale Taxonomy of Research AreasThe Computer Science Ontology:  A Large-Scale Taxonomy of Research Areas
The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
 
The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
The Computer Science Ontology: A Large-Scale Taxonomy of Research AreasThe Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
 
anifield.pptx
anifield.pptxanifield.pptx
anifield.pptx
 
Topic detecton by clustering and text mining
Topic detecton by clustering and text miningTopic detecton by clustering and text mining
Topic detecton by clustering and text mining
 
Topic Extraction on Domain Ontology
Topic Extraction on Domain OntologyTopic Extraction on Domain Ontology
Topic Extraction on Domain Ontology
 
Artificial_Intelligence__A_Modern_Approach_Nho Vĩnh Share.pdf
Artificial_Intelligence__A_Modern_Approach_Nho Vĩnh Share.pdfArtificial_Intelligence__A_Modern_Approach_Nho Vĩnh Share.pdf
Artificial_Intelligence__A_Modern_Approach_Nho Vĩnh Share.pdf
 
Applying machine learning techniques to big data in the scholarly domain
Applying machine learning techniques to big data in the scholarly domainApplying machine learning techniques to big data in the scholarly domain
Applying machine learning techniques to big data in the scholarly domain
 
Digitally enabling the RSC archive
Digitally enabling the RSC archiveDigitally enabling the RSC archive
Digitally enabling the RSC archive
 
Low Resource Domain Subjective Context Feature Extraction via Thematic Meta-l...
Low Resource Domain Subjective Context Feature Extraction via Thematic Meta-l...Low Resource Domain Subjective Context Feature Extraction via Thematic Meta-l...
Low Resource Domain Subjective Context Feature Extraction via Thematic Meta-l...
 
Text recycling research project
Text recycling research project Text recycling research project
Text recycling research project
 
The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...
 
Dr.saleem gul assignment summary
Dr.saleem gul assignment summaryDr.saleem gul assignment summary
Dr.saleem gul assignment summary
 
ECS 111 Homework ProblemsJanuary 20181) Choose a region (.docx
ECS 111  Homework ProblemsJanuary 20181) Choose a region (.docxECS 111  Homework ProblemsJanuary 20181) Choose a region (.docx
ECS 111 Homework ProblemsJanuary 20181) Choose a region (.docx
 
Knowledge codification and abstraction
Knowledge codification and abstractionKnowledge codification and abstraction
Knowledge codification and abstraction
 
The interplay between data-driven and theory-driven methods for chemical scie...
The interplay between data-driven and theory-driven methods for chemical scie...The interplay between data-driven and theory-driven methods for chemical scie...
The interplay between data-driven and theory-driven methods for chemical scie...
 
Learning Systems for Science
Learning Systems for ScienceLearning Systems for Science
Learning Systems for Science
 
Mining and Supporting Community Structures in Sensor Network Research
Mining and Supporting Community Structures in Sensor Network ResearchMining and Supporting Community Structures in Sensor Network Research
Mining and Supporting Community Structures in Sensor Network Research
 

Plus de Anubhav Jain

Plus de Anubhav Jain (20)

Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...
 
Applications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and DesignApplications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and Design
 
An AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesisAn AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesis
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software dissemination
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software dissemination
 
Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...
 
Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...
 
Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...
 
Machine Learning for Catalyst Design
Machine Learning for Catalyst DesignMachine Learning for Catalyst Design
Machine Learning for Catalyst Design
 
Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...
 
Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...
 
Accelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine LearningAccelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine Learning
 
DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …
 
The Materials Project
The Materials ProjectThe Materials Project
The Materials Project
 
Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...
 
Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...
 
Discovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials ProjectDiscovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials Project
 
The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...
 
Machine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignMachine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst Design
 
Automating materials science workflows with pymatgen, FireWorks, and atomate
Automating materials science workflows with pymatgen, FireWorks, and atomateAutomating materials science workflows with pymatgen, FireWorks, and atomate
Automating materials science workflows with pymatgen, FireWorks, and atomate
 

Dernier

Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
Areesha Ahmad
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
1301aanya
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
Areesha Ahmad
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
Scintica Instrumentation
 

Dernier (20)

GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
Introduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxIntroduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptx
 
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its Functions
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
Chemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfChemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdf
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
 
Stages in the normal growth curve
Stages in the normal growth curveStages in the normal growth curve
Stages in the normal growth curve
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 

Accelerating materials design through natural language processing

  • 1. Accelerating materials design through natural language processing Anubhav Jain Energy Technologies Area Lawrence Berkeley National Laboratory Berkeley, CA KSU Virtual Seminar, Feb 23 2021 Slides (already) posted to hackingmaterials.lbl.gov
  • 2. • Often, materials are known for several decades before their functional applications are known – MgB2 sitting on lab shelves for 50 years before its identification as a superconductor in 2001 – LiFePO4 known since 1938, only identified as a Li-ion battery cathode in 1997 • Even after discovery, optimization and commercialization still take decades • How is this typically done? 2 Typically, both new materials discovery and optimization take decades
  • 3. What constrains traditional approaches to materials design? 3 “[The Chevrel] discovery resulted from a lot of unsuccessful experiments of Mg ions insertion into well-known hosts for Li+ ions insertion, as well as from the thorough literature analysis concerning the possibility of divalent ions intercalation into inorganic materials.” -Aurbach group, on discovery of Chevrel cathode for multivalent (e.g., Mg2+) batteries Levi, Levi, Chasid, Aurbach J. Electroceramics (2009)
  • 4. 4 Researchers are starting to fundamentally re-think how we invent the materials that make up our devices Next- generation materials design Computer- aided materials design Natural language processing “Self-driving laboratories”
  • 5. Outline 5 ① Natural language processing - where are we right now? ② What’s next for the NLP work?
  • 6. 6 Can ML help us work through our backlog of information we need to assimilate from text sources? papers to read “someday” NLP algorithms
  • 7. • It is difficult to look up all information any given material due to the many different ways chemical compositions are written – a search for “TiNiSn” will give different results than “NiTiSn” – a search for “GaSb” won’t match text that reads “Ga0.5Sb0.5” – a search for “SnBi4Te7” won’t match text that reads “we studied SnBi4X7 (X=S, Se, Te)”. – a search for “AgCrSe2”, if it doesn’t have any hits, won’t suggest “CuCrSe2” as a similar result • It is difficult to ask questions or compile summaries, e.g.: – What is the band gap of “Si”? – What are all the known dopants into GaAs? – What are all materials studied as thermoelectrics? 7 Traditional search doesn’t answer the questions we want
  • 8. What is matscholar? • Matscholar is an attempt to organize the world’s information on materials science, connecting together topics of study, synthesis and characterization methods, and specific materials compositions • It is also an effort to use state-of-the-art natural language processing to make collective use of the information in millions of articles
  • 9. One of our main projects concerns named entity recognition, or automatically labeling text 9 This allows for search and is crucial to downstream tasks
  • 10. 1 0 > 4 million Papers Collected 31 million Properties 19 million Materials Mentions 8.8 million Characterization Methods 7.5 million Applications 5 million Synthesis Methods •Data Collection: Over 4 million papers collected from more than 2100 journals. Note – entities are currently extracted only from the abstracts of the papers
  • 11. 11 Now we can search! Live on www.matscholar.com
  • 13. • The publication data set is not complete • Currently analyzing abstracts only • The algorithms are not perfect • The search interface could be improved further • We would like to hear from you if you try this! 13 Limitations (it is not perfect)
  • 14. 14 How does this work? High-level view Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 15. Extracted 4 million abstracts of relevant scientific articles using various APIs from journal publishers Some are more difficult than others to obtain. Data cleaning is often needed (e.g., stray HTML tags, copyright statements) Abstract collection continues … 15 Step 1 – data collection
  • 16. 16 Ok so how does this work? High-level view Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 17. • First split the text into sentences – Seems simple, but remember edge cases like ”et al.” or “etc.” does not necessarily signify end of sentence despite the period • Then split the sentences into words – Tricky things are detecting and normalizing chemical formulas, selective lowercasing (“Battery” vs “battery” or “BaS” vs “BAs”), homogenizing numbers, etc. • Done largely with the ChemDataExtractor* with some custom improvements – We may move to a fully custom tokenizer soon 17 Step 2 - tokenization *http://chemdataextractor.org
  • 18. 18 Ok so how does this work? High-level view Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 19. • Part A is marking abstracts as relevant / non-relevant to inorganic materials science • Part B is tediously labeling ~600 abstracts – Largely done by one person – Spot-check of 25 abstracts by a second person gave 87.4% agreement 19 Step 3 – hand label abstracts
  • 20. 20 Ok so how does this work? High-level view Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 21. • We use the word2vec algorithm (Google) to turn each unique word in our corpus into a 200- dimensional vector • These vectors encode the meaning of each word meaning based on trying to predict context words around the target 21 Step 4a: the word2vec algorithm is used to “featurize” words Barazza, L. How does Word2Vec’s Skip-Gram work? Becominghuman.ai. 2017
  • 22. • We use the word2vec algorithm (Google) to turn each unique word in our corpus into a 200- dimensional vector • These vectors encode the meaning of each word meaning based on trying to predict context words around the target 22 Step 4a: the word2vec algorithm is used to “featurize” words Barazza, L. How does Word2Vec’s Skip-Gram work? Becominghuman.ai. 2017 “You shall know a word by the company it keeps” - John Rupert Firth (1957)
  • 23. • The classic example is: – “king” - “man” + “woman” = ? → “queen” 23 Word embeddings trained on ”normal” text learns relationships between words
  • 24. 24 Ok so how does this work? High-level view Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 25. • If you read this sentence: “The band gap of ___ is 4.5 eV” It is clear that the blank should be filled in with a material word (not a synthesis method, characterization method, etc.) How do we get a neural network to take into account context (as well as properties of the word itself)? 25 Step 4b: How do we train a model to recognize context?
  • 26. 26 Step 4b.An LSTM neural net classifies words by reading word sequences Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 27. 27 Ok so how does this work? High-level view Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 28. 28 Step 5. Sit back and let the model label things for you! Named Entity Recognition X • Custom machine learning models to extract the most valuable materials-related information. • Utilizes a long short-term memory (LSTM) network trained on ~1000 hand-annotated abstracts. • f1 scores of ~0.9. f1 score for inorganic materials extraction is >0.9. Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 29. 29 Could these techniques also be used to predict which materials we might want to screen for an application? papers to read “someday” NLP algorithms
  • 30. • The classic example is: – “king” - “man” + “woman” = ? → “queen” 30 Remember that word embeddings seem to learn relationships in text
  • 31. 31 For scientific text, it learns scientific concepts as well crystal structures of the elements Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 32. 32 There seems to be materials knowledge encoded in the word vectors Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 33. 33 Note that more data is not always better! We want relevance Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 34. 34 Word embeddings also have the periodic table encoded in it with no prior knowledge “word embedding” periodic table Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 35. • Dot product of a composition word with the word “thermoelectric” essentially predicts how likely that word is to appear in an abstract with the word thermoelectric • Compositions with high dot products are typically known thermoelectrics • Sometimes, compositions have a high dot product with “thermoelectric” but have never been studied as a thermoelectric • These compositions usually have high computed power factors! (DFT+BoltzTraP) 35 Making predictions: dot products measure likelihood for words to co-occur Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 36. 36 Try ”going back in time” and ranking materials, and follow what happens in later years Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 37. – For every year since 2001, see which compounds we would have predicted using only literature data until that point in time – Make predictions of what materials are the most promising thermoelectrics for data until that year – See if those materials were actually studied as thermoelectrics in subsequent years 37 A more comprehensive “back in time” test Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 38. 38 We also published a list of potential new thermoelectrics Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019). It is one thing to retroactively test, but perhaps another to see how things go after publication
  • 39. 39 Two were studied between submission and publication of manuscript Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 40. 40 More were studied since then (mainly computationally) Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 41. 41 More were studied since then (mainly computationally) Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 42. 42 More were studied since then (mainly computationally) Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019). https://arxiv.org/abs/2010.08461
  • 43. 43 Our collaborators also synthesized a prediction, finding a moderate zT of 0.14 Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 44. 44 How is this working? “Context words” link together information from different sources
  • 45. Outline 45 ① Natural language processing - where are we right now? ② What’s next for the NLP work?
  • 46. 46 1.Automatic creation of structured materials databases from the literature, e.g. doping database Sentence Base Material Dopant Doping Concentr. …the influence of yttrium doping (0-10mol%) on BSCF… BSCF Yttrium 0-10 mol% undoped, anion-doped(Sb,Bi) and cation-doped(Ca,Zn) solid sln. of Mg10Si2Sn3… Mg10Si2Sn3 Sb, Bi, Ca, Zn The zT of As2Cd3 with electron doping is found to be ~ with n=10^20cm-3 As2Cd3 electron n=10^20cm-3 This leads to zT=0.5 obtained at 500K (p=10^20cm-3) in p-type As2Cd3T As2Cd3 p-type p=10^20cm-3 The undoped and 0.25wt% La doped CdO films show 111… …however, …. for doping concentrations greater than 0.50wt%. CdO La 0.25wt%, >0.5% Will allow you to answer questions like “what are all the materials known to be doped with Eu3+” ?
  • 47. 47 2. Learning representations of materials ● Mat2vec suggested that embeddings contain chemical information ● Can we make embeddings for arbitrary materials as material descriptors? ● i.e., word embeddings for materials not in the literature ● Descriptors could be used for direct classification for application (link prediction), or quantitative property prediction (regression features)
  • 48. 48 AnyMat2Vec expands word embeddings beyond materials seen explicitly by the algorithm
  • 49. 49 Initial results – predicting experimental band gap from composition (~3000 data points)
  • 50. 50 3. Creating a comprehensive software library for materials science NLP research (multiple LBNL research groups) https://github.com/lbnlp
  • 51. 51 4. D2S2 - data driven synthesis science (in progress, larger LBNL collaboration) Can we combine natural language processing with theory and experiments to control synthesis?
  • 52. Title auto-generated from abstract Published Title Dynamics of molecular hydrogen confined in narrow nanopores Restricted dynamics of molecular hydrogen confined in activated carbon nanopores Microfluidic Generation of Polydisperse Solid Foams Generation of Solid Foams with Controlled Polydispersity Using Microfluidics Minimum variance unbiased estimator of product performance Assessing the lifetime performance index of gamma lifetime products in the manufacturing industry Angle resolved ultraviolet photoemission study of fluorescein films on Ag 110 The growth of thin fluorescein films on Ag 110” 52 ... and also some fun things, like automatic title generation Also have results in suggesting journals to submit a new article to, etc.
  • 53. 53 The Matscholar team Kristin Persson Anubhav Jain Gerbrand Ceder John Dagdelen Leigh Weston Vahe Tshitoyan Amalie Trewartha Alex Dunn Viktoriia Baibakova Funding from (now at Google) (now at Medium) Slides (already) posted to hackingmaterials.lbl.gov